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Experimental neural network enhanced quantum tomography
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Quantum tomography is currently ubiquitous for testing any implementation of a quantum information processing device. Various
sophisticated procedures for state and process reconstruction from measured data are well developed and benefit from precise
knowledge of the model describing state-preparation-and-measurement (SPAM) apparatus. However, physical models suffer from
intrinsic limitations as actual measurement operators and trial states cannot be known precisely. This scenario inevitably leads to
SPAM errors degrading reconstruction performance. Here we develop a framework based on machine learning which generally
applies to both the tomography and SPAM mitigation problem. We experimentally implement our method. We trained a supervised
neural network to filter the experimental data and hence uncovered salient patterns that characterize the measurement
probabilities for the original state and the ideal experimental apparatus free from SPAM errors. We compared the neural network
state reconstruction protocol with a protocol treating SPAM errors by process tomography, as well as to an SPAM-agnostic protocol
with idealized measurements. The average reconstruction fidelity is shown to be enhanced by 10% and 27%, respectively. The
presented methods apply to the vast range of quantum experiments which rely on tomography.
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INTRODUCTION

Rapid experimental progress realizing quantum enhanced tech-
nologies places an increased demand on methods for validation
and testing. As such, various approaches to augment state- and
process tomography have recently been proposed. A persistent
problem faced by these contemporary approaches are systematic
errors in state-preparation-and-measurements (SPAM). Such
notoriously challenging errors are inevitable in any experimental
realization.””"" Here we develop a data-driven, deep-learning
based approach to augment state- and detector tomography that
successfully minimized SPAM error on quantum optics
experimental data.

Several prior approaches have been developed to circumvent
the SPAM problem. One line of thought leads to the so-called
randomized benchmarking protocols,>'%'® which were designed
for quality estimation of quantum gates in the quantum circuit
model. The idea is to average the error over a large set of
randomly chosen gates, thus effectively minimizing the average
influence of SPAM. Randomized benchmarking in its initial form
however, only allowed to estimate an average fidelity for the set of
gates, so more elaborate and informative procedures were
developed.®>'® Another example is gate set tomography.*'>'¢
Therein the experimental apparatus is treated as a black box with
external controls allowing for (i) state preparation, (ii) application
of gates and, (iii) measurement. These unknown components (i)-
(iii) are inferred from measurement statistics. Both approaches
require long sequences of gates and are not suited for a simple
prepare-and-measure scenario in quantum communication appli-
cations. Indeed, in such a scenario the experimenter faces careful
calibration of the measurement setup, or in other words quantum
detector tomography,”®'” which works reliably if known probe
states can be prepared.'®%!

As (imperfect) quantum tomography is a data-driven technique,
recent proposals suggest a natural benefit offered by machine-
learning methods. Bayesian models were used to optimize the

data collection process by adaptive measurements in state
reconstruction,”®%? process tomography,®® Hamiltonian learn-
ing,** and other problems in experimental characterization of
quantum devices.”> Neural networks were proposed to facilitate
quantum tomography in high-dimensions. In such approaches
neural networks of different architectures, such as restricted
Boltzmann machines,”'%?° variational autoencoders,'’ and other
architectures®” are used for efficient state reconstruction; inter-
estingly, a model for tackling a more realistic scenario of mixed
quantum states has been proposed.?®

Our framework differs significantly and is based on supervised
learning, specifically tailored to address SPAM errors. Our method
hence compensates for measurement errors of the specific
experimental apparatus employed, as we demonstrate on real
experimental data from high-dimensional quantum states of
single photons encoded in spatial modes. The success of our
approach bootstraps the well-known noise filtering class of
techniques in machine learning.

Performing quantum state estimation implies the reconstruc-
tion of the density matrix p of an unknown quantum state given
the outcomes of known measurements.>*>' In general, a
measurement is characterized by a set of positive operator valued
measures (POVMs) {M,} with index a € A the different config-
urations of the experimental apparatus (set .A). Given the
configuration a, the probability of observing an outcome y is
given:

Pyla,p) = Tr (Mayp), (M

where Mg, € M, are POVM elements, i.e, positive operators
satisfying the completeness relation > M, = 1. A statistical
estimator maps the set of all observed outcomes Dy = {y,,}ﬁ:1
onto an estimate of the unknown quantum state p. A more
general concept of quantum process tomography stands for a
protocol dealing with estimation of an unknown quantum
operation acting on quantum states.>*** Process tomography
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Fig. 1 The DNN architecture employed in our experiments. Input

and output layers constitute of 36 neurons each and two hidden
layers of 400 and 200 neurons, respectively. The DNN modifies its
internal parameters to find a function F : P(y|a,p) — P(y|a,p)
which translates between the experimentally estimated probabilities
P(yla,p), subjected to SPAM errors, at the input and ideal P(y|a, p)
at the output. To achieve this goal the network is forced to reduce
the Kullback-Leibler divergence amongst pairs of distributions. An
early stopper is applied in order to avoid overfitting during the
training phase.

uses measurements on a set of known test states {p,} to recover
the description of an unknown operation. (See Supplementary
Material for the thorough discussion of quantum process
tomography and its application for calibration of the measure-
ment setup).

The reconstruction procedure requires knowledge of the
measurement operators {M}, as well as the test states {p,} in
the case of process tomography. However, both tend to deviate
from the experimenter’s expectations due to stochastic noise and
systematic errors. While stochastic noise may to some extent be
circumvented by increasing the sample size, systematic errors are
notoriously hard to correct. The only known way to make
tomography reliable is to explicitly incorporate these errors in
(Eg. 1). Thus, trial states and measurements should be considered
as acted upon by some SPAM processes: p, = R(p,) and
Mg, = M(Myy), and the models for these processes should be
learned independently from a calibration procedure. Such
calibration is essentially tomography on its right. For example,
the reconstruction of measurement operators is known as
detector tomography>®'73%3> and requires ideal preparation of
calibration states. The most straightforward approach is calibra-
tion of the measurement setup with some close-to-ideal and easy
to prepare test states, or calibration of the preparation setup with
known and close-to-ideal measurements. In this case, one may
then infer the processes R and/or M explicitly—for example—in
the form of the corresponding operator elements, and incorporate
this knowledge in the reconstruction procedure. Ideally, this
procedure should produce an estimator free from bias caused by
systematic SPAM errors. (See Supplementary Material for the
detailed description of this procedure applied to our experiment).

RESULTS

Given the estimates of raw probabilities inferred from the
experimental dataset IP(y|a,p) = Tr (Mqp), one wants to estab-
lish a one-to-one correspondence P(y|a,p) < P(y|a,p) with the
ideal probabilities for the measurement setup free from SPAM
errors. We use a deep neural network (DNN) to approximate the
map from P to P.

To train and test the DNN we prepare a dataset of N Haar-

random pure states Dy = {|y;)}\ ;. For a d-dimensional Hilbert
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space, reconstruction of a Hermitian density matrix with unit trace
requires at least d? different measurements. The network is trained
on the dataset, consisting of d*x N frequencies experimentally

~ 2
obtained by performing the same d* measurements {/VIV}:::1 for

all N states (in our experiments d = 6). These frequencies are fed to
the input layer of the feed-forward network consisting of d* = 36
neurons. Training is performed by minimization of the loss
function, defined as the sum of Kullback-Leibler divergences

between the distributions of predicted probabilities {p{,}‘yj; at the

output layer of the network and the ideally expected probabilities
Lod? X .

{P’y}y=1, which are calculated for the test states as P, = Tr (Myp;)

assuming errorless projectors M,

N R NE (P
L=> Da({P}{p'}) =D Pjlog <p—,v> 2
=1 i=1 y=1 Y

We tested different neural architectures with different config-
uration parameters; currently, there are few guidelines that
explain how to find a suitable neural network to solve a specific
problem. In general deeper architectures are more difficult to train
due to the increasing number of parameters; the best architecture
we have found uses two hidden layers as shown in Fig. 1. The first
hidden layer is chosen to consist of 400 neurons, whilst the
second contains 200. (See Supplementary Material for DNN
architecture and the details of training process). To prevent
overfitting we applied dropout between the two hidden layers
with drop probability equal to 0.2, i.e., at each iteration we
randomly drop 20% neurons of the first hidden layer in such a way
that the network becomes more robust to variations. We use a
rectified linear unit as an activation function after both hidden
layers, while in the final output d>-dimensional layer we use a
softmax function to transform the predicted values to valid
normalized probability distributions. Following the standard
paradigm of statistical learning, we divided our dataset of overall
N =10,500 states (represented by their density matrix elements)
into 7000 states for training, 1500 states for validation, and 2000
for testing. The validation set is an independent set and is used to
stop the network training as soon as the error evaluated for this
set stops decreasing.

We fix the set of tomographicaly complete measurements
{M,} = M to estimate all matrix elements of p using (1) and an
appropriate estimator. We will assume that our POVM M consists
of d* one-dimensional projectors M, = |<py><(py‘. These projectors
are transformed by systematic SPAM errors into some positive
operators M,. Experimental data consist of frequencies f,=n,/n,
where n,, is the number of times an outcome y was observed in a
series of n measurements with identically prepared state p. For the
time being, we assume, that all the SPAM errors can be attributed
to the measurement part of the setup, and the state preparation
may be performed reliably. This is indeed the case in our
experimental implementation (see Supplementary Material).

We reconstruct high-dimensional quantum states encoded in
the spatial degrees of freedom of photons. The most prominent
example of such encoding uses photonic states with orbital
angular momentum (OAM)*® as relevant to numerous experi-
ments in quantum optics and quantum information. However,
OAM is only one of two quantum numbers, associated with
orthogonal optical modes, and radial degree of freedom of
Laguerre-Gaussian beams®>® as well as full set of
Hermite-Gaussian (HG) modes®® offer viable alternatives for
increasing the accessible Hilbert space dimensionality. One of
the troubles with using the full set of orthogonal modes for
encoding is the poor quality of projective measurements. Existing
methods to remedy the situation® trade reconstruction quality for
efficiency, significantly reducing the latter. Complex high-
dimensional projectors are especially vulnerable to measurement
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errors and fidelities of state reconstruction are typically at most
~0.9 in high-dimensional tomographic experiments.*' That
provides a challenging experimental scenario for our machine-
learning-enhanced methods.

Our experiment is schematically illustrated in Fig. 2. We use
phase holograms displayed on the spatial light modulator as
spatial mode transformers. At the preparation stage an initially
Gaussian beam is modulated both in phase and in amplitude to an
arbitrary superposition of HG modes, which are chosen as the
basis in the Hilbert space. At the detection phase the beam passes
through a phase-only mode-transforming hologram and is
focused to a single mode fiber, filtering out a single Gaussian
mode. This sequence corresponds to a projective measurement in
mode space, where the projector A7IV is determined by the phase
hologram. (See Supplementary Material for the details of the
experimental setup and state preparation and detection meth-
ods). In dimension d =6, we are able to prepare an arbitrary
superposition expressed in the basis of HG modes as
@) = 327,_6Cj|HG;). In the measurement phase we used a
symmetric informationally complete POVM, which is close to
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Fig. 2 Experimental setup for preparation and measurement of
spatial qudit states. In the generation part, single photons from a
heralded source are beam-shaped by a single mode fiber (SMF) and
then transformed by a hologram displayed on a spatial light
modulator. Analogously, the detection part consists of a hologram
corresponding to the chosen detection mode, followed by a single
mode fiber and a single photon counter. The hologram in the
generation part produces high-quality HG modes with the use of
amplitude modulation, while a phase-only hologram at the
detection part sacrifices projection quality for efficiency.
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optimal for state reconstruction and may be relatively easily
realized for spatial modes.*'

We performed state reconstruction using maximum likelihood
estimation®? for both raw experimental data and DNN-processed
data. (See also Supplementary Material for extra information on
spatial probability distribution of reconstructed states). In the
former case, the log-likelihood function to be maximized with
respect to p has been chosen as L(f}|p) Zi;f’ylog [Tr (M,p)],
with frequencies f,=n,/n and i numbering the test set states.
Whereas in the latter case, these frequencies have been replaced
with  predicted probabilities p,. The results for [)’(mw) =
argmax Eg‘Hp) and ﬁ)’(,m) = argmax L(p,|p) with the prepared
states W are shown in Fig. 3. Interestingly, the average
reconstruction fidelity increases from Fyq4,) =(0.82+0.05) to
Finmy = (0.91 £0.03) and this increase is uniform over the entire
test set. Similar behavior is observed for the purity—since we did
not force the state to be pure in the reconstruction, the average
purity of the estimate is less then unity: 74 = (0.78 £ 0.07),
whereas m(,, = (0.88 £0.04). If the restriction to pure states is
explicitly imposed in the reconstruction procedure, the fidelity
increase is even more significant, as shown in Fig. 3(c). In this case
the initially relatively high fidelity of F4,,) = (0.94 + 0.03) increases
to Fn=1(0.98+0.02)—a very high value, given the states
dimensionality.

DISCUSSION

Our results were obtained with analytical correction for some
known SPAM errors already performed. In particular, we have
explicitly taken into account the Gouy phase-shifts acquired by
the modes of different order during propagation (see Supple-
mentary Material). This correction is however unnecessary for
neural network post processing. The DNN has been trained
without any need of data preprocessing over the experimental
dataset, as to say without introducing any phase correction in
our initial data, wherein considering the effect of a channel
process &£. However, we have achieved average estimation
fidelities of F(,, = (0.81 £ 0.19) as compared with F4,) = (0.54 =
0.12) for this completely agnostic scenario, showing a dramatic
improvement by straightforward application of a learning
approach.

In our experiment the prepared input states were close to pure
and we did not have a controllable way to systematically change
their purity. However, it is exactly the case of pure input states,
which is most seriously affected by SPAM errors, since in this case
the outcome probabilities are the most sensitive to perturbations in
the measurement operators. So the presented experimental results
illustrate the worst-case performance of our method. We have
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Fig. 3 Results of experimental state reconstruction with phase-only holograms. a Fidelity of the experimentally reconstructed states with
ideal F = <w’|b’(,aw/,,n) |") for 2000 test states reconstructed from raw data (orange bars) and reconstructed after neural network processing of
the data (blue bars). b A similar diagram for purity of the reconstructed states, m = Trp>. ¢ Fidelity histogram for the case, when the state is

reconstructed to be pure. The results of the filtering process are clearly witnessed by the modification of data histogram shapes. Besides the
shifting towards higher values that shows average gain over our experimental data, the reduction of FWHM indicates filtering task by the

neural network.
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examined the case of mixed states by numerical simulations (details
and results of the simulation are provided in Supplementary
Material), and conclude that DNN post processing enhances the
reconstruction quality for any purity of the input state.

DNN processing may be straightforwardly generalized to
process tomography, since the latter may always be formulated
as a state tomogrphy in higher dimensional space due to
Choi-Jamiotkowski isomorphism. It may present a valuable tool
in the case where randomized benchmarking and similar
protocols cannot be applied, such as in channel testing for
quantum communication.

Although the number of neurons in the hidden layers is quite
large in the current realization, the training procedure is still fast
and we do not believe it will be an issue for reasonable
applications. In the end, our method is specifically designed for
full state tomography, which itself is limited to rather small Hilbert
space dimensionalities due to fast growth of the number of
measurements required. Optimization of DNN architecture and
applications to protocols providing partial information about the
state are interesting directions for future work.

To conclude, our results unambiguously demonstrate that a use
of neural-network-architecture on experimental data can provide
a reliable tool for quantum state-and-detector tomography.
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