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In biological tissues, typical MRI voxels comprise multiple microscopic environments, the local

organization of which can be captured by microscopic diffusion tensors. The measured dif-

fusion MRI signal can, therefore, be written as the multidimensional Laplace transform of an

intravoxel diffusion tensor distribution (DTD). Tensor-valued diffusion encoding schemes have

been designed to probe specific features of the DTD, and several algorithms have been intro-

duced to invert such data and estimate statistical descriptors of the DTD, such as the mean

diffusivity, the variance of isotropic diffusivities, and the mean squared diffusion anisotropy.

However, the accuracy and precision of these estimations have not been assessed systemati-

cally and compared across methods. In this article, we perform and compare such estimations

in silico for a one-dimensional Gamma fit, a generalized two-term cumulant approach, and

two-dimensional and four-dimensional Monte-Carlo-based inversion techniques, using a clini-

cally feasible tensor-valued acquisition scheme. In particular, we compare their performance at

different signal-to-noise ratios (SNRs) for voxel contents varying in terms of the aforementioned

statistical descriptors, orientational order, and fractions of isotropic and anisotropic components.

We find that all inversion techniques share similar precision (except for a lower precision of the

two-dimensional Monte Carlo inversion) but differ in terms of accuracy. While the Gamma fit

exhibits infinite-SNR biases when the signal deviates strongly from monoexponentiality and is

unaffected by orientational order, the generalized cumulant approach shows infinite-SNR biases

when this deviation originates from the variance in isotropic diffusivities or from the low orien-

tational order of anisotropic diffusion components. The two-dimensional Monte Carlo inversion

shows remarkable accuracy in all systems studied, given that the acquisition scheme possesses

enough directions to yield a rotationally invariant powder average. The four-dimensional Monte

Carlo inversion presents no infinite-SNR bias, but suffers significantly from noise in the data,

while preserving good contrast in most systems investigated.
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1 INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) allows the characterization of living tissues below the millimeter scale set by typical imaging

voxel sizes. The basic principle of dMRI techniques is to use magnetic field gradients to encode the acquired signal with information about the
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SNR, signal-to-noise ratio; μA, microscopic anisotropy; μFA, microscopic fractional anisotropy.
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translational motion of water molecules. Restrictions to the measured motion are then used to infer the geometrical configuration of the tissues

inside a given voxel. Throughout the signal-encoding process, each water molecule has time to explore a micrometer-scale volume determined

by the local diffusivity and the geometry of the cell membranes. The volume explored is only a minor fraction of the available space within the

macroscopic imaging voxel, and the dMRI signal is thus a combination of signals arising from multiple microscopic environments with potentially

different diffusion properties.1-4 Classical diffusion observables such as mean diffusivity or fractional anisotropy5 contain information about the

voxel-averaged set of microscopic environments, and can be used to detect changes in the microscopic tissue structure. While voxel-averaged

information is readily accessible, resolving the signal contributions from the various microscopic domains is still an open problem that prevents

the unambiguous interpretation of in vivo dMRI data in terms of specific tissue properties.6-9

In the context of dMRI, the measured signal  probes diffusion processes over a specific observational time-scale that depends on the choice

of experimental time parameters. For a given observational time-scale, a common description of the subvoxel composition of heterogeneous

tissues is obtained by considering the combined non-Gaussian diffusion effects of restriction and exchange and approximating the signal decay

by a continuous weighted sum of exponential decays,6,10-29 yielding the following multidimensional Laplace transform:

(b)
0

= ∫ (D) exp(−b ∶ D) dD , (1)

where 0 is the signal acquired when the diffusion encoding gradients have zero amplitude, (D) is the distribution of apparent diffusion

tensors D or ‘‘diffusion tensor distribution’’ (DTD) describing an apparent collection of subvoxel diffusion domains,13 and b is the diffusion

encoding tensor (or 𝑏-tensor), an experimental variable that is completely defined by the diffusion-weighting magnetic field gradients.22,30,31

The 𝑏-tensor was introduced in earlier works as a 𝑏-matrix accounting for cross terms between diffusion and imaging gradients.32-34 Here, ‘‘:’’

denotes the Frobenius inner product b ∶ D =
∑

i

∑
j𝑏ij𝐷ij, and integration spans the space of symmetric positive-semidefinite tensors. Changing

the observational time-scale may very well lead to a different set of exponential decays as a result of restricted diffusion35 and exchange,36

which implies that the measured DTD may depend on the time-scales or spectral contents of the diffusion-encoding gradients. Even though

such time-dependent effects have been measured in human brain white matter,37-42 spinal cord,43,44 and prostate,45,46 using stimulated echo or

oscillating gradient sequences specifically designed for varying the observational time-scale over extended ranges, the above DTD description

holds for the limited range of time-scales probed by clinical dMRI experiments in the brain.44,47-54

While (D) provides a simple, and experimentally accessible, description of intravoxel tissue heterogeneity, the inversion of Equation (1)

constitutes a challenging ill-posed problem, where clearly distinct distributions may result in signal decays that are indistinguishable within

the experimental noise, thus complicating the detailed interpretation of dMRI data. The difficulties posed by the inversion of Equation (1) can

be circumvented by fitting the acquired data to intricate signal models, which consider a predefined number of microscopic components and

impose a priori constraints on the underlying diffusion properties.19,23-25,28,51,55,56 Alternatively, one can add complexity at the signal acquisition

stage in order to encode more information into the diffusion signal and hopefully reduce the number of prior assumptions used to quantify

the subvoxel heterogeneity.31,42,50,57 This idea has motivated the development of tensor-valued diffusion-encoding techniques,31,58 a number of

multidimensional acquisition protocols wherein gradient waveforms are carefully designed to target specific features of (D).
The specificity of tensor-valued diffusion encoding is clarified by expanding the Frobenius inner product in Equation (1). To do so, let us assume

a distribution of axisymmetric microscopic diffusion tensors D, the axial and radial diffusivities 𝐷|| and 𝐷⟂ of which, respectively, can be combined

to define measures of isotropic diffusivity Diso = (D|| + 2D⟂)∕3 and normalized diffusion anisotropy DΔ = (D|| − D⟂)∕(3Diso) ∈ [−0.5,1].30 The 𝐷iso

and 𝐷Δ parameters can be interpreted as measures of the ‘‘size’’ and ‘‘shape’’, respectively, of D. Also imposing axisymmetry on the diffusion

encoding tensor b yields30

b ∶ D = bDiso[1 + 2bΔDΔP2(cos 𝛽)] , (2)

where 𝑏 = Tr(b) is the usual 𝑏-value, 𝑏Δ ∈ [−0.5,1] is the normalized anisotropy of b, and 𝑃2(𝑥) = (3𝑥2 − 1)∕2 is the second Legendre polynomial.

The angle 𝛽 defines the relative orientation between the diffusion tensor's main axis (𝜃, 𝜙) and the encoding tensor's main axis (Θ,Φ), and is

obtained from the spherical law of cosines cos 𝛽 = cos 𝜃 cosΘ + sin 𝜃 sinΘ cos(𝜙 − Φ). Equation (2) shows clearly that the 𝑏Δ parameter controls

the effects of diffusion tensor anisotropy and orientation on the measured signal decay. For instance, setting 𝑏Δ = 0 isolates the effects of 𝐷iso,

while data acquired at 𝑏Δ = 1 contain the largest possible influence of diffusion anisotropy and orientation. Building upon the specificity of the

𝑏Δ parameter, tensor-valued diffusion encoding techniques compare data acquired at arbitrary b ‘‘shapes’’ in order to resolve the effects of 𝐷iso,

𝐷Δ, and diffusion tensor orientation. By contrast, conventional diffusion encoding schemes are limited to a single 𝑏Δ = 1 value and do not allow

control over the influence of diffusion anisotropy on the acquired signal.

Figure 1A presents in silico data from two different voxels that are isotropic at the macroscopic scale: one containing a heterogeneous isotropic

system (top row), and another one comprising an anisotropic system with low orientational order (bottom row). The displayed data were simulated

using a simple protocol comprising multiple 𝑏-tensors b with varying ‘‘size’’ (𝑏), but constant ‘‘shape’’ (𝑏Δ) and orientation (Θ,Φ). Signals acquired

with such protocols are naturally written as the Laplace transform of a 1D distribution of scalar effective diffusivities (𝐷eff):30

(𝑏)
0

=

+∞

∫
0

(Deff) exp (−bDeff) dDeff , (3)
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FIGURE 1 Comparison in silico between conventional diffusion data and tensor-valued diffusion data in the context of Laplace inversions
(SNR = 100). A, From left to right: voxel contents, acquired signal ∕0 for multiple 𝑏-values and constant linear ‘‘shape’’ 𝑏Δ = 1 and orientation
(Θ,Φ) (black points), and theoretical distributions of diffusivities (𝐷eff) (black lines) associated with different isotropic components (top) and
randomly oriented identical anisotropic components (bottom). The isotropic voxel content consists of two equiprobable populations, one with
Diso = 0.2 μm2/ms and the other with 𝐷iso = 1.6 μm2/ms. The anisotropic voxel content is made of components with Diso = 0.9 μm2/ms and
𝐷Δ = 0.89. The results of a standard Laplace inversion algorithm59,61 are shown with blue lines. B, Results of the same Laplace inversion
algorithm59,61 on orientationally averaged tensor-valued diffusion-encoded data (𝑏, 𝑏Δ) Equation (7), inverted via Equation (8) and simulated for
a voxel consisting of an equiprobable combination of the two cases in panel A. Such inversion yields a 2D DTD of isotropic diffusivities Diso and
anisotropic ratios 𝐷||∕𝐷⟂ = (1 + 2𝐷Δ)∕(1 −𝐷Δ).66 The signals are shown for 𝑏Δ = 0, 0.5, and 1 (from bottom to top, see purple arrow). C,
Comparison between the inversions of conventional and tensor-valued diffusion datasets for a voxel containing an isotropic component and an
anisotropic component with low orientational order. The isotropic component (25% of the voxel content) has Diso = 2.7 μm2/ms and the
anisotropic component (75% of the voxel content) has Diso = 0.9 μm2/ms and 𝐷Δ = 0.9. The orientational order of the anisotropic component is
set by a Watson distribution of order parameter OP = E[𝑃2(cos 𝛽)] = 0.2, where 𝑃2(𝑥) = (3𝑥2 − 1)∕2 is the second Legendre polynomial and 𝛽 is
the angle between a component and the main eigenvector of the Saupe order tensor.69,100 A fair comparison was ensured by considering the
same number of input signals and the same SNR for both datasets. Inversions were performed using our 4D Monte Carlo inversion algorithm,68

yielding a 4D DTD where the unit vectors giving the orientations of the microscopic components are color-coded via the
[red, green,blue] ≡ [| sin 𝜃 cos𝜙|, | sin 𝜃 sin𝜙|, | cos 𝜃|] convention. Ground truth is shown using black contours

where 𝐷eff ≡ 𝐷iso[1 + 2𝑏Δ𝐷Δ𝑃2(cos 𝛽)]. Because the two voxels comprise clearly distinct microscopic structures, their theoretical (𝐷eff)
distributions have markedly different functional forms. However, in spite of their distinct distributions (𝐷eff), the two intravoxel contents yield

virtually indistinguishable 𝑏Δ = 1 signals and thus cannot be differentiated with conventional diffusion encoding schemes. Moreover, Laplace

inversion algorithms59-61 cannot reproduce a complex broad distribution (𝐷eff) such as the one that characterizes the anisotropic system,

and instead yield a solution that bears a higher resemblance to the theoretical distribution of the isotropic system. In the context of dMRI,

the different peaks in (𝐷eff) may thus be wrongly interpreted as originating from intra- and extracellular water populations. Intuitively, these

limitations can be understood via the fact that the one-dimensionality (𝑏) of this simple acquisition protocol does not match the two relevant

dimensions (𝐷iso, 𝐷Δ) of the physical problem at hand. Figure 1B shows that tensor-valued diffusion encoding circumvents this problem by adding

the encoding ‘‘shape’’ 𝑏Δ to the acquisition dimensionality.62-66 The displayed data were simulated using the orientational average of the diffusion

signal (see Equation (7)) and inverted via Equation (8), that is, the orientationally averaged equivalent of Equation (1). Finally, Figure 1C underlines

the fact that conventional acquisition schemes sampling multiple directions may not capture the composition of a system that contains isotropic

and anisotropic components, even at infinite signal-to-noise ratio (SNR). In other words, this figure demonstrates that the unique information

encoded along the 𝑏Δ dimension cannot be replaced by a simple increase in the sampling density of conventional experimental variables. Instead,

substituting multiple 𝑏Δ points with more 𝑏-values or orientations (Θ,Φ) results in noisy distributions that do not enable a clear separation of the

various subvoxel components.

Tensor-valued encoding protocols can be used to encode more information into the acquired signal, but do not correct for the intrinsic

ill-posed character of Equation (1). Hence, estimating (D) from multidimensional dMRI data acquired at low SNR and comprising a limited

number of (𝑏, 𝑏Δ,Θ,Φ) points remains a daunting task in itself. This has led to the development of multiple signal inversion approaches that are

mostly distinguished by the amount of information they attempt to extract from (b).31 These techniques include nonparametric approaches

that attempt to estimate the underlying diffusion tensor distribution,66-68 and parametric approaches that target statistical descriptors of (D)
instead of the full distribution.22,69 Simple and accessible descriptors are the mean isotropic diffusivity
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E[𝐷iso] = MD , (4)

the normalized mean squared anisotropy

Ẽ[𝐷2
aniso] =

E[𝐷2
aniso

]
E[𝐷iso]2

, (5)

and the variance of isotropic diffusivities

V[𝐷iso] = E[𝐷2
iso] − E[𝐷iso]2 , (6)

where 𝐷aniso = 𝐷iso𝐷Δ, and E[ · ] and V[ · ] are the voxel-scale mean and variance, respectively, built from the DTD. These descriptors can

be related to quantities derived in previous works: E[𝐷iso] is identical to the mean diffusivity (MD); Ẽ[𝐷2
aniso

] carries similar information to the

microscopic anisotropy index (MA),70 the fractional eccentricity (FE),71 the microscopic anisotropy (μA),72,73 the normalized difference between

second moments Δ𝜇̃2 and microscopic fractional anisotropy (μFA),69,72 the anisotropic variance 𝑉A and anisotropic mean kurtosis (MKA),74,75 and

the microscopic anisotropy 𝐶𝜇 ;22 V[𝐷iso] yields similar information to the isotropic second moment 𝜇iso
2

,69 the isotropic variance 𝑉I and isotropic

mean kurtosis (MKI),74,75 and the normalized isotropic variance 𝐶MD.22 Note that the conventional fractional anisotropy (FA)5 is a convolution

of anisotropy and orientational order, that is, it cannot tease apart the mean squared anisotropic diffusivity E[𝐷2
aniso

] and the order parameter

OP = E[𝑃2(cos 𝛽)], as shown in previous work.69 In fact, tensor-valued diffusion encoding is essential to capture subvoxel anisotropy,76 reinforcing

the conclusions drawn above from Figure 1C. Nevertheless, some caution is required when applying arbitrary gradient waveforms to systems

exhibiting restricted diffusion, as directional discrepancies between the frequency contents of these waveforms may cause misestimations of

diffusion metrics.42,77,78 While such misestimations seem challenging to observe on a clinical scanner,79 they can still be mitigated via ‘‘tuning’’ of

the spectral contents.42,57

Here, we compare techniques commonly used to invert tensor-valued dMRI data by assessing the accuracy and precision of their estimations

of E[𝐷iso], Ẽ[𝐷2
aniso

], and V[𝐷iso]. We focus on four techniques:

• for 2D orientationally averaged signals (𝑏, 𝑏Δ), the Gamma distribution fitting69 (Gamma) and the 2D Monte Carlo inversion66 (MC-2D);

• for 4D signals (𝑏, 𝑏Δ,Θ,Φ), the covariance tensor approximation22 (Cov) and the 4D Monte Carlo inversion67,68 (MC-4D).

The comparison is performed using in silico datasets mimicking biologically plausible scenarios, probed with acquisition protocols and SNR

levels that are compatible with a clinical setting. Although previous contributions have already reviewed the approaches listed above,31,58 no

rigorous assessment of their performances under clinical experimental conditions has been made so far. In section 2, we lay down the theory of

each of the signal inversion techniques investigated. In section 3, we explain how the comparison between these techniques has been carried

out. The results are presented and discussed in section 4. Finally, an outlook is given in section 5.

2 SIGNAL INVERSION APPROACHES

This section offers a pedagogical review of the signal inversion methods investigated in this work, namely the Gamma distribution fitting,69 the

covariance tensor approximation,22 and the 2D66 and 4D67,68 Monte Carlo inversions. Readers with a good understanding of these methods may

head directly to section 3.

2.1 Two-term cumulant expansion of the powder-averaged signal

The dimensionality of the problem stated in Equation (1) can be reduced by averaging data acquired at multiple b orientations:80,81

(𝑏, 𝑏Δ) = 1
4𝜋

2𝜋

∫
0

𝜋

∫
0

(𝑏, 𝑏Δ,Θ,Φ) sinΘ dΘ dΦ . (7)

Known as ‘‘powder-averaging’’,30,82 this procedure results in a 2D signal that is insensitive to the orientation distribution of the subvoxel

environments, and can be written as

(𝑏, 𝑏Δ) = 0

+∞

∫
0

𝑏Δ
(𝐷) exp(−b𝐷) d𝐷 , (8)

where our notation of the functional form of the effective distribution 𝑏Δ
depends explicitly on 𝑏Δ and implicitly on the subvoxel microstructure.

General analytical expressions of the powder-averaged signal have been derived recently.83 This signal corresponds to an integral transform of a

joint distribution of isotropic and anisotropic diffusivities, (𝐷iso, 𝐷Δ), that can be estimated from the data (see Figure 1B).66 However, much like

the original 4D problem, the direct inversion of Equation (8) is a challenging problem that has motivated a number of alternative approaches. For

instance, one of the most straightforward ways of extracting information from (𝑏, 𝑏Δ) consists of approximating Equation (8) with the cumulant

expansion of 𝑏Δ
:30,69,84

ln

((𝑏, 𝑏Δ)
0

)
≃

𝑏D̄→0
−bD̄ + b2 𝜇2(𝑏Δ)

2
+ … , (9)
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with the mean 𝐷 = ∫ +∞
0 𝐷 𝑏Δ

(𝐷) d𝐷 and the second cumulant 𝜇2 = 𝐷2 −𝐷
2

. This expansion is only valid for 𝑏𝐷 → 0, which explains why it is

commonly cut at the second order, as higher-order terms are negligible in that limit, yielding the two-term cumulant expansion

ln

((𝑏, 𝑏Δ)
0

)
≃

𝑏D̄→0
−bD̄ + b2 𝜇2(𝑏Δ)

2
. (10)

By fitting the measured signal to Equation (10), using 0, 𝐷, and 𝜇2 as fitting variables, one can target statistical measures of 𝑏Δ
(𝐷) directly

without having to either retrieve the full distribution or define its explicit functional form. From the cumulant expansion, it is clear that signal

deviations from monoexponentiality are described at low 𝑏-values by the second central moment 𝜇2. These deviations may come from intravoxel

variance in isotropic diffusivities or from anisotropy, and their effects on the powder-averaged signal can be teased apart by the encoding

anisotropy 𝑏Δ, as 𝜇2 can be written as30

𝜇2(bΔ) = V[Diso] +
4b2

Δ

5
E[D2

aniso] . (11)

Within this formalism, one has

E[𝐷iso] = 𝐷 , (12)

V[𝐷iso] = 𝜇2(𝑏Δ = 0) , (13)

E[𝐷2
aniso] =

5
4

[𝜇2(𝑏Δ = 1) − 𝜇2(𝑏Δ = 0)] . (14)

Even though the cumulant approach seems very direct for microstructural studies, it is inherently limited to small values of 𝑏𝐷. Importantly,

this means that adding more terms to Equation (10) (in the spirit of Equation (9)) will not significantly improve the adequacy of the cumulant

expansion to describe systems where higher-order moments of 𝑏Δ
(𝐷) are significant, such as ensembles of orientationally dispersed anisotropic

components (see the bottom panel of Figure 1A).

2.2 Gamma distribution fitting (Gamma)

The problem of inverting (𝑏, 𝑏Δ) (see Equation (7)) can instead be formulated as finding a physically plausible approximation of 𝑏Δ
. The Gamma

distribution function has been shown to provide a good approximation:85

Γ(D, 𝜅, 𝜓) =
D𝜅−1

𝜓𝜅 Γ(𝜅)
exp(−D∕𝜓) , (15)

where 𝜅 is the unitless shape parameter, 𝜓 is a scale parameter with diffusivity units, and Γ denotes the Gamma function. This analytical

form of 𝑏Δ
is practical, because it is described by a minimal number of parameters and possesses a simple analytical Laplace transform:

(𝑏, 𝜅, 𝜓)∕0 = (1 + 𝑏𝜓)−𝜅 . Using the fact that the Gamma distribution gives 𝐷 = 𝜅𝜓 and 𝜇2 = 𝜅𝜓2, one obtains the analytical expression69

(b, bΔ)
0

=
(

1 + b
𝜇2(bΔ)
𝐷

)−𝐷
2
∕𝜇2(bΔ)

, (16)

the fit of which provides 𝐷 and 𝜇2(bΔ) for microstructural estimation of the metrics Equations (12), (13), and (14). It is important to mention

that the Gamma distribution fitting implemented in this work is performed on the entire dataset and features a soft Heaviside signal-weighting

function that limits the fit to the range where the signal attenuation does not reach a reasonable noise floor, as used in previous works.74,86

2.3 Covariance tensor approximation (Cov)

The two-term cumulant expansion Equation (10) can be generalized to non powder-averaged signals as the covariance tensor approximation:22

ln

( 
0

)
≃

b∶⟨D⟩→0
−b ∶ ⟨D⟩ + 1

2
b⊗2 ∶ C , (17)

with the voxel-scale averaged diffusion tensor ⟨D⟩, the outer tensor product ⊗ such that b⊗2 = b ⊗ b, and the 6×6 covariance tensor

C = ⟨D⊗2⟩ − ⟨D⟩⊗2 in Mandel notation. This approximation is equivalent to considering a normal distribution of diffusion tensors. However, the

fact that this distribution allows for negative-definite tensors implies that negative values can be found for the positive quantities described

in section 3.2. The aforementioned metrics Equations (12), (13), and (14) can then be expressed in terms of tensor inner and outer products

involving the voxel-scale averaged diffusion tensor and the covariance tensor. Indeed, let us introduce the isotropic tensors Eiso = I3∕3 and
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Eiso = I6∕3, where I𝑛 is the 𝑛 × 𝑛 identity matrix. Using the Mandel notation, in which a 3×3 symmetric tensor Λ can be written as the column

vector (𝜆xx 𝜆yy 𝜆zz

√
2𝜆yz

√
2𝜆xz

√
2𝜆xy)T, one builds the bulk and shear modulus tensors,

Ebulk = E⊗2
iso

= 1
9

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, Eshear = Eiso − Ebulk = 1

9

⎛⎜⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎠
, (18)

by analogy with the stress tensor in mechanics, and obtains

E[𝐷iso] = ⟨D⟩ ∶ Eiso , (19)

V[𝐷iso] = C ∶ Ebulk , (20)

E[𝐷2
aniso] =

(C + ⟨D⟩⊗2) ∶ Eshear

2
=

⟨D⊗2⟩ ∶ Eshear

2
. (21)

The list of fitting parameters includes 0, the six independent elements of ⟨D⟩, and the 21 independent elements of C, which makes a total of 28

parameters to estimate within this approximation. Consequently, the covariance tensor approximation requires the acquisition of multiple signals

over a wide range of 𝑏-tensor sizes, shapes, and orientations in order to be reliable. The main advantage of the covariance tensor approximation

is that it yields very fast inversions, as Equation (17) can be recast into a linear problem tractable via mere matrix pseudoinversion. However, this

approach's limitation to small values of b ∶ ⟨D⟩ prevents it from accurately capturing the microstructural features of systems where higher-order

moments of the underlying DTD are significant, such as ensembles of orientationally dispersed anisotropic components (see the bottom panel of

Figure 1A).

Figure 2 shows that the Gamma (Equation (16)) and covariance (Equation (17)) approaches may not be able to capture the features of the DTD

(D) accurately, even at infinite SNR. Used as forward models, they can yield biased signals; used to solve an inverse problem, they can yield

biased statistical descriptors.

2.4 Monte Carlo inversion (MC-2D and MC-4D)

To facilitate its numerical inversion, the continuous distribution (D) can be approximated by a discrete vector w containing the weights of 𝑁

distinct diffusion tensors. This allows us to rewrite Equation (1) as

m =
N∑

n=1

wn 𝐾(bm,Dn) , (22)

where 𝑚 is the 𝑚th signal amplitude measured with the encoding tensor b𝑚, and 𝑤𝑛 is the weight of the 𝑛th point from the discretized DTD

space. The analysis D𝑛 and acquisition b𝑚 spaces are linked by the generalized inversion kernel 𝐾 , the analytical form of which is determined by

the experimental design. For 4D signals (b) , the inversion kernel is determined by Equation (2),

K(4D)
mn = exp(−bmDiso,n[1 + 2bΔ,mDΔ,nP2(cos 𝛽mn)]) , (23)

whereas for 2D powder-averaged signals (𝑏, 𝑏Δ) the kernel can be shown to be equal to30

K(2D)
mn =

√
𝜋

2

erf(
√

3bmbΔ,mDiso,nDΔ,n)√
3bmbΔ,mDiso,nDΔ,n

exp(−bmDiso,n[1 − bΔ,mDΔ,n]) , (24)

with erf( · ) denoting the error function. Since the number of experimental points, 𝑀 , is typically higher than the number of unknowns, 𝑁 ,

Equation (?) represents an overdetermined system. The estimation of w is thus formulated as a nonnegative linear least-squares (NNLS) problem:

w = argmin
w≥0

||s − K · w||2 , (25)

where || · ||2 denotes the Euclidian norm, w is the 𝑁 × 1 sought-for probability vector, s is the 𝑀 × 1 vector containing the signal amplitude

measurements, and K is the 𝑀 ×𝑁 matrix approximation of the appropriate inversion kernel.
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FIGURE 2 Comparison at infinite SNR between typical results yielded by the Gamma distribution fitting (orange), the covariance tensor
approximation (green), and the ground-truth signals/statistical descriptors (black) obtained for the same voxel content as in Figure 1C. In the
signal panels, the colored solid lines denote the signal decays estimated from the various methods and the colored dashed lines correspond to
their initial slopes, which are regulated by the estimated mean diffusivities. In the square DTD panels, colored points represent the logarithms of
E[𝐷iso] and E[𝐷||∕𝐷⟂], and the horizontal line reflects the standard deviation of isotropic diffusivities. Since 𝐷Δ is not directly accessible for

Gamma and Cov, we defined E[𝐷||∕𝐷⟂] = (1 + 2Ẽ[𝐷Δ])∕(1 − Ẽ[𝐷Δ]), where Ẽ[𝐷Δ] =
√

E[𝐷2
aniso

]∕E[𝐷iso]2 =
√

E[𝐷2
iso
𝐷2

Δ]∕E[𝐷iso]2. The

performances of Gamma and Cov are illustrated here for both the forward problem (top), where the ground-truth statistical descriptors are used
to compute the signals predicted by the inversion methods, and the inverse problem (bottom), where the ground-truth signals are inverted to
estimate the statistical descriptors. The signals are shown for 𝑏Δ = 0, 0.5, and 1 (from bottom to top, see purple arrows), as
in Figure 1B

Inverting an ill-posed system of linear equations such as the one described by Equation (25) is a rather common task for a wide array of scientific

disciplines.87 Within the field of magnetic resonance, this class of problems is particularly relevant, as the analysis of relaxation or diffusion

data can generally be formulated as an inversion of a discrete vector describing the amplitudes of multiple exponential decays. The ubiquity of

the problem explains the abundance of methods that can be used to invert Equation (25), in both general59,87 and magnetic resonance61,88-91

literature. In this work, we opted for iterative Monte Carlo algorithms that were specially designed to handle high-dimensional datasets:66-68

MC-2D and MC-4D. While MC-2D is used to estimate (𝐷iso, 𝐷Δ) from powder-averaged signals, MC-4D is used to estimate (𝐷iso, 𝐷Δ, 𝜃, 𝜙)
from non-powder-averaged signals.

The Monte Carlo inversion process was described in detail in previous works,67,68 and is schematized in Figure 3. As a first step, the algorithm

selects a random set {D𝑛}1≤𝑛≤𝑁in
of Nin diffusional configurations and subsequently estimates the corresponding set of weights {𝑤𝑛}1≤𝑛≤𝑁in

via

a NNLS minimization routine, storing the configurations with 𝑤𝑛 > 0. This process, called ‘‘proliferation’’, is repeated for 𝑁p distinct rounds,

after which the final set {D𝑛} of 𝑤𝑛 > 0 configurations is stored and subjected to a small random perturbation, called ‘‘mutation’’. This marks

the beginning of the ‘‘extinction’’ step, wherein diffusion configurations compete with their respective mutations on the basis of the lowest

residual sums of squares. The mutation and extinction steps are repeated 𝑁m times. Finally, the 𝑁out configurations with highest weights

are taken as a solution of Equation (22). In this work we used Nin = 100, 𝑁p = 20 (MC-2D) and 10 (MC-4D), 𝑁m = 20 (MC-2D) and 10

(MC-4D), and 𝑁out = 50. The initial configurations of MC-2D were randomly generated within the bounds −11 ≤ log10(D||∕m2s−1) ≤ −8.3 and

−11 ≤ log10(D⟂∕m2s−1) ≤ −8.3. As for MC-4D's initial configurations, they were sampled within the bounds −11 ≤ log10(D||∕m2s−1) ≤ −8.3,

−11 ≤ log10(D⟂∕m2s−1) ≤ −8.3, 0 ≤ cos(𝜃) ≤ 1, and 0 ≤ 𝜙 ≤ 2𝜋. By construction, this approach is not limited in terms of the cumulants that it

can estimate, since any cumulant can be computed from means, variances, covariances, or higher-order statistics of the diffusional properties

of the configurations. Besides, since the Monte Carlo inversions build up the DTD as a sum of components, they enable a natural separation of

subvoxel tissues.92 It should be mentioned that the additional information provided by these algorithms comes at a cost in computational time:

as implemented in Matlab,93,94 the iterative Monte Carlo approaches are twice as slow as the Gamma distribution fitting and 60–80 times slower

than the covariance tensor approximation.
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FIGURE 3 Illustration of the 4D Monte Carlo algorithm for Laplace inversion. Left, Main steps of the inversion algorithm. Right, Practical
example of the the inversion algorithm for a voxel containing one anisotropic component and two distinct isotropic components. The diffusion
tensor distribution (DTD) is represented at various steps of the inversion algorithm as 2D bubble charts of log10(𝐷iso) and log10(𝐷||∕𝐷⟂), where
diffusion orientation is color-coded via the [red, green, blue] ≡ [| sin 𝜃 cos𝜙|, | sin 𝜃 sin𝜙|, | cos 𝜃|] convention. While empty circles show the
ground-truth solutions, filled circles show the investigated configurations (circle radii encoded for the associated probability weights). First, the
set of acquired signals (index 𝑚) is discretized following Equation (22). The index 𝑛 denotes the different random configurations generated at the
beginning of the proliferation step (box 1). Each of these Nin configurations is given a probability weight 𝑤𝑛 through the NNLS minimization
Equation (25) and survives the proliferation step if 𝑤𝑛 > 0. After 𝑁p repetitions of this step (box 2), the stability of the saved solutions is tested
by randomly perturbing (mutating) them and estimating the probability weights of the new perturbed solutions (box 3). The extinction step saves
the configurations of highest probability (box 4). After 𝑁m repetitions of the mutation and extinction steps, the 𝑁out configurations with the
largest weights are taken as a solution of Equation (22)

FIGURE 4 Direction sets used for the
𝑏Δ = 1 dataset. Different colors represent
directions derived from different platonic
solids22

3 METHODS

3.1 Simulated acquisition schemes

We considered an abbreviated b acquisition scheme that can be readily implemented in a standard clinical MRI scanner as a 6–7 minute protocol

comprising 30 axial slices. Similar protocols have already been used for in vivo studies of brain tissue microstructure.95 The acquisition scheme

consists of 53 linearly encoded signals (𝑏Δ = 1) distributed over four 𝑏-values (6, 10, 16, and 21 points at 𝑏 = 100, 700, 1400, and 2000 s∕mm2,

respectively), 32 spherically encoded signals (𝑏Δ = 0) sampled over four 𝑏-values (6, 6, 10, and 10 points at 𝑏 = 100, 700, 1400, and 2000 s∕mm2,

respectively), plus one 𝑏 = 0 signal. The various points of the 𝑏Δ = 1 dataset were measured at different b orientations. For each 𝑏 shell, we used

direction sets derived from platonic solids,22 as shown in Figure 4. The number of directions per shell was chosen in order to yield a rotationally

invariant powder-averaged signal.95

3.2 Statistical descriptors

According to Equations (10) and (11), the powder-averaged signal deviations from monoexponentiality have a first-order dependence on the

voxel-scale variance of isotropic diffusivities V[𝐷iso] and the voxel-scale mean of squared anisotropic diffusivities E[𝐷2
aniso

]. Therefore, we focus

on the estimation of the mean diffusivity E[𝐷iso] (Equation (4)), the normalized mean squared anisotropy Ẽ[𝐷2
aniso

] (Equation (5)), and the isotropic
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variance V[𝐷iso] (Equation (6)). While these statistical descriptors are all lower-bounded by 0, the mean diffusivity is reasonably upper-bounded by

the free-water diffusivity, that is, 3 μm2/ms at body temperature, the normalized mean anisotropy is upper-bounded by 1 by construction, and the

isotropic variance is reasonably upper-bounded around 1.21 μm4/ms2 for a voxel containing equal proportions of free water (𝐷iso ≃ 3 μm2/ms)

and white matter (𝐷iso ≃ 0.8 μm2/ms).

3.3 Comparison steps

To ensure a fair comparison of the different inversion techniques, all readily available as Matlab code on GitHub,93,94 we follow the steps below.

1. A system of interest is simulated by generating a set of ground-truth features {𝐷||, 𝐷⟂, 𝜃, 𝜙,𝑤}, from which the ground-truth descriptors of

interest and the ground-truth set of signals {gt,𝑖} are computed using the general signal decay Equation (1). This computation is in agreement

with the conventional procedure for testing 1D or 2D Laplace inversion algorithms, where the ground-truth signal is calculated with the

same kernel as the inversion and it is well known that infinite SNR is not by itself sufficient for recovering the input distribution.59,61,89,91

2. Each signal inversion technique is run on an identical set of signals with added Rician noise:

{𝑖} =
⎧⎪⎨⎪⎩
√(gt,𝑖 +

𝜈𝑖

SNR

)2

+
(

𝜈′
𝑖

SNR

)2
⎫⎪⎬⎪⎭ , (26)

where 𝜈𝑖 and 𝜈′
𝑖

denote random numbers drawn from a normal distribution with zero mean.

3. Step 2 is repeated 100 times to build up statistics on parameter estimation of E[𝐷iso], Ẽ[𝐷2
aniso

], and V[𝐷iso].

In this work, we investigated a clinically relevant SNR of 30 and the ideal infinite SNR. Since the Rician bias has been shown to be relevant

only when the SNR approaches unity,96 affecting the estimation of diffusion metrics,97-99 the results presented in section 4 are identical to those

obtained from signals with added Gaussian noise. While accuracy is quantified by the difference between the median and the ground-truth (bias),

precision is quantified by the interquartile range (IQR). A ‘‘good’’ estimation is defined as one that presents both high accuracy and high precision.

4 RESULTS AND DISCUSSION

4.1 Varying mean diffusivity

Figure 5 shows the accuracy and precision of the investigated signal inversion algorithms for isotropic unimodal systems with various mean

diffusivities E[𝐷iso], probed with the acquisition scheme described in section 3.1. Gamma and Cov, two methods that consider a fixed functional

form for the DTD, behave differently when E[𝐷iso] varies. Indeed, while Gamma shows excellent accuracy and precision for all values of E[𝐷iso],
Cov estimates a negative normalized anisotropy and presents finite-SNR biases in E[𝐷iso] and V[𝐷iso] at high E[𝐷iso] values. Such biases come

from the fact that higher mean diffusivities at constant maximal 𝑏-value push the covariance tensor approximation further beyond its range of

validity in terms of the value of b ∶ ⟨D⟩ (see Equation (17)), making it more sensitive to noise in the data without necessarily making it inadequate

at higher SNRs (absence of infinite-SNR bias). As for MC-2D, which does not consider a fixed functional form for the powder-averaged DTD, it

correctly quantifies changes caused by E[𝐷iso], albeit with a low precision in V[𝐷iso]. Finally, MC-4D, which does not consider a fixed functional

form for the general DTD, overestimates Ẽ[𝐷2
aniso

] significantly at finite SNR, but preserves contrast for E[𝐷iso] and V[𝐷iso] nonetheless. This

overestimation, along with the absence of infinite-SNR bias in Ẽ[𝐷2
aniso

], indicates a high sensitivity of MC-4D to noise in the acquired signals.

In Figure 5 and all remaining figures of this work, a general trend is that any bias in estimating the mean diffusivity E[𝐷iso] is reflected directly

as a bias in estimating the other isotropic descriptor, that is, the isotropic variance V[𝐷iso]. In contrast, the estimation of the mean normalized

anisotropy Ẽ[𝐷2
aniso

] is quite independent of the other descriptor estimations.

4.2 Varying variance of isotropic diffusivities

Figure 6 shows the accuracy and precision of the signal inversion algorithms investigated for isotropic bimodal systems that change in terms of

isotropic variance V[𝐷iso], while keeping a constant low E[𝐷iso] of 0.8 μm2/ms (panel A) or a constant high E[𝐷iso] of 2 μm2/ms (panel B). Both cases

are relevant in vivo: while the former could arise in diseased white matter, the latter represents voxels containing both low E[𝐷iso] tissues, such

as white or grey matter, and high E[𝐷iso] environments, such as cerebrospinal fluid or edema. It is worth noting that using unimodal distributions

to generate isotropic variance in the ground-truth DTD yields the same results as those obtained from bimodal distributions. However, unimodal

distributions implemented within physical bounds are limited to a narrower range of isotropic variances.

At infinite SNR, both Gamma and Cov present biases in estimating E[𝐷iso] and V[𝐷iso] at low E[𝐷iso] and high V[𝐷iso]. Although the Cov

approach possesses a higher precision in that regime, it also displays much larger infinite-SNR biases than Gamma at high E[𝐷iso] and high

V[𝐷iso]. The infinite-SNR biases observed at low E[𝐷iso] and high V[𝐷iso] persist at finite SNR. The infinite-SNR biases of Cov at high E[𝐷iso] are
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FIGURE 5 Performance of different inversion techniques in the characterization of an isotropic toy system consisting of a Gaussian distribution
of diffusivities with varying mean but a constant standard-deviation-to-the-mean ratio of 0.1 μm2/ms. The properties of the simulated
system—mean diffusivity E[𝐷iso], normalized mean squared anisotropy Ẽ[𝐷2

aniso
], and variance of isotropic diffusivities V[𝐷iso]—were estimated

by fitting the Gamma (orange circles), Cov (green squares), MC-2D (red triangles), and MC-4D (blue stars) algorithms to 100 different signal
realizations simulated with either finite (top) or infinite (bottom) SNR. The various descriptors are plotted as a function of E[𝐷iso], with symbols
indicating the medians of the descriptors across 100 inversions, shifted error bars representing the interquartile ranges (IQRs) that separate the
first quartile from the third quartile across 100 inversions, and black dashed lines denoting the ground-truth descriptors. The bottom right panels
illustrate the diffusion tensor distributions of the voxel contents investigated

not detected at finite SNR, and are instead replaced by the high-E[𝐷iso] and low-V[𝐷iso] biases that were already observed in Figure 5. Despite

their limitations, both Gamma and Cov estimate Ẽ[𝐷2
aniso

] accurately at high or low E[𝐷iso] (with Cov allowing negative anisotropy parameters, as

in Figure 5). The Monte Carlo inversions do not show any infinite-SNR bias, but do exhibit finite-SNR biases at low E[𝐷iso] that increase with

increasing V[𝐷iso]. This can be understood by the fact that generating isotropic variance implies giving more weight to intravoxel diffusional

components with isotropic diffusivities both lower and higher than E[𝐷iso]. Hence, at low E[𝐷iso] and high V[𝐷iso], the in silico dataset comprises

slow-diffusing components that present little signal contrast with the moderate 𝑏-values used in this study. This means that, at low SNR, the

MC-4D method cannot tease apart the slow-diffusing components and overestimates E[𝐷iso], which in turn leads to an overestimation of both

Ẽ[𝐷2
aniso

] and V[𝐷iso]. These inaccuracies are reduced significantly at high E[𝐷iso], where the MC-4D method captures V[𝐷iso]accurately and

presents a much reduced bias in Ẽ[𝐷2
aniso

]. The bias reduction in Ẽ[𝐷2
aniso

] originates from the upper physical bound that is imposed on the random

axial and radial diffusivities generated by the Monte Carlo algorithms; this upper bound limits the maximal anisotropy of the high-E[𝐷iso] sampled

configurations. Shifting our focus to the model-free inversion of powder-average signals, we observe that MC-2D tends to have a significantly

lower precision than other methods when estimating E[𝐷iso] and V[𝐷iso], but captures Ẽ[𝐷2
aniso

] accurately.

4.3 Varying anisotropy with and without orientational order

Figure 7 shows the accuracy and precision of the signal inversion algorithms investigated for anisotropic unimodal systems with varying normalized

mean anisotropy Ẽ[𝐷2
aniso

]; while panel A focuses on orientationally ordered systems, panel B presents orientationally dispersed systems. Notice

that, unlike other measures of anisotropy such as fractional anisotropy (FA),5Ẽ[𝐷2
aniso

] is not affected by the degree of orientational order and

is directly proportional to the underlying subvoxel anisotropy.69 All diffusional components in Figure 7 share the same value of 𝐷 iso, which,

according to Equation (5), implies Ẽ[𝐷2
aniso

] = E[𝐷2
Δ]. For the most anisotropic system, the first-order signal deviation from monoexponentiality is

quantified as (4∕5) Ẽ[D2
aniso

] E[Diso]2 = 0.29 μm4/ms2 (see Equation (11)).

Gamma exhibits similar results for both oriented and orientationally dispersed systems: it can quantify anisotropy accurately, except for

extremely high values of Ẽ[𝐷2
aniso

], where infinite-SNR biases are observed. Similar infinite-SNR biases were also observed for isotropic systems



REYMBAUT ET AL. 11 of 19

FIGURE 6 Performance of different inversion techniques in the characterization of two isotropic toy systems consisting of bimodal distributions
of Diso with a constant mean isotropic diffusivity E[𝐷iso] of (A) 0.8 μm2/ms and (B) 2 μm2/ms. Each toy system was devised as a sum of two
Gaussian distributions with identical standard deviations (𝜎 = 0.05 μm2/ms). Symbol/color conventions are identical to those of Figure 5

with low E[𝐷iso] and high V[𝐷iso] (see Figure 6A), which indicates that the Gamma model cannot capture large deviations from monoexponentiality

accurately. Gamma is not affected by orientational dispersion, because the powder-averaged signal associated with the acquisition scheme

described in section 3.1 yields sufficient rotational invariance. Cov shows the same trends observed in the Gamma analysis, except for its

infinite-SNR biases in orientationally dispersed systems containing microscopic domains of sufficiently high anisotropy. This can be understood by

the fact that such systems are characterized by a ‘‘ski-slope’’ distribution (see the bottom panel of Figure 1A), wherein higher-than-second-order

moments, not captured accurately by a cumulant expansion, are nonnegligible. Regarding MC-2D, it shows satisfying accuracy for all descriptors
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FIGURE 7 Descriptors of interest estimated by the inversion algorithms investigated as a function of the normalized mean anisotropy Ẽ[𝐷2
aniso

]
for anisotropic toy systems consisting of (A) aligned and (B) orientationally dispersed anisotropic components, each of which is described by a
unimodal distribution of 𝐷Δ (Gaussian distribution) with constant 𝐷iso = 0.8 μm2/ms and constant standard-deviation-to-the-mean ratio of 0.1.
Orientationally dispersed systems are characterized by the order parameter OP = E[𝑃2(cos 𝛽)] = E[(3cos2𝛽 − 1)∕2] = 0.01. Notice that even
though the first and third simulated systems exhibit the same normalized mean anisotropy, the former contains planar anisotropic components
(subscript P) and the latter contains linear anisotropic components (subscript L). Symbol/color conventions are identical to those of Figure 5

but has low precision when estimating E[𝐷iso] and V[𝐷iso]. Besides this, it is worth mentioning that MC-2D is very sensitive to the rotational

invariance of the powder-averaged signal, as severe infinite-SNR biases appear when the powder-averaged signal is not truly rotationally

invariant. A slight infinite-SNR bias is found in Figure 7A, because the acquisition scheme described in section 3.1 does not possess a perfectly
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FIGURE 8 Descriptors of interest estimated by the investigated inversion algorithms as a function of the order parameter OP = E[𝑃2(cos 𝛽)] for
systems consisting of anisotropic components, each described by a unimodal distribution of 𝐷Δ (Gaussian distribution) with constant
𝐷iso = 0.8 μm2/ms and constant standard-deviation-to-the-mean ratio of 0.1. Each order parameter is fixed by orientating the anisotropic
components following a given Watson distribution. These systems share common E[𝐷iso] = 0.8 μm2/ms, Ẽ[𝐷2

aniso
] = 0.47, and V[𝐷iso] = 0.

Symbol/color conventions are identical to those of Figure 5

rotationally invariant powder average. Finally, MC-4D overestimates descriptors in both cases, but still preserves contrast and does not exhibit

any infinite-SNR bias. The effects of intravoxel orientation dispersion alone are discussed in the next section.

4.4 Orientational order and crossings

Figure 8 probes another degree of freedom of the diffusional size/shape/orientation 4D space, namely orientational order, with constant E[𝐷iso],
Ẽ[𝐷2

aniso
], and V[𝐷iso]. Orientational order is quantified using the order parameter OP = E[𝑃2(cos 𝛽)] = E[(3cos2𝛽 − 1)∕2], where 𝛽 is the angle

between a component and the main eigenvector of the Saupe order tensor.69,100 In particular, powder-like systems (OP → 0 and sufficiently

high Ẽ[𝐷2
aniso

]) can naturally arise in foodstuff,81 colloidal systems,100 and meningiomas.74 Given the fact that the different systems studied

share common E[𝐷iso] = 0.8 μm2/ms, Ẽ[𝐷2
aniso

] = 0.46, and V[𝐷iso] = 0, the system at OP = 1 matches a combination of the two last systems

of Figure 7. Consequently, only changes occurring with decreasing orientational order remain to be discussed, as other trends were already

discussed in section 4.3. Moreover, the effects of decreasing orientational order were observed to be analogous to those of increasing crossing

angles between bundles of anisotropic components, meaning that the observations made in this section can also be used to understand the

performance of the various analysis methods for systems consisting of crossing fibers.

The accuracy and precision of Gamma are unaffected by orientational order, as the powder average of signals associated with the acquisition

scheme described in section 3.1 yields sufficient rotational invariance. Any bias of Gamma is here inherited from the high subvoxel anisotropy of

the different systems, as shown in Figure 7. As for Cov, its infinite-SNR biases identified at low OP and high Ẽ[𝐷2
aniso

] in Figure 7B are now observed

to develop progressively with decreasing OP, as the higher-than-second-order moments of the underlying DTD gain more relevance. MC-2D

still presents the lowest precision, but exhibits an increased accuracy with decreasing orientational order that correlates with its infinite-SNR

biases. This can be explained by the fact that the acquisition scheme described in section 3.1 does not possess a perfectly rotationally invariant

powder average. This limitation becomes less and less relevant as the system itself becomes powder-like. Because the Gamma and MC-2D

methods are both based on powder-averaged signals, one would expect the performance of both methods to be independent of OP. The fact

that MC-2D shows a decreased accuracy at high OP, while Gamma does not, shows that the former method is more sensitive to errors in the

powder-averaging procedure than the latter. Finally, MC-4D does not possess any infinite-SNR bias, but sees its finite-SNR accuracy decrease

with decreasing orientational order. This is due to the fact that fitting becomes more challenging when the subvoxel microstructure comprises

multiple relevant orientations.
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FIGURE 9 Descriptors of interest estimated by the inversion algorithms investigated as a function of the signal fraction fiso ∈ [0,1] of an
isotropic cerebrospinal-fluid-like structure (Gaussian distribution of Diso with mean 3 μm2/ms and standard deviation 0.1 μm2/ms), starting from
a voxel containing a fiber-like structure. This anisotropic structure is made of a Watson distribution of anisotropic components with an internal
distribution of 𝐷|| (Gaussian distribution centered at 1.77 μm2/ms) and 𝐷⟂ (Gaussian distribution centered at 0.31 μm2/ms). The diffusivities
used come from multiple white-matter fiber estimations of the Magic DIAMOND model.23,24,104 The Watson distribution is set to an
intermediate order parameter OP = 0.4 to mimic some fiber dispersion. Symbol/color conventions are identical to those of Figure 5

4.5 Varying fractions of isotropic and anisotropic components

Figure 9 presents the accuracy and precision of the signal inversion techniques investigated for systems shifting progressively from a single

fiber-like voxel content to a cerebrospinal-fluid-like voxel content; these systems mimic the progression of damage in a single white matter

system with intermediate orientational order. This shift is quantified by the signal fraction fiso of the isotropic environment. The changes occurring

between these composite systems are summed up here:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

System 1
𝑓fiber = 1
𝑓iso = 0
E[𝐷iso] = 0.8
Ẽ[𝐷2

aniso
] = 0.37

V[𝐷iso] = 1.84 × 10−3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

System 2
𝑓fiber = 0.75
𝑓iso = 0.25
E[𝐷iso] = 1.32
Ẽ[𝐷2

aniso
] = 0.1

V[𝐷iso] = 0.85

⎧⎪⎪⎪⎨⎪⎪⎪⎩

System 3
𝑓fiber = 0.5
𝑓iso = 0.5
E[𝐷iso] = 1.86
Ẽ[𝐷2

aniso
] = 0.03

V[𝐷iso] = 1.13

⎧⎪⎪⎪⎨⎪⎪⎪⎩

System 4
𝑓fiber = 0.25
𝑓iso = 0.75
E[𝐷iso] = 2.39
Ẽ[𝐷2

aniso
] = 0.01

V[𝐷iso] = 0.85

⎧⎪⎪⎪⎨⎪⎪⎪⎩

System 5
𝑓fiber = 0
𝑓iso = 1
E[𝐷iso] = 3
Ẽ[𝐷2

aniso
] = 0

V[𝐷iso] = 3.7 × 10−3

(27)

where E[𝐷iso] is expressed in μm2/ms and V[𝐷iso] is expressed in μm4/ms2. Going from system 1 to system 5, E[𝐷iso] increases and the mean

anisotropy decreases. As for isotropic variance, it increases between systems 1 and 3 and decreases between systems 3 and 5. Here, all results

related to accuracy and precision can be understood from previous sections, so that only the contrasts captured by the inversion techniques

remain to be discussed.

All investigated methods capture changes in E[𝐷iso] as a function of 𝑓iso accurately, with comparable levels of accuracy and precision. Similarly,

all methods capture the monotonic decrease of Ẽ[𝐷2
aniso

] with increasing 𝑓iso. While they share comparable precisions, the highest finite-SNR

accuracy is obtained by MC-2D and the lowest finite-SNR accuracy is yielded by MC-4D. Finally, only MC-2D and MC-4D capture the changes

in V[𝐷iso] as a function of 𝑓iso. They present, respectively, low and intermediate precision.

5 CONCLUSION AND OUTLOOK

We investigated how the accuracy and precision of multidimensional signal inversion algorithms behave in multiple systems varying in terms

of mean diffusivity, variance of isotropic diffusivities, mean squared diffusion anisotropy, orientational order, and fractions of isotropic and
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anisotropic components. The Gamma distribution fitting (Gamma) quantifies changes induced by E[𝐷iso] and is robust to orientational dispersion,

but does not capture large signal deviations from monoexponentiality, originating from either isotropic variance or anisotropy, accurately. The

validity of the two-term covariance tensor approximation (Cov) is inherently limited by the b ∶ ⟨D⟩ → 0 condition, which breaks down at high

E[𝐷iso] or 𝑏-values. For those values, Cov becomes very noise-sensitive and its accuracy decreases significantly. At low E[𝐷iso], it quantifies changes

due to anisotropy in systems with high orientational order but describes systems with intermediate to large isotropic variance inaccurately.

Furthermore, Cov is not robust to orientational dispersion, because the underlying DTD of orientationally dispersed anisotropic components

features nonnegligible higher-than-second-order moments that cannot be captured by a cumulant expansion. Nonetheless, Cov yields very fast

inversions, as it can be recast into a linear problem tractable via mere matrix pseudoinversion. As for the 2D Monte Carlo inversion (MC-2D),

it possesses a lower precision than other techniques, but nonetheless exhibits high accuracy for all the cases studied in this work. The major

limitation in terms of accuracy is that this technique requires a rotationally invariant powder-averaged signal. Otherwise, biases appear even

at infinite SNR for orientationally ordered voxel contents. Regarding the 4D Monte Carlo inversion (MC-4D), it overestimates all descriptors

of interest in isotropic systems, because its sensitivity to noise translates as an additional anisotropy. This overestimation was observed to

worsen in orientationally dispersed anisotropic systems, because it becomes difficult to tease apart the multiple relevant orientations of the

subvoxel microstructure within the acquisition noise. Despite these limitations, MC-4D captures good contrast for all descriptors in the systems

investigated and is the only technique that does not exhibit any infinite-SNR bias.

It is important to mention that all observations made in this article depend critically on the design of the acquisition scheme. Indeed, besides

the aforementioned effect of rotational invariance of the powder-averaged signal, preliminary work by the present authors indicates that the

performance of the various methods is affected by the choice of acquired coordinates (𝑏, 𝑏Δ,Θ,Φ), especially for Monte Carlo inversion techniques.

For instance, removing the 𝑏 = 0 signal from the acquisition scheme chosen in the present study, which is not conventional in the clinical setting,

causes MC-4D to exhibit infinite-SNR biases at high V[𝐷iso] in the systems shown in Figure 6. This is due to the fact that our two lowest non-zero

𝑏-values, 100 and 700 s/mm2, cannot capture alone the initial signal decay at low 𝑏-value. Interestingly, acquisition schemes containing planar

𝑏 tensors (𝑏Δ = −0.5) have been shown to increase precision in parameter estimation in both biophysical models and signal representations of

white-matter tissues.101,102 Although outside the scope of this present work, a comprehensive study of the link between experimental design and

inversion performance should be pursued nonetheless. Alternative analysis procedures and improvements to the methods studied should also be

investigated.

First, developing a Gamma equivalent of the covariance tensor approximation, that is, considering a matrix-variate Gamma distribution23,24,103,104

in order to constrain the solution space to physical solutions, could prove useful. Second, previous studies have shown that denoising techniques105

can improve the precision of parameters estimated from the Laplace inversion of MRI relaxometry data.106 Assuming that similar denoising

algorithms can be translated directly to tensor-valued diffusion data, they may improve the performance of the algorithms studied in this article.

The MC-4D method in particular could gain a huge boost in accuracy, as it does not possess any infinite-SNR bias and most of its limitations

stem from its sensitivity to noise in the data. Finally, regularization techniques have traditionally been used to constrain the solution space of

various diffusion and relaxation signal inversion techniques.88,90,107,108 Whether or not such regularization constraints improve the inversion of

tensor-valued data is a question that remains to be addressed.

Despite the protocol dependence of our present study, let us propose the following take-home message. The Gamma distribution fitting grants

a versatile inversion that retrieves accurate statistical descriptors of the intravoxel diffusion tensor distribution as long as the powder-averaged

signal does not deviate severely from monoexponentiality. The covariance tensor approximation shares many limitations of the Gamma

distribution fitting, but offers fast inversions that render it practical for immediate, yet preliminary, clinical assessment of tissue microstructure.

Nevertheless, one should avoid studying anisotropic tissues with low orientational order, such as edematous white-matter tissues and certain

meningiomas. Regarding these two inversion methods, preliminary work suggests that their infinite-SNR biases are intrinsic, which indicates that

only limited improvement will be achieved by optimizing the acquisition scheme. In contrast, Monte Carlo inversion techniques are slow, but do

not present infinite-SNR biases when applied to reasonable clinical protocols, which suggests that their true potential is yet to be reached, upon

reduction of the effect of noise. Nonetheless, the 2D Monte Carlo inversion, the accuracy of which depends strongly on the rotational invariance

of the powder-averaged signal and the precision of which is remarkably lower than that of other inversion techniques, should be avoided. As

for the 4D Monte Carlo inversion, it may still preserve contrast despite its finite-SNR biases and is the only one that can access fiber-specific

information,92 making it promising on the one hand for clinical assessment of tissue microstructure and on the other hand for future studies of

both neurodevelopment and neurodegeneration.
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