
RESEARCH ARTICLE Open Access

Comparative transcriptomic analysis of
deep- and shallow-water barnacle species
(Cirripedia, Poecilasmatidae) provides
insights into deep-sea adaptation of sessile
crustaceans
Zhibin Gan1,2†, Jianbo Yuan1,2†, Xinming Liu1, Dong Dong1,2, Fuhua Li1,2,3,4* and Xinzheng Li1,2,3,4*

Abstract

Background: Barnacles are specialized marine organisms that differ from other crustaceans in possession of a
calcareous shell, which is attached to submerged surfaces. Barnacles have a wide distribution, mostly in the
intertidal zone and shallow waters, but a few species inhabit the deep-sea floor. It is of interest to investigate how
such sessile crustaceans became adapted to extreme deep-sea environments. We sequenced the transcriptomes of
a deep-sea barnacle, Glyptelasma gigas collected at a depth of 731 m from the northern area of the Zhongjiannan
Basin, and a shallow-water coordinal relative, Octolasmis warwicki. The purpose of this study was to provide genetic
resources for investigating adaptation mechanisms of deep-sea barnacles.

Results: Totals of 62,470 and 51,585 unigenes were assembled for G. gigas and O. warwicki, respectively, and
functional annotation of these unigenes was made using public databases. Comparison of the protein-coding
genes between the deep- and shallow-water barnacles, and with those of four other shallow-water crustaceans,
revealed 26 gene families that had experienced significant expansion in G. gigas. Functional annotation showed
that these expanded genes were predominately related to DNA repair, signal transduction and carbohydrate
metabolism. Base substitution analysis on the 11,611 single-copy orthologs between G. gigas and O. warwicki
indicated that 25 of them were distinctly positive selected in the deep-sea barnacle, including genes related to
transcription, DNA repair, ligand binding, ion channels and energy metabolism, potentially indicating their
importance for survival of G. gigas in the deep-sea environment.
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Conclusions: The barnacle G. gigas has adopted strategies of expansion of specific gene families and of positive
selection of key genes to counteract the negative effects of high hydrostatic pressure, hypoxia, low temperature
and food limitation on the deep-sea floor. These expanded gene families and genes under positive selection would
tend to enhance the capacities of G. gigas for signal transduction, genetic information processing and energy
metabolism, and facilitate networks for perceiving and responding physiologically to the environmental conditions
in deep-sea habitats. In short, our results provide genomic evidence relating to deep-sea adaptation of G. gigas,
which provide a basis for further biological studies of sessile crustaceans in the deep sea.
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Background
Conditions on the deep-sea floor are poorly known but
generally are considered too harsh for the survival of
most organisms, e.g., high hydrostatic pressure, darkness,
hypoxia, low temperature, and limited food availability
[1–5]. However, a macrofauna consisting of a growing
range of newly discovered animals adapted to deep-sea
habitats has been reported, including crustaceans [6–8],
polychaetes [9, 10], fishes [11, 12], and mollusks [13, 14].
Various mechanisms have adapted them for survival in
deep-sea environments: e.g., squat lobsters and mussels
have developed chemoautotrophic systems of symbiotic
bacteria for inhabiting hydrothermal vents and cold
seeps in the seafloor [15–17]; and snailfish have evolved
special morphological and physiological characters to
survive and thrive in the hadal zone [12]. Studies aimed
at understanding survival strategies and adaptive evolu-
tion of organisms living in deep seas have also employed
genomic or transcriptomic sequencing. For example, in
the amphipod Hirondellea gigas, adaptation to the hadal
environment is associated with gene family expansion
and amino acid substitutions of specific proteins [6]; and
the shrimp Rimicaris sp. upregulates genes associated
with sulfur metabolism and detoxification to survive in
deep-sea hydrothermal vent environments [8]. However,
our understanding of deep-sea adaptation mechanisms
remains incomplete, especially for sessile species. Although
next-generation sequencing technology is now highly devel-
oped, and a few transcriptomic analyses of bio-adhesion
mechanisms and development have been reported [18–20].
Merely genetic resources of adult barnacles were surveyed
in Cirripedia except for Pollicipes pollicipes (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA394196) and Neolepas
marisindica [21], none relate to adaptive mechanisms in
barnacles.
Thoracica barnacles are a unique group of marine crus-

taceans, enclosed by a mantle and calcareous plates,
whose adults are permanently attached to the substrate.
Thoracica barnacles are well-known to the public as foul-
ing organisms, adhering to many artificial structures, in-
cluding vessels and submarine cables, causing structural
damage, and increasing fuel consumption. Simultaneously,

they are ecologically and economically important species
and have been the focus of many studies in developmental
biology, crustacean evolution, and ecotoxicology [22–24].
Most barnacles inhabit shallow or tidal marine waters [25,
26] but a few occur in deeper water, even in hadal zones
and around hydrothermal vents or cold seeps [27–31].
Stalked barnacles in the family Poecilasmatidae are distrib-
uted from the shallow subtidal zone to depths > 3600m
[32]. Within this family, the genus Glyptelasma is a typical
deep-sea inhabitant with G. gigas distributed in the Indo-
West Pacific at depths ranging from 236m to 1092m.
Conveniently, a coordinal shallow-water species, Octolas-
mis warwicki, is distributed in a neighboring region at
depths < 100m [32]. Recently, we successfully collected G.
gigas and O. warwicki individuals at Zhongjiannan Basin
and Weizhou Island respectively, and were able to investi-
gate deep-sea adaptation mechanisms through transcrip-
tome sequencing. Zhongjiannan Basin is a Cenozoic
sedimentary basin located in the narrowest part of the
South China Sea shelf with depths extending down to
4000m [33, 34]. In the northern area of Zhongjiannan
Basin, specific geological structures, including mud volca-
noes and pockmarks, are common on the seafloor [35,
36]. Comparing genetic information between these two
species could help explain how G. gigas has migrated and
adapted to this complex environment.
In this study, we sequenced the transcriptomes of the

deep-sea barnacle G. gigas and a shallow-water barnacle
O. warwicki. Comparative transcriptomics analysis was
performed on them to investigate the genetic changes
associated with adaptation to the deep-sea habitat. The
main objective of our project was to provide a genomic
resource for deep-sea barnacles and to probe the genetic
strategies and adaptation of G. gigas to the severe condi-
tions of deep-sea environments.

Results
Profile of transcriptome assembly and annotation
A total of 120,824,422 and 122,043,504 raw reads were
generated from G. gigas and O. warwicki, respectively
(Additional file 1: Table S1). After transcriptome assem-
bly, there were 62,470 unigenes with an N50 length of
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1708 bp for G. gigas. For O. warwicki, there were 51,585
unigenes with an N50 length of 2383 bp (Table 1). The
quality of two assemblies was comparable or better than
that of Pollicipes pollicipes (N50 length of 849 bp) and
Neolepas marisindica (N50 length of 1596 bp). The two
transcriptome assemblies were found to be highly
complete including more than 95% of the core genes in
the two species. Furthermore, 77.30 and 80.21% of the
benchmarking universal single-copy orthologs (BUSCOs)
were complete and single-copied in G. gigas and O. war-
wicki, respectively (Additional file 2: Table S2).
Among these unigenes, 25,627 (41.09%) and 21,143

(40.98%) were annotated in G. gigas and O. warwicki, re-
spectively (Table 1). Generally, the distribution of uni-
genes in GO and KEGG classifications were similar
between the two barnacle species (R2 = 0.9954), suggesting
similar genetic structures. The unigenes were mainly
assigned to the GO terms: single-organism process (GO:
0044699); binding (GO:0005488); organelle (GO:0043226);
metabolic process (GO:0008152) (Fig. 1a); and pathways
related to signal transduction, translation, and the endo-
crine system (Fig. 1b). However, some differences were de-
tected between the species. Relatively more unigenes of O.
warwicki were distributed in the GO terms of regulation
of biological process (GO:0050789) and regulation of
metabolic process (GO:0019222), whereas in G. gigas, rela-
tively more unigenes were distributed in nucleotide bind-
ing (GO:0000166) and transferase activity (GO:0016740)
(Fisher’s exact test p < 0.05). These results were consistent
with the findings of KEGG enrichment analysis, which in-
dicated that G. gigas had relatively more unigenes with the

functions of nucleotide metabolism and transcription
(Fig. 1) (Fisher’s exact test p < 0.05).

Phylogenetic tree
A total of 24,204 gene families were identified in the
comparative analysis of the six crustaceans. Among
these gene families, all of the protein-coding genes of G.
gigas and O. warwicki were distributed among 10,882
and 9904 gene families, respectively. A set of 566 single-
copy gene families (370,657 amino acids) was selected
for phylogenetic tree construction. The support values
were mostly near 100% on each branch, suggesting high
consensus (Fig. 2).

Gene family expansion
Among the 24,204 gene families, 108 showed distinct
expansion in both G. gigas and O. warwicki. Functional
enrichment analysis indicated that these expanded
gene families were particularly enriched in pathways of
dorso-ventral axis formation, amino-acid biosynthesis
and metabolism, and vascular smooth-muscle contrac-
tion (Additional file 3: Table S3). This pattern may be
related to the unique morphological developmental
and life pattern of barnacles, such as well-developed
presoma, vestigial abdomen and sessile habit of the
adult. Specifically, the major expanded gene family in-
volved broad-complex core protein (Br-C) in the
dorso-ventral axis formation pathway. Br-C is required
for puffing and transcription of salivary gland late
genes during metamorphosis, and is closely related to
larval development in insects [37]. In G. gigas and O.
warwicki, 42 and 36 Br-C genes, respectively, were de-
tected. Phylogenetic analysis suggested that these Br-C
genes had undergone lineage-specific expansion rather
than species-specific expansion, with their distribu-
tions nested on the phylogenetic tree (Additional file 7:
Fig. S1). Thus, it appears that these clusters of Br-C
genes became expanded in the ancestor of G. gigas and
O. warwicki and may have contributed to the adaptive
evolution of barnacles.
In G. gigas, 26 species-specific expanded gene fam-

ilies were identified (Additional file 4: Table S4).
These genes were mainly enriched in the pathways of
focal adhesion (ko04510), ECM-receptor interaction
(ko04512), PI3K-Akt signaling (ko04151), glycosami-
noglycan biosynthesis-chondroitin sulfate (ko00532),
hippo signaling (ko04391), and axon guidance
(ko04360) (Table 2). In our results, tenascin was one
of the major expanded gene families which are in-
volved in focal adhesion, ECM-receptor interaction,
and the PI3K-Akt signaling pathway. Phylogenetic
analysis suggested that tenascin genes in G. gigas
might have undergone expansion at least twice (Fig. 3).
Tenascins are multimeric glycoproteins in the

Table 1 Summary of unigene annotation

Glyptelasma gigas Octolasmis warwicki

Trinity assembly

Transcript number 107,419 94,245

Unigene number 62,470 51,585

Total length of unigenes 55,470,568 56,103,552

N50 length of unigenes 1708 2383

Mean length of unigenes 888 1088

Annotation

Nr 19,236 (30.79%) 15,958 (30.93%)

Nt 4110 (6.57%) 4794 (9.29%)

Swiss-Prot 14,000 (22.41%) 12,171 (23.59%)

KEGG Orthology 8413 (13.46%) 6535 (12.66%)

PFAM 19,410 (31.07%) 16,440 (31.86%)

GO 19,576 (31.33%) 16,511 (32.00%)

KOG 8544 (13.67%) 6995 (13.56%)

At least one database 25,672 (41.09%) 21,143 (40.98%)
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extracellular matrix (ECM) that play key functions in
neuronal development, signaling, cell regulation, and
axon growth and regeneration [38].
N-acetylgalactosamine-4-sulfate-6-O-sulfotransferase

(CHST15), protocadherin fat 4/16/23 (FAT4/16/23), and
plexin are three markedly expanded gene families involved
in glycosaminoglycan biosynthesis-chondroitin sulfate, the
hippo signaling pathway, and axon guidance, respectively.
Furthermore, functional annotation revealed that the
species-specific expanded gene families also contained X-
ray repair cross-complementing protein 4 (XRCC4), very
short patch repair (VSR) endonuclease, the nine-cysteines
domain of family 3 (NCD3), and trehalose phosphatase
(Table 3).

Positively selected genes
Genes under positive selection usually respond to natural
selection. To identify positively selected genes, we col-
lected 11,611 pairwise best-hit orthologs between G. gigas
and O. warwicki, and performed adaptive evolutionary
analyses on them. Our results identified 25 orthologs with
ω values > 1.0 (Additional file 5: Table S5) and 118 with ω
values > 0.5. These positively selected genes were mainly
enriched in the pathways of focal adhesion (ko04510), cya-
noamino acid metabolism (ko00460), and RNA transport
(ko03013) (Additional file 6: Table S6). Specifically, tran-
scription factor IIA and translation initiation factor eIF-2B
were the two positively selected genes involved in RNA
transport. Also identified as positively selected were genes

Fig. 1 GO (a) and KEGG (b) distributions of the unigenes of two barnacle species

Fig. 2 Maximum-likelihood phylogenetic tree based on the single-copy orthologs shared by the both barnacles as well as sequences of
Branchiopoda Daphnia pulex, copepod Eurytemora affinis, and Malacostraca Parhyale hawaniensis and Litopenaeus vannamei. The estimated
divergence times are displayed below the phylogenetic tree
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Table 2 KEGG pathway annotation of the specifically expanded gene families of Glyptelasma gigas
Pathway DEGs genes with pathway

annotation (75)
All genes with pathway
annotation (5147)

P value Q value Pathway ID

Focal adhesion 20 (26.67%) 196 (3.81%) 2.01E-12 1.17E-11 ko04510

ECM-receptor interaction 19 (25.33%) 79 (1.53%) 5.14E-19 1.80E-17 ko04512

PI3K-Akt signaling pathway 20 (26.67%) 194 (3.77%) 1.65E-12 1.16E-11 ko04151

Glycosaminoglycan biosynthesis-chondroitin sulfate 6 (8%) 26 (0.51%) 1.43E-06 6.25E-06 ko00532

Hippo signaling pathway 10 (13.33%) 109 (2.12%) 3.14E-06 1.10E-05 ko04391

Axon guidance 6 (8%) 95 (1.85%) 2.43E-03 6.56E-03 ko04360

Fig. 3 Phylogenetic tree of tenascin gene family. Bootstrap values (> 50%) are shown at branch nodes. ggi: Glyptelasma gigas, owa: Octolasmis
warwicki, Dpul: Daphnia pulex, Eaff: Eurytemora affinis, LVAN: Litopenaeus vannamei, phaw: Parhyale hawaniensis
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encoding excision repair cross-complementation group 4
(ERCC4), calcitonin receptor-like protein, anoctamin-8, G
protein-coupled receptor 125 (GPCR 125), discoidin do-
main receptor 2 (DDR2), WD domain, neurotransmitter-
gated ion-channel transmembrane domain, and galacto-
syltransferase (Table 4).

Differential gene expression between G. gigas and O.
warwicki
Generally, orthologous genes between two barnacle spe-
cies should show similar expression patterns, but there

may also be a subset of genes specifically highly expressed
in G. gigas that were responsible for deep-sea adaptation.
Thus, we calculated the relative expression levels (FPKM)
of these orthologs to identify the genes that were highly
expressed specifically in G. gigas and O. warwicki. As ex-
pected, the expression levels of these orthologs were gen-
erally similar between the two barnacle species. However,
480 genes in G. gigas and 791 genes in O. warwicki
showed significantly higher expression levels relatively
(Fig. 4). Functional enrichment analysis indicated that the
highly expressed genes in G. gigas were strongly enriched

Table 3 Expanded gene families related to KEGG pathway, DNA repair, signal transduction, carbohydrate metabolism in Glyptelasma
gigas
G.gigas O.warwicki E.affinis D.pulex P.hawaiensis L.vannamei P value Function annotation

focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling pathway

30 2 0 0 0 0 6.27E-23 Tenascin

hippo signaling pathway-fly

17 0 0 0 3 2 5.16E-18 Protocadherin fat 4/16/23

axon guidance pathway

7 1 0 0 1 1 7.53E-03 Plexin-B

DNA repair

28 8 1 0 1 0 1.40E-04 X-ray repair cross-complementing protein 4 (XRCC4)

20 1 0 0 0 0 2.91E-20 Very short patch repair (VSR) endonuclease

signal transduction

7 1 0 0 0 0 7.53E-03 Nine Cysteines Domain of family 3 (NCD3)

carbohydrate metabolism

12 4 0 0 0 0 4.33E-02 Trehalose phosphatase

Table 4 Positively selected genes related to KEGG pathway, DNA repair, signal transduction, energy metabolism in Glyptelasma gigas
Ortholog Glyptelasma gigas Octolasmis warwicki ω Function annotation

RNA transport pathway

OGB9454 ggi|DN22328_c1_
g1

owa|DN23857_c4_
g1

1.379 Transcription factor IIA

OGB5776 ggi|DN20749_c0_
g1

owa|DN20747_c0_
g1

1.225 Translation initiation factor eIF-2B subunit beta

DNA repair

OGB7222 ggi|DN23236_c0_
g1

owa|DN22044_c4_
g5

1.232 excision repair cross-complementation group 4 (ERCC4)

signal transduction

OGB264 ggi|DN12004_c0_
g2

owa|DN11255_c0_
g1

1.544 calcitonin receptor-like protein, family B

OGB1774 ggi|DN20047_c0_
g1

owa|DN15857_c0_
g1

1.350 anoctamin-8

OGB10477 ggi|DN15294_c0_
g1

owa|DN25773_c0_
g1

1.265 G protein-coupled receptor 125 (GPCR 125)

OGB2583 ggi|DN24294_c2_
g5

owa|DN17092_c0_
g1

1.211 WD domain, G-beta repeat

OGB11272 ggi|DN14199_c0_
g1

owa|DN657_c0_g1 1.210 neurotransmitter-gated ion-channel transmembrane
domain

energy metabolism

OGB10876 ggi|DN37033_c0_
g1

owa|DN33970_c0_
g1

1.641 galactosyltransferase

OGB5160 ggi|DN11355_c0_
g1

owa|DN20183_c0_
g1

1.220 Discoidin domain receptor 2 (DDR2)
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in the GO terms of binding, especially in metal ion bind-
ing (GO:0043167) and protein binding (GO:0005515), and
were also enriched in the pathways of galactose metabol-
ism (ko00052), glycosphingolipid biosynthesis (ko00601),
glycosaminoglycan biosynthesis (ko map00532), and
ubiquitin-mediated proteolysis (ko04120) (p < 0.01) (Add-
itional file 8: Fig. S2).

Discussion
Many potential mechanisms of adaptation to deep-sea en-
vironments have been identified. Lan et al. suggested that
the expansion of cold-inducible proteins as well as zinc
finger domains and positively selected genes related to β-
alanine biosynthesis, energy metabolism and genetic infor-
mation processing played important roles in adaptation to
the hadal environment in the amphipod Hirondellea gigas
[6]. Zhang et al. reported that the expression of the genes
associated with sulfur metabolism and detoxification were
upregulated in a deep-sea hydrothermal vent shrimp
Rimicaris sp. [8]. In contrast to those free-swimming spe-
cies in the deep sea, barnacles are confined to rather nar-
row zones, which would make adaptation to the deep-sea
environment more difficult. In the phylogenetic (Fig. 2),
G. gigas and O. warwicki formed a monophyletic clade
that was highly divergent from other crustaceans. The
time of divergence of the two barnacle species was esti-
mated to be about 63 million years ago, which is consist-
ent with the divergence of poecilasmatid barnacles [39,
40]. This divergence occurred after the Cretaceous–
Palaeogene mass extinction, which was followed by an ex-
plosive radiation of organisms [41]. And this time is nearly

contemporaneous with the early basement-forming stage
of Zhongjiannan Basin [35, 42], suggesting that G. gigas
was an invasive species in this basin. It has been proposed
that deep-water barnacles originated from shallow waters
[40, 43], and comparison with shallow-water barnacles
might help explain how deep-sea barnacles have adapted
to the harsh conditions on the deep-sea floor which char-
acterized by high hydrostatic pressure, darkness, hypoxia,
low temperature, and limited food availability.

Key KEGG pathways implicated in deep-sea adaptation
Our data indicate that focal-adhesion genes were specif-
ically expanded and positively selected in G. gigas
(Table 2, Additional file 6: Table S6), which suggests that
changes in adhesion may have been involved in the
adaption of G. gigas. For sessile organisms, adhesion is
an important process in settlement and survival. In cell
biology, focal adhesions are large macromolecular as-
semblies through which mechanical force and regulatory
signals are transmitted between the ECM and an inter-
acting cell. Focal adhesions lead cells to communicate
and adhere with their extracellular matrix, and play es-
sential roles in biological processes including cell motil-
ity, proliferation, differentiation, gene expression
regulation and signal transmission [44]. Other major
pathways with specifically expanded genes enriched in
G. gigas included ECM-receptor interaction, the PI3K-
Akt signaling pathway, glycosaminoglycan biosynthesis-
chondroitin sulfate, the hippo signaling pathway, and
axon guidance (Table 2). Functionally, ECM-receptor
interaction, the PI3K-Akt and hippo signaling pathways

Fig. 4 Differentially expressed genes in two barnacle species. The scarter plot in the left is the relative expression level of the orthologs between
two barnacle species. The green dots indicated the genes showed highly expression in O. warwicki, while the red dots indicated the genes that
highly expressed in Glyptelasma gigas. The right plot indicated the enriched GO terms of the highly expressed gene in Glyptelasma gigas
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are three key processes that participate in processing of
environmental information [45–47]. Axon guidance repre-
sents a key stage in the formation of neuronal networks
[48]. Glycosaminoglycan biosynthesis is engaged in glycan
metabolic pathways whose products are also mediators of
intercellular communication, cellular adhesion, and ECM
maintenance [49]. In the meanwhile, cyanoamino acid
metabolism and RNA transport were the other two path-
ways with positively selected genes enriched in G. gigas
(Additional file 6: Table S6), and they two have roles in
amino-acid metabolism and genetic information process-
ing, respectively [50, 51]. Based on these observations, we
speculate that G. gigas has developed an efficient and syn-
ergistic network for environmental perception (ECM-re-
ceptor interaction, PI3K-Akt signaling and hippo signaling
pathways), Signal transmission (focal adhesion and axon
guidance pathways) and physiological response (RNA
transport, cyanoamino acid metabolism and glycosamino-
glycan biosynthesis pathways). And this network finally re-
sults in functional and physiological adjustments that
assist G. gigas in surviving in the severe and complex
deep-sea environments. However, more research is
needed to confirm this proposed network.

Key genes implicated in deep-sea adaptation
Specific genes that were expanded or positively se-
lected in G. gigas could facilitate survival in the deep-
sea environment. High hydrostatic pressure, hypoxia
and low temperature, which characterize the deep-sea
floor, could cause DNA damage [52–55] and result in
mortality. XRCC4 is one of several break-repair and
V(D)J recombination proteins, which could repair
DNA double-strand breaks [56]; VSR is an essential
component of the very short patch mismatch repair
endonucleas, which specifically recognizes and ex-
hibits strand-specific nicking at T-G deoxyribonucleic
acid mismatches [57]; and DNA excision repair pro-
tein ERCC4 participates in nucleotide excision repair
and DNA recombination [58]. In our study, XRCC4
and VSR genes were significantly expanded in G.
gigas (Table 3), while ERCC4 gene was positively se-
lected (Table 4). All of these genetic processing genes
would ensure the structural integrity and normal
function of DNA, which might be damaged in the
deep-sea environment.
Low temperature and high hydrostatic pressure also

lead to the depression of ligand binding and ion channel
function in organisms [59–62], which would decrease
the efficiency of signal transduction. To counteract the
negative effects of low temperature and high hydrostatic
pressure on signal transduction, genes encoding ligands
and receptors were expanded or positively selected in G.
gigas. For example, the expanded NCD3 genes encode
the nine-cysteines domain of family 3 (Table 3), which is

a G protein-coupled receptor (GPCR). The calcitonin
receptor-like protein gene and GPCR 125 gene were also
positively selected (Table 4). GPCRs constitute a large
protein family with essential nodes in signal transduction
between the interior and exterior of cells. They bind
various ligands, including hormones, neurotransmitters,
ions, and other stimuli [63–65]. Genes related to ion
channel proteins were also positively selected, e.g., the
anoctamin-8 and neurotransmitter-gated ion-channel
transmembrane domain (Table 4). The former is a key
tether protein that helps Ca2+ across membrane trans-
port and assembles all core Ca2+-signaling proteins at
the endoplasmic reticulum and plasma membrane junc-
tions [66]; the latter is a key domain of ion channels that
allows ions, such as Na+, K+, Ca2+, and/or Cl− to pass
through the membrane when binding a neurotransmitter
[67]. Jointly, the expanded and positively selected of
genes concerned with ligand binding and ion channel
proteins would help G. gigas maintain signal transmis-
sion in the deep-sea environment.
Compared with shallow waters, food availability is

limited in the deep-sea, which may have encouraged
evolution of more efficient energy metabolism [6, 7].
Among the orthologous genes of the two barnacle
species, those related to carbohydrate metabolism
showed relatively higher expression in G. gigas than
in O. warwicki, including the genes from the path-
ways of galactose metabolism, glycosphingolipid bio-
synthesis, and glycosaminoglycan biosynthesis (Fig. 4,
Additional file 8: Fig. S2). Accordingly, our results
suggested that three key genes that participate in en-
ergy metabolic processes, including glycometabolism
and lipometabolism, were expanded or positively se-
lected. Trehalose is present in high concentration in
insect hemolymph and is consumed during flight [68].
And this sugar has been shown be involved in low-
temperature resistance in Escherichia coli [69].
Trehalose-phosphatase (Table 3) is used to hydrolyze
trehalose-6-phosphate which could be directly con-
verted to glucose and participate in glycolysis. We
speculate that trehalose represents a form of energy
storage in G. gigas, as in insects [70], but more evi-
dence is needed to confirm this conjecture. Galacto-
syltransferase (Table 4) is a key protein acting in the
biosynthesis of disaccharides, oligosaccharides and
polysaccharides [71]. DDR2 (Table 4) is a receptor
tyrosine kinase activated by collagens, it has diverse
functions in cell proliferation, adhesion, migration,
extracellular matrix remodeling and reproduction. Re-
markably, evidence suggests that it can promote lipid
metabolism, although the mechanism is unclear [72].
Corporately, the highly expressed genes, expanded
gene families and genes under positive selection in-
volved in energy metabolism may help G. gigas use
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energy efficiently in the harsh conditions of the deep-
sea floor.

Conclusions
The present study is the first to report the transcriptome
of a deep-sea barnacle that is compared with that of a
shallow-water coordinal species. Our data indicate that
G. gigas and O. warwicki diverged about 63 million years
ago, and that G. gigas was an invasive species of the
Zhongjiannan Basin. By specific gene-family expansion
and positive selection of key genes, the deep-sea bar-
nacle G. gigas probably evolved an efficient network con-
cerned with environmental perception and physiological
response, and acquired adaptive abilities in neural signal
transduction, genetic information processing, and energy
metabolism. All of these genetic strategies would facili-
tate confrontation of stress factors and survival in the se-
vere environment of the deep-sea floor. Nevertheless,
the present results are preliminary, and the evolutionary
mechanisms and precise functional roles of the amplified
genes and positively selected genes in genetic adaptation
to the deep-sea environment require further confirm-
ation and investigation. This work provides a genomic
resource and clues to the genetic adaptation of a deep-
sea barnacle that will be helpful for future studies on
deep-sea invertebrates.

Methods
Sample collection, RNA extraction and sequencing
Specimens of G. gigas were collected from the northern
area of Zhongjiannan Basin (15°19.17′N, 110°37.84′E,
depth ~ 731m) in May 2018, during a scientific cruise of
the manned submersible Shenhaiyongshi. Large numbers
of G. gigas attached to a limb of a gorgonian coral were
acquired (Fig. 5a, b, c). On board, the specimens were
immediately frozen in liquid nitrogen and stored at −
80 °C. Specimens of O. warwicki were collected from the
nearshore waters of Weizhou Island, South China Sea
(20°53.95′N, 109°0.61′E, depth ~ 3m), using a fishing
net from a fishing-boat in July 2018. Several specimens
of O. warwicki attached to the carapace of a crab (Fig. 5a,
d) were obtained. After collection, they were immedi-
ately immersed in RNAlater solution (Takara, Tokyo,
Japan) and stored at − 80 °C.
Three adult individuals randomly selected from each

species were pooled to provide sufficient RNA for tran-
scriptome sequencing, a total of six specimens were used
for the present research. TRIzol kit (Invitrogen, Carlsbad,
CA) was used to extract total RNA following the manufac-
turer’s instructions. RNA quality was examined by 1%
agarose gel electrophoresis, RNA purity was checked using
the NanoPhotometer® spectrophotometer (IMPLEN,
Westlake Village, CA), RNA concentration was measured

Fig. 5 Location of the sampling site and in situ photos of barnacles. a Location of the sampling site. b, c Glyptelasma gigas attached to the limb
of a gorgonian coral. d Octolasmis warwicki attached on the carapace of a crab. The base map (a) is created by ArcGIS 10 (ESRI, Redlands, CA).
Photographs b and c were taken by the sixth author XZL, and photograph d was taken by the third author XML, the map and pictures belong to
the authors
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using Qubit® RNA Assay Kit in Qubit® 2.0 Fluorimeter (Life
Technologies, Carlsbad, CA), and RNA integrity was
assessed using the RNA Nano 6000 Assay Kit of the Agilent
Bioanalyzer 2100 system (Agilent Technologies, Palo Alto,
CA). From each sample, 1.5 μg of RNA was prepared for
sequencing. Sequencing libraries were generated using the
NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB,
Ipswich, MA) following the manufacturer’s instructions
and sequenced on an Illumina® HiSeq platform (San Diego,
CA). Finally, paired-end reads with length 150 bp were gen-
erated. The raw transcriptomic data for G. gigas and O.
warwicki are deposited in NCBI SRA database with acces-
sion numbers SRR10523768 and SRR10527303,
respectively.

Transcriptome assembly and annotation
Clean reads were obtained by removal of reads with adaptors and
those of low quality from the raw reads (low-quality bases with
Qphred ≤5 were>50% in a read). De novo transcriptome assembly
was conducted with Trinity (v2.5.1) using default parameters [73]. The
longest transcript of each transcription group was regarded as a uni-
gene for the following analyses. The assembly unigenes of two species
were deposited on NCBI TSA database with the accession numbers
of GIJX00000000 and GIJW00000000. BUSCO (v1.22) was used to
check the quality of the assembly against the database of arthropoda_
odb9 [74]. All unigenes were annotated through blasting against public
databases, including NCBI non-redundant protein (Nr, E-value 1E-5),
Swiss-Prot (E-value 1E-5), and euKaryotic Ortholog Group (KOG, E-
value 1E-3) usingDIAMOND (v0.8.22) [75], and theNCBI nucleotide
database (Nt, E-value 1E-5) using BLAST (v2.2.28+) [76]. Kyoto
Encyclopedia of Genes and Genomes (KEGG) classification was per-
formed using the KEGG Automatic Annotation Server (KAAS) with
an E-value of 1E-10 [77]. Protein family (Pfam) alignments were car-
ried out using the HMMER (v3.0, http://hmmer.org/) with an E-value
of 1E-2, and the Gene Ontology (GO) classification was conducted
based on the results of Nr and Pfam using Blast2GO (v2.5) with an
E-value of 1E-6 [78]. BLASTx searches were performed for unigenes
against Nr database, and followed by conjoining fragmental alignments
using SOLAR [79]. Thus, a partial or full open reading frame (ORF)
of each unigene was obtained and translated into amino acid
sequences.

Gene family clustering and phylogenetic analysis
Genomic resources for adult barnacles are limited and,
therefore, to perform comparative transcriptomic and phylo-
genetic analyses, the full protein coding genes of four crusta-
ceans, Daphnia pulex (PRJNA12756), Eurytemora affinis
(PRJNA423276); Parhyale hawaiensis (PRJNA306836), and
Litopenaeus vannamei (http://www.shrimpbase.net/lva.
download.html) were obtained from NCBI and other data-
bases [80–83]. Pair-wise BLASTp alignment was performed
to align all-to-all with an E-value cutoff of 1E-07, and all
genes were clustered into gene families using OrthoMCL
v2.0.3 [84]. Then, single-copy genes of these species were

collected for phylogenetic analysis using maximum-
likelihood (ML) methods. Sequence alignment was per-
formed using MUSCLE 3.6 [85]. ML analysis was performed
on PhyML with the substitution model WAG + gamma +
Inv [86]. One thousand bootstrap replicates were conducted
to produce the branch support values. The divergence time
was estimated by Bayesian relaxed molecular clock ap-
proaches implemented in TIMETREE in MEGA v7.0 [87],
with the time calibrations according to the findings of Zhang
et al. and Yuan et al. [83, 88]. The expanded and contracted
gene families on each branch of the phylogenetic tree were
calculated by CAFE [89].

Identification of positively selected genes
Adaptive evolution was assessed by comparing the nonsy-
nonymous/synonymous substitution ratios (ω = dN/dS).
Orthologs of G. gigas and O. warwicki were collected by
pair-wise best-hit BLAST. Sequence alignment was per-
formed using MUSCLE, and all gaps were removed from
the alignment. The ω value of each ortholog was calcu-
lated using the program yn00 of PAML v4.48a [90]. Genes
with ω > 1.0 were considered fast evolving genes, and ω >
0.5 was considered potential positively selected genes.

Differential gene expression
Relative levels of gene expression were calculated by
mapping clean reads to the assembled unigenes using
RSEM [91]. The read counts were calculated using
uniquely mapped reads and normalized to the expected
number of fragments per kilobase of unigene sequence
per million (FKPM). Differential expression analysis was
performed on the orthologs of G. gigas and O. warwicki.
Genes with fold change values > 4 were considered to be
differentially expressed.

GO and KEGG enrichment analysis
GO and KEGG enrichment analysis was performed on
the expanded gene families, positively selected and dif-
ferentially expressed genes using Omicshare CloudTools
(http://www.omicshare.com/tools/?l=en-us). Enriched
GO terms and KEGG Orthology (KO) terms were calcu-
lated relative to the background of all unigenes.
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