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Summary. We consider the problem of estimating a high dimensional p�p covariance matrix
Σ, given n observations of confounded data with covariance ΣCΓΓT, where Γ is an unknown
p�q matrix of latent factor loadings.We propose a simple and scalable estimator based on the
projection onto the right singular vectors of the observed data matrix, which we call right singular
vector projection (RSVP). Our theoretical analysis of this method reveals that, in contrast with
approaches based on the removal of principal components, RSVP can cope well with settings
where the smallest eigenvalue of ΓTΓ is relatively close to the largest eigenvalue of Σ, as well as
when the eigenvalues of ΓTΓ are diverging fast. RSVP does not require knowledge or estimation
of the number of latent factors q, but it recovers Σ only up to an unknown positive scale factor.
We argue that this suffices in many applications, e.g. if an estimate of the correlation matrix is
desired.We also show that, by using subsampling, we can further improve the performance of the
method. We demonstrate the favourable performance of RSVP through simulation experiments
and an analysis of gene expression data sets collated by the GTEX consortium.

Keywords: Causal structure learning; Covariance matrix; Graphical models; High dimensional
data; Latent confounding

1. Introduction

Suppose that a random vector w∈Rp follows a multivariate normal distribution with covariance
matrix Σ:

w ∼Np.μw, Σ/:

Given n independent and identically distributed (IID) copies of w whose rows form a data matrix
W ∈Rn×p it is often of interest to estimate either Σ, or certain quantities that are derived from
this such as the precision matrix Ω :=Σ−1 or collections of conditional independences that may
then be used to infer causal structure (Spirtes et al., 2000).

Suppose now that we cannot observe W directly, but we instead observe n IID copies of a
random vector x which form the rows of X∈Rn×p; x is related to w through

x=w +Γh: .1/
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Here h∈ Rq is a vector of unobserved latent random variables, and Γ∈ Rp×q a fixed matrix of
loadings. If we assume that h is normally distributed, without loss of generality we may take
h ∼Nq.μh, I/. We then have that the covariance Θ of the observed x contains a contribution
ΓΓT from latent confounding and a contribution Σ from idiosyncratic noise:

Θ= cov.x/=ΓΓT +Σ:

If we simply ignore the confounding, we shall have the covariance Θ as the target of inference
instead of Σ, and the two can be very different.

Applications where such confounding is important in practice include the following.

(a) Cell biology: the activities of proteins and messenger ribonucleic acid, for example, can
be confounded by environmental factors. Two highly correlated protein activities are thus
not necessarily close in a causal network (Leek and Storey, 2007; Stegle et al., 2012).

(b) Financial assets: the returns of various stocks will be confounded by some latent factors
(such as general market movement or sector influences) without the covariance necessarily
revealing anything about causal connections between companies (Menchero et al., 2010).

(c) Confounding in biology and genetics can also occur due to technical malfunction and
laboratory effects (Gagnon-Bartsch et al., 2013).

Thus, in various settings, to infer meaningful connections between variables we would like to
remove the effect of confounding from the empirical covariance Θ̂ of X and to estimate Σ.

As well as the intrinsic ill-posedness of the problem of separating Σ from a noisy observation
of Σ+ΓΓT with Γ unknown, a further challenge in the applications above and many others is that
the dimension p may be very large indeed; of the order of thousands or more. This high dimen-
sionality brings computational difficulties that must be addressed by any practical procedure.

For Σ to be identifiable, appropriate assumptions on both Σ and Γ must be made. One natural
assumption is that the minimum eigenvalue γl of ΓTΓ is larger than the largest eigenvalue σu

of Σ. In this setting, a popular strategy to deal with unwanted confounding is removal of top
principal components from Θ̂. This has been proposed in Gagnon-Bartsch et al. (2013) and Fan
et al. (2013). The latter work, a discussion paper in the Journal of the Royal Statistical Society,
Series B, shows that, when σu is bounded and γl =O.p/, and so the gap between the quantities
is large, Σ may be recovered consistently. In this case the top q eigenvalues of Θ̂ will be well
separated from the rest, and so exactly q principal components can be removed from Θ̂: this is
important as removing too many or too few principal components can result in a poor estimate.

However, as several discussants of Fan et al. (2013) pointed out, in many settings empirical
covariances do not display well-separated eigenvalues even when latent factors are known to
be present. When the gap between σu and γl is not sufficiently large, the top q eigenvalues can
be close to the bulk, making estimation of q challenging and potentially impossible (Barigozzi
and Cho, 2018). Furthermore the top principal components (PCs) of the empirical covariance
can be far from those of Θ (Donoho et al., 2018), so, even if q were known, the PC removal
approach would not work well.

In this paper, we propose a simple approach to estimating Σ that can cope with settings where
the gap between γl and σu may range from large and O.p/ to potentially small. To achieve this
ambitious objective, the method sacrifices estimation of the scale of Σ: we recover Σ only up
to an unknown positive scalar factor. The loss of scale, however, is inconsequential when the
ultimate goal is rather to estimate the correlation matrix Σ̃, or to locate the top s largest entries
in Σ for a prespecified s, to build a network. In fact, we show that the scale-free nature of our
estimator gives it an in-built robustness in that, if the rows of X have elliptical distributions, its
distribution is precisely the same as if the data were Gaussian (see proposition 3 in Section 3).
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Let V ∈ Rp×.n−1/ be the matrix of right singular vectors with non-zero singular values of a
column-centred version of X. Our estimator is based on Σ̂rsvp :=VV T; we call this right singular
vector projection (RSVP). The PC removal estimate is proportional to VH2V T where H is a
diagonal matrix of singular values of the centred X with the first q entries set to 0 (when q is
known). Thus RSVP may be seen as a highly regularized version of PC removal, where the
random H is set to the identity matrix to reduce its variance. In fact, we show that each entry
of Σ̂rsvp concentrates around its expectation at the same rate as the empirical covariance matrix
after rescaling, even in settings where q is allowed to grow at almost the same rate as n (see
theorem 1 in Section 3).

Despite the aggressive regularization, it turns out that the bias is dominated by the variance
provided that p�n, so n=p is small. As a consequence, we can show that, with high probability,

inf
κ>0

max
j,k

|Σjk −κΣ̂rsvp,jk|� c

√{
log.p/

n

}

for some constant c > 0, even in certain settings when γl is only larger than σu by a constant
factor, and the latter is bounded. In fact, we show that the statistical properties of Σ̂rsvp are such
that, when used as input to several standard procedures for conditional independence graph
estimation or causal discovery procedures, the performances of the resulting estimates are, in
many settings, identical to those attained when working with the unconfounded data, up to
constant factors.

One requirement for Σ̂rsvp to work well is that p � n. For settings where n is large, we can
circumvent this condition by using a subsampling strategy. We show that, surprisingly, by com-
puting our estimator on subsamples of the data and averaging (Breiman, 1996), the bias may
be reduced, and the variance inflated by only a factor of

√{log.p/}. Subsampling with a very
small number of samples in each subsample is both statistically and computationally attractive
and is the approach that we would recommend in settings where we do not have p�n.

1.1. Related work
There is a large body of work on high dimensional covariance and precision matrix estimation:
see for example the recent review paper of Cai et al. (2016) and references therein. Much of the
work on the specific setting with latent confounding has focused on estimation of the precision
matrix Ω, which is assumed to be sparse. The presence of the latent confounding causes the
overall precision matrix of x to be a sum of Ω and a low rank component. One approach to
sparse precision matrix estimation in the absence of confounding is the graphical lasso (Yuan
and Lin, 2007; Yuan, 2010; Friedman et al., 2008). Building on this and work on sparse–
dense matrix decompositions in the noiseless setting (Candès et al., 2011; Chandrasekaran
et al., 2011), the work of Chandrasekaran et al. (2012) formulates a convex objective involving
nuclear norm penalization for Gaussian graphical model estimation with latent confounders.
The work of Frot et al. (2019b) uses this as a stepping-stone for causal structure learning and
causal effect estimation in low dimensional settings. A challenge for nuclear norm penalization
and related approaches is that, although the objective is convex, optimizing it is nevertheless a
computationally intensive task that does not scale to very large dimensions.

A second approach to precision matrix estimation exploits the fact that coefficients from
regressions of each variable on all others, known as nodewise regressions, match the entries of
the precision matrix up to scale factors (Lauritzen, 1996; Meinshausen and Bühlmann, 2006).
Adjusting for confounding can be built into a nodewise regression procedure, e.g. by using the
‘Lava’ method of Chernozhukov et al. (2017) which employs a sparse–dense decomposition of
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the regression coefficients; the sparse part of the coefficients can then be retained as the dense part
is generally due to confounding. This regression may be formulated as a lasso regression with a
transformed response and a particular preconditioned design matrix; see also Rohe (2015) for
an earlier equivalent proposal. Ćevid et al. (2018) studied the theoretical properties of the Lava
approach as well as more general forms of preconditioning including the Puffer transform that
was proposed in Jia and Rohe (2015) and further investigated in Wang and Leng (2015). This,
in analogy with RSVP, modifies the design matrix by replacing non-zero singular values with a
constant. We also note that the asymptotic normal thresholding procedure of Ren et al. (2015),
which employs nodewise regressions in a different fashion, is robust to weak confounding.

There has been comparatively less work on covariance matrix estimation in the presence of
confounding, though, as we discuss and make use of in this work, an estimated covariance can
be used as a starting point for conditional independence graph estimation or causal discovery. In
addition to the work of Fan et al. (2013) and Gagnon-Bartsch et al. (2013) that was mentioned
earlier, Fan et al. (2018) proposed a PC removal approach that can be applied to heavy-tailed
data that follow an elliptical distribution.

1.2. Organization of the paper
The rest of the paper is organized as follows. In Section 2 we first discuss asymptotic identifiabil-
ity of Σ and then introduce our RSVP estimator Σ̂rsvp and versions involving subsampling. We
present theoretical properties of Σ̂rsvp and RSVP with sample splitting in Section 3. In Section 4
we present results on the use of RSVP estimators as input to methods for conditional indepen-
dence graph estimation and for causal discovery via the PC algorithm. Numerical experiments
are contained in Section 5 and we conclude with a discussion in Section 6. The on-line supple-
mentary material for this paper contains all proofs and further results concerning the GTEX
consortium data analyses that are presented in Section 5.2.

1.3. Notation
We write a�b as shorthand for ‘there is a constant c>0 such that a�cb’. This constant may be
a universal constant, or a function of quantities that have been designated as constants in our
assumptions. If a�b and b�a, we may write a�b. For a matrix A∈Rd×m, ‖A‖ will denote the
operator norm, and ‖A‖∞ =maxi=1,:::,d,j=1,:::,m |Aij|.

When d = m, so A is square, we shall write λmax.A/ and λmin.A/ for the maximum and
minimum eigenvalues of A respectively. Further, given sets I, J ⊆D :={1, : : : , d}, we shall denote
by AI,J the |I|× |J | submatrix of A that is formed from those rows and columns of A indexed by
I and J respectively. Such matrix subsetting operations will always be considered to have been
performed first so that for example, when AI,I is invertible, A−1

I,I ≡ .AI,I/−1. For j ∈D, j or −j

used in place of the subscripts I or J above will represent {j} and D\{j} respectively, so Aj,−j for
example is the 1× .d −1/ matrix that is formed from the jth row of A with its jth entry removed.

In analogy with the matrix subsetting notation that was set out above, we shall write, for a
vector v ∈ Rd , vI for the subvector formed from the components of v indexed by I. Also, for
j, k ∈ D, v−j and v−jk will be subvectors of v with jth and both the jth and kth components
removed respectively. We denote by ej the jth standard basis vector; the dimension of this will
be clear from the context.

2. Right singular vector projection

Let us assume that the observed data matrix X∈R.n+1/×p has rows given by n+1 independent
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realizations of an Np.μ, Θ/ random vector (we shall later relax the Gaussian assumption; see
proposition 3 in Section 3). The n+1 rather than n is for mathematical convenience: the column-
centred version X̃ :=ΠX of X effectively contains n observations. Here Π= I − .n + 1/−111T

where 1 is an .n+1/-vector of 1s. Our goal is to construct an estimate of Σ based on these data
where Σ+ΓΓT =Θ and both Γ∈Rp×q and q are unknown. We are interested in the case p�n

and shall assume that p>cn for some c> 1, unless specified otherwise.
In what follows we first study the identifiability of Σ in the model above. In Section 2.2

we discuss a general approach for estimating Σ based on transforming the spectrum of the
covariance matrix, which includes PC removal and our RSVP method presented in Section 2.3
as special cases. Finally we introduce a sample splitting version of RSVP in Section 2.4.

2.1. Asymptotic identifiability
First consider an artificial setting where Θ itself is directly observed. Even in this noiseless
setting, certain conditions must be placed on Γ and Σ for Σ to be recoverable given Θ. Define

λmin.ΓTΓ/ :=γl,

λmax.ΓTΓ/ :=γu,

λmin.Σ/ :=σl,

λmax.Σ/ :=σu:

If γl is large compared with σu, we might hope that the top q eigenvectors of Θ will span most
of the column space of Γ. Therefore removing these from Θ should yield a matrix that is close
to Σ. Proposition 1 below, based in part on an application of the Davis–Kahan sin.θ/ theorem
(Davis and Kahan, 1970), formalizes this intuition.

Let Θ have eigendecomposition PD2PT where the diagonal matrix D has D11 �D22 � : : :�
Dpp. Also define, for l ∈ {1, : : : , p}, function Hl taking as argument a square matrix, and out-
putting a matrix of the same dimension, by

.Hl.E//jk =
{

0 if j, k � l,
Ejk otherwise.

Thus the top left-hand l× l submatrix of Hl.E/ is a matrix of 0s. Define ΠΓ :=Γ.ΓTΓ/−1ΓT,

ρ1 :=‖ΠΓΣ‖
and

ρ2 :=max
j

‖ΠΓej‖2:

Proposition 1. Suppose that σl is bounded away from 0 and γl > cσu for a constant c > 1.
Then

‖PHq.D2/PT −Σ‖∞ �ρ1ρ2 +γuρ2
1=γ2

l : .2/

In order for removal of q PCs to yield a matrix that is close to Σ at the population level, we
require ρ2 to be small; this essentially requires that the column space of Γ is not too closely
aligned with any of the standard basis vectors. We always have the bound ρ1 �σu. However, in
the setting where Γ is entirely uninformative about Σ, we might expect that ρ1 may be smaller.
Specifically, if we imagine that nature has chosen the column space of Γ uniformly at random,
we shall have with high probability that
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ρ2
1 � 1

p
[tr.Σ2/+√{qtr.Σ4/}],

ρ2
2 � q

p

(
1+max

[
log.p/

q
,
√{

log.p/

q

}])
:

.3/

See section H in the on-line supplementary material for a derivation. Asymptotic identifiability
results related to proposition 1 are given in Fan et al. (2013, 2018) when σu and q are bounded,
and both γl and γu are O.p/. In these settings it is straightforward to show that ρ2 �p−1=2, in
which case the right-hand side of expression (2) may be replaced by p−1=2.

2.2. Spectral transformations
We now return to the original noisy version of the problem. The empirical covariance matrix
Θ̂ = X̃TX̃=n has expectation Θ = PD2PT, so we would ideally like to modify Θ̂ such that the
eigenstructure of its expectation more closely resembles PHq.D2/P . Therefore consider the
following family of estimators that involve transforming the spectrum of Θ̂.

Note that, as X̃ has been centred and p > n, the rank of X̃ is n. Let the singular value
decomposition of X̃ be given by X̃=UΛV T where Λ∈Rn×n is diagonal, and U ∈R.n+1/×n and
V ∈Rp×n each have orthonormal columns. Define

Σ̂H = 1
n

VH.Λ2/V T .4/

where function H here outputs n × n diagonal matrices. For such estimators, we have the fol-
lowing property.

Proposition 2. We have that the expectation E.Σ̂H/=PC2
HPT where CH is diagonal.

The fact that the eigenvectors of E.Σ̂H/ coincide with those of Θ suggests that we should pick
function H such that C2

H is close to Hq.D2/. A natural choice is a simple PC-analysis-based
adjustment (Fan et al., 2013, 2018; Gagnon-Bartsch et al., 2013) of the form

Σ̂pca.l/ := Σ̂Hl
=n−1VHl.Λ2/V T:

The resulting PC removal estimator can be further thresholded as in Bickel and Levina (2008)
and Fan et al. (2013), though, if our aim is to recover the locations of the largest entries of the
covariance, this additional thresholding step is without consequence. The choice of the number l

of principal components to remove is rather critical to the method but can be challenging. Even
if we had knowledge about the dimensionality q of the latent confounders, the optimal choice
would depend on the relative magnitude of the eigenvalues of ΓTΓ in relation to the eigenvalues
of Σ. In the absence of this knowledge, one might resort to cross-validation schemes. Since the
target of inference is the unobserved idiosyncratic part Σ of the covariance, it is not obvious
how such a cross-validation can be set up in a meaningful way. Information criteria may be used
as in Fan et al. (2013), but these rely on γl=σu �p.

2.3. Right singular vector projection
One reason that the PC removal approach can struggle in settings where the separation between
γl and γu is relatively small is that the top q eigenvectors of Θ̂ need not span the column space of
Γ well and in general will have high variability. Thus although Θ̂=n−1VΛ2V T concentrates well
around its expectation Θ in l∞-norm, an approach that involves manipulating the contributions
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of individual singular vectors in V to the overall estimator is likely to have high variance. This
suggests that some form of regularization may be helpful.

Taking the function H as one which always returns n times the identity matrix results in the
simple estimator

Σ̂rsvp :=VV T:

Note that this is invariant to permutations of the columns of V and so is less dependent on
properties of individual eigenvectors. As a consequence of the regularization, we have lost the
scaling of the original covariance: the estimator is invariant to multiplying X from the left by
any invertible n×n matrix. Thus we can only hope to recover Σ up to a constant scale factor.
This suffices for our purposes, and we argue that this gives the estimator a certain robustness in
that it is insensitive to particular pretransformations of the data such as scaling of the rows of
X. In fact Σ̂rsvp is more generally robust; see proposition 3 in Section 3. The computation time is
dominated by the matrix multiplication of V and V T, which is O.np2/; thus the computational
complexity is the same as that for computing the empirical covariance.

In a regression context, an analogous approach for preconditioning the design matrix has been
explored in Jia and Rohe (2015) and Wang and Leng (2015). The Lava estimator (Chernozhukov
et al., 2017) employs a similar preconditioning strategy but, instead of setting all non-zero
singular values of the design matrix to 1, the singular values di are transformed implicitly as
{d2

i =.1+ cd2
i /}1=2, where the constant c depends on a tuning parameter and the sample size.

It may seem as if all information regarding the eigenvalues of Σ has been lost in the regu-
larization as Λ does not play a role in the estimator. However, we show in Section 3 that, in
certain high dimensional settings, we can even estimate Σ in l∞-norm at the same rate as the
empirical covariance matrix in the absence of confounding, though only up to an unknown scale
factor. Intuitively, the reason is that, when p�n, with the exception of certain large eigenval-
ues in Λ due to large eigenvalues in ΓTΓ, the rest of the eigenvalues are essentially noise and
bear no resemblance to the eigenvalues of Σ. This peculiar blessing of high dimensionality is a
phenomenon that fails when p is of the same order as n, for example. It is, however, possible to
subsample the data, and to average over estimates computed on the samples, to mimic the high
dimensional setting. We discuss this below.

2.4. Subsampling right singular vector projection
Given m∈{1, : : : , n}, let V .b/ be the matrix of right singular vectors of a random sample of m

rows of X̃. We define the subsampling RSVP estimator as

Σ̂rsvp-sub := 1
B

B∑
b=1

V .b/.V .b//T:

The sample splitting RSVP estimator Σ̂rsvp-split is defined similarly but where the sets of indices
of the sampled rows are disjoint, and so B=�.n+1/=m�. In practice, the subsampling estimator
is preferable as the additional sampling can help to reduce the variance of the estimator. Our
main reason for introducing the sample splitting version is that it is simpler to understand its
theoretical properties (see theorem 4 in Section 3); however, sample splitting still performs well
empirically as we demonstrate in Section 5.

Both estimators are trivially parallelizable: the singular value decomposition computations
for each subsample can be performed simultaneously and then added at the end. If B machines
were available for the computations, the overall parallel computation time would be O.mp2/

provided that log.B/�m.
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2.5. Example
Figs 1 and 2 show an example of the proposed sample splitting RSVP estimator, compared
with the target Σ and PC removal. In Fig. 1, the latent confounding is so strong that the
empirical covariance shows very little visual indication of the block structure of the idiosyncratic
covariance. Likewise, PC removal fails to recover the structure, whether we use an oracle for
determining the number of factors to remove or estimate the optimal number of factors. RSVP
in contrast recovers the smaller blocks. It is shown here for m= 20 samples in each subsample
(default) but the results do not change appreciably when choosing a different subsample size.
When reducing the strength of the latent confounders (Fig. 2), the empirical covariance shows
the correct underlying structure visually but all PC removal methods fail to recover the largest
block of variables as even just removing the first PC removes the large block.

3. Theoretical properties

In this section, we present some theoretical properties of Σ̂rsvp and Σ̂rsvp-split. We first explain
how Σ̂rsvp has low variance and then argue that its bias is also well controlled in the high di-
mensional setting. We then discuss the consequences for Σ̂rsvp-split. We shall assume condition
1 below in several of the results to follow.

Condition 1. There exist constants 0 < c1 < c2 such that c1 < σl � maxj var.xj/ < c2. There
exists a constant c3 > 1 such that γl >c3σu and p>c3n. Furthermore log.p/=o.n/.

Theorem 1. Assume condition 1 and that σu � p={n log.p/} and q � n= log.p/. Then there
exists a constant c> 0 such that, with probability at least 1− c=p,

p

n
‖Σ̂rsvp −E.Σ̂rsvp/‖∞ �

√{
log.p/

n

}
:

We show in theorem 2 below that the entries in E.Σ̂rsvp/ are of the order n=p, so the result
shows that the rate at which Σ̂rsvp concentrates is equivalent to that enjoyed by the empirical
covariance matrix in the absence of confounding. The proof, given in section E.2 in the on-
line supplementary material, is based on a variant of the classical concentration inequality for
a Lipschitz function f : Rd → R of IID Gaussian random variables ζ ∼ Nd.0, I/, which may
be of independent interest. Whereas the original result guarantees fast concentration when
sup

v∈Rd ‖∇f.v/‖2 is small, our new result (theorem 7 in the supplementary material) requires
only a high probability bound on ‖∇f.ζ/‖2, and a potentially loose bound on E‖∇f.ζ/‖2

2. See
also lemma 1.3 of Klochkov and Zhivotovskiy (2018) for a related result.

Although our proof technique for concentration of Σ̂rsvp makes use of particular properties of
Gaussian distributions, one attractive feature of the estimator is that it enjoys a certain in-built
robustness to deviations from Gaussianity in the distribution of X. Indeed, consider now the
weaker requirement that

X=MZΘ1=2 +1μT .5/

where M ∈ R.n+1/×.n+1/ is invertible and the rows of Z ∈ R.n+1/×p are independent following
(potentially different) spherically symmetric distributions, so ZQ=d Z for any orthogonal ma-
trix Q∈R.n+1/×.n+1/. A sufficient condition for this to occur is that the rows of X are IID and
have a density with elliptical contours. In this more general setting we have the following result.

Proposition 3. The law of Σ̂rsvp under requirement (5) above is the same as that when X has
independent rows distributed as Np.μ, Θ/.
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For example, the entries in Z can have arbitrarily heavy tails; provided that the spherical
symmetry is satisfied, all results in this section hold under this setting and more generally
under requirement (5). This may seem surprising at first sight but is analogous to how, if ζ
has a spherically symmetric distribution, then the distribution of ζ=‖ζ‖2 is simply the uniform
distribution on the d-dimensional spherical shell, and in particular identical to the distribution
that is obtained when ζ ∼Nd.0, I/.

We now turn to the expectation of Σ̂rsvp. Theorem 2 below shows that E.Σ̂rsvp/ is approximately
a scaled version of Σ.

Theorem 2. Assume condition 1. We have that E.Σ̂rsvp/ = PC2PT where C is a diagonal
matrix with C satisfying

max
j,k∈{q+1,:::,p}

∣∣∣∣ C2
jj

D2
jj

− C2
kk

D2
kk

∣∣∣∣�σu
n2

p2 : .6/

This result shows that the ratio of C2
jj to D2

jj does not vary much across j ∈ {q + 1, : : : , p}
provided that p�n. In fact we also have

max
j∈{q+1,:::,p}

∣∣∣∣C2
jj − .n−q/D2

jj∑p
k=q+1 D2

kk

∣∣∣∣�
√(

n

p

)
+ p

γln
.7/

in the case where σu is bounded, which reveals the form of the scale factor, and in particular its
dependence on the unknown q. A derivation is given in section F of the on-line supplementary
material. We do not make direct use of this in the proof of theorem 3 below, however, as it is
useful only when γl is large; in contrast, expression (6) is valid for any value of γl.

Combining the results of proposition 1 and theorems 1 and 2 gives the following high prob-
ability bound on the l∞-norm error of estimating Σ, up to an unknown scale factor.

Theorem 3. Assume condition 1 and that σu �p={n log.p/}, q�n= log.p/. With probability
at least 1− c=p for some constant c> 0, we have that there exists κ> 0 such that

‖Σ−κΣ̂rsvp‖∞ � γuρ2
1

γ2
l

+ρ1ρ2 +min
(

p

n
, γu

)
ρ2

2 +σu
n

p
+

√{
log.p/

n

}
: .8/

If we additionally assume that ρ2
2 � q=p and ρ1 is bounded, we have that there exists κ > 0

such that

‖Σ−κΣ̂rsvp‖∞ � γu

γ2
l

+
√(

q

p

)
+ q

n
+σu

n

p
+

√{
log.p/

n

}
: .9/

The first two terms in the bounds (8) and (9) come directly from the population level result
proposition 1. The remaining terms do not depend on γl, demonstrating how RSVP, in contrast
with the PC removal approach, does not rely on a large eigengap between ΓTΓ and Σ. The final√{log.p/=n}-term is due to the variance (see theorem 1). Considering expression (9), in the
case where σu �p

√
log.p/=n3=2, q�√{n log.p/} and p

√
log.p/�n3=2, we have that with high

probability

inf
κ>0

‖Σ−κΣ̂rsvp‖∞ � γu

γ2
l

+
√{

log.p/

n

}
:

If the condition number of ΓTΓ were bounded, we need only γl �
√{n= log.p/} for the l∞-norm



Right Singular Vector Projection Graphs 371

error above to be of the same order as that achieved by the empirical covariance matrix of the
(unobserved) unconfounded data W .

Although RSVP does not require strong eigengap conditions, we do need p�n so that the
term involving σun=p, due to the bias of the estimator, is small. By sample splitting and averaging
in constructing Σ̂rsvp-split, we effectively reduce n, but only introduce an extra

√
log.p/-factor

in the variance term, as the following result shows.

Theorem 4. Let Σ̂rsvp-split be the sample splitting RSVP estimator with B subsamples of size
m, so n+1=mB. We consider for simplicity the case where the data are column centred in each
subsample. Assume condition 1, but without the requirement that c3n < p; instead suppose
that c1m<p for c1 > 1, and B<pc2 for some c2 > 0. Assume that 1�σu �p={m log.p/} and
q � m= log.p/. With probability at least 1 − c=p for some constant c > 0, we have that there
exists κ> 0 such that

‖Σ−κΣ̂rsvp-split‖∞ � γuρ2
1

γ2
l

+ρ1ρ2 +min
(

p

m
, γu

)
ρ2

2 +σu
m

p
+ log.p/√

n
:

If we additionally assume that ρ2
2 � q=p and ρ1 is bounded, we have that there exists κ > 0

such that

‖Σ−κΣ̂rsvp-split‖∞ � γu

γ2
l

+
√(

q

p

)
+ q

m
+σu

m

p
+ log.p/√

n
: .10/

Considering expression (10), we see that for an optimal m � √
.pq=σu/ we have with high

probability that

inf
κ>0

‖Σ−κΣ̂rsvp-split‖∞ � γu

γ2
l

+
√(

qσu

p

)
+ log.p/√

n
: .11/

Although the simple RSVP estimator is most useful in the high dimensional case p � n, this
result shows that sample splitting gives good performance in moderate to low dimensional
settings, which will be confirmed empirically in Section 5.

3.1. Weak confounding
The results and discussion thus far have considered the case where γl >σu. In cases where the
confounding is sufficiently weak such that

‖Θ−Σ‖∞ =‖ΓΓT‖∞ =max
j

‖ΓTΠΓej‖2
2 �γuρ2

2

is small, and so the empirical covariance Θ̂ is itself a good estimator of Σ, a straightforward
consequence of our previous results and their proofs is that RSVP will behave similarly to the
empirical covariance.

Corollary 1. Consider the set-up of theorem 3 but now without any restriction on q and γl

(so in particular γl <σu is permitted). With probability at least 1− c=p for some constant c> 0,
there exists κ> 0 such that

‖Σ−κΣ̂rsvp‖∞ �γuρ2
2 + .γu +σu/

n

p
+

√{
log.p/

n

}
:

Suppose additionally that γu=γl is bounded, ρ2
2 �q=p, σu �p

√
log.p/=n3=2,

q�n max{√{log.p/=n}, 1= log.p/}
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and p log.p/�n2. Then, with probability at least 1− c=p,

‖Σ−κΣ̂rsvp‖∞ �
√{

log.p/

n

}
:

Note that the final result holds regardless of the strength of confounding, which can be
arbitrarily weak or strong, though it relies on the condition number of ΓTΓ being bounded.

4. Conditional independence graph estimation and causal structure learning

In this section we consider using RSVP in conjunction with existing methods for conditional
independence graph (CIG) estimation and causal structure learning. We first turn to the problem
of estimating the CIG corresponding to Σ: this is the undirected graph on p nodes with an edge
between nodes j and k with j �= k if and only if wj �⊥⊥wk|w−jk, where recall that w ∼Np.μw, Σ/.
Equivalently, we have an edge between j and k if and only if the precision matrix Ω=Σ−1 has
Ωjk �=0.

4.1. Conditional independence graph estimation
Methods for CIG estimation when p�n typically rely on Ω being sparse. Applying them directly
to the observed data X will in general not work well, firstly as the inverse covariance Θ−1 of the
observed data may be far from Ω, and secondly because Θ−1 will not be sparse but rather a sum
of the sparse Ω and a low rank component due to the presence of latent confounding. However,
many of the methods for sparse precision matrix estimation require only an estimated covariance
as input and so can be readily applied to any estimate of Σ. Examples include neighbourhood
selection (Meinshausen and Bühlmann, 2006), the graphical lasso (Yuan and Lin, 2007; Yuan,
2010; Friedman et al., 2008) and constrained l1-minimization for inverse matrix estimation (Cai
et al., 2011). Note that, as RSVP estimates Σ up to an unknown scale factor only, we can similarly
only hope to recover the precision matrix up to an unknown scale factor; this, however, suffices
for estimating the CIG. Theoretical results for constrained l1-minimization for inverse matrix
estimation and the graphical lasso require only an initial estimate of Σ that is close in l∞-norm,
so our estimation error bounds for Σ translate directly into estimation error bounds on Σ−1.
We now present the corresponding result for neighbourhood selection, which is more delicate.

The procedure of neighbourhood selection involves running p lasso regressions of each vari-
able against all others. The resulting coefficient estimates may then be used to derive an estimate
of the CIG. Phrased in terms of an estimate Σ̂ of the covariance, the so-called nodewise regres-
sions take the form

β̂
.j/

:= arg min
b∈Rp:bj=0

{ 1
2 bTΣ̂b−bTΣ̂j +λj‖b‖1

}
: .12/

The population level minimizer β.j/ ∈ Rp (i.e. with Σ̂ replaced by Σ) of the above when λj = 0
satisfies

β
.j/
l =

⎧⎨
⎩

.Σ−1
−j,−jΣ−j,j/l l<j,

0 l= j,
.Σ−1

−j,−jΣ−j,j/l−1 l>j:

The {β.j/}p
j=1 encode the CIG; indeed wj⊥⊥wk|w−jk if and only if β

.j/
k =β

.k/
j =0. Here we shall

take Σ̂= Σ̂rsvp in expression (12); we thus expect that a scaled version of β̂.j/ becomes close toβ.j/.
To present our result on the statistical properties of β̂.j/, we introduce the following quantities.

Let Sj = {l : β.j/
l �= 0} and let sj :=|Sj| and s = maxj sj; thus sj and s are the degree of the jth

node and the maximal degree in the CIG respectively. Also define
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ηj = .β.j//TΓΓTβ.j/:

Our theory will require the ηj to be small. We always have ηj � sj for all j. Indeed

.β.j//TΓΓTβ.j/ � .β.j//TΘβ.j/ =β
.j/
Sj

ΘSj ,Sjβ
.j/
Sj

:

As Θ is positive semidefinite, we have |Θlk| � max.Θll, Θkk/ � 1 for all l and k. Thus, by the
Gershgorin circle theorem, λmax.ΘSj ,Sj /� sj. Also, as

1�Θjj �var.wj/�var.wj|w−j/=‖Σ−1=2
−j,−jΣ−j,j‖2

2 �σl‖Σ−1
−j,−jΣ−j,j‖2

2,

we have ‖β.j/‖2 �1, whence ηj � sj.
However, in many settings we can expect the ηj to be smaller: if we consider the column space

of Γ to have been chosen (by nature) uniformly at random conditionally on Σ, then we have

ηj �1 for all j: .13/

A derivation of this is given in section I of the on-line supplementary material.

Theorem 5. Assume condition 1. Let

Δ :=
√{

sn

log.p/

}{
γuρ2

1

γ2
l

+ρ1ρ2 +min
(

p

n
, γu

)
ρ2

2 +σu
n

p

}
:

Let β̂.j/ be the nodewise regression coefficient when Σ̂= Σ̂rsvp and

λj =A
√{max.ηj, Δ, 1/n log.p/}=p

for constant A>0. Suppose that s=o[
√{n= log.p/}]. We have that, for A, n and p sufficiently

large, with probability at least 1− c=p for some constant c> 0,

‖β̂.j/ −β.j/‖2 �√{sj log.p/ max.ηj, Δ, 1/=n},

‖β̂.j/ −β.j/‖1 � sj
√{log.p/ max.ηj, Δ, 1/=n}

for all j =1, : : : , p.

Suppose that ρ2
2 � q=p, ρ1 � 1, γ2

l =γu � √{sn= log.p/}, q � √{n log.p/=s} and σu �
p
√{log.p/=.sn3/}; then Δ� 1. If in addition ηj � 1 for all j, we recover the usual estimation

error rates for the lasso:

‖β̂.j/ −β.j/‖2 �√{sj log.p/=n},

‖β̂.j/ −β.j/‖1 � sj
√{log.p/=n}:

The following simple corollary shows that, under a minimum signal strength condition, appro-
priately thresholding the estimates β̂

.j/
recovers the true CIG.

Corollary 2. Consider the set-up of theorem 5 and suppose max.Δ, ηj/. Suppose that

min
k∈Sj

|β.j/
k |�C

√{sj log.p/=n}

for all j and some C>0. For C sufficiently large, with probability at least 1−c=p for some c>0,
there exists τ > 0 such that, defining

Ŝj ={k : |β̂.j/

k |� τ
√{sj log.p/=n}},

we have Ŝj =Sj for all j.
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Although edges in a CIG are typically given a causal interpretation, structural equation
models (Pearl, 2009) and graphical modelling with directed acyclic graphs (Lauritzen, 1996)
offer a more principled approach for causal inference. Below we explain how the popular PC
algorithm (Spirtes et al., 2000) may be run with our RSVP estimate as its input to enable causal
structure learning in the presence of hidden confounding.

4.2. Causal structure learning
In this section we describe how our RSVP estimator may be used for causal structure learning
concerning the unconfounded w ∼ Np.μw, Σ/. If we assume a structural causal model for w
with an underlying directed acyclic graph (DAG) encoding parent–children relationships (Pearl,
2009), then the observational distribution factorizes according to this DAG. The interventional
distributions under ‘do’ interventions can then be obtained by truncated factorizations (Robins,
1986; Pearl, 2009) under an assumption known as autonomy (Haavelmo, 1944).

If the underlying DAG G is unknown, it needs to be estimated from data; for a general overview
of causal structure learning see for example Heinze-Deml et al. (2018). Under a faithfulness
assumption (Meek, 1995), the set of conditional independences in the observational distribution
will be exactly those that may be inferred via d-separation from G. In general, many DAGs will
be compatible with the observational distribution in this way and these form an equivalence
class which may be conveniently represented through a completed partially directed acyclic graph
(CPDAG). A CPDAG contains both directed and undirected edges, and essentially contains
all the information relating to causal structure that may be inferred from a given observational
distribution under the assumption of faithfulness.

Our goal here is to infer the CPDAG corresponding to the distribution of the unconfounded
data. To do this we employ the PC algorithm (Spirtes et al., 2000; Kalisch and Bühlmann,
2007). The population version of the PC algorithm is a procedure for determining the CPDAG
C.G/ corresponding to a distribution P that is faithful to a DAG G given a list of conditional
independences satisfied by P . In our context where P =Np.μw, Σ/ with Σ positive definite, these
conditional independences may be equivalently represented by partial correlations: we have for
w ∼Np.μw, Σ/ that

wj ⊥⊥wk|wS ⇔ρjk|S =0, .14/

where the partial correlation ρjk|S satisfies

ρjk|S =− Ψjk√
.ΨuuΨvv/

, .15/

and Ψ−1 =ΣA,A with A = {j}∪ {k}∪ S (Harris and Drton, 2013). Here we have indexed the
rows and columns of Ψ according to the elements of A.

The sample version of the PC algorithm replaces queries of conditional independence with
conditional independence tests. In our case, in analogy with expressions (14) and (15) we shall
consider tests that declare the conditional dependence wj �⊥⊥wk|wS if and only if

|Ψ̂jk|√
.Ψ̂uuΨ̂vv/

� τ , .16/

where Ψ̂
−1 = Σ̂A,A with Σ̂ either Σ̂rsvp or Σ̂rsvp-split; here A is defined as above and threshold τ

is a tuning parameter. If Σ̂A,A is not invertible, we shall simply accept the null of conditional
independence.
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In the case where confounding is not present, the PC algorithm requires faithfulness and a
certain minimum signal strength condition for partial correlations. We shall therefore assume
that Np.μw, Σ/ is faithful to a DAG G and our target of inference will be the corresponding
CPDAG C.G/ =: C. We denote the maximum degree of G by d. Define also the following
parameter controlling minimum signal strength:

ω :=min{|ρjk|S | : j, k ∈V , S ⊆V , |S|�d, ρjk|S �=0}:

It will also be convenient to introduce a particular minimum restricted eigenvalue σr of Σ defined
through σr :=minI:|I|�d+2 λmin.ΣI,I/. Note that we always have σr �σl.

The result below follows directly from the proof of theorem 8 in Harris and Drton (2013).

Lemma 1. Let Ĉτ be the output of the PC algorithm using conditional independence tests
given by expression (16) with threshold τ . For any A�1 we have

P

(
Ĉτ =C for all τ ∈

[
ω

2A
, 1− ω

2A

])
�P

{
inf
κ>0

‖κΣ̂−Σ‖∞ � ωσ2
r

.4A+ω +σrω/.d +2/

}
:

Taking Σ̂ as either Σ̂rsvp or its sample splitting variant Σ̂rsvp-split, by combining lemma 1 with
one of theorems 3 or 4, we can obtain high probability guarantees on recovering the CPDAG
corresponding to the unconfounded data. As an example, we consider the setting where the
assumptions of theorem 4 and those leading to expression (11) hold. Additionally, consider an
asymptotic regime where

σu

σ2
l

+
√(

qσu

p

)
+ log.p/√

n
=o

(
ω

d

)
: .17/

Then using Σ̂rsvp-split with an optimal subsample size m�√
.pq=σu/ we have the following con-

clusion: there is a sequence an → 0 and constant c > 0 such that Ĉτ = C for all τ ∈ [an, 1 − an]
with probability at least 1 − c=p. We may compare this conclusion with the results that were
obtained in Kalisch and Bühlmann (2007) that provide similar guarantees for the PC algorithm
when confounding is not present. If we assume that the final term of log.p/=

√
n on the left-hand

side of equation (17) is the dominant term, our requirement is log.p/=
√

n=o.ω=d/ whereas the
equivalent result in Kalisch and Bühlmann (2007) requires only

√{log.p/=n} = o.ω=
√

d/. In
particular, we see that, in our setting, the maximal degree d cannot grow as quickly. This restric-
tion is also present in the analogous result of Harris and Drton (2013) who considered applying
the PC algorithm (in the absence of hidden confounding) by using conditional independence
tests based on partial correlations derived from rank correlations.

5. Numerical results

5.1. Simulation experiments
In this section we provide some numerical results for various scenarios and compare the proposed
estimator with the PC removal estimators, as employed in the principal orthogonal complement
thresholding method (Fan et al., 2013). Results for shrinkage estimators of Ledoit–Wolf type
(Ledoit and Wolf, 2004) are also included in our comparison.

5.1.1. Experimental set-ups
We consider five scenarios described below. For each of these, we generate n ∈ {100, 200, 500,
1000, 2000} independent samples from Np.0, Θ/ for a covariance matrix Θ ∈ Rp×p that has
an idiosyncratic component and a component due to confounding Θ=Σ+ΓTΓ. The number
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of variables is varied in p ∈ {100, 200, 500, 1000, 2000}. For q latent confounders, the entries
of the matrix Γ∈ Rp×q are sampled independently from a standard normal distribution, and
column k ∈{1, : : : , q} of Γ is scaled by a factor ν exp.−k/ to have a decaying spectrum among
the latent confounders. The strength ν ∈ {0:01, 0:1, 0:5, 1, 5, 20} allows for a variation in the
overall strength of the latent confounding. The five scenarios that are considered distinguish
themselves by a different structure of the idiosyncratic covariance matrix Σ and the number of
latent confounders q. All diagonal entries of Σ are set to 1.

(a) Block structure: the p variables are divided into 10 blocks of equal size. The correlation
within each block is set uniformly to 0:95 and 0 outside blocks, with unit variance for all
variables. There are q=20 latent variables in this scenario.

(b) Block structure II : half of the variables are divided into 10 blocks of equal size, similarly
to the previous scenario. The remaining variables form one large block. The within-block
correlation is 0:5 and between-block correlation is again 0. The correlation within each
block is set to 0:95 and all variables have unit variance. There are q =20 latent variables
in this scenario.

(c) Toeplitz structure: the inverse idiosyncratic covariance marix is set to a unit diagonal and
first off-diagonal entries equal to −0:4999 (with circular extension). Variables are then
scaled to have unit variance. There are again q=20 latent variables in this scenario.

(d) Toeplitz structure II : the second Toeplitz design is identical to the previous Toeplitz design,
except that the number of latent confounders is reduced to q=3.

(e) Erdó́s–Rényi structure: the non-zero entries of the inverse idiosyncratic covariance are
chosen randomly, each edge being selected with probability 10=p. The diagonal of the
inverse is set to unit values initially, and all off-diagonal entries are set to constants such
that the sum of all non-diagonal entries in each row is bounded by 0.99 and the inverse
matrix is hence diagonal dominant and invertible. The variables are in a second step again
scaled to have unit diagonal entries in the idiosyncratic covariance Σ.

Varying the structure, number of samples n, dimension p and strength ν of the latent con-
founders, we run 200 simulations of each unique parameter configuration and compute the
following quantities.

(a) We obtain the estimated covariance matrix Σ̂pca.l/, where the number l is chosen first as
l=0, leading to the empirical covariance matrix. This first estimator is also the basis for
comparisons with Ledoit–Wolf-type shrinkage (Ledoit and Wolf, 2004). (The results for
a Ledoit–Wolf covariance estimator with the identity matrix as the shrinkage target are
identical to those for PC removal with l = 0 (i.e. the empirical covariance matrix) as the
objective that we measure will be unchanged by the shrinkage.) Next we use the oracle
value l = q (which is of course unavailable in practice) and then, as suggested in Fan
et al. (2013), the values of the two estimators of q that are based on the respective first
information criterion in Bai and Ng (2002) and Hallin and Liška (2007).

(b) We calculate the sample splitting RSVP estimator Σ̂rsvp-split for subsample size m ∈
{20, 50, 70}.

Some results are shown in Figs 3 and 4. Other possible approaches such as the sparse–dense
decomposition approach of Chandrasekaran et al. (2012) are unfortunately computationally
infeasible for these settings.

We would like to compare for each estimate its accuracy with respect to the true idiosyncratic
covariance in a suitable norm, which we chose here for simplicity as the Frobenius norm. To be
invariant with respect to scaling, we may consider
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inf
κ>0

‖Σ−κΣ̂‖F,

which is monotonically decreasing with the empirical correlation ρΣ,Σ̂ between the vectorized
matrices Σ and Σ̂; we shall use ρΣ,Σ̂ as a criterion for simplicity, and also we omit the diag-
onals from Σ and Σ̂ in the computation. For estimation of the inverse covariance Ω := Σ−1,
we invert our estimates above by using the approach of Meinshausen and Bühlmann (2006) as
implemented in the R package glasso (Friedman et al., 2018) to give estimates Ω̂. The penalty
parameter is set to a very small uniform value of λ=10−6 for computational speed and easier
comparison between methods. Cross-validation of the penalty is also not straightforward to
implement here as we do not have access to clean data that would be free of the influence of the
latent confounders.

5.1.2. Results
A summary of results from each of the 750 =5×5×6×5 unique parameter settings is shown
in Fig. 5. The RSVP estimator with low number m= 20 of samples in each subsample in gen-
eral dominates the other estimators (in terms of having higher mean correlation and higher
quartiles), no matter whether we stratify according to design matrix structure, strength of la-
tent confounders, sample size or dimension of the graph. The only exception seems to be the
case ν =0:01, where the latent confounders are effectively absent. Here the empirical covariance
improves the RSVP estimator, as expected.

Comparing the various PC removal approaches, it is noteworthy that, for an increasing
strength of the latent confounding, the oracle (true) value of q performs much better than
using any of the suggested empirical estimates of q. In contrast, for weak confounding, remov-
ing all q latent confounders performs worse in general because of the decaying spectrum of the
latent confounding: too much of the idiosyncratic covariance is removed by the oracle estimate
in these cases. RSVP tends to perform at least as well as the optimal approach among the three
PC removal approaches across all strengths of the latent confounding, even though in practice
the oracle choice of q for PC removal is clearly not even available.

Analogous results for inverse covariance matrix estimation are shown in Fig. 6, with a single
example outcome in Fig. 7. The differences between RSVP with different numbers of samples
in each subsample are smaller, arguably because the error that is introduced by matrix inversion
dominates the relatively small differences. Although estimating the covariance of a random
Erdó́s–Rényi graph seems easy for the covariance, it becomes relatively difficult for the inverse
covariance matrix. Finally, whereas a dimension of p = 2000 still yields very good results in
Frobenius norm for covariance estimation, it seems to become very challenging for inverse
covariance estimation.

The relative performance of the sample splitting version of RSVP as a function of number of
samples m in each subsample is shown in Fig. 8. For very weak latent confounding, taking very
small values of m performs optimally as the sampling splitting RSVP estimator then converges
to the empirical covariance matrix. Whereas the scaling of the optimal m as proportional to√

.pq/=σu emerges from the theory, in our examples the choice m = 2
√

p seems to be a good
rule of thumb choice for the size of the subsamples.

5.1.3. Model violations
To investigate robustness against model violations for covariance estimation, we replace the
normal distribution for the idiosyncratic noise for X and H by multivariate t-distributions with
df1 degrees of freedom, where df1 ∈ {1, 2, 3, 5, 10, 20, 50, 100}. We also generate the loading
matrix Γ by using a multivariate t-distributions with df2 degrees of freedom and we vary this
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parameter among the same set of values as those used for df1. Analogously to Fig. 5, Fig. 9 shows
the performance for covariance estimation marginally as a function of both df1 and df2, where
the remaining parameters (graph structure, dimension, sample size and strength of confounding)
are averaged out. The cases df1 =1 and df2 =1 correspond to Cauchy distributions. We comment
here that Σ does not correspond to a covariance if df1 �2. Nevertheless, Σ can still be identifiable
from the distribution of w.

As an additional test of robustness, we consider, in a second set of experiments, replacing
the linear structural equation x=w+Γh (1) with a max-linear model (Gissibl and Klüppelberg,
2018)

xj =max{wj, .Γh/j}; .18/

our goal is as before to recover Σ= cov.w/. We present in Fig. 10 the results averaged over all
other parameters of our simulation set-up (graph structure, dimension, sample size, strength of
confounders, df1 and df2). The performances of both oracle PC removal and RSVP suffer in the
max-linear case and drop to similar levels to the data-driven PC removal methods. However,
even in this case, RSVP outperforms data-driven PC removal approaches; in the case of the
Hallin and Liška (2007) choice of the number of components, RSVP gives better results in more
than three-quarters of all simulation settings, as can be seen in Fig. 10(h).

5.2. GTEX data analysis
In this section we illustrate the key properties of RSVP on a collection of gene expression data
sets made publicly available by the GTEX consortium (Aguet et al., 2016). Such data sets are
particularly prone to the type of confounding that is studied in this paper (Leek and Storey,
2007; Stegle et al., 2012; Gagnon-Bartsch et al., 2013). Our aim is to determine which genes
are biologically related in that they regulate each other. To validate our results, we use the gene
ontology database (Ashburner et al., 2000).

The GTEX consortium conducted a large-scale ribonucleic acid sequencing experiment which
resulted in the the collection of gene expression data from hundreds of donors in more than
50 human tissues. To carry out their analyses, they estimated confounders by leveraging exter-
nal information such as gender and genetic relatedness between donors, and by inferring some
confounders from the data themselves by using probabilistic estimation of expression residu-
als (PEER) (Stegle et al., 2012). Both the confounders and the fully processed, normalized and
filtered gene expression data are available on the website of the consortium (https://
gtexportal.org/home/datasets; in addition, code to compute RSVP and subsampling
versions, and also to reproduce all the results that are described in this section, is available from
https://github.com/benjaminfrot/RSVP).

For each tissue T , where T is for example whole blood, lung or thyroid, there is available
a data matrix XT of gene expression levels with dimensions nT × pT along with an nT × qT
matrix of confounders. We removed tissues for which nT � 100; the 44 remaining tissues had
a ratio nT =pT ranging between 0:006 and 0:03 and values of pT ranging between 14337 and
17855. (The list of tissues as well as the number of samples and variables for each of them
can be found in the on-line supplementary materials.) In line with the analysis methods of the
GTEX consortium, we used all the PEER factors at our disposal, resulting in a total number
of qT confounders for each tissue equal to the number of PEER factors for that tissue plus five
confounders derived from external sources (e.g. donors’ genotypes, gender, etc.). (According
to the analysis methods section of the consortium’s website ‘the number of PEER factors was
determined as a function of sample size N: 15 factors for N< 150, 30 factors for 150�N< 250,
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45 factors for 250�N<350 and 60 factors for N �350 ...’.) Because these covariates and factors
are deemed the most relevant by the GTEX consortium, we refer to a data set XT from which
all qT confounders have been removed as ‘unconfounded’. However, it is possible that there is
still unobserved confounding in the data sets.

For each tissue, we create a sequence of data sets by regressing out 0, 1, 2, : : : , qT confounders.
On each of these data sets, we run RSVP, PC removal with different values l of components
removed. We also run the neighbourhood selection with the square-root lasso (Belloni et al.,
2011) on both the sample covariance matrix of the raw data set, NS, and on the covariance
matrix estimated by RSVP, RSVP+NS. Two commonly used proxies for pairs of genes being
co-regulated are large off-diagonal entries in the covariance or non-zero entries in the inverse
covariance matrix. We therefore form for each estimated covariance matrix, a sequence of es-
timated co-regulation networks containing edges corresponding to the largest r entries, with r

ranging from 1 to 100. In the case of NS and RSVP+NS, we vary the tuning parameter of the
square-root lasso until we obtain a graph with approximately 100 edges and then form a se-
quence of 100 networks corresponding to the largest r entries in the estimated inverse covariance
matrices, with 1� r �100.

We first sought to quantify how sensitive the graphs that are returned by the various methods
are to the addition of confounding. For that, for each (tissue, method, r) triple, we computed
the Jaccard similarity between the edge set of a graph estimated on the unconfounded data and
the graph with r edges estimated on the data set with k ∈{0, 1, 5, 10, 20} confounders removed.
Fig. 11 shows the resulting Jaccard similarities averaged across the 44 tissues. Unsurprisingly
the more confounders are removed, the more similar the estimated graphs are to that obtained
on the unconfounded data (k =qT ). However, this change for RSVP is only very slight and the
method yields large similarities across different numbers of edges and k. This is an encouraging
result, particularly given that a number of the confounders, such as gender and genotype data,
were derived entirely from external data. In contrast, the performances of PC removal and NS
are strongly influenced by the presence of the confounders, with the Jaccard similarity between
raw and unconfounded data close to 0.

Consistently returning the same set of edges irrespectively of confounding does not imply
anything about the quality of the estimates. To obtain a sense of their accuracy, we scored the
graphs by using a reference data set: the gene ontology (Ashburner et al., 2000). Briefly, the
gene ontology is a popular database which allows the annotation of each gene by a set of terms
classified in three categories: cellular components, molecular function and biological process.
Genes that tend to perform similar functions or to interact are expected to be annotated by
similar terms. By mapping each node of each graph to its gene ontology terms, one can compute
a so-called enrichment statistic (Frot et al., 2019a) reflecting whether the graph contains edges
between related genes more often than would be expected in a random graph with a similar
topology (such a graph has an expected statistic of 1). Fig. 12(a) shows the enrichment scores that
were obtained in the raw data set (no confounders regressed out), averaged across all tissues. Fig.
12(b) gives the average score as a function of the number of confounders regressed out. In the on-
line supplementary materials, the scores for each of the 44 tissues is plotted. Several comments
are in order. RSVP performs well across the data sets and is the best performer on average when
applied to the unconfounded data. Interestingly, as shown in the supplementary materials, there
is at least one selection of l for each tissue where PC removal performs comparably with RSVP,
but the optimal value of l changes from tissue to tissue. This would suggest a data-based selection
for l; however, the selection criteria of Bai and Ng (2002) and Hallin and Liška (2007) both
yield l=0 on every tissue. The performance of the neighbourhood selection NS steadily increases
as increasingly more confounders are regressed out, until it outperforms RSVP. This tends to
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confirm that the raw data do indeed contain latent confounders masking true biological signal.
Moreover, the fact that methods forming networks based on the estimated inverse covariances,
NS and RSVP+NS, perform best on the unconfounded data sets tends to confirm that it is
indeed the precision matrices which contain relevant signal when it comes to co-regulation
networks.

The computational cost of performing NS is far greater than for RSVP or the PC removal
approaches. We also note that the RSVP and PC removal methods may be further accelerated
by using large inner product search algorithms. For example, the xyz algorithm of Thanei et al.
(2018) can locate the large entries in the matrix product VV T that forms RSVP at a fraction of the
cost of performing the full matrix multiplication. On these GTEX data sets, it delivers similar
performance to regular RSVP but cuts the computational cost by a factor of around 2000.

6. Discussion

In this work, we have introduced RSVP as a simple and fast method for estimating the idiosyn-
cratic covariance Σ given data where latent factors are present. A notable aspect of the method is
that all information about Σ that is contained in the spectrum of the empirical covariance matrix
is thrown away. Estimation of Σ, which is permitted to have a diverging condition number, is
performed by using a scaled multiple of a projection matrix whose eigenvalues are necessarily
in {0, 1}. It may seem surprising at first sight that this should work at all, and the success of
the method underlines the message that has emerged on the vast theory surrounding high di-
mensional PC analysis and covariance estimation, saying that the eigenvalues of the empirical
covariance matrix Θ̂ are extremely noisy. By removing the variance due to these noisy eigen-
values, RSVP can cope well even in settings that are particularly challenging for PC removal
approaches where the eigenvalues of the combined covariance Θ are not well separated into
two groups. A drawback of RSVP is that the scale of Σ is lost, but this is of little consequence
in many applications of interest and has the advantage of allowing the method to be robust to
certain heavy-tailed data, for example.

Our work leaves open some questions. For example, it would be interesting to explore whether
there are other estimators of the form (4) that depend on the spectrum of Θ̂ such that the scale of
Σ is not lost, but in a sufficiently smooth way as not to have high variance even in the challenging
scenarios that were mentioned above. Another interesting problem is that of controlling for latent
confounding when the influence of the confounding is not linear, such as the max-linear settings
(Gissibl and Klüppelberg, 2018).
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