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Compositional analysis of the associations
between 24-h movement behaviours and
cardio-metabolic risk factors in overweight
and obese adults with pre-diabetes from
the PREVIEW study: cross-sectional baseline
analysis
Nils Swindell1*, Paul Rees1, Mikael Fogelholm2, Mathijs Drummen3, Ian MacDonald4, J. Alfredo Martinez5,6,7,8,
Santiago Navas-Carretero5,6,7, Teodora Handjieva-Darlenska9, Nadka Boyadjieva9, Georgi Bogdanov9,
Sally D. Poppitt10, Nicholas Gant10, Marta P. Silvestre10, Jennie Brand-Miller11, Wolfgang Schlicht12,
Roslyn Muirhead11, Shannon Brodie11, Heikki Tikkanen13, Elli Jalo2, Margriet Westerterp-Plantenga3, Tanja Adam3,
Pia Siig Vestentoft14, Thomas M. Larsen14, Anne Raben14 and Gareth Stratton1

Abstract

Background: Physical activity, sedentary time and sleep have been shown to be associated with cardio-metabolic
health. However, these associations are typically studied in isolation or without accounting for the effect of all
movement behaviours and the constrained nature of data that comprise a finite whole such as a 24 h day. The aim
of this study was to examine the associations between the composition of daily movement behaviours (including
sleep, sedentary time (ST), light intensity physical activity (LIPA) and moderate-to-vigorous activity (MVPA)) and
cardio-metabolic health, in a cross-sectional analysis of adults with pre-diabetes. Further, we quantified the
predicted differences following reallocation of time between behaviours.

Methods: Accelerometers were used to quantify daily movement behaviours in 1462 adults from eight countries
with a body mass index (BMI) ≥25 kg·m− 2, impaired fasting glucose (IFG; 5.6–6.9 mmol·l− 1) and/or impaired glucose
tolerance (IGT; 7.8–11.0 mmol•l− 1 2 h following oral glucose tolerance test, OGTT). Compositional isotemporal
substitution was used to estimate the association of reallocating time between behaviours.
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Results: Replacing MVPA with any other behaviour around the mean composition was associated with a poorer
cardio-metabolic risk profile. Conversely, when MVPA was increased, the relationships with cardiometabolic risk
markers was favourable but with smaller predicted changes than when MVPA was replaced. Further, substituting ST
with LIPA predicted improvements in cardio-metabolic risk markers, most notably insulin and HOMA-IR.

Conclusions: This is the first study to use compositional analysis of the 24 h movement composition in adults with
overweight/obesity and pre-diabetes. These findings build on previous literature that suggest replacing ST with
LIPA may produce metabolic benefits that contribute to the prevention and management of type 2 diabetes.
Furthermore, the asymmetry in the predicted change in risk markers following the reallocation of time to/from
MVPA highlights the importance of maintaining existing levels of MVPA.

Trial registration: ClinicalTrials.gov (NCT01777893).

Keywords: Physical activity, Sedentary time, Compositional analysis, Pre-diabetes

Introduction
Higher levels of MVPA are associated with markers of
better cardio-metabolic health, lower incidence of type 2
diabetes and lower all-cause-mortality [1]. Although
physical activity research has typically focused on
MVPA, emerging evidence suggests that light intensity
physical activity (LIPA) is associated with better cardio-
metabolic health, lower incidence of type 2 diabetes and
all-cause mortality after adjusting for MVPA [2–4]. On
the other hand, sedentary time is adversely associated
with cardio-metabolic health [5, 6], incidence of type 2
diabetes, cardiovascular disease [7] and all-cause mortal-
ity [8] independent of MVPA. Additionally, there is
some evidence that both short and long sleep duration
are adversely associated with body mass index (BMI),
impaired glucose metabolism and blood pressure [9].
A limitation to previous literature is that associations

between health outcomes and time allocated to these be-
haviours have typically been studied in isolation with
only partial adjustment for time spent in other behav-
iours [10]. Because the duration of a day (24 h) is fixed,
the subcomponents of the day (in this case the behav-
ioural domains of sleep, ST, LIPA and MVPA) can be
considered as relative contributions to the whole. Time
spent in one behaviour necessarily displaces time spent
in, at least one of the remaining behavioural domains.
Consequently, the complete set of behavioural domains
are perfectly collinear and cannot be used in traditional
multivariate analyses [11, 12]. Such data, comprising of
mutually exclusive parts of a whole, are inherently com-
positional in nature and should be analysed with this in
mind [11, 12]. Isotemporal substitution models devel-
oped by Makery and colleagues [13] address the con-
strained nature of 24-h time use data. This approach
uses linear models to explore the theoretical effect of re-
allocating time between behaviours. However, these
models treat units of time as absolute measures and
therefore do not account for the relative nature of time-
use data. In contrast, compositional analysis recognises

the constrained nature of such data and uses log ratios
to express the composition in terms of ratios of its parts.
Conveying compositional data as log ratio coordinates
transforms them from the constrained simplex to the
unconstrained real space in which traditional multi vari-
ate statistics can be applied [12, 14, 15]. The shift to-
wards compositional analysis in physical activity
research was pioneered by Chastin et al. [11], Carson
et al. [16], and Dumuid et al. [4, 15] and allows the
examination of the combined effect of the activity com-
position on indicators of health. Furthermore, compos-
itional isotemporal substitution can estimate change in
health indicators following the reallocation of time be-
tween behaviours.
There is a growing body of evidence supporting the

use of compositional data analysis (CoDa) in studies of
cardiometabolic risk markers and obesity in both adults
[11, 17] and children [4, 16, 18]. In a sample of adults at
high risk of type 2 diabetes, Biddle and colleagues [19]
found that stepping time was associated with markers of
metabolic health relative to sleep, sitting and standing.
To our knowledge, no studies have used compositional
isotemporal substitution among behavioural domains
sleep, ST, LIPA and MVPA in adults with pre-diabetes.
Therefore, the aim of this study was to investigate the

reallocation of time between behaviours (sleep, ST, LIPA
and MVPA) and their associations with cardio-metabolic
risk markers using compositional isotemporal substitu-
tion in a large international sample of overweight and
obese adults with pre-diabetes.

Methods
Participants and setting
This study is a cross-sectional analysis of the baseline
data from the PREVention of diabetes through lifestyle
Intervention and population studies in Europe and
around the World (PREVIEW) study. PREVIEW is regis-
tered with ClinicalTrials.gov (NCT01777893) and a de-
tailed protocol has been published elsewhere [20].
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Briefly, the PREVIEW study is a large diabetes preven-
tion intervention conducted at eight study sites: Univer-
sity of Copenhagen (Denmark), University of Helsinki
(Finland), University of Maastricht (The Netherlands),
University of Nottingham (UK), University of Navarra
(Spain), Medical University of Sofia (Bulgaria), University
of Sydney (Australia) and the University of Auckland
(New Zealand).
A detailed description of the recruitment and screen-

ing process has been published previously [20]. Briefly,
participants were recruited using varied methods across
the 8 study sites which included newspaper, radio and
television advertisements and direct contact with pri-
mary and occupational health care providers. Interested
individuals were pre-screened for eligibility using the
Finnish Diabetes Risk Score [21] before attending a la-
boratory screening. Following the laboratory screening,
2326 participants met the inclusion criteria: age 25–70
years; BMI > 25 kg/m2; pre-diabetes confirmed at oral
glucose tolerance test (OGTT). Pre-diabetes was defined
in line with ADA criteria [22], as either (i) increased
fasting glucose (IFG), with venous plasma glucose con-
centration of 5.6–6.9 mmol·l− 1 and/or (ii) impaired glu-
cose tolerance (IGT), with venous plasma glucose
concentration of 7.8–11.0 mmol·l− 1 at 2 h and fasting
plasma glucose < 7.0 mmol·l− 1. All participants were free
of any illness and/or medication that had the potential
to affect the compliance or outcomes of the study. Of
the 2326 eligible participants, 1699 had 4 days and 3
nights of valid accelerometer data, 237 were identified
with acute inflammation (hs-CRP > 10mg·l− 1) and re-
moved. Finally, 1462 were included in the analysis.

Measurements and procedures
Data was collected at the baseline prior to any dietary
intervention or weight loss.

Physical activity, sedentary time and sleep
Participants wore an ActiSleep+ (ActiGraph LLC, Pensa-
cola, FL) accelerometer on the right hip for 24 h·day− 1

for 7 consecutive days prior to or preceding a clinical
examination. Data was collected using 60-s epochs and
non-wear was classified as 60-min of consecutive zeros
with the allowance of interruptions for up to 2 min [23].
After the removal of nocturnal sleep episodes [24], par-
ticipants providing at least 4 days, including at least 1
weekend day, of valid data (≥10 h·day− 1 of waking wear
time) were included in the analysis [25]. Sleep time was
determined using a fully-automated algorithm developed
for use with 24-h waist-worn accelerometer protocols in
children [24] and recently validated in adults [26].
Troiano cut points [23] were used to determine time
(minutes·day− 1) spent in sedentary, light and moderate-
to-vigorous physical activity (MVPA).

Body mass, stature and waist circumference (WC)
were measured according to techniques outlined by Loh-
man et al. [27]. Systolic and diastolic blood pressure
were measured to the nearest 1 mmHg using a validated
automatic device on the right arm after resting for 5–10
min. Measurements were performed 3 times with a 1-
min rest between recordings and the mean value was
recorded.
Blood was drawn from the vein in the antecubital fossa

after fasting (> 10 h). Blood samples were stored locally at
-80 °C, before shipping to the National Institution for
Health and Welfare in Helsinki, Finland where they were
analysed for glucose, insulin, HbA1c, high sensitivity C-
reactive protein (hs-CRP), total cholesterol, triglycerides
and HDL-cholesterol (HDL-C) concentrations. Insulin re-
sistance was calculated using the homeostasis model as-
sessment for insulin resistance (HOMA-IR), using the
equation: HOMA-IR = Fasting insulin (mU·l− 1) x Fasting
glucose (mmol·l− 1) / 22.5. HOMA-IR has been validated
against the gold standard hyperinsulinemic-euglycemic
clamp technique [28]. LDL-cholesterol (LDL-C) was cal-
culated using Friedewald’s formula [29]. Body fat % was
assessed by dual energy X-ray absorptiometry (DXA), bio-
electrical impedance (BIA) or Bodpod (details listed in
Supplementary Material). Socio-economic variables, in-
cluding ethnicity, educational status, household income
were assessed with self-administered questionnaires [30].

Statistical analysis
Descriptive statistics (mean ± SD) were calculated for
continuous variables and frequencies (%) for categorical
variables. Analysis was performed in R (http://cran.r-
project.org) using the compositions package (van den
Boogaart and Tolosana-Delgado 2008). As an alternative
to the arithmetic mean, the compositional mean was
computed by, firstly, calculating the geometric mean for
each behaviour separately (Sleep, ST, LPA and MVPA)
and then normalizing the data to the same constant, in
this case 1, to represent proportions of a whole i.e. 24 h
[14]. The dispersion of compositional data was estimated
using the variation matrix of logs of all possible pair-
wise ratios between behaviours [12, 14]. A value close to
zero implies that the two parts in the ratio are highly
proportional (co-dependent) [14]. All accelerometer var-
iables (sleep, ST, LIPA and MVPA) were expressed as
three isometric log-ratio co-ordinates [12, 14].
The isometric log-ratio co-ordinates were used as ex-

planatory variables in linear mixed-effects models to in-
vestigate the relationship between the activity behaviour
composition and each cardio-metabolic risk factor. Intra
class correlation coefficients of > 0.05 indicated that the
data was clustered by country and ethnicity. Subse-
quently, linear mixed models were used to account for
the effect of country and ethnicity on the outcome

Swindell et al. International Journal of Behavioral Nutrition and Physical Activity           (2020) 17:29 Page 3 of 12

http://cran.r-project.org
http://cran.r-project.org


variables. Models were fitted using restricted maximum
likelihood methods using the R package lme4 [31]. Like-
lihood ratio tests were used to determine the signifi-
cance of random effects within the model while
significant p-values for fixed effects were derived using
Satterthwait approximations for degrees of freedom [32].
Sociodemographic variables, age, sex, ethnicity, smoking
status, intervention centre, education level, household
income and status of antihypertensive and lipid lowering
medications were included in the model as covariates
(all covariates described in Supplementary Material).
Intervention site and ethnicity were included as random
effects. The dependant variables were HOMA-IR, insu-
lin, FPG, 2 h glucose, HbA1c, WC, triglycerides, total
cholesterol, HDL-C, LDL-C and hs-CRP.
The isometric log-ratio multiple linear mixed models

were used to predict cardio-metabolic health measures
for the mean daily movement behaviour composition.
Predicted values of each cardio-metabolic marker were
then calculated for new compositions where fixed dura-
tions of time had been reallocated from one movement
behaviour to another while the remaining behaviours
were kept constant [18]. The new predicted values were
then subtracted from the mean composition to find the
difference in cardio-metabolic marker after the realloca-
tion of time between behaviours [18]. Furthermore, a
sensitivity analyses was performed to assess whether as-
sociations with cardio-metabolic markers differed be-
tween long and short sleepers using a median split.
All regression models were checked for linearity, nor-

mality, homoscedasticity and outlying observations to
ensure assumptions were not violated. Due to their posi-
tively skewed distribution, triglycerides, insulin and
HOMA-IR were square root transformed while hs-CRP
was logarithmically transformed (log10).
Two-sample Kolmogorov-Smirnov tests were per-

formed between the predicted value of the dependant
variable before and after the reallocation of time be-
tween behaviours. Therefore, repeated tests following
the sequential reallocation of 1 min between behaviours
indicated how much time needed to be reallocated be-
fore a significant difference was detected.

Results
Of the 2326 eligible participants, 1699 met the acceler-
ometer wear time criteria, 237 had acute inflammation

(hs-CRP > 10mg·l− 1) and were excluded. Finally, 1462
were included in the analysis. Included participants were
significantly older (p < 0.001), had lower BMI (p < 0.001),
WC (p = 0.017) and body fat % (p = 0.005) than the ex-
cluded participants. Furthermore, a greater proportion
of men achieved sufficient wear time than women (79.4
and 74.4% respectively, p = 0.009). Mean age was 52.3y
and 66% were female. Mean BMI, insulin, glucose and
HbA1c were 34.9 kg·m2, 13.3 ± 7.8 mU·l− 1, 6.2 ± 0.7
mmol·l− 1 and 5.5 ± 0.4% respectively. Descriptive charac-
teristics are presented in full in Supplementary Table 1.
The proportion of time spent in each behaviour de-

rived through standards and compositional statistics are
presented in Table 1. The compositional mean repre-
sents each behaviour as a relative proportion of the
whole. The compositional mean adjusted to 24 h pro-
vides the mean value of the composition in minutes,
maintaining the ratio between parts.
The variation of all pairwise log ratios displays the

relative dispersion structure (Supplementary Table 2).
The highest log-ratio variances all include MVPA which
shows that MVPA is the least dependent on the other
behaviours. The small log-ratio variances between sed-
entary time, sleep and LIPA indicate more consistent
proportionality (co-dependency) between these
behaviours.
The combined effect of the movement behaviours was

significantly associated with BMI, body fat %, WC, tri-
glycerides, insulin, HOMA-IR and hs-CRP (Table 2).
Compositional isotemporal substitution was carried out
for all outcome variables that were associated with the
activity composition at an alpha of 0.05. Table 3 shows
the predicted change in cardio-metabolic risk markers
around its mean, following a 10-min reallocation of time
from the behaviour in the column to the behaviour in
the row while holding other behaviours constant. The
greatest predicted increase in markers of obesity (BMI,
WC and body fat %), were observed when MVPA was
replaced by ST, however, the magnitude of change when
MVPA was replaced by ST, sleep or LIPA were compar-
able. Similarly, the greatest predicted reductions in all
markers of obesity were observed when MVPA was in-
creased at the expense of ST, though, increasing MVPA
predicted favourable levels of risk markers regardless of
which behaviour was displaced. Reallocating 10min
from any behaviour to ST was associated with an

Table 1 Arithmetic and compositional mean of movement behaviours from 1699 adults with pre-diabetes

Sleep ST LIPA MVPA

Arithmetic mean (SD) minutes 475.5 (73.2) 586.6 (87.0) 310.4(81.1) 28.7 (20.4)

Compositional mean 0.343 0.423 0.219 0.016

Compositional mean minutes adjusted to 24 h 493.3 609.3 314.9 22.5

ST sedentary time; LIPA light intensity physical activity; MVPA moderate-to-vigorous physical activity
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increase in all obesity markers with the greatest pre-
dicted change observed when ST replaced MVPA. Re-
allocating 10 min to sleep predicted a small reduction in
obesity markers when displacing ST but not when dis-
placing LIPA or MVPA. A small reduction in predicted
level of all markers of obesity was also apparent when
LIPA displaced ST but not when LIPA displaced sleep.
Light intensity activity was beneficially associated with

insulin and HOMA-IR, when replacing ST and sleep but
not MVPA. For all outcome variables, the magnitude of
predicted improvements was greater when sleep and ST
were replaced by MVPA.
Although sleep was not associated with any markers of

cardio-metabolic health, the predicted detriment of re-
ducing MVPA and LIPA on triglycerides, hs-CRP and
markers of obesity were reduced if sleep was increased
instead of ST. Indeed, sleep was beneficially associated
with BMI and WC but only when replacing ST.
Sensitivity analysis revealed that the patterns of as-

sociation differed between long and short sleepers
(Supplementary Tables 4, 5, 6 and 7). For long
sleepers, the combined effect of the movement behav-
iours was significantly associated with BMI, body fat
%, WC, triglycerides, insulin and HOMA-IR while for
short sleepers it was only associated with BMI, body
fat %, and WC.

Compositional isotemporal substitution revealed that
for short sleepers, replacing ST with sleep predicted
favourable levels of BMI. Conversely, replacing sleep
with LIPA predicted favourable BMI levels for long
sleepers but not short sleepers. Similarly, for long
sleepers but not short sleepers replacing sleep or ST
with LIPA predicted beneficial levels of HOMA-IR (Sup-
plementary Tables 6 and 7).
The predicted change in risk markers following the re-

allocation of time from one behaviour to another was
non-symmetrical. For example, reallocating 10 min from
ST to MVPA was associated with 2.5% reduction in hs-
CRP. Conversely, replacing 10 min of MVPA with ST
was associated with a 4.1% increase in hs-CRP. This
asymmetry was consistent for all metabolic outcomes
and is clearly presented in Fig. 1.
Results from the Kolmogorov-Smirnov tests (Table 4)

showed that the reallocation of 4-min from ST to MVPA
produced a significant difference in the distribution of
predicted BMI and WC, while 8-min was required to
significantly reduce body fat %. Except for insulin and
HOMA-IR, all markers of cardio-metabolic health that
were significantly associated with the daily time use
composition were significantly changed with the reallo-
cation of < 10 min to/from MVPA and ST. When LIPA
was increased at the expense of ST, a greater realloca-
tion of time was required to produce a significant differ-
ence in the distribution of all outcome variables
(Supplementary Table 3). The reallocation of 35 min led
to a significant difference in HOMA-IR, ≥45 min for
BMI while ≥70min was needed to significantly reduce
predicted triglycerides and hs-CRP.

Discussion
This study showed that in overweight and obese adults
with pre-diabetes the daily time use composition of
sleep, ST, LIPA and MVPA was significantly associated
with BMI, body fat %, WC, triglycerides, insulin,
HOMA-IR and hs-CRP. Compositional isotemporal sub-
stitution models consistently showed MVPA to be the
most important behaviour within the composition that
was beneficially associated with cardio-metabolic health
markers. The greatest predicted improvements were ob-
served when MVPA was increased by 10min at the ex-
pense of ST. Indeed, when the data were modelled,
reducing ST or increasing MVPA was associated with
favourable change in cardio-metabolic health markers ir-
respective of the behaviour being exchanged. These find-
ings are consistent with similar studies using
compositional isotemporal substitution in healthy adults
[11], older adults [33] older women [17] and adolescents
[16] and supports public health guidelines that recom-
mend spending time in MVPA and minimizing pro-
longed sitting [34]. Our results also demonstrated that

Table 2 Analysis of variance for the contribution of the 24 h
time use composition to the explanation of variance in each
cardio-metabolic risk factor

Dependant variable Sum sq. df Den df F-value p-value

BMI 689.65 3 1243.6 13.17 < 0.001

Waist 6052.80 3 1260.5 18.20 < 0.001

Body fat % 1514.1 3 1255.2 20.23 < 0.001

Triglycerides sqrt 0.35 3 1258.1 2.63 0.048

Glucose fasting 0.35 3 1302.1 0.39 0.757

Glucose 2 h 18.442 3 1285.8 1.63 0.181

Insulin sqrt 9.115 3 1247.8 6.55 < 0.001

HOMA-IR sqrt 2.48 3 1222.3 5.50 < 0.001

HDL-C 0.29 3 1268.7 1.75 0.155

LDL-C 5.03 3 1252.9 2.28 0.085

Total cholesterol 5.21 3 1271.7 2.23 0.083

hs-CRP Log10 1.21 3 1252.4 3.95 0.008

HbA1c 0.13 3 1245.3 0.57 0.636

Systolic BP 220.4 3 1276.4 0.41 0.746

Diastolic BP 184.26 3 1264.7 0.84 0.470

All models were adjusted for: age, sex, income, education, medication status
ethnicity* and site *. All models that did not contain BMI or fat% as the Dv
were additionally adjusted for BMI. * = random effects
BMI body mass index, BP blood pressure, HbA1c haemoglobin A1c, HOMA-IR
homeostatic model assessment of insulin resistance, HDL-C high density
lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol, CRP C-
reactive protein, Den df Denominator degrees of freedom
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replacing 10-min of ST with LIPA, although less pro-
nounced than MVPA, predicted significant differences in
BMI, WC, body fat%, insulin and HOMA-IR. Further-
more, the magnitude of difference when replacing
MVPA with ST was greater than with LIPA suggesting
that LIPA may provide some health benefits. LIPA con-
tributes substantially to daily energy expenditure [35]

and in combination with sedentary time occupied the
majority of waking hours. Increasing LIPA may be a
pragmatic approach to breaking up ST and improving
cardio-metabolic health in populations who have low
levels MVPA.
Despite the statistically significant change in pre-

dicted risk markers after substituting 10-min from ST

Table 3 Predicted change in each outcome following the reallocation of 10-min from the behaviour in the column to the
behaviour in the row

Sleep 95% CI ST 95% CI LIPA 95% CI MVPA 95% CI

BMI

Sleep −0.16* (− 0.26 to − 0.06) −0.05 (− 0.16 to 0.06) 1.17* (0.67 to 1.68)

ST 0.16* (0.05 to 0.26) 0.11* (0.01 to 0.21) 1.13* (0.87 to 1.82)

LIPA 0.05 (−0.06 to 0.16) −0.11* (− 0.20 to − 0.01) 1.22* (0.70 to 1.74)

MVPA −0.73* (−1.06 to − 0.4) −0.89* (− 1.21 to − 0.57) −0.78* (− 1.13 to − 0.43)

Waist

Sleep −0.10* (− 0.18 to − 0.02) −0.02 (− 0.1 to 0.07) 1.28* (0.88 to 1.68)

ST 0.10* (0.02 to 0.18) 0.08* (0.01 to 0.16) 1.38* (0.99 to 1.77)

LIPA 0.02 (−0.07 to 0.10) −0.09* (− 0.16 to − 0.01) 1.29* (0.88 to 1.71)

MVPA −0.81* (−1.07 to − 0.55) −0.91* (− 1.16 to − 0.66) −0.82* (− 1.1 to − 0.55)

Fat%

Sleep −0.08 (− 0.17 to 0.01) 0.06 (− 0.03 to 0.16) 1.30* (0.88 to 1.71)

ST 0.08 (−0.01 to 0.17) 0.14* (0.06 to 0.23) 1.38* (0.97 to 1.78)

LIPA −0.06 (−0.15 to 0.03) −0.14* (− 0.22 to − 0.06) 1.23* (0.81 to 1.66)

MVPA −0.83* (−1.1 to − 0.56) −0.91* (−1.17 to − 0.65) −0.76* (− 1.05 to − 0.48)
sqrt Insulin

Sleep 0.02 (−0.16 to 0.19) 0.29* (0.10 to 0.48) 0.96* (0.1 to 1.83)

ST −0.02 (− 0.2 to 0.16) 0.28* (0.11 to 0.44) 0.95* (0.1 to 1.79)

LIPA −0.29* (− 0.48 to − 0.1) −0.27* (− 0.44 to − 0.1) 0.68 (−0.22 to 1.57)

MVPA −0.65* (−1.21 to − 0.09) −0.63* (− 1.18 to − 0.08) −0.35 (− 0.95 to 0.24)
sqrt HOMA-IR

Sleep 0.04 (−0.16 to 0.23) 0.28* (0.07 to 0.49) 0.78 (−0.17 to 1.73)

ST 0.04 (−0.16 to 0.23) 0.32* (0.14 to 0.51) 0.82 (−0.11 to 1.76)

LIPA −0.28* (−0.48 to − 0.07) −0.32* (− 0.5 to − 0.13) 0.51 (−0.47 to 1.49)

MVPA −0.52 (−1.14 to 0.1) −0.56 (− 1.16 to 0.04) − 0.24 (− 0.89 to 0.41)
sqrt Triglycerides

Sleep −0.06 (− 0.22 to 0.090) 0.01 (− 0.16 to 0.170) 0.90* (0.15 to 1.650)

ST 0.06 (−0.1 to 0.220) 0.07 (−0.08 to 0.220) 0.97* (0.23 to 1.70)

LIPA 0.01 (−0.17 to 0.160) −0.07 (− 0.22 to 0.080) 0.90* (0.12 to 1.670)

MVPA −0.57* (−1.06 to − 0.08) −0.64* (−1.11 to − 0.170) −0.57* (− 1.08 to − 0.050)
Log10 hs-CRP

Sleep −0.17 (− 0.75 to 0.41) 0.25 (− 0.37 to 0.86) 3.93* (1.19 to 6.68)

ST 0.17 (−0.42 to 0.75) 0.41 (−0.13 to 0.96) 4.10* (1.42 to 6.78)

LIPA −0.24 (−0.85 to 0.37) − 0.41 (− 0.95 to 0.13) 3.69* (0.85 to 6.53)

MVPA −2.53* (−4.33 to −0.74) − 2.7* (− 4.43 to − 0.98) −2.28* (−4.18 to − 0.39)

Values represent % change around the mean
ST sedentary time, LIPA light intensity physical activity, MVPA moderate-to-vigorous physical activity, BMI body mass index, HOMA-IR homeostasis model
assessment for insulin resistance, hs-CRP high sensitivity C-reactive protein, * indicates statistical significant change in risk marker
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Fig. 1 (See legend on next page.)
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to LIPA or sleep, the magnitude of this change was
minimal when BMI, body fat%, triglycerides and hs-
CRP are the outcome variables and there is little dif-
ference between sleep and LIPA (Fig. 1). However, for
HOMA-IR replacing ST with LIPA offers a significant
improvement compared to sleep, suggesting that LIPA
may offer benefits for glycaemic control.
In a recent review, LIPA was shown to be

favourably associated with WC, triglyceride, insulin
and the presence of metabolic syndrome after con-
trolling for MVPA [36]. However, the studies did not
use CoDa. Therefore, the co-dependence of time-use
domains was not accounted for and the effects of
LIPA were not independent of the confounding ef-
fects of sleep and ST. The few studies that have used

CoDA to assess the combined effects of time spent in
sleep, ST, LIPA and MVPA on health markers show
inconsistent results. In a study of older adults, Pel-
clová and colleagues [17] reported that the time use
composition was significantly associated with obesity
markers. However, reallocating 30 min of ST to LIPA
did not significantly reduce body fat percent or BMI.
Similarly, in a study of older Australian adults, the re-
allocation of time from ST to LIPA showed no sig-
nificant associations with BMI or waist to hip ratio
[33]. The lack of effect found in these studies may
have been due to their small sample size resulting in
the lack of statistical power. Furthermore, neither of
these studies tested diabetes risk variables such as
fasting insulin or HOMA-IR. In contrast, Chastin and

(See figure on previous page.)
Fig. 1 Asymmetry of predicted change in outcome variables with the reallocation of time to and from sedentary time. Figure 1-a shows the
predicted change in BMI, with the reallocation of time to/from ST. As MVPA increases at the expense of ST, predicted BMI steadily declines.
Conversely, as MVPA is displaced by ST, predicted BMI rises exponentially. Figures 1-a shows that relative to MVPA, displacing ST with sleep or
LIPA is associated with only marginal change in BMI. However, figure 1-b suggests that displacing ST with LIPA represents a favourable
alternative to ST or sleep. ST sedentary time, LIPA light intensity physical activity, MVPA moderate-to-vigorous physical activity, BMI body mass
index, HOMA-IR homeostasis model assessment for insulin resistance, hs-CRP, high sensitivity C-reactive protein

Table 4 Comparison of the sample distribution of each DV and predicted values following the reallocation of time from ST to MVPA

Minutes
reallocated

BMI Waist Body fat Insulin HOMA-IR 2 h Glucose Triglycerides HDL-C hs-CRP

D P D P D P D P D P D P D P D P D P

1 0.021 0.871 0.022 0.847 0.013 0.995 0.009 1 0.008 1 0.011 1 0.017 0.981 0.008 1 0.012 0.999

2 0.034 0.343 0.031 0.443 0.023 0.821 0.013 0.995 0.012 0.998 0.016 0.987 0.027 0.615 0.011 1 0.018 0.961

3 0.044 0.108 0.044 0.099 0.027 0.646 0.017 0.981 0.017 0.972 0.021 0.871 0.037 0.241 0.012 0.999 0.024 0.765

4 0.056 0.016 0.054 0.023 0.032 0.416 0.020 0.914 0.021 0.893 0.027 0.645 0.047 0.063 0.014 0.998 0.028 0.585

5 0.065 0.003 0.064 0.004 0.038 0.224 0.023 0.793 0.024 0.765 0.029 0.526 0.053 0.025 0.017 0.981 0.034 0.321

6 0.076 0.001 0.073 0.001 0.042 0.140 0.025 0.706 0.027 0.615 0.033 0.366 0.061 0.006 0.018 0.961 0.040 0.178

7 0.047 0.063 0.028 0.585 0.030 0.497 0.036 0.260 0.068 0.002 0.018 0.961 0.042 0.128

8 0.052 0.031 0.029 0.526 0.032 0.416 0.039 0.192 0.020 0.914 0.047 0.063

9 0.055 0.018 0.032 0.416 0.034 0.343 0.042 0.128 0.021 0.871 0.052 0.031

10 0.059 0.009 0.034 0.343 0.036 0.279 0.046 0.083 0.023 0.793 0.055 0.018

11 0.035 0.299 0.037 0.241 0.048 0.057 0.026 0.676 0.059 0.009

12 0.037 0.241 0.040 0.178 0.052 0.031 0.029 0.555

13 0.038 0.208 0.041 0.151 0.055 0.018 0.031 0.442

14 0.040 0.164 0.043 0.118 0.058 0.010 0.032 0.416

15 0.042 0.139 0.046 0.083 0.034 0.343

16 0.044 0.099 0.048 0.057 0.034 0.321

17 0.046 0.083 0.050 0.052 0.035 0.299

18 0.047 0.063 0.053 0.025 0.036 0.279

19 0.049 0.052 0.055 0.018 0.037 0.241

20 0.049 0.047 0.038 0.208

Two sample Kolmogorov-Smirnov test comparing the sample distribution between predicted value of each dependant variable and the predicted value with the
sequential reallocation of 1 min from ST to MVPA
ST sedentary time, MVPA moderate-to-vigorous physical activity, BMI body mass index, HOMA-IR homeostasis model assessment for insulin resistance, HDL-C high
density lipoprotein cholesterol, hs-CRP high sensitivity C-reactive protein
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colleagues [11] found that LIPA was favourably asso-
ciated with LDL-C, triglycerides, fasting glucose, insu-
lin and HOMA, which became more pronounced
when LIPA replaced ST as opposed to sleep. More-
over, interventions have shown that replacing ST with
light ambulatory activity or postural changes such as
standing can improve glycaemic control to a greater
extent than structured exercise of the same energy
cost albeit not in those with diagnosed pre-diabetes
[37]. In a randomised control trial of people who
were overweight/obese and sedentary, Houmard et al.
[38] showed that physical activity improved insulin
sensitivity at all intensities and volumes compared to
controls. However, exercise duration had the greatest
effect on insulin sensitivity regardless of intensity or
volume. Similarly, Duvivier and colleagues [39] dem-
onstrated that in sedentary subjects, minimal intensity
physical activity such as standing or light walking
maintained for a longer duration were associated with
improved insulin sensitivity and plasma lipids to
greater extent than shorter periods of MVPA of com-
parable energy cost. Thus, it appears that replacing
ST with LIPA could offer a pragmatic approach to
promote glycaemic control in adults with pre-diabetes
and the results of this study confirm these findings.
The observed estimates for the reallocation of time

around the average composition were asymmetrical. Pre-
vious studies using compositional isotemporal substitu-
tion in healthy adults [11], and those at risk of type 2
diabetes [19] have reported asymmetrical estimates. This
has in part been attributed to the relative contribution of
each activity behaviour to the daily composition (24 h).
For example, a 10-min reallocation represents a substan-
tially larger relative change in MVPA than it does in ST
or sleep [4, 11, 18]. This asymmetry demonstrates that
reducing activity levels below the mean had a greater
predicted detriment to cardiometabolic risk than the
predicted benefit following an equivalent increase above
the mean.
These findings suggest that besides the promotion

of MVPA, maintaining existing levels of MVPA is of
great importance. This may be particularly pertinent
in those with pre-diabetes given the progressive na-
ture of type 2 diabetes particularly in adults above
the age of 40 years, when activity levels typically de-
cline [23].
The different patterns of association observed between

long and short sleepers suggests a greater influence of
the LIPA and MVPA on BMI and HOMA-IR among
long sleepers. Similar findings were reported by Biddle
et al. [19] who found a significant association between
stepping and insulin sensitivity in long but not short
sleepers. Further research is required to assess the pat-
terns of association between sleep time and

cardiometabolic health in the context of the daily time
use composition.
Due to the large sample size and narrow confidence

intervals, small reallocations of time that produced
relatively modest magnitudes of change in the out-
come variable were deemed significant. To prevent
over reliance on these confidence intervals to infer
significance, Kolmogorov-Smirnov tests were used to
estimate how much time needed to be reallocated be-
fore the distributions were significantly different. The
reallocation of 4-min from ST to MVPA produced a
significant difference in the distribution of predicted
BMI and WC, while 8-min was required to signifi-
cantly reduce body fat %. Except for insulin and
HOMA-IR, all markers of cardio-metabolic health
that were significantly associated with the daily time
use composition were significantly changed with the
reallocation of < 10 min to/from MVPA and ST. PA
guidelines recommend accumulating ≥150 min MVPA
per week in bouts lasting ≥10miutes [40]. However,
several studies demonstrating a reduced risk of all-
cause-mortality related to total PA volume accumu-
lated irrespective of bout length [41, 42] have lead
the requisite for ≥10 min bouts being retracted [43].
In agreement with this premise, the current analysis
demonstrated that the reallocation of between 4 and
9 min from ST to MVPA produced a significant
change in the distribution of BMI, WC, body fat%,
triglycerides, LDL-C and hs-CRP. However, to pro-
duce a significant change in insulin and HOMA-IR it
was predicted that the reallocation of ≥19 min was re-
quired (Supplementary Table 3). This concurs with
intervention studies which have shown duration to be
an important factor in improving insulin sensitivity
[37, 38]. When LIPA was increased at the expense of
ST, a greater reallocation of time was required to
produce a significant difference in the distribution of
all outcome variables (Supplementary Table 3S).
Interestingly, the minimum time reallocation required
to produce a significant difference was observed for
diabetes risk markers. For example, replacing 35-min
of ST with LIPA produced a significant change in
predicted HOMA-IR.
Strengths of this study include the large multi-

national sample using standardised measurements
across 8-study sites. The inclusion of a 24-h acceler-
ometer wear time protocol providing objective esti-
mates of each component of the time use
composition. Furthermore, we used CoDa which ac-
counts for the collinear nature of compositional data.
To our knowledge, this is the first study to use CoDa
to explore associations between 24-h time use data
and cardio-metabolic risk factors in adults with pre-
diabetes.
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The study also has several limitations, while acceler-
ometers offer more robust assessments of physical activ-
ity than self-report [44], hip worn accelerometers may
not detect some types of activity such as cycling, or
water-based activities when the device is removed. Fur-
thermore, they do not distinguish between postural
changes such as lying, sitting and standing still. In the
current study Troiano cut-points were used [23], there
are no widely accepted accelerometer cut-points for
adults with overweight or obesity. Given that the meta-
bolic cost of walking increases with body weight, the
relative exercise intensity in this cohort is likely to be
higher compared to a healthy population. Consequently,
it is possible that MVPA may have been underestimated
due to these cut-points being determined in adults of
healthy weight.
It is also important to emphasize that the cross-

sectional design does not allow insight into the direc-
tion of causality. Reducing physical activity and in-
creasing sedentary time may lead to elevations in
cardiometabolic risk factors. However, the reverse is
also plausible. For example, being overweight/obese
may make physical activity more difficult. Therefore,
studies of high-risk populations are particularly sus-
ceptible to reverse causality.
Predictions from the linear models do not represent

change in cardio-metabolic risk markers following iso-
temporal changes in the time use composition. Instead,
levels of cardio-metabolic risk markers are predicted for
a given daily time use composition. Data lost due to
non-compliance with the accelerometer wear time
protocol was relatively high (see Supplementary Mater-
ial), this selection bias may limit the generalizability of
our findings.
Finally, although analyses were controlled for socio-

demographic confounders there might have been some
residual confounding from unmeasured variables such as
dietary factors.

Conclusions
In an international sample of adults with pre-diabetes,
the daily composition of sleep, ST, LPA, and MVPA
were collectively associated with diabetes risk. Our
analysis found that replacing MVPA with any other
behaviour around the mean movement composition
predicted a greater cardio-metabolic risk. Conversely,
increasing MVPA at the expense of sleep, ST or LPA,
predicted beneficial levels cardio-metabolic risk but
the magnitude of the differences was smaller. Further
replacing ST with LIPA was also associated with
beneficial levels of cardio-metabolic risk markers,
most notably insulin and HOMA-IR. Sleep was bene-
ficially associated with all markers of obesity and hs-

CRP but only when replacing ST. These findings pro-
vide further evidence for the role of MVPA in the
prevention of type 2 diabetes but also suggest the
public health message should emphasize the import-
ance of maintaining existing levels of MVPA (ie keep
moving, not necessarily moving more). Our analysis
also suggests that, replacing ST with LIPA was associ-
ated with beneficial levels of cardio-metabolic risk
markers, most notably insulin and HOMA-IR.
These findings have important clinical and public

health implications, as they indicate that replacing ST
with LIPA may produce metabolic benefits that could
contribute to the prevention and management of type 2
diabetes. Increasing LIPA may also be more achievable
in individuals who are obese or overweight than increas-
ing MVPA. While MVPA confers greater health benefits,
for individuals who are unable or unwilling to engage in
MVPA, increasing LIPA may represent a pragmatic way
to improve diabetes risk.
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