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Abstract
In this paper, we introduce the generalized k-fractional integral in terms of a new
parameter k > 0, present some new important inequalities of Pólya–Szegö and
Čebyšev types by use of the generalized k-fractional integral. Our consequences with
this new integral operator have the abilities to implement the evaluation of many
mathematical problems related to real world applications.
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1 Introduction
There are numerous problems wherein fractional derivatives (non-integer order deriva-
tives and integrals) attain a valuable position [1–25]. It must be emphasized that fractional
derivatives exist in many technologies, especially they can be described in three differ-
ent approaches, and any of these approaches can be used to solve many important prob-
lems in the real world. Every classical fractional operator is typically described in terms
of a particular significance. There are many well-recognized definitions of fractional op-
erators, we can also point out the Riemann–Liouville, Caputo, Grunwald–Letnikov, and
Hadamard operators [26], whose formulations include integrals with singular kernels and
which may be used to check, for example, issues involving the reminiscence effect [27].
However, within the year 2010, specific formulations of fractional operators appeared in
the literature [28]. The new formulations diverge from the classical ones in numerous
components. As an example, classical fractional derivatives are described in such a man-
ner that in the limit wherein the order of the derivative is an integer, one recovers the clas-
sical derivatives in the sense of Newton and Leibniz. In addition, new fractional operators
[29–31] with a corresponding integral whose kernel may be a non-singular mapping have
been currently proposed; for instance, a Mittag-Leffler function [32]. In such instances,
integer-order derivatives are rediscovered by supposing suitable limits for the values of
their parameters.
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On the other hand, there are numerous approaches to acquire a generalization of clas-
sical fractional integrals. Many authors introduce parameters in classical definitions or in
some unique specific function [4], as we shall do in what follows. Moreover, in the present
paper, we introduce a parameter and enunciate a generalization for fractional integrals on
a selected space, which we call generalized k-fractional integral, and further advocate a
Pólya–Szegö and Čebyšev type inequalities modification of this generalization.

Inequalities and their potential applications are of great significance in pure mathemat-
ics and applied mathematics, many remarkable inequalities and their applications can be
found in the literature [33–46]. In view of the broader applications, integral inequalities
have received large interest [47–60]. Presently, many authors have provided the unique
versions of such inequalities which may be beneficial within the study of diverse classes of
differential and integral equations. Those inequalities act as far-reaching tools to look at
the classes of differential and integral equations [61–70].

Čebyšev [71] introduced the well-known celebrated functional as follows:

T(U ,V) =
1

σ2 – σ1

∫ σ2

σ1

U (λ)V(λ) dλ

–
(

1
σ2 – σ1

∫ σ2

σ1

U (λ) dλ

)(
1

σ2 – σ1

∫ σ2

σ1

V(λ) dλ

)
, (1.1)

where U and V are two integrable functions on [σ1,σ2]. If U and V are synchronous, that
is,

(
U (λ) – U (ω)

)(
V(λ) – V(ω)

) ≥ 0

for any λ,ω ∈ [σ1,σ2], then T(U ,V) ≥ 0.
Functional (1.1) has attracted the attention of many researchers due to its demonstrated

applications in probability, numerical analysis, quantum theory, statistical and transform
theory. Alongside facet with numerous applications, functional (1.1) has gained plenty of
interest to yield a variety of fundamental inequalities [72–76].

Another interesting and fascinating aspect of the theory of inequalities is the Grüss type
inequality [66] which states

∣∣T(U ,V)
∣∣ ≤ (Q – q)(R – r)

4
,

where the integrable functions U and V satisfy

q ≤ U (λ) ≤ Q

and

r ≤ V(λ) ≤ R

for all λ ∈ [σ1,σ2] and for some q, Q, r, R ∈R.
Many famous versions mentioned in the literature are direct effects of the numerous

applications in optimizations and transform theory. In this regard Pólya–Szegö integral
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inequality is one of the most intensively studied inequalities. This inequality was intro-
duced by Pólya and Szegö [76]:

∫ σ2
σ1

U2(λ) dλ
∫ σ2
σ1

V2(λ) dλ

(
∫ σ2
σ1

U (λ)V(λ) dλ)2 ≤ 1
4

(√
QR
qr

+
√

qr
QR

)2

. (1.2)

The constant 1
4 is a best possible constant such that inequality (1.2) holds, that is, it can’t

be replaced by a smaller constant.
By using the Pólya–Szegö inequality, Dragomir and Diamond [75] proved that the in-

equality

∣∣T(U ,V)
∣∣ ≤ (Q – q)(R – r)

4(σ2 – σ1)
√

qrQR

∫ σ2

σ1

U (λ) dλ

∫ σ2

σ1

V(λ) dλ

holds for all λ ∈ [σ1,σ2] if the functions U and V defined on [σ1,σ2] satisfy

0 < q ≤ U (λ) ≤ Q < ∞, 0 < r ≤ V(λ) ≤ R < ∞.

It has been extensively discussed that Pólya–Szegö and Čebyšev type inequalities in con-
tinuous and discrete cases play a considerable role in examining the qualitative conduct
of differential and difference equations. As a result of these studies, many new branches
of mathematics have been opened up. Inspired by Pólya, Szegö, and Čebyšev [71, 76], we
intend to show more general versions of Pólya–Szegö and Čebyšev type inequalities.

Our present paper has been inspired by the resource of the above-defined work. The
principal aim of the present paper is to set up new Pólya–Szegö and Čebyšev types integral
inequalities associated with generalized k-fractional integrals. We introduce parameter
k > 0 and generalize the results in such a way that the existing results can be explored too.
Thus, the results provided in this research paper are more generalized as compared to the
existing results.

2 Preliminaries
In this section, we demonstrate some important concepts from fractional calculus that
will play a major role in proving the results of the present paper. The essential points of
interest are exhibited in the monograph by Kilbas et al. [27].

Definition 2.1 (see [27, 77]) Let p ≥ 1 and r ∈ R. Then the function U (ζ ) is said to be in
Lp,r[υ1,υ2] space if

‖U‖Lp,r [υ1,υ2] =
(∫ υ2

υ1

∣∣U (ζ )
∣∣p

ζ r dζ

) 1
p

< ∞.

In particular,

Lp,0[υ1,υ2] = Lp[υ1,υ2] =
{
U : ‖U‖Lp[υ1,υ2] =

(∫ υ2

υ1

∣∣U (ζ )
∣∣p dζ

) 1
p

< ∞
}

.
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Definition 2.2 (see [78]) Let p ≥ 1, U ∈ L1[0,∞) and Ψ be an increasing and positive
monotone function defined on [0,∞) such that Ψ ′ is continuous on [0,∞) and Ψ (0) = 0.
Then U is said to be in χ

p
Ψ [0,∞) space if ‖U‖χ

p
Ψ

< ∞, where ‖U‖χ
p
Ψ

is defined by

‖U‖χ
p
Ψ

=
(∫ ∞

0

∣∣U (ζ )
∣∣p

Ψ ′(ζ ) dζ

) 1
p

for 1 ≤ p < ∞ and

‖U‖χ∞
Ψ

= ess sup
0≤ζ<∞

[
Ψ ′(ζ )U (ζ )

]
.

In particular, if Ψ (λ) = λ, then χ
p
Ψ [0,∞) coincides with Lp[0,∞); if Ψ (λ) = logλ, then

χ
p
Ψ [0,∞) becomes Lp,–1[0,∞).

Definition 2.3 (see [27, 77]) Let σ1 < σ2 and U ∈ L1([σ1,σ2]). Then the left and right
Riemann–Liouville fractional integrals of order 	 > 0 are defined by

J 	

σ+
1
U (λ) =

1
Γ (	)

∫ λ

σ1

(λ – ζ )	–1U (ζ ) dζ (λ > σ1)

and

J 	
σ–

2
U (λ) =

1
Γ (	)

∫ σ2

λ

(ζ – λ)	–1U (ζ ) dζ (λ < σ2),

respectively, where Γ (	) =
∫ ∞

0 t	–1e–t dt is the gamma function [79–87].

Now, we recall the definition of k-fractional integral [88].

Definition 2.4 (see [88]) Let σ1 < σ2, k > 0, and U ∈ L1([σ1,σ2]). Then the left and right
k-fractional integrals of order 	 are defined by

J 	,k
σ+

1
U (λ) =

1
kΓk(	)

∫ λ

σ1

(λ – ζ )
	
k –1U (ζ ) dζ (λ > σ1)

and

J 	,k
σ–

2
U (λ) =

1
kΓk(	)

∫ σ2

λ

(ζ – λ)
	
k –1U (ζ ) dζ (λ < σ2),

respectively, where Γk(	) =
∫ ∞

0 t	–1e– tk
k dt is the k-gamma function [89].

A generalization of the Riemann–Liouville fractional integrals with respect to another
function is given in [27] as follows.

Definition 2.5 (see [27]) Let σ1 < σ2, 	 > 0, and Ψ (ζ ) be an increasing and positive mono-
tone function defined on (σ1,σ2]. Then the left and right generalized Riemann–Liouville
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fractional integrals of the function U with respect the function Ψ of order 	 are defined
by

J 	

Ψ ,σ+
1
U (λ) =

1
Γ (	)

∫ λ

σ1

Ψ ′(ζ )
(
Ψ (λ) – Ψ (ζ )

)	–1U (ζ ) dζ (2.1)

and

J 	

Ψ ,σ–
2
U (λ) =

1
Γ (	)

∫ σ2

λ

Ψ ′(ζ )
(
Ψ (ζ ) – Ψ (λ)

)	–1U (ζ ) dζ , (2.2)

respectively.

Next, we present a new fractional integral operator which is known as the generalized
k-fractional integral operator of a function with respect to another function.

Definition 2.6 Let σ1 < σ2, 	, k > 0, and Ψ (ζ ) be an increasing and positive monotone
function defined on (σ1,σ2]. Then the left and right generalized k-fractional integrals of
the function U with respect to the function Ψ of order 	 are defined by

J 	,k
Ψ ,σ+

1
U (λ) =

1
kΓk(	)

∫ λ

σ1

Ψ ′(ζ )
(
Ψ (λ) – Ψ (ζ )

) 	
k –1U (ζ ) dζ (2.3)

and

J 	,k
Ψ ,σ–

2
U (λ) =

1
kΓk(	)

∫ σ2

λ

Ψ ′(ζ )
(
Ψ (ζ ) – Ψ (λ)

) 	
k –1U (ζ ) dζ , (2.4)

respectively.

Remark 2.7 Several existing fractional operators are the special cases of Definition 2.6.
For example:

(1) Let k = 1. Then Definition 2.6 reduces to Definition 2.5.
(2) Let Ψ (λ) = λ. Then Definition 2.6 reduces to Definition 2.4.
(3) Let Ψ (λ) = λ and k = 1. Then Definition 2.6 reduces to 2.3.
(4) Let Ψ (λ) = logλ and k = 1. Then Definition 2.6 leads to the Hadamard fractional

integral operators given in [27, 77].
(5) Let β > 0, Ψ (λ) = λβ

β
, and k = 1. Then Definition 2.6 leads to the Katugampola

fractional integral operators in the literature [90].
(6) Let β > 0, Ψ (λ) = (λ–a)β

β
, and k = 1. Then Definition 2.6 becomes the conformable

fractional integral operators defined by Jarad et al. in [91].
(7) Let Ψ (λ) = λu+v

u+v and k = 1. Then Definition 2.6 becomes the generalized
conformable fractional integrals defined by Khan et al. in [92].

Throughout this paper, we suppose that Ψ (ζ ) is a strictly increasing function on (0,∞)
and Ψ ′(ζ ) is continuous, 0 ≤ σ1 < σ2 with the condition that at any point σ3 ∈ [σ1,σ2], we
have Ψ (σ3) = 0.
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3 Pólya–Szegö type inequalities involving the generalized K-fractional
integrals

In this section, we derive certain Pólya–Szegö type integral inequalities for real-valued
integrable functions via generalized Riemann–Liouville k-fractional integral defined in
(2.3) and (2.4). Throughout this paper, we assume that Ψ (ζ ) is an increasing, positive,
and monotone function defined on [0,∞) such that Ψ (0) = 0, and Ψ ′(ζ ) is continuous on
[0,∞).

Lemma 3.1 Let k,λ,	 > 0, U and V , ρ1, ρ2, χ1, and χ2 be six positive integrable functions
defined on [0,∞) such that

0 < ρ1(ζ ) ≤ U (ζ ) ≤ ρ2(ζ ), 0 < χ1(ζ ) ≤ V(ζ ) ≤ χ2(ζ ) (3.1)

for all ζ ∈ [0,λ]. Then one has

1
4
(
J 	,k

Ψ

[
(ρ1χ1 + ρ2χ2)UV

]
(λ)

)2 ≥ J 	,k
Ψ

[
χ1χ2U2](λ)J 	,k

Ψ

[
ρ1ρ2V2](λ). (3.2)

Proof It follows from (3.1) that

ρ2(ζ )
χ1(ζ )

–
U (ζ )
V(ζ )

≥ 0 (3.3)

and

U (ζ )
V(ζ )

–
ρ1(ζ )
χ2(ζ )

≥ 0 (3.4)

for all ζ ∈ [0,λ].
Multiplying (3.3) and (3.4), we obtain

[
ρ1(ζ )χ1(ζ ) + ρ2(ζ )χ2(ζ )

]
U (ζ )V(ζ ) ≥ χ1(ζ )χ2(ζ )U2(ζ ) + ρ1(ζ )ρ2(ζ )V2(ζ ). (3.5)

Multiplying both sides of inequality (3.5) by

1
kΓk(	)

Ψ ′(ζ )
(
Ψ (λ) – Ψ (ζ )

) 	
k –1

and integrating the obtained result with respect to ζ to (0,λ), we get

J 	,k
Ψ

[
(ρ1χ1 + ρ2χ2)UV

]
(λ) ≥ J 	,k

Ψ

[
χ1χ2U2](λ) + J 	,k

Ψ

[
ρ1ρ2V2](λ).

Applying the arithmetic-geometric inequality, we have

J 	,k
Ψ

[
(ρ1χ1 + ρ2χ2)UV

]
(λ) ≥ 2

√
J 	,k

Ψ

[
χ1χ2U2

]
(λ)J 	,k

Ψ

[
ρ1ρ2V2

]
(λ),

which leads to

1
4
(
J 	,k

Ψ

[
(ρ1χ1 + ρ2χ2)UV

]
(λ)

)2 ≥ J 	,k
Ψ

[
χ1χ2U2](λ)J 	,k

Ψ

[
ρ1ρ2V2](λ).

Therefore, we obtain the desired inequality (3.1). �
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Corollary 3.2 Let k,λ, q, r,	, Q, R > 0 with q ≤ Q and r ≤ R, and U and V be two positive
integrable functions defined on [0,∞) such that

0 < q ≤ U (ζ ) ≤ Q < ∞, 0 < r ≤ U (ζ ) ≤ R < ∞ (3.6)

for all ζ ∈ [0,λ]. Then one has

J 	,k
Ψ U2(λ)J 	,k

Ψ V2(λ)
(J 	,k

Ψ UV(λ))2
≤ 1

4

(√
qr
QR

+

√
QR
qr

)2

.

Corollary 3.3 Let k = 1. Then Lemma 3.1 reduces to the inequality for generalized
Riemann–Liouville fractional integrals as follows:

1
4
(
J 	

Ψ

[
(ρ1χ1 + ρ2χ2)UV

]
(λ)

)2 ≥ J 	

Ψ

[
χ1χ2U2](λ)J 	

Ψ

[
ρ1ρ2V2](λ). (3.7)

Corollary 3.4 Let Ψ (λ) = λ. Then Lemma 3.1 leads to the inequality for k-fractional inte-
gral as follows:

1
4
(
J 	,k[(ρ1χ1 + ρ2χ2)UV

]
(λ)

)2 ≥ J 	,k[χ1χ2U2](λ)J 	,k[ρ1ρ2V2](λ).

Remark 3.5 Let Ψ (λ) = λ and k = 1. Then Lemma 3.1 becomes Lemma 3.1 of [67].

Lemma 3.6 Let k,λ,	, δ > 0 and U , V , ρ1, ρ2, χ1, and χ2 be six positive integrable functions
defined on [0,∞) such that (3.1) holds for all ζ ∈ [0,λ]. Then we have

J 	,k
Ψ ρ1ρ2(λ)J δ,k

Ψ χ1χ2(λ)J 	,k
Ψ U2(λ)J δ,k

Ψ V2(λ)
(J 	,k

Ψ ρ1U (λ)J δ,k
Ψ χ1V(λ) + J 	,k

Ψ ρ2U (λ)J δ,k
Ψ χ2V(λ))2

≤ 1
4

. (3.8)

Proof From (3.1) we clearly see that

ρ2(ζ )
χ1(η)

–
U (ζ )
V(η)

≥ 0

and

U (ζ )
V(η)

–
ρ1(ζ )
χ2(η)

≥ 0,

which imply that

(
ρ1(ζ )
χ2(η)

+
ρ2(ζ )
χ1(η)

)U (ζ )
V(η)

≥ U2(ζ )
V2(η)

+
ρ1(ζ )ρ2(ζ )
χ1(η)χ2(η)

. (3.9)

Multiplying both sides of inequality (3.9) by χ1(η)χ2(η)V2(η), we have

ρ1(ζ )U (ζ )χ1(η)V(η) + ρ2(ζ )U (ζ )χ2(η)V(η)

≥ χ1(η)χ2(η)U2(ζ ) + ρ1(ζ )ρ2(ζ )V2(η). (3.10)
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Multiplying both sides of inequality (3.10) by

1
kΓk(	)(kΓk(δ))

Ψ ′(ζ )
(
Ψ (λ) – Ψ (ζ )

) 	
k –1

Ψ ′(η)
(
Ψ (λ) – Ψ (η)

) δ
k –1

and then integrating the obtained inequality with respect to ζ and η from 0 to λ, one has

(
J 	,k

Ψ ρ1U
)
(λ)

(
J δ,k

Ψ χ1V
)
(λ) +

(
J 	,k

Ψ ρ2U
)
(λ)

(
J δ,k

Ψ χ2V
)
(λ)

≥ (
J 	,k

Ψ U2)(λ)
(
J δ,k

Ψ χ1χ2
)
(λ) +

(
J δ,k

Ψ V2)(λ)
(
J 	,k

Ψ ρ1ρ2
)
(λ).

Making use of the arithmetic-geometric mean inequality, we obtain

(
J 	,k

Ψ ρ1U
)
(λ)

(
J δ,k

Ψ χ1V
)
(λ) +

(
J 	,k

Ψ ρ2U
)
(λ)

(
J δ,k

Ψ χ2V
)
(λ)

≥ 2
√(

J 	,k
Ψ U2

)
(λ)

(
J δ,k

Ψ χ1χ2
)
(λ)

(
J δ,k

Ψ V2
)
(λ)

(
J 	,k

Ψ ρ1ρ2
)
(λ),

which leads to the desired inequality (3.8). �

Corollary 3.7 For k,λ,	, δ > 0, andU andV being two positive integrable functions defined
on [0,∞) such that inequality (3.6) holds for ζ ∈ [0,λ], we have

J 	,k
Ψ U2(λ)J δ,k

Ψ V2(λ)
(J 	,k

Ψ U (λ)J δ,k
Ψ V(λ))2

≤ Γk(	 + k)Γk(δ + k)

4(Ψ (λ))
	+δ

k

(√
qr
QR

+

√
QR
qr

)2

.

Corollary 3.8 Let k = 1. Then Lemma 3.6 leads to a new inequality for generalized
Riemann–Liouville fractional integral as follows:

J 	

Ψ ρ1ρ2(λ)J δ
Ψ χ1χ2(λ)J 	

ΨU2(λ)J δ
ΨV2(λ)

(J 	

Ψ ρ1U (λ)J δ
Ψ χ1V(λ) + J 	

Ψ ρ2U (λ)J δ
Ψ χ2V(λ))2 ≤ 1

4
. (3.11)

Corollary 3.9 Let Ψ (λ) = λ. Then Lemma 3.6 leads to a new inequality for k-fractional
integral as follows:

J 	,kρ1ρ2(λ)J δ,kχ1χ2(λ)J 	,kU2(λ)J δ,kV2(λ)
(J 	,kρ1U (λ)J δ,kχ1V(λ) + J 	,kρ2U (λ)J δ,kχ2V(λ))2 ≤ 1

4
. (3.12)

Remark 3.10 If Ψ (λ) = λ and k = 1, then Lemma 3.6 reduces to Lemma 3.3 of [67].

Theorem 3.11 Let k,λ,	, δ > 0, and U , V , ρ1, ρ2, χ1, and χ2 be six positive integrable
functions defined on [0,∞) such that (3.1) holds for all ζ ∈ [0,λ]. Then we have

J 	,k
Ψ

(
ρ2UV

χ1

)
(λ)J δ,k

Ψ

(
χ2UV

ρ1

)
(λ) ≥ J 	,k

Ψ U2(λ)J δ,k
Ψ V2(λ). (3.13)

Proof It follows from (3.1) that

1
kΓk(	)

∫ λ

0
Ψ ′(ζ )

(
Ψ (λ) – Ψ (ζ )

) 	
k –1 ρ2(ζ )

χ1(ζ )
U (ζ )V(ζ ) dζ
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≥ 1
kΓk(	)

∫ λ

0
Ψ ′(ζ )

(
Ψ (λ) – Ψ (ζ )

) 	
k –1U2(ζ ) dζ ,

which implies

J 	,k
Ψ

(
ρ2UV

χ1

)
(λ) ≥ J 	,k

Ψ U2(λ). (3.14)

Analogously, we obtain

1
kΓk(δ)

∫ λ

0
Ψ ′(η)

(
Ψ (λ) – Ψ (η)

) δ
k –1 χ2(η)

ρ1(η)
UV dη

≥ 1
kΓk(δ)

∫ λ

0
Ψ ′(η)

(
Ψ (λ) – Ψ (η)

) δ
k –1V2(η) dη,

from which one has

J δ,k
Ψ

(
χ2UV

ρ1

)
(λ) ≥ J δ,k

Ψ V2(λ). (3.15)

Multiplying (3.14) and (3.15), we get the desired inequality (3.13). �

Corollary 3.12 For k,λ,	, δ > 0, and U and V being two positive integrable functions de-
fined on [0,∞) such that (3.6) holds for all ζ ∈ [0,λ], we have

J 	,k
Ψ U2(λ)J δ,k

Ψ V2(λ)
J 	,k

Ψ UV(λ)J δ,k
Ψ UV(λ)

≤ QR
qr

.

Corollary 3.13 If k = 1, then Theorem 3.11 gives the following new result for generalized
Riemann–Liouville fractional integral:

J 	

Ψ

(
ρ2UV

χ1

)
(λ)J δ

Ψ

(
χ2UV

ρ1

)
(λ) ≥ J 	

ΨU2(λ)J δ
ΨV2(λ).

Corollary 3.14 Let Ψ (λ) = λ. Then Theorem 3.11 leads to the following new result for
Riemann–Liouville k-fractional integral:

J 	,k
(

ρ2UV
χ1

)
(λ)J δ,k

(
χ2UV

ρ1

)
(λ) ≥ J 	,kU2(λ)J δ,kV2(λ).

Remark 3.15 If Ψ (λ) = λ and K = 1, then Theorem 3.11 reduces to Lemma 3.4 of [67].

4 Pólya–Szegö type inequalities involving the generalized k-fractional
integrals

In this section, we present several Čebyšev type inequalities for generalized k-fractional
integrals defined in (2.3) and (2.4).

Theorem 4.1 Let k,λ,	 > 0, and U and V be two integrable and synchronous functions on
[0,∞). Then one has

(
J 	,k

Ψ UV
)
(λ) ≥ Γk(	 + k)

(Ψ (λ))
	
k

(
J 	,k

Ψ U
)
(λ)

(
J 	,k

Ψ V
)
(λ).
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Proof It follows from the synchronism of the functions U and V on the interval [0,∞) that

U (r)V(r) + U (s)V(s) ≥ U (r)V(s) + U (s)V(r). (4.1)

Multiplying both sides of inequality (4.1) by

1
kΓk(	)

Ψ ′(r)
(
Ψ (λ) – Ψ (r)

) 	
k –1

for λ ∈R gives

1
kΓk(	)

Ψ ′(r)
(
Ψ (λ) – Ψ (r)

) 	
k –1U (r)V(r) + U (s)V(s)

1
kΓk(	)

Ψ ′(r)
(
Ψ (λ) – Ψ (r)

) 	
k –1

≥ V(s)
1

kΓk(	)
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1U (r)

+ U (s)
1

kΓk(	)
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1V(r).

Integrating the above inequality with respect to r over (0,λ) leads to

1
kΓk(	)

∫ λ

0
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1U (r)V(r) dr

+ U (s)V(s)
1

kΓk(	)

∫ λ

0
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1 dr

≥ V(s)
1

kΓk(	)

∫ λ

0
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1U (r) dr

+ U (s)
1

kΓk(	)

∫ λ

0
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1V(r) dr.

Therefore, we get

(
J 	,k

Ψ UV
)
(λ) + U (s)V(s)

1
kΓk(	)

∫ λ

0
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1 dr

≥ V(s)
(
J 	,k

Ψ U
)
(λ) + U (s)

(
J 	,k

Ψ V
)
(λ)

and

(
J 	,k

Ψ UV
)
(λ) + U (s)V(s)

(Ψ (λ))
	
k

Γk(	 + k)

≥ V(s)
(
J 	,k

Ψ U
)
(λ) + U (s)

(
J 	,k

Ψ V
)
(λ), (4.2)

where

1
kΓk(	)

∫ λ

0
Ψ ′(r)

(
Ψ (λ) – Ψ (r)

) 	
k –1 dr =

(Ψ (λ))
	
k

Γk(	 + k)
.

Multiplying both sides of inequality (4.2) by

1
kΓk(	)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) 	
k –1 (λ ∈ R)
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leads to the conclusion that

(
J 	,k

Ψ UV
)
(λ)

1
kΓk(	)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) 	
k –1

+
1

kΓk(	)
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) 	
k –1U (s)V(s)

(Ψ (λ))
	
k

Γk(	 + k)

≥ (
J 	,k

Ψ U
)
(λ)

1
kΓk(	)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) 	
k –1V(s)

+
(
J 	,k

Ψ V
)
(λ)

1
kΓk(	)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) 	
k –1U (s).

Integrating the above inequality over (0,λ) reveals

(
J 	,k

Ψ UV
)
(λ)

1
kΓk(	)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) 	
k –1 ds

+
1

kΓk(	)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) 	
k –1U (s)V(s) ds

(Ψ (λ))
	
k

Γk(	 + k)

≥ (
J 	,k

Ψ U
)
(λ)

1
kΓk(	)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) 	
k –1V(s) ds

+
(
J 	,k

Ψ V
)
(λ)

1
kΓk(	)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) 	
k –1U (s) ds.

Therefore,

(Ψ (λ))
	
k

Γk(	 + k)
(
J 	,k

Ψ UV
)
(λ) +

(
J 	,k

Ψ UV
)
(λ)

(Ψ (λ))
	
k

Γk(	 + k)

≥ (
J 	,k

Ψ U
)
(λ)

(
J 	,k

Ψ V
)
(λ) +

(
J 	,k

Ψ V
)
(λ)

(
J 	,k

Ψ U
)
(λ).

This completes the proof of Theorem 4.1. �

Corollary 4.2 Let k = 1. Then Theorem 4.1 leads to a new result for generalized Riemann–
Liouville fractional integrals as follows:

(
J 	

ΨUV
)
(λ) ≥ Γ (	 + 1)

(Ψ (λ))	
(
J 	

ΨU
)
(λ)

(
J 	

ΨV
)
(λ).

Corollary 4.3 If Ψ (λ) = λ, then Theorem 4.1 provides a new inequality for k-fractional
integral as follows:

(
J 	,kUV

)
(λ) ≥ Γk(	 + k)

λ
	
k

(
J 	,kU

)
(λ)

(
J 	,kV

)
(λ).

Corollary 4.4 Let Ψ (λ) = λ and k = 1. Then Theorem 4.1 leads to a new result for
Riemann–Liouville fractional integral as follows:

(
J 	UV

)
(λ) ≥ Γ (	 + 1)

λ	

(
J 	U

)
(λ)

(
J 	V

)
(λ).
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Theorem 4.5 Let k,λ,	, δ > 0, and U and V be two integrable and synchronous functions
on [0,∞). Then

(J 	,k
Ψ UV)(λ)(Ψ (λ))

δ
k

Γk(δ + k)
+

(Ψ (λ))
	
k (J δ,k

Ψ UV)(λ)
Γk(	 + k)

≥ (
J 	,k

Ψ U
)
(λ)

(
J δ,k

Ψ V
)
(λ) +

(
J 	,k

ψ V
)
(λ)

(
J δ,k

Ψ U
)
(λ).

Proof Multiplying both sides of inequality (4.2) by

1
kΓk(δ)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) δ
k –1 (λ ∈R)

gives

(
J 	,k

Ψ UV
)
(λ)

1
kΓk(δ)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) δ
k –1

+
1

kΓk(δ)
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) δ
k –1U (s)V(s)

(Ψ (λ))
	
k

Γk(	 + k)

≥ (
J 	,k

Ψ U
)
(λ)

1
kΓk(δ)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) δ
k –1V(s)

+
(
J 	,k

Ψ V
)
(λ)

1
kΓk(δ)

Ψ ′(s)
(
Ψ (λ) – Ψ (s)

) δ
k –1U (s).

Integrating both sides of the above inequality with respect to s over (0,λ) leads to

(J 	,k
Ψ UV)(λ)
Γk(δ + k)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) δ
k –1 ds

+
(Ψ (λ))

	
k

Γk(	 + k)
1

kΓk(δ)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) δ
k –1U (s)V(s) ds

≥ (J 	,k
Ψ U )(λ)
kΓk(δ)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) δ
k –1V(s) ds

+
(J 	,k

Ψ V)(λ)
kΓk(δ)

∫ λ

0
Ψ ′(s)

(
Ψ (λ) – Ψ (s)

) δ
k –1U (s) ds.

Therefore,

(J 	,k
Ψ UV)(λ)(Ψ (λ))

δ
k

Γk(δ + k)
+

(Ψ (λ))
	
k (J δ,k

Ψ UV)(λ)
Γk(	 + k)

≥ (
J 	,k

Ψ U
)
(λ)

(
J δ,k

Ψ V
)
(λ) +

(
J 	,k

ψ V
)
(λ)

(
J δ,k

Ψ U
)
(λ),

which is the proof of Theorem 4.5. �

Remark 4.6 Let 	 = δ. Then Theorem 4.5 becomes Theorem 4.1.
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Corollary 4.7 Let k = 1. Then Theorem 4.5 provides a new result for generalized Riemann–
Liouville fractional integrals as follows:

(J 	

ΨUV)(λ)(Ψ (λ))δ

Γ (δ + 1)
+

(Ψ (λ))	(J δ
ΨUV)(λ)

Γ (	 + 1)

≥ (
J 	

ΨU
)
(λ)

(
J δ

ΨV
)
(λ) +

(
J 	

ψV
)
(λ)

(
J δ

ΨU
)
(λ).

Corollary 4.8 If Ψ (λ) = λ and k = 1, then Theorem 4.5 gives a new result for Riemann–
Liouville fractional integral as follows:

λδ(J 	UV)(λ)
Γ (δ + 1)

+
λ	(J δUV)(λ)

Γ (	 + 1)

≥ (
J 	U

)
(λ)

(
J δV

)
(λ) +

(
J 	V

)
(λ)

(
J δU

)
(λ).

Theorem 4.9 Let k,λ,	 > 0, σ1,σ2 ∈ R with σ1 < σ2, and Uj (1 ≤ j ≤ γ ) be a real-valued
increasing function on [σ1,σ2]. Then

(
J 	,k

ψ

γ∏
j=1

Uj

)
(λ) ≥

[
Γk(	 + k)
(Ψ (λ))

	
k

]γ –1 γ∏
j=1

(
J 	,k

Ψ Uj
)
(λ). (4.3)

Proof We use mathematical induction on γ ∈N to prove Theorem 4.9. We clearly see that
inequality (4.3) holds for γ = 1.

For γ = 2, since U1, U2 are increasing, we have

〈
U1(λ) – U1(ω),U2(λ) – U2(ω)

〉 ≥ 0.

Note that the left-hand side of inequality (4.3) for γ = 2 is the same as that of Theorem 4.1.
Therefore, inequality (4.3) also holds for γ = 2.

Suppose that inequality (4.3) holds for some γ ≥ 2. We observe that U =
∏γ

j=1 Uj is in-
creasing due toUj is increasing. LetV = Uγ +1. Then applying the case γ = 2 to the functions
U and V produces

(
J 	,k

Ψ

γ∏
j=1

UjUγ +1

)
(λ) ≥

[
Γk(	 + k)
(Ψ (λ))

	
k

](
J 	,k

Ψ

γ∏
j=1

Uj

)(
J 	,k

Ψ Uγ +1
)
(λ)

≥
[

Γk(	 + k)
(Ψ (λ))

	
k

]γ γ +1∏
j=1

(
J 	,k

Ψ Uj
)
(λ),

in which the induction hypothesis for γ is used inside the deduction of second inequality.
The proof of Theorem 4.9 is completed. �

Corollary 4.10 Let k = 1. Then Theorem 4.9 leads to the following new result for general-
ized Riemann–Liouville fractional integral:

(
J 	

ψ

γ∏
j=1

Uj

)
(λ) ≥

[
Γ (	 + 1)
(Ψ (λ))	

]γ –1 γ∏
j=1

(
J 	

ΨUj
)
(λ).
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Corollary 4.11 If Ψ (λ) = λ, then Theorem 4.9 leads to a new result for k-fractional integral
as follows:

(
J 	,k

γ∏
j=1

Uj

)
(λ) ≥

[
Γk(	 + k)

λ
	
k

]γ –1 γ∏
j=1

(
J 	,kUj

)
(λ). (4.4)

Corollary 4.12 Let Ψ (λ) = λ and k = 1. Then Theorem 4.9 provides a new result for
Riemann–Liouville fractional integral as follows:

(
J 	

γ∏
j=1

Uj

)
(λ) ≥

[
Γ (	 + 1)

λ	

]γ –1 γ∏
j=1

(
J 	Uj

)
(λ). (4.5)

Theorem 4.13 Let k,λ,	 > 0, U and V be two positive functions defined on [0,∞) such
that U is increasing and V is differentiable, and ϑ = infμ∈[0,∞) V ′(μ). Then one has

(
J 	,k

Ψ UV
)
(λ) ≥ Γk(	 + k)

(Ψ (λ))
	
k

(
J 	,k

Ψ U
)
(λ)

(
J 	,k

Ψ V
)
(λ)

–
ϑλ(Ψ (λ))

	
k

Γk(	 + k)
(
J 	,k

Ψ U
)
(λ) + ϑ

(
J 	,k

Ψ IU
)
(λ),

where I(λ) is the identity mapping.

Proof Let h(λ) = V(λ) – ϑλ and Υ (λ) = ϑλ. Then we clearly see that h is differentiable and
increasing on [0,∞), and from the proof of Theorem 4.9 we know that

(
J 	,k

Ψ U (V – Υ )
)
(λ) ≥ Γk(	 + k)

(Ψ (λ))
	
k

(
J 	,k

Ψ U
)
(λ)

(
J 	,k

Ψ (V – Υ )
)
(λ)

=
Γk(	 + k)
(Ψ (λ))

	
k

(
T 	,k

Ψ U
)
(λ)

(
J 	,k

Ψ V
)
(λ)

–
Γk(	 + k)
(Ψ (λ))

	
k

(
J 	,k

Ψ U
)
(λ)

(
J 	,k

Ψ Υ
)
(λ), (4.6)

where

(
J 	,k

Ψ U (V – Υ )
)
(λ) =

(
J 	,k

Ψ UV
)
(λ) – ϑ

(
J 	,k

Ψ IU
)
(λ) (4.7)

and

(
J 	,k

Ψ Υ
)
(λ) =

ϑλ(Ψ (λ))
	
k

ΓK(	 + k)
. (4.8)

Substituting (4.7) and (4.8) into (4.6) leads to the desired result. �

Corollary 4.14 Let k = 1. Then Theorem 4.13 leads to a new result for generalized
Riemann–Liouville fractional integral as follows:

(
J 	

ΨUV
)
(λ) ≥ Γ (	 + 1)

(Ψ (λ))	
(
J 	

ΨU
)
(λ)

(
J 	

ΨV
)
(λ)
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–
ϑλ(Ψ (λ))	

Γ (	 + 1)
(
J 	

ΨU
)
(λ) + ϑ

(
J 	

Ψ IU
)
(λ).

Corollary 4.15 If Ψ (λ) = λ, Theorem 4.13 provides the following new result for k-fractional
integral:

(
J 	,kUV

)
(λ) ≥ Γk(	 + k)

λ
	
k

(
J 	,kU

)
(λ)

(
J 	,kV

)
(λ)

–
ϑλ

	
k +1

Γk(	 + k)
(
J 	,kU

)
(λ) + ϑ

(
J 	,kIU

)
(λ).

Corollary 4.16 Let Ψ (λ) = λ and k = 1. Then Theorem 4.13 leads to a new inequality for
Riemann–Liouville fractional integral as follows:

(
J 	UV

)
(λ) ≥ Γ (	 + 1)

λ	

(
J 	U

)
(λ)

(
J 	V

)
(λ)

–
ϑλ	+1

Γ (	 + 1)
(
J 	U

)
(λ) + ϑ

(
J 	IU

)
(λ).

5 Conclusion
In the article, we have established some new Pólya–Szegö and Čebyšev-type inequalities
for two synchronous functions via generalized k-fractional integrals. Our obtained results
are very general and can be specialized to discover numerous interesting fractional inte-
gral inequalities, and our approach may lead to a lot of follow-up research. Furthermore,
they are expected to find some applications for establishing the uniqueness of solutions in
fractional boundary value problems of the fractional partial differential equations.
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