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Abstract

We propose adaptive incremental mixture Markov chain Monte Carlo (AIMM), a novel approach 

to sample from challenging probability distributions defined on a general state-space. While 

adaptive MCMC methods usually update a parametric proposal kernel with a global rule, AIMM 

locally adapts a semiparametric kernel. AIMM is based on an independent Metropolis–Hastings 

proposal distribution which takes the form of a finite mixture of Gaussian distributions. Central to 

this approach is the idea that the proposal distribution adapts to the target by locally adding a 

mixture component when the discrepancy between the proposal mixture and the target is deemed 

to be too large. As a result, the number of components in the mixture proposal is not fixed in 

advance. Theoretically, we prove that there exists a stochastic process that can be made arbitrarily 

close to AIMM and that converges to the correct target distribution. We also illustrate that it 

performs well in practice in a variety of challenging situations, including high-dimensional and 

multimodal target distributions. Finally, the methodology is successfully applied to two real data 

examples, including the Bayesian inference of a semiparametric regression model for the Boston 

Housing dataset. Supplementary materials for this article are available online.
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1. Introduction

We consider the problem of sampling from a target distribution defined on a general state 

space. While standard simulation methods such as the Metropolis–Hastings algorithm 

(Metropolis et al. 1953; Hastings 1970) and its many variants have been extensively studied, 

they can be inefficient in sampling from complex distributions such as those that arise in 

modern applications. For example, the practitioner is often faced with the issue of sampling 

from distributions which contain some or all of the following: multimodality, very 

nonelliptical high density regions, heavy tails, and high-dimensional support. In these cases, 

standard Markov chain Monte Carlo (MCMC) methods often face difficulties: long mixing 

time and large asymptotic variance leading to potentially biased and large variance MCMC 

estimators. Adaptive Monte Carlo methods, which can be traced back to Gilks, Roberts, and 

George (1994), can help overcome these problems. In the specific context of MCMC 

algorithms, the seminal works are Gilks, Roberts, and Sahu (1998) and Haario, Saksman, 

and Tamminen (1999). The theoretical properties of these algorithms have been extensively 

analyzed by Andrieu and Moulines (2006) and Roberts and Rosenthal (2007). Adaptive 

MCMC methods improve the convergence of the chain by tuning its transition kernel on the 

fly using knowledge of the past trajectory of the process. This learning process causes a loss 

of the Markovian property and the resulting stochastic process is therefore no longer a 

Markov chain.

Most of the adaptive MCMC literature to date has focused on updating an initial parametric 

proposal distribution. For example, the adaptive Metropolis–Hastings algorithm (Haario, 

Saksman, and Tamminen 1999, 2001), hereafter referred to as AMH, adapts the covariance 

matrix of a Gaussian proposal kernel, used ina random walk Metropolis–Hastings algorithm. 

The adaptive Gaussian mixtures algorithm (Giordani and Kohn 2010; Luengo and Martino 

2013), hereafter referred to as AGM, adapts a mixture of Gaussian distributions, used as the 

proposal in an independent Metropolis–Hastings algorithm.

When knowledge on the target distribution is limited, the assumption that a good proposal 

kernel can be found in a specific parametric family may lead to suboptimal performance. 

Indeed, a practitioner using these methods must choose, sometimes arbitrarily, (i) a 

parametric family and (ii) an initial set of parameters to start the sampler. However, poor 

choices of (i) and (ii) may hamper the adaptation and result in slow convergence.

In this article, we introduce a novel adaptive MCMC method, called adaptive incremental 

mixture Markov chain Monte Carlo (AIMM). This algorithm belongs to the general adaptive 

independent Metropolis class of methods, developed in Holden, Hauge, and Holden (2009), 

in that AIMM adapts an independence proposal density. However, the adaptation process 

here is quite different from others previously explored in the literature. Although our 

objective remains to reduce the discrepancy between the proposal and the target distribution 

along the chain, AIMM proceeds without any global parameter updating scheme, as is the 

case with adaptive MCMC methods belonging to the framework developed in Andrieu and 

Moulines (2006).
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Our idea is instead to add a local probability mass to the current proposal kernel, when a 

large discrepancy between the target and the proposal is encountered. The local probability 

mass is added through a Gaussian kernel located in the region that is not sufficiently 

supported by the current proposal. The decision to increment the proposal kernel is based on 

the importance weight function that is implicitly computed in the Metropolis acceptance 

ratio. We stress that, although seemingly similar to Giordani and Kohn (2010) and Luengo 

and Martino (2013), our adaptation scheme is local and semiparametric since the number of 

mixture components is not specified, a subtle difference that has important theoretical and 

practical consequences. In particular, in contrast to AGM, the approach which we develop 

does not assume a fixed number of mixture components. The AIMM adaptation strategy is 

motivated by the quantitative bounds achieved when approximating a density using the 

recursive mixture density estimation algorithm proposed in Li and Barron (2000). The main 

difference is that while in AIMM the sequence of proposals is driven by the importance 

weight function at locations visited by the AIMM Markov chain, it is constructed in Li and 

Barron (2000) by successively minimizing the entropy with respect to the target distribution, 

an idea which was also put forward in Cappé et al. (2008). In fact, the AIMM adaptation 

strategy shares perhaps more similarity with the adaptive rejection Metropolis sampler 

(ARMS) from Gilks, Best, and Tan (1995) which is an MCMC extension of ARS (Gilks and 

Wild 1992). In unidimensional settings, the ARMS proposal is a piecewise exponential 

density which essentially interpolates the set of accepted and rejected samples of an 

independent MH. More recent works have developed different adaptation schemes with 

other nonparametric densities: piecewise triangular or trapezoidal functions (Cai, Meyer, and 

Perron 2008) and Lagrange interpolation polynomials (Meyer, Cai, and Perron 2008). The 

ARMS algorithm has been improved in Martino, Read, and Luengo (2015) where the 

authors also use the notion of importance weight to adapt the set of points used to build the 

proposal density. We refer to Martino et al. (2018) for a thorough review of those methods. 

The main drawback of those methods is that, even though Metropolis-within-Gibbs versions 

of those algorithms can be considered, they are essentially designed for unidimensional 

problems. Our work is inspired by the efficiency of those univariate nonparametric 

adaptation schemes which we combine with the high-dimensional flexibility offered by the 

mixture of Gaussian kernels.

As in most adaptive MCMC, AIMM requires the specification of some tuning parameters 

and in particular the threshold parameter controlling the tolerated discrepancy between the 

target distribution and the adaptive proposal. Although we are not able to prove any 

optimality result regarding those parameters, we provide a default setting that works well 

empirically in the examples we have considered and some heuristics that automate these 

choices. At a more general level, we anticipate that this work will be used by practitioners as 

a basis for their own inference problem. In this spirit, we also present a faster version of 

AIMM that guarantees that the proposal is not too costly to evaluate, a situation which 

occurs when the number of components in the incremental mixture gets large, especially if 

the state space is high dimensional.

Proving the ergodicity of adaptive MCMC methods is often made easier by expressing the 

adaptation as a stochastic approximation process consisting of the proposal kernel 

parameters (Andrieu and Moulines 2006). AIMM cannot be analyzed in this framework as 
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the adaptation does not proceed with a global parameter update step. We do not study the 

ergodicity of the process in the framework developed by Holden, Hauge, and Holden (2009), 

and also used in Giordani and Kohn (2010), as the Doeblin condition required there is 

essentially equivalent to assuming that the importance function is bounded above. This 

condition is generally hard to meet in most practical applications, unless the state space is 

finite or compact. Instead, our ergodicity proof relies on the seminal work by Roberts and 

Rosenthal (2007), which shows that (i) if the process adapts less and less (diminishing 
adaptation) and (ii) if any Markov kernel used by the process to transition reaches 

stationarity in a bounded time (containment), then the adaptive process is ergodic. We show 

that AIMM can be implemented in a way that guarantees diminishing adaptation, while the 

containment condition remains to be proven on a case by case basis, depending on the target 

distribution. Moreover, we show using the recent theory developed in Craiu et al. (2015) and 

Rosenthal and Yang (2017) that there exists a process, which can be made arbitrarily close to 

the AIMM process, which is ergodic for the target distribution at hand.

The article is organized as follows. We start in Section 2 with a pedagogical example which 

shows how AIMM succeeds in addressing the pitfalls of some adaptive MCMC methods. In 

Section 3, we formally present AIMM, and study its theoretical properties in Section 4. 

Section 5 illustrates the performance of AIMM on some synthetic examples, involving two 

high-dimensional heavy-tailed distributions and a bimodal distribution. Section 6 presents 

two successful applications of AIMM on Bayesian inference of real data. We conclude by 

discussing the connections with importance sampling methods, particularly incremental 

mixture of importance sampling (Raftery and Bao 2010), from which AIMM takes 

inspiration, in Section 7.

2. Introductory Example

We first illustrate some of the potential shortcomings of the adaptive methods mentioned in 

Section 1 and outline how AIMM addresses them. We consider the following pedagogical 

example where the objective is to sample efficiently from a one-dimensional target 

distribution.

Example 1.

Consider the target distribution

π1 = (1/4)N( − 10, 1) + (1/2)N(0, 0.1) + (1/4)N(10, 1) .

For this type of target distribution it is known that AMH (Haario, Saksman, and Tamminen 

2001) mixes poorly since the three modes of π1 are far apart, a problem faced by many 

nonindependent Metropolis algorithms. Thus, an adaptive independence sampler such as the 

AGM (Luengo and Martino 2013) is expected to be more efficient. AGM uses the history of 

the chain to adapt the parameters of a mixture of Gaussians on the fly to match the target 

distribution. For AGM, we consider here three families of proposals: the set of mixtures of 

two, three, and forty Gaussians, referred to as AGM-2, AGM-3, and AGM-40, respectively. 

The authors recommend initializing AGM proposal with a large number of components and, 
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possibly, resampling the most important components of the proposal. By contrast, our 

method, AIMM offers more flexibility in terms of the specification of the proposal 

distributions and in particular does not set a fixed number of mixture components.

We are particularly interested in studying the tradeoff between the convergence rate of the 

Markov chain and the asymptotic variance of the MCMC estimators, which are known to be 

difficult to control simultaneously (Mira 2001; Rosenthal 2003). Table 1 gives information 

about the asymptotic variance, through the effective sample size (ESS), and about the speed 

of convergence of the chain, through the mean squared error (MSE) of a tail-event 

probability (defined here as π1(X > 5)). Further details of these performance indicators can 

be found in the supplementary materials (Section 3).

The ability of AMH to explore the state space appears limited as it regularly fails to visit the 

three modes in their correct proportions after 20,000 iterations (see the MSE of π1(X > 5) in 

Table 1). The efficiency of AGM depends strongly on the number of mixture components of 

the proposal family. In fact AGM-2 is comparable to AMH in terms of the average ESS, 

indicating that the adaptation failed in most runs. AIMM and AGM-3 both achieve a similar 

exploration of the state space and AGM-3 offers a slightly better ESS. Finally, AGM-40 

outperforms the other methods in this example and it virtually samples iid draws from π. An 

animation corresponding to this toy example can be found at http://mathsci.ucd.ie/~fmaire/

AIMM/toy_example.html.

From this example we conclude that AGM can be extremely efficient provided some initial 

knowledge on the target distribution, for example, the number of modes, the location of the 

large density regions, and so on. If a mismatch between the family of proposal distributions 

and the target occurs, inference can be jeopardized. Since misspecifications are typical in 

real world models where one encounters high-dimensional, multimodal distributions, and 

other challenging situations, it leads one to question the efficiency of AGM samplers. On the 

other hand, AMH seems more robust to a priori lack of knowledge of the target, but the 

quality of the mixing of the chain remains a potential issue, especiallywhen high density 

regions are disjoint.

Initiated with a naive independence proposal, AIMM adaptively builds a proposal that 

approximates the target iteratively by adding probability mass to locations where the 

proposal is not well supported relative to the target; see Section 3.6 for details. As a result, 

very little, if any, information regarding the target distribution is needed. Extensive 

experimentation in Section 5 confirms this point.

3. Adaptive Incremental Mixture MCMC

We consider target distributions π defined on a measurable space (X, χ) where X is an open 

subset of ℝd(d > 0) and χ is the Borel σ-algebra of X. Unless otherwise stated, the 

distributions we consider are dominated by the Lebesgue measure and we therefore denote 

the distribution and the density function (w.r.t the Lebesgue measure) by the same symbol. 

In this section, we introduce the family of adaptive algorithms referred to AIMM, the 

acronym for adaptive incremental mixture MCMC.
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3.1. Transition Kernel

AIMM belongs to the general class of adaptive independent Metropolis algorithms 

originally introduced by Gåsemyr (2003) and studied by Holden, Hauge, and Holden (2009). 

AIMM generates a stochastic process Xn, n ∈ ℕ  that induces a collection of independence 

proposals Qn, n ∈ ℕ . At iteration n, the process is at Xn and attempts a move to X̃n + 1 Qn
which is accepted with probability αn. In what follows, {X̃n, n ∈ ℕ*} denotes the sequence of 

proposed states that are either accepted or rejected.

More formally, AIMM produces a time inhomogeneous process whose transition kernel Kn 

(at iteration n) is the standard Metropolis–Hastings (MH) kernel with independence proposal 

Qn and target π. For any (x, A) ∈ (X, X), Kn is defined by

Kn(x; A): = ∫
A

Qn(dx′)αn(x, x′)

+ δx(A)∫
X

Qn(dx′)(1 − αn(x, x′)) .
(1)

In (1), αn denotes the usual MH acceptance probability for independence samplers, namely

αn x, x′ : = 1 ∧ W n x′
W n(x) , (2)

where W n: = π/Qn is the importance weight function defined on X. Central to our approach 

is the idea that the discrepancy between π and Qn, as measured by Wn, can be exploited to 

adaptively improve the independence proposal. This has the advantage that Wn is computed 

as a matter of course in the MH acceptance probability (2).

3.2. Incremental Process

We assume that available knowledge about π allows one to construct an initial proposal 

kernel Q0, from which it is straightforward to sample. When π is a posterior distribution, a 

default choice for Q0 could be the prior distribution. The initial proposal Q0 is assumed to be 

relatively flat, in the spirit of a defensive distribution (Hesterberg 1995). Initiated at Q0, a 

sequence of proposals Qn, n ∈ ℕ  is produced by our algorithm. In particular, the proposal 

kernel adapts by adding probability mass where the discrepancy between Qn and π is 

deemed too large.

The adaptation mechanism is driven by the random sequence {W n(X̃n + 1), n ∈ ℕ}, which 

monitors the discrepancy between π and the proposals Qn, n ∈ ℕ  at the proposed states 

X̃n, n ∈ ℕ* . Let W > 0 be a user-defined parameter such that the proposal kernel Qn is 

incremented upon the event εn defined as

ℰn: = W n(X̃n + 1) > W . (3)
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The event εn exposes subsets of X where the proposal Qn does not support π well enough. 

The parameter W  controls the tolerated discrepancy between the proposal and the target 

distribution. Note that in situations where π is known up to a normalizing constant, Wn 

refers, with some abuse of notations, to the ratio between the unnormalized and the proposal 

densities. Several ways of tuning W  are discussed at the beginning of Section 5.

3.3. Proposal Kernel

The proposal kernel Qn takes the form of a mixture

Qn = ωnQ0 + (1 − ωn) ∑
l = 1

Mn
βlϕl/ ∑

l = 1

Mn
βl, (4)

where {ωn}n is a sequence of nonincreasing weights such that ω0 = 1 and ωn > 0 (see 

Section 4), Mn is the number of components added to the mixture up to iteration n and 

ϕ1, ϕ2, …, ϕMn  are the incremental mixture components created up to iteration n. To each 

incremental component ϕl is attached a weight proportional to βl > 0 (see Section 3.4).

3.4. Increment Design

Upon the occurrence of εn, a new component ϕMn + 1 is created. Specifically, ϕMn + 1 is a 

multivariate Gaussian distribution with mean μMn + 1: = X̃n + 1 and with covariance matrix 

ΣMn + 1 defined by

ΣMn + 1: = cov N(X̃n + 1 |X1, …, Xn) , (5)

where for a set V of vectors, cov(V) denotes the empirical covariance matrix of V and 

N(X̃n + 1 |V ) is a subset of V defined as a neighborhood of X̃n + 1 . In (5), N(X̃n + 1 |X1, …, Xn)
is the neighborhood of X̃n + 1 defined as

N(X̃n + 1 |X1, …, Xn): = Xi ∈ (X1, …, Xn):DM(Xi, X̃n + 1)
≤ τρnπ(X̃n + 1) , (6)

where τ ∈ (0, 1) is a user-defined parameter controlling the neighborhood range and ρn the 

number of accepted proposals up to iteration n. In (6), DM(Xi, X̃n + 1), denotes the quadratic 

form (Xi − X̃n + 1)tΣ0
−1(Xi − X̃n + 1), for some covariance matrix Σ0 . When π is a posterior 

distribution, Σ0 could be, for example, the prior covariance matrix. In high-dimensional 

settings only few samples in the vicinity of X̃n + 1 are likely to be available, especially at the 

start of the algorithm, and in such a case the covariance matrix estimation is expected to be 

poor. We stress that the adaptation does not consist in obtaining a local Gaussian 

approximation of π but rather focuses on increasing the probability mass of Qn around 

X̃n + 1. Nevertheless, since a better knowledge of π’s topology and variable correlations 

around X̃n + 1 yields to amore relevant approximation, it maybe beneficial to run a 

Metropolis-Hasting sampler (or Metropolis-within-Gibbs) initialized at X̃n + 1 in parallel to 
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AIMM and to refine the component after more samples are available. This type of heuristic 

is not expected to penalize the computational performance of AIMM as long as a parallel 

computing environment is available. Note that in Equation (6), one can possibly plug the 

unnormalized probability density function instead of π. Indeed, the upper bound is 

proportional to τ which may be set so as to account for the normalizing constant.

Finally, a weight is attached to the new component ϕMn + 1 proportional to

βMn + 1: ∝ π(X̃n + 1)γ, γ ∈ (0, 1), (7)

where γ ∈ (0, 1) is another user-defined parameter.

We stress that unlike other works including Giordani and Kohn (2010) and Luengo and 

Martino (2013), AIMM does not adapt the parameters of a mixture of Gaussian to π: once a 

new component is added to the mixture, its parameters (mean, covariance, unnormalized 

weight) are kept unchanged throughout the algorithm. Only the weights {βl, l ≤ Mn} will 

change because of renormalization when a new component is added.

3.5. AIMM

Algorithm 1 summarizes AIMM. Note that during an initial phase consisting of N0 

iterations, no adaptation is made. This serves the purpose of gathering sample points 

required to produce the first increment. Also, we have denoted by N the Markov chain 

length which may depend on the dimension of X and the computational resources available. 

In any case, we recommend setting N ≫ N0 .

3.6. Example 1 (ctd.)

For the toy example in Section 2 we used the following parameters

W = 1, γ = 0.5, τ = 0.5, N0 = 1000,
ωn = 1 + Mn/10 −1, Q0 = N(0, 10) .

Figure 1 shows the different states of the chain that, before the first increment takes place, 

are all sampled from Q0. The proposed state X̃n + 1 activates the increment process when the 

condition {Wn(X̃n + 1) > W } is satisfied for the first time after the initial phase (N0 = 1000) 

is completed. At X̃n + 1 there is a large discrepancy between the current proposal, Qn, and 

the target, π1. The neighborhood of X̃n + 1 is identified and defines ϕ1, the first component 

of the incremental mixture.

After n = 20,000 iterations, AIMM has incremented the proposal 15 times. This sequence of 

proposal distributions can be seen in Figure 2. The first proposals are slightly bumpy and as 

more samples become available, the proposal distribution gets closer to the target. Thus, 

even without any information about π1, AIMM is able to increment its proposal so that the 

discrepancy between Qn and π1 vanishes. This is confirmed by the fact that the acceptance 

rate edges toward one as the number of components in the mixture increases throughout the 
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algorithm (see Figure 1 in the supplementary materials for an illustration).The AGM-3 

proposal density declines to zero in π1’s low density regions (see Figure 2, bottom panel in 

supplementary materials), which is an appealing feature in this simple example. However, 

AGM shrinks its proposal density in locations that have not been visited by the chain. This 

can be problematic if the sample space is large and it takes time to reasonably explore it (see 

Section 5).

4. Ergodicity of AIMM

4.1. Notation

Let (Ω, A, ℙ) be the probability space generated by AIMM. For any event A ∈ A, ℙA denotes 

the probability measure ℙ conditionally on A. With some abuse of notations, for any 

x ∈ X, ℙx refers to the probability measure such that X0 δx . Let ν

Algorithm 1

Adaptive incremental mixture MCMC.

1: Input: user-defined parameters: W , γ, τ, {ωn}n, N0, N a proposal distribution: Q0

2: Initialize: X0 ~ Q0, W0 = π/Q0, M0 = 0 and ω0 = 1

3: for n = 0,1,...,N do

4:
  Propose X̃n + 1 Qn = ωnQ0 + (1 − ωn ∑ℓ − 1

Mn βℓϕℓ/∑ℓ − 1
Mn βℓ

5:   Draw Un ~ Unif(0, 1) and set

Xn + 1 = X̃n + 1 if Un ≤ (1 ∧ W n(X̃n + 1)/W n(Xn))
Xn + 1 = Xn otherwise

6:   if n > N0 and ℰn: = {W n(X̃n + 1) > W } is true then

7:     Update Mn+1 = Mn + 1

8:     Increment the proposal kernel with the new component

ϕMn + 1 = N X̃n + 1, cov(N(X̃n + 1 |X1, …, Xn))

weighted by βMn + 1 ∝ π(X̃n + 1)γ

9:     Update W n + 1 = π/Qn + 1
10:   else

11:     Update Wn+1 = Wn and Mn+1 = Mn

12:   end if

13: end for

14: Output: Xn, n ≤ N , Qn, n ≤ N

and μ be two probability measures defined on (X, χ). Recall that the Kullback-Leibler (KL) 

divergence between ν and μ is defined as

KL(ν, μ) = ∫X
log ν(x)

μ(x)dv(x) .
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Moreover, the total variation distance between ν and μ can be written as

‖v − μ‖ = sup
A ∈ X

|v(A) − μ(A) | = 1
2∫X

|μ(x) − v(x) |dρ(x),

where the latter equality holds if μ and ν are both dominated by a common measure ρ. 

Finally, for a sequence of random variables {Xn}n>0, the notations Xn = op(1) stands for the 

convergence of {Xn}n>0 to zero in probability p (i.e., with respect to the probability measure 

p), and Xn = Op(1) means that {Xn}n>0 is bounded in probability p.

4.2. Ergodicity of Adaptive Markov Chains

In this section, we establish assumptions under which the AIMM process is ergodic, that is,

∀x ∈ X, lim
n ∞

‖ℙx Xn ∈ ⋅ − π‖ = 0. (8)

We use the theoretical framework developed in Roberts and Rosenthal (2007). In particular, 

Theorem 2 in Roberts and Rosenthal (2007) states that if the AIMM process satisfies the 

Diminishing adaptation and Containment conditions (see below) then the process {Xn}n>0 is 

ergodic and Equation (8) holds.

Condition 1.—Diminishing adaptation.

For all x ∈ X, the stochastic process Δn, n ∈ ℕ , defined as

Δn: = sup
x ∈ X

‖Kn + 1(x, ⋅ ) − Kn(x, ⋅ )‖ (9)

converges to zero in ℙx-probability, that is, Δn = oℙx(1) .

Condition 2.—Containment.

For all ϵ > 0 and x ∈ X, the stochastic process Cn(ϵ), n ∈ ℕ , defined as

Cn(ϵ): = inf N ∈ ℕ, ‖Kn
N(Xn, ⋅ ) − π‖ < ϵ (10)

is bounded in ℙx-probability, that is, Cn(ϵ) = Oℙx(1) .

Even though containment is not a necessary condition for ergodicity (see Fort, Moulines, 

and Priouret 2011) and in fact seems to hold in most practical situations (see, e.g., Rosenthal 

2011), it remains a challenging assumption to establish rigorously for the setup considered 

in this article, that is, a broad class of target distributions defined on a not necessarily finite 

or compact state space. In the next section we show that diminishing adaptation holds for the 

AIMM process described at Section 3, up to minor implementation adjustments, while 

containment needs to be proven on a case by case basis. We also show that there exists a 

version of AIMM, conceptually different from the process described at Section 3 that can be 
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made arbitrarily close to it, which is ergodic for any absolutely continuous target distribution 

π.

4.3. Main Ergodicity Results

We study two variants of AIMM.

4.3.1. Proposal With an Unlimited Number of Increments—The first version of 

AIMM is similar to the algorithm presented in Section 3. For this version of the algorithm, 

we prove only that the diminishing adaptation assumption holds under some minor 

assumptions. Indeed, proving the containment condition is challenging without further 

assumptions on π, for example, compact support (Craiu, Rosenthal, and Yang 2009) or tail 

properties (see Bai, Roberts, and Rosenthal (2009) in the context of adaptive random walk 

Metropolis samplers). Moreover, most proof techniques establishing containment require the 

space of the adapting parameter to be compact, something which does not hold in this 

version of AIMM as the number of incremental components can, theoretically, grow to 

infinity.

Proposition 1.: Assume that there exist three positive constants (δ, η, λ) such that

A1. The covariance matrix of any component of the mixture satisfies det Σk > δ > 0.

A2. The (unnormalized) incremental mixture weights are defined as

βMn + 1 = η + π(X̃n + 1)γ

(1 + η)Mn + 1
and ωn = 1

1 + ∑k = 1
Mn βk

∨ λ . (11)

A3. The initial kernel Q0 is subexponential or satisfies 

Q0(x) ∝ exp{ψ(x)} where ψ = o(x2) (x ∞), that is, Q0 has heavier tail than a 

Gaussian, for example, multivariate Laplace or t-distribution.

A4. There is a parameter 0 < W < W  such that the mixture increments upon the 

event ℰn ∪ ℱn,

ℱn: = {W n(X̃n + 1) < W }

and when it increments upon ℱn, the new component is equal to Q0 and the 

corresponding weight is defined as in Equation (7).

Then, the AIMM process sampled using conditions A1–A4 satisfies diminishing adaptation, 

that is, Equation (9) holds.

The proof is given at Section 1 of the supplementary materials.

Remark 1.: Proposition 1 holds for parameters (δ, η, λ) arbitrarily close to zero. Also, 

Assumption A1 can be enforced simply by expanding the neighborhood of X̃n + 1 such that 

when detcov {N(X̃n + 1)} < δ,
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ΣMn + 1: = cov{X1*, …, Xk*},

where {X1*, …, Xn*} is a permutation of {X1,...,Xn} such that 

DM(X̃n + 1, Xi*) ≤ DM(X̃n + 1, Xi + 1* ) and k: = inf i ≤ n, detcov(X1*, …, Xi*) ≥ δ .

Remark 2.: The event ℱn is the counterpart of ℰn and exposes subsets of X where the 

proposal puts too much probability mass at locations of low π-probability. In this case, the 

rationale for setting ϕMn + 1 = Q0 is to reduce the probability mass of the proposal locally by 

increasing the weight associated to the initial proposal Q0, assumed to be vague.

4.3.2. Proposal With Adaptation on a Compact Set—The second version of 

AIMM that we study here represents somewhat a slight conceptual departure from the 

original algorithm presented in Section 3. We stress that the assumptions A1–A4 from 

Section 4.3.1 are not required here.

Proposition 2.: Assume that:

B1. The AIMM process Xn, n ∈ ℕ  has bounded jumps, that is, there exists D > 0 

such that for all n ∈ ℕ

ℙ[‖Xn − Xn + 1‖ ≤ D = 1. (12)

B2. There is a compact set K ⊂ X such that the weight {ωn}n in the proposal (4) is 

replaced by {ωn
K}n

ωn
K = ωn ∨ 1xn ∉ K, (13)

that is, if the process is such that Xn ∉ K then the proposed state is generated 

from Q0 with probability one. Conversely, if the process is such that Xn ∈ K,
then the proposed state is generated as explained in Section 3, that is, from Qn 

(4). We denote this proposal by Qn
K .

B3. The number of incremental components in the adaptive proposal is capped, that 

is, there is a finite M ∈ ℕ such that ℙ Mn ≤ M = 1 and the mean μn and 

covariance Σn of each component are defined on a compact space.

If the AIMM process presented in Section 3 satisfies B1–B3, then it is ergodic.

This result is a consequence of Theorem 2 of Roberts and Rosenthal (2007) combined with 

the recent developments in Craiu et al. (2015) and Rosenthal and Yang (2017). The proof is 

given at Section 2 of the supplementary materials.

We now explain how, in practice, a version of AIMM compatible with the assumptions of 

Proposition 2 can be constructed and made arbitrarily close to the version of AIMM 
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presented in Section 3. First, fix an arbitratrily large constant D < ∞ . Assumption B1 holds 

by construction if X̃n + 1 Qn
K is automatically rejected when ‖X̃n + 1 − Xn‖ > D . Assumption 

B2 holds by construction if Qn
K is used instead of Qn in the AIMM algorithm presented in 

Section 3. Finally, Assumption B3 is satisfied by slightly modifying the adaptation 

mechanism proposed in Section 3. Define two arbitrarily large constants L > 0 and M ∈ ℕ
and increment the proposal upon the event ℰn: = ℰn ∩ Mn < M} and in the following way

μMn + 1: = X̃n + 1|L, ΣMn + 1: = cov{NL(X̃n + 1|X1, …, Xn)},

where for any vector x ∈ ℝd and any L > 0

x|L = {{x1 ∧ L} ∨ − L, …, {xd ∧ L} ∨ − L} and
NL = {Xi|L, Xi ∈ N(X̃n + 1|X1, …, Xn)} .

The definition of the unnormalized weight βMn + 1 (Equation (7)) is unchanged.

5. Simulations

In this section, we consider three target distributions:

• π2, the banana shape distribution used in Haario, Saksman, and Tamminen 

(2001);

• π3, the ridge like distributionused inRaftery andBao (2010);

• π4, the bimodal distribution used in Raftery and Bao (2010).

Each of these distributions has a specific feature, resulting in a diverse set of challenging 

targets: π2 is heavy tailed, π3 has a narrow, nonlinear and ridge-like support, and π4 has two 

distant modes. We consider π2 and π4 in different dimensions: d ∈ {2, 10, 40} for π2 and d 
∈ {4, 10} for π4. We compare AIMM (Algorithm 1) with several other algorithms that are 

briefly described along with some performance indicators that are also outlined at Section 3 

of the supplementary materials. We used the following default parameters for AIMM

γ = 0.5, τ = 0.5, κ = 0.1, N0 = 1000 d .

The parameter requiring the most careful design is W . A poor choice of W  may result in a 

proposal that never increments or that increments too often. For each scenario, we 

implemented AIMM with different thresholds W  valued around d to monitor the tradeoff 

between adaptation and computational efficiency of the algorithm. In our experience, the 

choice W  = d has worked reasonably well in a wide range of examples, but there is no 

theoretical guarantee supporting this choice which is not optimal in any sense. Intuitively, as 

the dimension of the state space increases a higher threshold is required, too many kernels 

being created otherwise. However, a satisfactory choice of W  may vary depending on the 

target distribution and the available computational budget. It is also possible to adapt W
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online during an initial phase of the algorithm as the theory remains valid as long as W  is 

eventually set constant. Two particular situations where an automated choice of W  may be 

particularly beneficial include setups where Q0 and π yield a significant mismatch and 

where π is known up to a normalizing constant. In the first case, it is necessary to initialize 

W  at a small value and gradually increasing it until reaching the desired value. In the second 

one, the threshold W  is adapted at the beginning of the algorithm to get the incremental 

process started. The threshold adaptation produces a sequence of thresholds {W n}n such that 

Qn W n(X) > W n ≈ un where un is a decreasing sequence with un → 0 such as 

un = 10−3n−0.2 . Since sampling from Qn (a mixture of Gaussian distributions), can be 

performed routinely, W n is derived from a Monte Carlo estimation. As little precision is 

required, the Monte Carlo approximation should be rough to limit the computational burden 

generated by the threshold adaptation. Also, those samples used to set W n can be recycled 

and serve as proposal states for the AIMM chain so that this automated threshold 

mechanism comes for free.

5.1. Banana-Shaped Target Distribution

Example 2.—Let x = ℝd, π2(x) = Ψd fb(x); m, S where Ψd( ⋅ ; m, S) is the d-dimensional 

Gaussian density with mean m and covariance matrix S, and let fb:ℝd ℝd be the mapping 

defined, for any b ∈ ℝ, by

fb:

x1
x2
x3
⋮

xd

x1

x2 + bx1
2 − 100b

x3
⋮

xd

.

We consider π2 in dimensions d = 2, d = 10, and d = 40 and refer to the marginal of π2 in 

the ith dimension as π2
(i) . The parameters m = 0d and S = diag([100, 1d−1]) are held constant. 

The target is banana-shaped along the first two dimensions, and is challenging since the high 

density region has a thin and wide ridge-like shape with narrow but heavy tails. Unless 

otherwise stated, we use b = 0.1 which accentuates these challenging features of π2.We first 

use the banana-shaped target π2 in dimension d = 2 to study the influence of AIMM’s user-

defined parameters on the sampling efficiency.

5.1.1. Influence of the Defensive Distribution—With limited prior knowledge of π, 

choosing Q0 can be challenging. Here we consider three defensive distributions Q0, 

represented by the black dashed contours in Figure 3. The first two are Gaussian, 

respectively, located close to the mode and in a nearly zero probability area and the last one 

is the uniform distribution on the set S = x ∈ X, x1 ∈ ( − 50, 50), x2 ∈ (‐100,20)} . Table 2 and 

Figure 3 show that AIMM is robust with respect to the choice of Q0. Even when Q0 yields a 

significant mismatch with π2 (second case), the incremental mixture reaches high density 

areas, progressively uncovering higher density regions. The price to pay for a poorly chosen 
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Q0 is that more components are needed in the incremental mixture to match π2, as shown by 

Table 2. The other statistics reported in Table 2 are reasonably similar for the three choices 

of Q0.

5.1.2. Influence of the Threshold—Even though we recommend the default setting 

W = d, we analyze the performances of AIMM for different values of W . We consider the 

same setup as in the previous subsection with the uniform defensive distribution Q0 and 

report the outcome of the AIMM algorithm in Table 3a. As expected, the lower the threshold 

W , the larger the number of kernels and the better is the mixing. In all cases, the adaptive 

transition kernel eventually stabilizes (faster if W  is large), as illustrated by Figure 4(a), 

resulting from the fact that the event ℰn = {W n(X̃n + 1) > W , X̃n + 1 Qn} occurs less often as 

n increases. As W  decreases, the KL divergence between π2 and the chain reduces while the 

CPU cost increases since more components are created. Therefore, the sampling efficiency 

is best for an intermediate threshold such as log W  = .75. Finally, when the threshold is too 

low, the distribution of the chain converges more slowly to π2; see, for example, Table 3(a) 

where the KL indicator (defined as the KL divergence between π2 and the sample path of 

the AIMM chain; see supplementary materials) is larger for log W  = 0.25 than for log W  = 

0.5. Indeed when W ≪ 1, too many components are created to support high density areas 

and this slows down the exploration process of the lower density regions.

5.1.3. Speeding up AIMM—The computational efficiency of AIMM depends, to a large 

extent, on the number of components added in the proposal distribution, Mn. For this reason 

we consider a slight modification of the original AIMM algorithm to limit the number of 

possible components, thereby improving the computational speed of the algorithm. This 

variant of the algorithm is referred to as fast AIMM (denoted by f-AIMM) and proceeds as 

follows: let Mmax be the maximal number of components allowed in the incremental mixture 

proposal. If Mn > Mmax, only the last Mmax added components are retained, in a moving 

window fashion. This truncation has two main advantages, (i) approximately linearizing the 

computational burden once Mmax is reached, and (ii) forgetting the first, often transient 

components used to jump to high density areas (see, e.g., the loose ellipses in Figure 3, 

especially the very visible ones in the bottom panel).

Table 3 shows that f-AIMM outperforms the original AIMM, with some setups being nearly 

twice as efficient; compare, for example, AIMM and f-AIMM with log W  = 0.5 in terms of 

efficiency (last column). Beyond efficiency, comparing KL for a given number of mixture 

components (Mn), shows that π2 is more quickly explored by f-AIMM than by AIMM. 

Numerical comparisons on this example of f-AIMM with other samplers (AMH, RWMH, 

AGM, IM) are reported in Section 5.1 of the supplementary materials. AIMM seems to yield 

the best tradeoff between convergence and variance in all dimensions. Inevitably, as d 
increases, ESS shrinks and KL increases for all algorithms but AIMM still maintains a 

competitive advantage over the other approaches. The other four algorithms struggle to visit 

the tail of the distribution. Thus, AIMM is doing better than (i) the nonindependent samplers 

(RWMH and AMH) that manage to explore the tail of a target distribution but need a large 

number of transitions to return there, and (ii) the independence samplers (IM and AGM) that 

can quickly explore different areas but fail to venture into the lower density regions. An 
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animation corresponding to the exploration of π2 in dimension 2 by AIMM, AGM, and 

AMH can be found at http://mathsci.ucd.ie/~fmaire/AIMM/banana.html.

5.2. Ridge Like Example

Example 3.—Let X = ℝ6 and π3(x) ∝ Ψ6 x; μi, Γi Ψ4 g(x); μo, Γo , where Ψd( ⋅ ; m, S) is the d-

dimensional Gaussian density with mean m and covariance matrix S. The target parameters 

μi, μo ∈ ℝ6 × ℝ4 and Γi, Γo ∈ ℳ6(ℝ) × ℳ4(ℝ) are, respectively, known means and 

covariance matrices and g is a nonlinear deterministic mapping ℝ6 ℝ4 defined as

g x1, …, x6 =

∏
i = 1

6
xi,

x2x4,
x1/x5,
x3x6 .

In this context, Ψ6( ⋅ ; μi, Γi) can be regarded as a prior distribution and Ψ4( ⋅ ; μ0, Γo) as a 

likelihood, the observations being some functional of the hidden parameter x ∈ ℝ6 .

Such a target distribution often arises in physics. Similar target distributions often arise in 

Bayesian inference for deterministic mechanistic models and in other areas of science, 

engineering and environmental sciences (see, e.g., Poole and Raftery 2000; Bates, Cullen, 

and Raftery 2003). They are hard to sample from because the probability mass is 

concentrated around thin curved manifolds. We compare f-AIMM with RWMH, AMH, 

AGM, and IM first in terms of their mixing properties; see Table 4. We also ensure that the 

different methods agree on the mass localization by plotting a pairwise marginal; see Figure 

of the supplementary materials. In this example, f-AIMM clearly outperforms the four other 

methods in terms of both convergence and variance statistics. In fact, we observe in the same 

figure that f-AIMM is the only sampler able to discover a secondary mode in the marginal 

distribution of the second and fourth target components (X2, X4).

5.3. Bimodal Distribution

Example 4.—In this example, π4 is a posterior distribution defined on the state space 

X = ℝd, where d ∈ {4, 10}. The likelihood is a mixture of two d-dimensional Gaussian 

distributions with weight λ = 0.5, mean and covariance matrix as follows

μ1 = 0d, Σ1 = ARd( − .95),
μ2 = 9d, Σ2 = ARd(.95),

where for all ρ > 0, ARd(ρ) is the d-dimensional first-order autoregressive matrix whose 

coefficients are

for 1 ≤ (i, j) ≤ d, mi, j(ρ) = ρmax(i, j) − 1 .
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The prior is the uniform distribution U([ − 3, 12]d) . For f-AIMM and IM, Q0 is set as this 

prior distribution, while for AGM, the centers of the Gaussian components in the initial 

proposal kernel are drawn according to the same uniform distribution. For AMH, the initial 

covariance matrix Σ0 is set to be the identity matrix.

Several plots showing the outcome of this experiment are presented in Section 5.3 of the 

supplementary materials. On the one hand, in both setups Mmax = 100 and Mmax = 200, f-

AIMM is more efficient at discovering and jumping from one mode to the other and 

allowing more kernels in the incremental mixture proposal will result in faster convergence. 

On the other hand, because of the distance between the two modes, RWMH visits only one 

while AMH visits both but in an unbalanced fashion. Increasing the dimension from d = 4 to 

d = 10 makes AMH unable to visit the two modes after n = 200,000 iterations. As for AGM, 

the isolated samples reflect a failure to explore the state space. These facts are confirmed in 

Table 5 which highlights the better mixing efficiency of f-AIMM relative to the four other 

algorithms and in Table 6 which shows that f-AIMM is the only method which, after n = 

200,000 iterations, visits the two modes with the correct proportion.

6. Applications

The statistical analysis of two real data problems is carried out:

• the inference of a semiparametric regression model applied to the Boston 

Housing dataset (available at www.cs.utoronto.ca/~delve/data/boston). This 

model has also been studied in Smith and Kohn (1996) and more recently, using 

an AGM MCMC method in Giordani and Kohn (2010). This model has seven 

parameters.

• the inference of a Bayesian hierarchical model related to the James-Stein 

estimator (James and Stein 1961) applied to batting averages of 18 MLB players 

(first column of Table 1 in Efron and Morris (1975)). This model has also been 

used to validate the adaptation of an adaptive MCMC algorithm proposed in 

Roberts and Rosenthal (2009). This model has twenty parameters.

6.1. Semiparametric Regression

Example 5.—We consider the following semiparametric regression model

Y i = γZi + ∑
l = 1

H
fl(Xl, i) + σϵζi, ζi N(0, 1),

where γ is the regression vector, Zi are the covariates for observation Yi, f1,...,fH are 

nonparametric regression functions (quadratic polynomial splines) and for all l ≤ H, Xl,i ∈ 
Zi is a critical covariate whose impact on the dependent variable is not sufficiently well 

described by the parametric term and thus requires an additional nonparametric regression 

term for further flexibility. Considering a Bayesian analysis of this model, a Gaussian prior 

distribution is assigned to γ and to the parameters β1,...,βH controlling the H splines. An 

inverse gamma prior is prescribed to the additive noise parameter σϵ. It is difficult to choose 
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the β’s priors variance and the inference is quite sensitive to this issue (see Smith and Kohn 

1996; Giordani and Kohn 2010). As a consequence the variances τ1, τ2,..., τH are included 

in the model and a log-normal hyperprior is assigned to those parameters. Since the 

regression parameters (γ, β1,...,βH) are conjugated given the variances θ := (τ1, τ2, …, τH) 

sampling from the posterior of the model can be done by (i) sampling 

θ Pr( ⋅ |Y ) and (ii) sampling γ, β1, …, βH Pr( ⋅ |Y , θ) . The marginal posterior of θ cannot be 

sampled using direct methods but since its analytical expression is known up to a 

normalizing constant, one can be used MCMC to perform (i). In this example, the data are 

the logarithm of the median market value of owner-occupied home for the Boston 

metropolitan area reported in Harrison and Rubinfeld (1978). It contains 506 observations, 

13 covariates H = 6 of which beneficiate from an additional nonparametric description. The 

dimension of the parameter of interest θ is thus d = 7 and to avoid sampling in a constrained 

space, we use AIMM to sample log θ given Y1,...,Y506.

We follow the notations and the setup proposed in Giordani and Kohn (2010) where further 

details can be found, with two exceptions. First, using 30 knots for each spline in the 

nonparametric part of the model (as recommended in Giordani and Kohn (2010)) made the 

unnormalized posterior π(dθ |Y ) quite instable: the likelihood y |θ is a normal whose 

covariance matrix is nearly singular for a large range of plausible parameters (a fact 

whichwas alreadynoted in Smithand Kohn(1996,sec. 6.2)). We thus used only 10 control 

points per spline, which is closer to what is recommended in Smith and Kohn (1996) and 

alleviates this numerical problem. Finally, we have set the variance of the parametric 

regression term to vγ2 = 10, this parameter is not specified in the analysis of Giordani and 

Kohn (2010).

6.1.1. Results—In the experimental setup considered, AIMM ended up incrementing 

about 30 times on average so that when Mn stabilizes AIMM acceptance rate is around 55%, 

as shown in Figure 5. Figure 6 reports the estimated posterior distribution of three 

parameters after a long AIMM run. We note that the inference carried out is similar to what 

was obtained in the study of this dataset using AGM carried out in Giordani and Kohn 

(2010). In particular, we find that most variance parameters are log-normally distributed a 

posteriori, except for two parameter related to the covariates X4 and X6 which matches the 

analysis of Giordani and Kohn (2010). We note however that the additive noise SD posterior 

distribution is slightly shifted compared to the result of these authors, probably because the 

prior distribution of this parameter is different in our implementation. We observe that the 

acceptance rate of AIMM is “penalized” by the conservative choice of ωn. Indeed, with 

about Mn ≈ 30 kernels in the mixture, we have ωn ≈ 1/4 which means that, approximately, at 

every four AIMM transition the proposed state is drawn from Q0 which is, in this example, 

very uninformative: this shows that the quality of the AIMM adaptation is similar to, if not 

better than AGM in this example. Finally, we mention that the adaptive random walk 

Metropolis algorithm (Haario, Saksman, and Tamminen 2001) was implemented in this 

example but the results were not relevant: after the initial nonadaptive phase, the estimated 

covariance matrix quickly deteriorates and the chain remains stuck for long period of times.
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6.2. Empirical Bayes and the James-Stein Estimator

Example 6.—We consider the following hierarchical model with i ∈ {1,...,K}

(i) ϑi N(μ, A), (ii)Y i N(ϑi, V ) . (14)

The parameters of interest consist in θ: = logA, μ, ϑ1, …, ϑK , while the matrix V is set to the 

empirical Bayes estimator of the observed data Y1,...,YK. The case Y i ∈ ℝ is considered so 

that θ is defined on a K + 2 dimensional state space. We proceed to the Bayesian inference 

of θ given Y1,...,YK and thus assign an inverse gamma prior to A and a normal prior to μ. 

This model is of particular interest since it corresponds to the Bayesian formulation of the 

James-Stein estimator (James and Stein 1961): indeed the posterior mean of θ in the 

hierarchical model Equation (14) defines a general class of empirical Bayes estimators 

which includes the James–Stein estimator, see Efron and Morris (1975) and Rosenthal 

(1996) for more details. In this example, the data are the 1970 batting average for 18 

Baseball players (see Table 1 of Efron and Morris (1975)) and θ is thus a 20-dimensional 

parameters. The hyperpriors were chosen as in Roberts and Rosenthal (2009).

6.2.1. Results—Figure 7 reports some marginal posterior distributions estimated by 

AIMM and ARMS. Clearly, ARMS has not totally converged at that point as some 

probability mass is missing in the tails of each marginal. This may explain why ARMS 

seems to be slightly better in terms of acceptance rate and integrated autocorrelation time 

than AIMM as shown in Table 7. Indeed, an independent proposal that does not dominate 

the tail of a distribution correctly usually yields a misleading high acceptance rate as the 

risky moves are simply not attempted. We also include the results for the regional adaptive 

Metropolis algorithm (RAMA) reported from Roberts and Rosenthal (2009). We note that 

comparing adaptive independent MCMC and adaptive random walk MCMC is perhaps not 

very informative as they are structurally different and Table 7 does not probably give a fair 

assessment of RAMA since (i) the proposal density is adapted so that the sampler 

acceptance rate is 0.23 and (ii) the average squared jumping distance is always smaller of 

several order of magnitude (especially in high-dimensional settings) for random walks than 

for independent proposal algorithms. distribution correctly usually yields a misleading high 

acceptance rate as the risky moves are simply not attempted. We also include the results for 

the regional adaptive Metropolis algorithm (RAMA) reported from Roberts and Rosenthal 

(2009). We note that comparing adaptive independent MCMC and adaptive random walk 

MCMC is perhaps not very informative as they are structurally different and Table 7 does 

not probably give a fair assessment of RAMA since (i) the proposal density is adapted so 

that the sampler acceptance rate is 0.23 and (ii) the verage squared jumping distance is 

always smaller of several order of magnitude (especially in high-dimensional settings) for 

random walks than for independent proposal algorithms.

7. Discussion

Although implicitly evaluated in an (nonadaptive) independence Metropolis-Hastings 

transition, the information conveyed by the ratio of importance weights is lost because of the 

threshold set to one in the MH acceptance probability. Indeed, while at Xn and given two 
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realizations of the proposal Q, say 

X̃n + 1 and Ỹ n + 1, the two events {W (X̃n + 1) > W (Xn)} and {W (Ỹ n + 1) ≫ W (Xn)} result in 

the same transition, that is, the proposed move is accepted with probability one, regardless of 

the magnitude difference between W (X̃n + 1)/W (Xn) and W (Ỹ n + 1)/W (Xn) . This article aims 

to design an adaptive MCMC algorithm that makes use of this information by incrementing 

the independence MH proposal distribution in the latter case and not in the former.

The general methodology, referred to as AIMM, presented and studied in this article is a 

novel adaptive MCMC method to sample from challenging distributions. Theoretically, we 

establish under very mild assumptions, that if it only adapts on a compact set and has 

bounded jumps, this algorithm generates an ergodic process for any distribution of interest 

known up to a normalizing constant. We show that these conditions can always be enforced 

by using a specific implementation. In simpler implementations where those conditions may 

not be verified, the algorithm is nevertheless shown to work well in practice. We provide an 

even more efficient algorithm, referred to as f-AIMM, that guarantees that the incremental 

proposal evaluation does not slow down the algorithm. This algorithm can be seen as a series 

of AIMM algorithms where Gaussian components are progressively dropped. As a 

consequence, f-AIMM is compatible with the theoretical framework developed at Section 4. 

In particular, provided that it only adapts on a compact set and has bounded jumps, this 

algorithm is invariant for any target distribution. We illustrate its performance in a variety of 

challenging sampling scenarios.

Compared to other existing adaptive MCMC methods, AIMM needs less prior knowledge of 

the target. Its strategy of incrementing an initial naive proposal distribution with Gaussian 

kernels leads to a fully adaptive exploration of the state space. Conversely, we have shown 

that in some examples the adaptiveness of some other MCMC samplers may be 

compromised when an unwise choice of parametric family for the proposal kernel is made. 

The performance of AIMM depends strongly on the threshold W  which controls the 

adaptation rate. This parameter should also be set according to the computational budget 

available. When the normalizing constant of π is unknown or when X is high-dimensional, 

we recommend opting for an automated adaptation of W  (such as the scheme described at 

the beginning of Section 5) that allows to increment regularly the proposal kernel. Again, we 

stress that this work is pioneering the use of semiparametric adaptive kernels and does not 

consist in an exhaustive study of this algorithm: a reader may see our research as a basis for 

further optimization and may find more efficient ways to choose AIMM parameters 

according to their problem at hand. However, we stress that two aspects of the AIMM’s 

adaptation are essential: first, the defensive kernel is crucial as it safeguards the possibility to 

discover new parts of the support of π at a later stage of the sampling and its weight in the 

mixture ωn should thus not decrease too fast. Second, if an automated choice of W  is used, 

the adaptation scheme must eventually lead to a constant threshold.

The adaptive design of AIMM was inspired by incremental mixture importance sampling 

(IMIS) (Raftery and Bao 2010). IMIS iteratively samples and weights particles according to 

a sequence of importance distributions that adapt over time. The adaptation strategy is 

similar to that in AIMM: given a population of weighted particles, the next batch of particles 
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is simulated by a Gaussian kernel centered at the particle having the largest importance 

weight. However, IMIS and AIMM are structurally different since the former is an adaptive 

importance sampling method while the latter is an adaptive MCMC algorithm. Comparing 

them on a fair basis is difficult. In particular, the ESS estimators for the two methods stem 

from different approximations. The computational efficiency of IMIS suffers from the fact 

that, at each iteration, the whole population of particles must be reweighted to maintain the 

consistency of the importance sampling estimator. By contrast, at each transition, AIMM 

evaluates only the importance weight of the new proposed state. However, since IMIS 

calculates the importance weight of large batches of particles, it acquires a knowledge of the 

state space more quickly than AIMM which accepts/rejects one particle at a time.

We therefore expect AIMM to be more efficient in situations where the exploration of the 

state space requires a large number of increments of the proposal and IMIS to be more 

efficient for short run times. To substantiate this expectation, we have compared the 

performance of AIMM and IMIS on the last example of Section 5 in dimension 4. Figure 6 

of the supplementary materials reports the estimation of the probability π4 X1 < − 2
obtained through both methods for different run times. For short run times IMIS benefits 

from using batches of particles and gains a lot of information on π4 in a few iterations. On 

the other hand, AIMM provides a more accurate estimate of π4 X1 < − 2  after about 150 

sec. Figure 7 (supplementary materials) illustrates the outcome of AIMM and IMIS after 

running them for 2000 sec. The mixture of incremental kernels obtained by AIMM is 

visually more appealing than the sequence of proposals derived by IMIS, reinforcing the 

results from Figure 6 (supplementary materials).

AIMM can be regarded as a transformation of IMIS, a particle-based inference method, into 

an adaptive Markov chain. This transformation could be applied to other adaptive 

importance sampling methods, thus designing Markov chains that might be more efficient 

than their importance sampling counterparts. In a Bayesian context, AIMM could, in 

addition to sampling the posterior distribution, be used to estimate intractable normalizing 

constants and marginal likelihoods via importance sampling. Indeed, the incremental 

mixture proposal produced by AIMM is an appealing importance distribution since it 

approximates the posterior and is straightforward to sample from.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(Example 1) Illustration of one AIMM increment for the target π1. Top: States X1,...,Xn of 

the AIMM chain, proposed new state X̃n + 1 activating the increment process (i.e., satisfying 

W n(X̃n + 1) ≥ W , and neighborhood of Xn + 1, N(Xn + 1 |X1, …, Xn) . Bottom: Target π1, 

defensive kernel Q0, first increment ϕ1, and updated kernel Q1 plotted on a logarithmic 

scale.
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Figure 2. 
(Example 1) Illustration of AIMM sampling from the target π1 for n = 20,000 iterations 

sequence of proposals from Q0 to Qn produced by AIMM.
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Figure 3. 
(Example 2: π2 target, d = 2) Incremental mixture created by AIMM for three different 

initial proposals. Top row: Q0 is a Gaussian density (the region inside the black dashed 

ellipses contains 75% of the Gaussian mass) centred on a high density region (left) and a low 

density region (right). Bottom row: Q0 is Uniform (with support corresponding to the black 

dashed rectangle). The components ϕ1,...,ϕMn of the incremental mixture obtained after n = 

100,000 MCMC iterations are represented through (the region inside the ellipses contains 

75% of each Gaussian mass). The color of each ellipse illustrates the corresponding 

component’s relative weight βl (from dark blue for lower weights to red).
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Figure 4. 
(Example 2: π2 target, d = 2) AIMM’s incremental mixture design after n = 100,000 MCMC 

iterations. (a) Evolution of the number of kernels Mn created by AIMM for different 

thresholds. (b) Evolution of the KL divergence between π2 and the incremental proposal Qn, 

plotted in lin-log scale.
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Figure 5. 
(Example 5) Information regarding the acceptance rate of 100 AIMM runs are reported on 

the left panel and the evolution of the number of components for about 10 runs throughout 

the sampling is shown on the right panel.
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Figure 6. 
(Example 5) Marginal posterior distribution of three parameters of the model estimated after 

70,000 iterations of AIMM.
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Figure 7. 
(Example 6) Marginal posterior of four parameters estimated by AIMM and ARMS after a 

long run of 100,000 iterations of both algorithm (full swipe update Metropolis-within-Gibbs 

for ARMS).
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Table 1.

(Example 1) Results for π1: effective sample size (ESS) (the larger the better), mean squared error (MSE) of 

π1(X > 5) (the smaller the better).

ESS MSE (×104)

AMH (0.08, 0.004) 6030

AGM-2 (0.12, 0.001) 120

AGM-3 (0.51, 0.091) 76

AGM-40 (0.91, 0.008) 5

AIMM (0.47, 0.004) 7

NOTE: Estimates obtained through 100 independent runs of the four methods, each of 20,000 iterations, discarding the first 10,000 iterations for 
burn in. For the ESS statistic, the mean and variance are provided.
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Table 2.

(Example 2: π2 target, d = 2) Influence of the initial proposal Q0 on AIMM outcome after n = 100,000 

MCMC iterations (replicated 20 times).

Q0 Mn ESS ACC KL JMP EFF (×10−4)

Gaussian on a high density region 41 0.19 0.35 0.59 197 11

Gaussian on a low density region 157 0.23 0.37 0.71 245 4

Uniform on S 39 0.24 0.38 0.62 320 11

NOTE: Mn is the number of components created by AIMM, ESS is the effective sample size, ACC is the acceptance rate, KL is the KL divergence 

between π2 and the chain distribution, JMP is the average distance between two consecutive states of the chain, and EFF is a time-normalized ESS.
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Table 3.

(Example 2: π2 target, d = 2) Influence of the threshold W  on AIMM and f-AIMM outcomes after n = 

100,000 MCMC iterations (replicated 20 times).

(a) AIMM

log W Mn ESS ACC KL JMP CPU EFF (×10−4)

10 0 0.03 0.01 14.06 10 45 2

  2 21 0.16 0.27 0.72 169 154 10

  1.5 39 0.24 0.38 0.62 235 245 10

  1 79 0.37 0.53 0.54 331 330 12

  0.75 149 0.48 0.64 0.53 286 658 7

  0.5 317 0.64 0.75 0.51 451 2199 3

  0.25 1162 0.71 0.87 0.54 505 6201 1

(b) f-AIMM

log W Mmax ESS ACC KL JMP CPU EFF (×10−4)

  1.5 25 0.29 0.51 0.59 268 255 11

  0.75 100 0.53 0.69 0.53 409 421 13

  0.5 200 0.67 0.80 0.51 474 1151 6

J Comput Graph Stat. Author manuscript; available in PMC 2020 May 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maire et al. Page 34

Table 4.

(Example 3: π3 target, d = 6) Comparison of f-AIMM with the four other samplers after n = 200,000 iterations 

(replicated 10 times).

W Mmax ACC ESS CPU EFF JMP

f-AIMM 10 20 0.049 0.015 274 5.2 × 10−5 0.08

f-AIMM 1 70 0.169 0.089 517 1.7 × 10−4 0.27

f-AIMM 0.1 110 0.251 0.156 818 1.9 × 10−4 0.38

RWMH - 0.23 0.001 109 9.2 × 10−6 0.007

AMH - 0.42 0.002 2105 9.5 × 10−7 0.004

AGM-MH 100 0.009 0.002 2660 3.4 × 10−6 0.003

IM - 0.003 0.001 199 5.5 × 10−6 0.003
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Table 5.

(Example 4: π4 target, d ∈ {4, 10}) Comparison of f-AIMM with RWMH, AMH, AGM, and IM after n = 

200,000 iterations (replicated 100 times).

(a) π4 in dimension d = 4

W Mmax ACC ESS CPU EFF JMP

f-AIMM 5 100 0.69 0.30 408 7.3 × 10−4 68

RWMH - 0.23 3.1 × 10−3 93 3.4 × 10−5 0.09

AMH - 0.26 2.7 × 10−2 269 1.0 × 10−4 0.64

AGM-MH 100 3.0 × 10−3 5.0 × 10−4 3517 1.4 × 10−7 0.29

IM - 3.3 × 10−4 5.9 × 10−4 81 7.3 × 10−6 0.05

(b) π4 in dimension d = 10

W Mmax ACC ESS CPU EFF JMP

f-AIMM 20 100 0.45 0.18 1232 1.4 × 10−4 116.4

f-AIMM 10 200 0.64 0.25 1550 1.6 × 10−4 200.1

RWMH - 0.38 7.2 × 10−4 476 1.7 × 10−6 0.07

AMH - 0.18 1.3 × 10−3 2601 5.0 × 10−7 0.57

AGM-MH 100 2.6 × 10−4 5.0 × 10−4 4459 1.1 × 10−7 7.1 × 10−3

IM - 6.4 × 10−5 6.1 × 10−4 473 1.2 × 10−6 4.1 × 10−3
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Table 6.

(Example 4: π4 target, d ∈ {4, 10}) Mean square error (MSE) of the mixture parameter λ, for the different 

algorithms (replicated 100 times).

W Mmax MSE(λ), d = 4 MSE(λ), d = 10

f-AIMM 5 100 0.0001 0.06

f-AIMM 20 100 0.0006 0.09

f-AIMM 10 200 0.0024 0.01

RWMH - 0.25 0.25

AMH - 0.15 0.25

AGM-MH 100 0.22 0.25

IM - 0.03 0.20
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Table 7.

(Example 6) Comparison of the performance of three adaptive MCMC samplers: acceptance rate, integrated 

autocorrelation time and average squared jumping distance.

Acc rate IACT Avg sq. distance (× 10−4)

AIMM 0.49 1.12 16,203

ARMS 0.53 0.98 11,270

RAMA 0.23 31.6 2.756

NOTE: Results for AIMM and ARMS are estimated based after 10,000 iterations of 100 independent runs (full swipe update Metropolis-within-
Gibbs for ARMS). Results for RAMA were reported from (Roberts and Rosenthal 2009, Table p. 360).
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