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Abstract

Renewable biomass such as cellulose and chitin are the most abundant sustainable sources of energy and materials.
However, due to the low degradation efficiency of these recalcitrant substrates by conventional hydrolases, these bio-
mass resources cannot be utilized efficiently. In 2010, the discovery of lytic polysaccharide monooxygenases (LPMOs)
led to a major breakthrough. Currently, LPMOs are distributed in 7 families in CAZy database, including AA9-11 and
AA13-16, with different species origins, substrate specificity and oxidative regioselectivity. Effective application of
LPMOs in the biotransformation of biomass resources needs the elucidation of the molecular basis of their function.
Since the discovery of LPMOs, great advances have been made in the study of their substrate specificity and regiose-
lectivity, as well as their structural basis, which will be reviewed below.
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Introduction

Biocatalytic degradation of renewable biomass resources
is a potential way to address energy and environmental
crises. Despite the abundance, the crystalline structure
of cellulose and chitin hinders the accessibility of hydro-
lases, and thus the effective saccharification by traditional
glycoside hydrolase systems. In 1950, Reese et al. postu-
lated that the process of cellulolytic organisms degrading
cellulose involves two steps (Reese et al. 1950). Firstly, the
‘Cl’ degrades native cellulose into shorter linear poly-
anhydroglucose chains, which are then hydrolyzed by
Cx into soluble, small molecules. In 1974, Eriksson et al.
reported the presence of an oxidase in the extracellular
enzyme system of Sporotrichum pulverulentum, which
boosted the degradation of cellulose by the mixture of
endo- and exo-glucanases (Eriksson et al. 1974). How-
ever, this oxidase has not been clearly characterized for
a long time.
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The first structure of Cel61B (a member of GH61 fam-
ily) was resolved in 2008, revealing its difference from
other glycoside hydrolases, suggesting that it may have
different enzyme activities (Karkehabadi et al. 2008).
Until 2010, Vaaje-Kolstad et al. reported that the bacte-
rial CBP21protein (a member of CBM33 family) is actu-
ally an enzyme that catalyzes oxidative depolymerization
of chitin (Vaaje-Kolstad 2010). Shortly thereafter, the
cellulose oxidative activities of GH61 family members
were characterized (Quinlan et al. 2011). Then these Cu-
dependent enzymes were named as lytic polysaccharide
monooxygenases (LPMOs), and the GH61 and CBM33
families were reclassified as AA9 (Auxiliary Activity fam-
ily 9) and AA10, respectively. Currently the LPMOs are
distributed in 7 Auxiliary Activity families in CAZy data-
base (www.cazy.org), with various origins and substrate
specificities: AA9s, AA1ls, AA13s, AAl4s and AA16s are
mainly from eukaryota with cellulose-, chitin-, starch-,
and xylan-active, respectively; AA10s are from bacteria,
eukaryota, viruses or archaea, with cellulose- or chitin-
activity; AA15s are from eukaryota (including insect) or
viruses, with cellulose- or chitin-activity. The currently
reported cleavage of chitin, starch and xylan substrates
is Cl-oxidized, while the cleavage of cellulosic substrates
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is C1- or C4-oxidized, or both. The information on cur-
rently characterized LPMOs are summarized in Table 1.

Despite the low sequence identities, the catalytic
domains of these LPMOs share some common structural
features (Fig. 1), as recently reviewed (Beeson et al. 2015;
Hemsworth et al. 2013a; Span and Marletta 2015; Vaaje-
Kolstad et al. 2017). The core of the catalytic domain is
a B sandwich of seven to nine B-strands. Loops connect-
ing these B-strands constitute the ‘flat’ substrate binding
surface, which is believed to interact with flat surfaces of
crystalline substrates. The region located between 1 and
B2 of LPMO9 (between B1 and 3 of LPMO10), denoted
L2, includes a variable number of loops and short heli-
ces. Some LPMOs have an insertion between 3 and 4
denoted L3, which interacts with L2. In AA9 and AA13
LPMOs, there are LS (loop short) on the opposite side of
L2. Besides, AA9 members have a long C-terminal loop,
termed LC. As discussed below, the variable length and
amino acid constitution of these loops might contrib-
ute to the substrate specificity and regioselectivity. The
N-terminal histidine and a second conserved histidine
coordinate a copper ion, forming the ‘histidine brace’ The
N-terminal histidine of some fungal LPMOs is methyl-
ated at the Ne2, and the significance of this methylation
is unclear.

Studies have shown that adding LPMOs to cellulase
cocktails can improve the degradation efficiency of cel-
lulose biomass and reduce the required enzyme amount
(de Gouvea et al. 2019; Dimarogona et al. 2013; Harris
et al. 2010; Hemsworth et al. 2015; Zhang et al. 2019).
It is speculated that this synergy is due to the oxidative
cleavage of polysaccharide crystalline regions by LPMOs,
which provides more accessible sites for glycoside hydro-
lases (Fig. 2). Further elucidating the biological func-
tions and catalytic mechanisms of these enzymes will
bring more exciting possibilities for their application in
the utilization of renewable biomass resources. The cata-
lytic mechanism of LPMOs has been in scientific debate.
One view is that, the catalytic center Cu (II) is activated
by reduction into Cu (I) by two external electrons (Kjaer-
gaard et al. 2014; Kracher et al. 2016). The Cu (I) activates
dioxygen, leading to hydrogen abstraction from one of the
carbons in the scissile glycoside bond. Then the hydroxy-
lation of the resulting substrate radical leads to bond
cleavage via an elimination reaction. In other studies,
however, it has been proposed that, instead of dioxygen,
H,0, is the preferred co-substrate for LPMOs, in a per-
oxygenase reaction where a single priming reduction to
Cu(l) is needed (Bissaro et al. 2017). The catalytic mecha-
nism of LPMOs has been extensively reviewed (Forsberg
2019; Tandrup et al. 2018; Walton and Davies 2016) and
not discussed in depth here. The focus of this review is
to give an insight into the current understanding of the
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substrate specificity, oxidation regioselectivity and their
structural basis of LPMOs.

Substrate specificity

AA9 (former GH61) and AA10 (former CBM33) were
originally found to act on crystalline cellulose and chi-
tin substrates, respectively. As more related proteins are
characterized, the broad substrate spectrum of LPMO
superfamily is revealed. Besides insoluble substrates
(such as cellulose, chitin, starch and xylan), the solu-
ble oligosaccharides like xyloglucan, glucomannan and
B-(1—3), (1—>4)-p-glucan have been found to be oxi-
dized by some LPMOs (Isaksen et al. 2014; Kojima et al.
2016). Biochemical characterization and structural stud-
ies, especially the complex structures of LPMOs and
soluble oligosaccharide substrates, provide us much for
in-depth understanding of LPMOs (Frandsen et al. 2016;
Simmons et al. 2017). Detailed sequence and structure
comparisons have revealed that the substrate binding
surfaces of LPMOs with different substrate specifici-
ties have diverse characteristics in terms of amino acid
composition and topological features. Since the L2, L3,
LS and LC loops constitute the majority of the substrate
binding surface, and their amino acids composition are
highly variable, these loops are believed to affect sub-
strate recognition and specificity.

Amino acids composition on the substrate binding surface
There are usually several aromatic amino acids on the
substrate binding surface loops of LPMO9s (Fig. 3a, b).
From structural studies and MD simulations, it was
found that the spatial distribution of these aromatic
amino acids facilitates stacking interactions with the
sugar units of cellulose substrates, although the enzymes
may bind to the surface of the cellulose fibers in differ-
ent directions (Liu et al. 2018; Wu et al. 2013). In Wu’s
study, 100 ns MD simulations of PchGH61D on cellu-
lose showed that the three tyrosines on substrate bind-
ing surface tightly bonded with polysaccharide chains in
the substrate (the interaction energies were — 10.86 kcal/
mol for Y28, —10.17 kcal/mol for Y75 and —9.5 kcal/
mol for Y198, respectively) and are the main contribu-
tors to substrate binding. While LPMO10s generally
only have one aromatic amino acid involved in substrate
binding, LPMO11s and LPMO13s do not even have aro-
matic amino acids on substrate binding surface (Fig. 3a),
and their polar amino acids are more abundant, possibly
binding to substrates by polar interactions (Forsberg et al.
2014a; Hemsworth et al. 2014). Structural studies and
site-directed mutagenesis revealed that binding of CBP21
to chitin is mediated primarily by conserved, solvent-
exposed, hydrophilic residues, which arranged in a patch
on the substrate binding surface (Aachmann et al. 2012;
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AA15

AA13 AA14
Fig. 1 The overall structures and substrate binding surfaces of LPMOs. The loop regions are colored in red (L2), green (L3), yellow (LS) and blue (LC).
The catalytic center histidines are shown in sticks. The structures representing different families are: NcLPMO9C (PDB ID 4d7u) (Borisova et al. 2015),
CBP21 (PDB ID 2bem) (Vaaje-Kolstad et al. 2005b), AoLPMO11 (PDB ID 4mah) (Hemsworth et al. 2014), AocAA13 (PDB ID 40PB) (Lo Leggio et al. 2015),
PcAA14B (PDB ID 5no7) (Couturier et al. 2018), TAAAT5A (PDB ID 5msz) (Sabbadin et al. 2018)
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Fig. 2 Schematic representation of the LPMOs reaction. The upper part of the figure is a model of the synergistic degradation of polysaccharide
substrates by LPMO and glycosidases. Exo-glycosidases (Exo-GH) act on chain ends to generate soluble sugars. LPMOs and endo-glycosidases
(Endo-GH) act on crystalline and amorphous regions within the polysaccharide chain, respectively, providing more accessible sites for
exo-glycosidases. The enlarged dotted box is a schematic diagram of the action mechanism of the LPMOs. Oxidation at C1 results in the formation

of a lactone at the reducing end. C4 oxidation produces a ketoaldose at the non-reducing end

Vaaje-Kolstad et al. 2005b). MD simulations of CBP21
on crystalline chitin substrates have also shown that
although the only tyrosine Y54 on the substrate bind-
ing surface is a key factor, the hydrogen bonding formed
between substrate and the residues E55, T111, H114,
Q57, and D182 was very important for substrate binding
(Bissaro et al. 2018).

Within the AA10 family, the amino acid composi-
tion of the substrate-binding surface of different sub-
strate-specific LPMOs is also diverse. The Gln-Thr pair
(Q78 and T133 in CJLPMO10A) is presumed to be a
determinant of chitin activity, since it is conserved in
chitin-active LPMO10s, whereas in cellulose-active
LPMO10s, the corresponding sites are Phe and Trp

(Forsberg et al. 2016). Li et al. suggested that, com-
pared with chitin-active SmAA10A, an insertion in the
cellulose-active SCAA10C that contains four aromatic
residues could account for cellulose specificity (Li et al.
2012). In previous work, we found a motif on L2 with
different amino acid composition in different substrate-
specific LPMO10s (Fig. 3¢) (Zhou et al. 2019b). In cel-
lulose-active LPMO10s, this motif mainly consists of
non-polar amino acids (Y[W]NWF[N]G[A]V[N]L[Y]).
While in chitin-active LPMO10s, this motif mainly
consists of polar amino acids (Y[W]EPQSVE). We
speculated that the different amino acid composition
of this motif may lead to differences in substrate bind-
ing surface electrostatic potential, which in turn affects
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Fig. 3 The amino acid composition and topological features of substrate binding surfaces. a Substrate binding surfaces of LPMOs. The catalytic
center histidines are shown in blue sticks. The aromatic amino acids on substrate binding surfaces are shown in yellow sticks. b Multiple sequence
alignments of structurally characterized LPMO9s and LPMO10s. The aromatic amino acids on L2 are highlighted in yellow background. c The
different motifs on L2 of cellulose-active and chitin-active LPMO10s

substrate specificity. Jensen et al. constructed a muta-
tion library of five sites on the substrate binding surface
of ScCLPMO10C, three of which are located in this motif
region (Y79, N80, F82), and the other two are located in
the adjacent loops (Y111, W141). Substrate specificity
of the mutant M18 (Y79/N80D/F82A/Y111F/W141Q)
significantly changed from wild-type cellulose-pref-
erence to chitin-preference, demonstrating the role

2019).

of these residues in substrate specificity (Jensen et al.

The complex structures of the LsAA9A and soluble
oligosaccharide substrates showed that in addition to
the Y203 stacking, the hydrogen bond network formed
between the +2 subsite and the polar residues (N28, H66
and N67) plays an important role in substrate binding,
and this may be a determinant of soluble oligosaccharide
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activity, as sequence and structure alignments found that
there is no corresponding residue forming a hydrogen
bond network in LPMOs that can only act on crystalline
substrates (Frandsen et al. 2016).

The topological features of substrate binding surface

The crystal structure of BaAA10A shows a cavity near the
catalytic Cu center, and the authors speculated that it is
for dioxygen binding (Fig. 3a) (Hemsworth et al. 2013b).
Shortly thereafter, through structural comparisons, Fors-
berg et al. found that this cavity is absent in the cellulose-
active LPMO10s (Forsberg et al. 2014a). Therefore, the
cavity was presumed to accommodate N-acetyl group
of chitin substrates, and may be a structural feature that
determines substrate specificity. However, one exception
is the chitin-active CJLPMO10A, which shows similar
features to cellulose-active LPMO10s without this cavity
(Forsberg et al. 2016).

LPMOs that can act on oligosaccharides, such as
LsAA9A, NcLPMO9C and NcLPMO9D, have a more
contoured substrate binding surface than LPMOs that
can only act on crystalline substrates (Borisova et al.
2015; Frandsen et al. 2016; Li et al. 2012). The ridge near
substrate binding subsites +1 and 42 was proposed to
allow LPMOs binding to more contoured substrates such
as oligosaccharides (Fig. 3a).

In AoAA13, the surface loops (the long loop preceding
B2, the loop between B2 and B3, the long loop preced-
ing B4 and the loop between 5 and B6) form a shallow
groove, crossing the copper active site (Fig. 3a) (Lo Leg-
gio et al. 2015). It was speculated that, compared with
the flatter substrate binding surface of LPMO9s, which
is more suitable for the binding of flatter crystalline cel-
lulose substrates, the groove on the surface of AcAA13
might be more suitable for the binding of the contoured
surface of resistant starch. It is worth noting that no crys-
tal structures of the currently characterized LPMO13s
have been resolved so far, and the structurally charac-
terized AoAA13 has not been reported to have starch
activity.

Similarly, the substrate binding surface of PcAA14B,
an xylan-active LPMO, has a rippled shape with a clamp
formed by two prominent surface loops, which are equiv-
alent to the L2 and L3 regions of AA9 (Figs. 1 and 3a).
The extended L3 loop of PcAA14B forms a protrusion
through the cystines (C67-C90). Although there is no
enzyme—substrate complex structure, these loops con-
stitute a large part of the substrate binding surface, and
it is speculated that this clamp is a structural feature of
LPMO14s required for the xylan substrate binding (Cou-
turier et al. 2018).

From the sequence alignment of PaLPMO9H and
NcLPMOO9C, it was speculated that the L3 loop, which

Page 13 of 19

is a common feature of these two enzymes, might be a
prerequisite for xyloglucan specificity (Bennati-Granier
et al. 2015). NMR (nuclear magnetic resonance) stud-
ies on enzyme-substrate interactions also showed
that L3 of NcLPMOO9C did participate in the binding
of xyloglucan substrate (Courtade et al. 2016). How-
ever, as more LPMOs are characterized, some enzymes
have been found to have xyloglucan-activity, but L3 is
absent, such as GtLPMO9A-2. It was presumed that
the extended L2 of the xyloglucan-active GtLPMO9A-2
compensate for the lack of L3 (Kojima et al. 2016).

The appended modules

Similar to GHs (glycoside hydrolases), a considerable
part of LPMOs are modular, with domains of non-
catalytic CBMs (carbohydrate-binding modules), GHs
or other unknown functions appended to the catalytic
domain. Domain similarity network analysis has shown
the correlation between the additional domains and
the substrate specificity of the full enzymes (Book et al.
2014; Zhou et al. 2019b). CBM truncation studies have
been reported for both LPMO9s and LPMO10s (Cha-
lak et al. 2019; Courtade et al. 2018; Crouch et al. 2016;
Forsberg et al. 2016; Laurent et al. 2019). Comparison
of the performance of LPMOs with and without CBMs
have shown that, deletion of CBMs reduced LPMO’s
binding capacity to crystalline substrates, especially at
low substrate concentrations. Therefore, CBMs may
affect substrate specificity through promoting the bind-
ing of LPMOs to the appropriate substrates.

Oxidative regioselectivity

LPMOB9s have been shown to oxidize either the C1, C4
or both the C1 and C4 carbon of the scissile bond of
cellulose substrates. According to the oxidative regi-
oselectivity, LPMO9s have been classified into three
types: PMO1ls are the strict Cl-oxidizers; PMO2s
are the strict C4-oxidizers; PMO3s are the mixed C1/
C4-oxidizers; and a subtype of PMO3, PMO3*s, are
the Cl-oxidizers (Vu et al. 2014a). Cellulose-active
LPMO10s are strict Cl-oxidizers or mixed C1/C4-oxi-
dizers, whereas no strict C4-oxidizing LPMO10 has
been reported. LPMOs acting on chitin (LPMO10s, 11s
and 15s), starch (LPMO13s) and xylan (LPMO14s) have
only been shown to oxidize the Cl-carbon. It is specu-
lated that the oxidative regioselectivity may be deter-
mined by the precise positioning of the enzyme on the
substrates, so factors that affect the relative position of
the enzyme’s active center Cu and the C1 or C4 carbon
of the scissile glycosidic bond may affect regioselectiv-
ity (Fig. 4).
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Amino acid composition and arrangement on substrate
binding surface

Due to the contribution of L2 to the substrate binding
surface and the diversity of its amino acid composition,
many studies on the regioselectivity of LPMOs have
focused on this region. By sequence alignment, Vu et al.
found that PMO3s had a 12-amino acid insertion on L2,
including a conserved tyrosine, compared to other sub-
groups of LPMO9s. Deletion of this sequence caused the
loss of C4-oxidizing function of NCU07760, indicating
the importance of this sequence for C4 regioselectiv-
ity of PMO3. However, although the conserved tyrosine
in this insertion is a feature of PMO3, mutation of this
residue into glycine did not change the regioselectivity of
NCU07760 (Vu et al. 2014a).

Sequence and structural information show that the
number and distribution of aromatic residues on the
surfaces of LPMOs are different. Therefore, it is specu-
lated that LPMOs may bind to the substrates in differ-
ent directions, resulting in different regioselectivity (Li
et al. 2012). Recently, Danneels et al. studied the oxida-
tive regioselectivity of LPMO9s in detail (Danneels et al.
2019). One part of the research was the mutation of aro-
matic amino acids on the substrate binding surfaces of
PcLPMO9D, ScLPMO9C and HjLPMO9A. They found
that the properties of these aromatic amino acids affect
C1/C4-oxidation ratios. In another work, Liu et al. used
molecular dynamics simulations to study the binding
mode of HiLPMO9B to the substrate, and found that
multiple surface-exposed hydrophobic residues, includ-
ing the tyrosine on L2, are important for substrate bind-
ing in this Cl-specific LPMOs. Besides, acidic amino
acids on L2 and LC participate in substrate binding. In
both the two binding modes obtained with different
binding directions, the catalytic center Cu is more biased
towards the C1 carbon of the glycosidic bond, suggesting
that the arrangement of amino acids on substrate binding
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surface may affect regioselectivity by affecting the relative
position of the catalytic center Cu and the substrate (Liu
etal. 2018).

Similar speculation has been made for LPMO10s. On
the substrate-binding surface of chitin-active Cl-spe-
cific LPMO10s, the conservative amino acids involved
in the formation of hydrogen bonds with the polysac-
charide substrate are arranged on opposite sides of the
catalytic center Cu, and thus direct the orientation of
the substrate relative to the Cu. This directed bind-
ing makes the enzyme prone to act on C1 carbon of the
scissile glycosidic bond (Hemsworth et al. 2013b). Fors-
berg et al. mutated a subset of coevolutionary residues
of C1/C4-oxidizing MaLPMO10B into the correspond-
ing residues of Cl-oxidizing LPMO10s, and the result-
ing mutants lost the C4-oxidizing activity. They found
that, the residues located near the catalytic Cu that are
involved in substrate positioning (especially the N85 of
MaLPMO10B) are the major determinants of regioselec-
tivity (Forsberg et al. 2018).

Accessibility to the surface-exposed axial copper
coordination site

A conserved alanine in LPMO10s active site has been
postulated to provide steric congestion at the solvent-
facing axial position of active center Cu (Hemsworth
et al. 2013b). Subsequent research showed that the loop
hosting this alanine adopts different conformations in
C1- and Cl1/C4-oxidizers, making the solvent-facing
axial position of C1/C4-specific SCLPMO10B more open
than Cl-specific SCLPMO10C (Forsberg et al. 2014a).
Similarly, structural comparisons revealed that, strictly
Cl-oxidizing LPMO9s have a conserved tyrosine, pre-
venting optimal axial access to the copper ion, whereas
C4-oxidizing LPMO9s have an open access to this posi-
tion. The mixed C1/C4-oxidizing LPMO9s show an
intermediate situation (Borisova et al. 2015). Thus, the
accessibility of surface-exposed axial position of Cu, or
the ability to bind a ligand in the axial position, could be
a determinant of C4-oxidizing activity. However, recent
studies suggested that, mutations affecting accessibility
of this axial position did not change the regioselectivities
of PcLPMO9D and MaLPMO10B (Danneels et al. 2019;
Forsberg et al. 2018).

The appended CBM modules

The CBM domains seem to affect the binding of LPMOs
to substrates, thereby affecting the precise positioning of
the enzymes on the substrates’ surfaces, that is, the rela-
tive position of C1 or C4 carbon to the catalytic center
Cu, and thus the regioselectivity of the enzymes. Remov-
ing or replacing the endogenous CBMs of LPMO9s and
LPMO10s have been reported to alter the regioselectivity
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of these enzymes. For instance, deleting CBM1 of PaLP-
MOB9H significantly increased the proportion of C1-oxi-
dized products (Laurent et al. 2019). Crouch et al
replaced the endogenous CBM2a domain of ThLPMO10
with the CBM10 of CjLPMO10B, and found that the
ratio of non-oxidized to oxidized products of the mutant
increased significantly. The authors speculated that the
non-oxidized products are the oligosaccharides derived
from Cl-oxidation near the reducing end of cellulose,
which may be due to the grafted CBM affecting the
localization of the enzyme on the substrate (Crouch et al.
2016). But the impact of CBMs on the regioselectivity
of LPMOs is also controversial, e.g., removing the CBM
domains did not significantly change the regioselectivity
of MaLPMO10B, NcLPMO9C and HjLPMO9A (Dan-
neels et al. 2019; Forsberg et al. 2018; Laurent et al. 2019).

N-Glycan on substrate binding surface

Fungal-derived LPMOs are generally glycosylated on the
surface, but their function is unclear. Sequence and struc-
tural information show that C1/C4-specific LPMO9s
often have an N-glycan at the planar active surface,
which is a feature different from the other two groups (Li
et al. 2012). Mutation studies showed that removing this
N-glycan can alter the C1/C4-oxidation ratios of HjLP-
MOO9A. The authors suggested that this is because N-gly-
can affects the structural features of the substrate binding
surface, which in turn affects the substrate binding and
oxidative force accurate directions (Danneels et al. 2019).

Structures of substrates

The regioselectivity of LPMOs appears to be substrate-
dependent. The most typical examples are the LPMO10s
with both cellulose- and chitin-activity. They are C1/
C4-specific for cellulose oxidation and Cl-specific for
chitin oxidation. Recently, a multifunctional LPMO10,
KpLPMOI10A has been reported that besides chitin- and
cellulose-activity, it can also act on xylan to produce
C4-oxidized products (Correa et al. 2019). In addition,
it is reported that, PALPMO9H is C4-specific on mixed-
linkage glucans, and C1/C4-specific on glucomannan
(Fanuel et al. 2017). LsAA9A and CvAA9A are reported
to be C4-specific for shorter oligosaccharides and C1/
C4-specific for longer polysaccharides (Simmons et al.
2017).

Conclusions

Elucidating the molecular basis of substrate specific-
ity and oxidative regioselectivity of LPMOs will be more
helpful for their application in the biotransformation of
renewable biomass. Researches indicate that the sub-
strate binding and regioselectivity of LPMOs are pre-
cisely regulated. This precise regulation is based on the
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complex synergistic modules and amino acid networks
that evolved from interactions with complex and diverse
substrate structures in nature. However, the character-
ized LPMOs are only a small part of the sequences that
have been found so far. More enzymatic and structural
characterization is needed to provide more information.
Structural-based mutation studies and MD simulations
will bring in-depth understanding of the molecular basis
of the function of LPMOs. In addition, given the com-
plexity and structural characteristics of the substrates,
it is necessary to develop more effective enzyme activity
detection methods to avoid the neglect of weak enzyme
activity.
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