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Abstract—Our goal was to develop a robust algorithm for

numerical simulation of one-dimensional shallow water flow in a

complex multiply-connected channel network with arbitrary

geometry and variable topography. We apply a central-upwind

scheme with a novel reconstruction of the open water surface in

partially flooded cells that does not require additional correction.

The proposed reconstruction and an exact integration of source

terms for the momentum conservation equation provide positivity

preserving and well-balanced features of the scheme for various

wet/dry states. We use two models based on the continuity equation

and mass and momentum conservation equations integrated for a

control volume around the channel junction to its treatment. These

junction models permit to simulate subcritical and supercritical

flows in a channel network. Numerous numerical experiments

demonstrate the robustness of the proposed numerical algorithm

and a good agreement of numerical results with exact solutions,

experimental data, and results of the previous numerical studies.

The proposed new specialized test on inundation and drying of an

initially dry channel network shows the merits of the new numer-

ical algorithm to simulate the subcritical/supercritical open water

flows in the networks.

Keywords: Channel network with irregular geometry, Saint–

Venant equations, central-upwind scheme, well-balanced, positiv-

ity preserving, wetting/drying.

1. Introduction

The Saint–Venant equations are the common

basis for the 1D modeling of the open flow in river

and channel networks. Among different numerical

methods in the various computer codes used in

hydraulic engineering [e.g., HEC-RAS (Brunner

2016), ISIS 1D (CH2M HILL 2016), FEQ (Franz and

Melching 1997), CHARIMA (Holly et al. 1990),

NETSTARS (Lee and Hsieh 2003), FLDWAV (Fread

and Lewis 1998)], the Preissmann (1961) scheme is

one of the most widely used for the solution of one-

dimensional unsteady open-flow channel problem.

The Preissmann scheme is a weighted four-point

nonlinear implicit finite-difference scheme. The

advantage of this scheme is the efficient double-

sweep algorithm for the numerical solution of the

Newton–Raphson linearization of the Saint–Venant

equations in a multiply-connected channel network.

One of the disadvantages is that the scheme does not

provide positivity preserving of a numerical solution,

and therefore it cannot be applied to simulate water

flow in drying channels. The positivity of water flow

depth is especially important for schemes used for

simulations of mountain river flow. Steep bottom

slopes can generate artificial ‘‘drying’’ and conse-

quently crash the calculations due to negative values

of depth in numerical solutions if the Preissmann

scheme or other schemes without positivity preserv-

ing are used for modeling. The need to develop robust

schemes for modeling mountain river flows was

revealed last years during computational efforts to

simulate radionuclide transport in river networks of

mountain watersheds contaminated after the

Fukushima Daiichi nuclear accident (Kurikami et al.

2014; Zheleznyak et al. 2016; Kivva et al. 2018).

Moreover, a local convergence of the Newton–

Raphson method requires appropriate initial condi-

tions that may be problematic for a large river

network (Yu et al. 2017).

Many different schemes for hyperbolic equations

that preserve nonnegativity of water flow depth were

developed after the pioneering publication of
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Godunov (1959). We refer the reader to Boris and

Book (1973), van Leer (1979), Zalesak (1979),

Rodionov (1987), Nessyahu and Tadmor (1990),

Cockburn (1989), Kivva (2008), Zhang and Shu

(2011), Xing and Shu (2011), Xing (2016), where

different approaches are presented. Among them,

central (Kurganov and Tadmor 2000) and central-

upwind (Kurganov and Levy 2002) schemes are

widely used in a wide range of applications due to

their simplicity, efficiency, and robustness. For the

shallow water flow in open channels, these schemes

were applied in Balbás and Karni (2009), Balbás and

Hernandez-Duenas (2014), Hernandez-Duenas and

Beljadid (2016). Balbás and Karni (2009) presented a

central finite-volume scheme of second-order accu-

racy to simulate one-dimensional shallow water flows

along channels with non-uniform rectangular cross-

sections and bottom topography. Balbás and Her-

nandez-Duenas (2014) extended this scheme for

channels with cross-sections of arbitrary shape and

bottom topography. A central-upwind scheme with

artificial viscosity was proposed by Hernandez-Due-

nas and Beljadid (2016) for shallow water flows in

channels with arbitrary geometry and variable

topography. Hodges (2019) does a comprehensive

review of the Preissmann scheme versus Godunov-

like methods for solving the Saint–Venant equations.

He notes that there is no consensus on the best

method. There are numerous examples of successful

implementation of codes based on the Preissmann

schemes for large-scale river networks. However, in

contrast, with the Preissmann scheme, Godunov type

schemes and other finite volume methods for high-

resolution modeling could correctly preserve shocks

and transcritical flows. The limitation of the Preiss-

mann scheme to simulate the transcritical flows is

taken into account in the TELEMAC MASCARET

modeling system which library includes the numeri-

cal kernel based on the Preissmann scheme for plane

rivers without dams, and a finite volume Roe

scheme for dam-break simulations (Goutal and

Maurel 2002; Goutal et al. 2012). Among other

numerical methods for solving the Saint–Venant

equations, we mention finite-volume methods that do

not use the Godunov approach, finite-difference

methods other than the Preissmann scheme, finite

element method, finite element/volume method, dual-

finite volume method, discontinuous Galerkin meth-

ods, residual distribution methods, and Lagrangian

particle methods. For a detailed review of these

methods, we refer to Yoshioka et al. (2015), Lai and

Khan (2012, 2018), Hodges (2019). Yoshioka et al.

(2015) note that most of the conventional numerical

methods cannot appropriately handle river networks

with loops and flow transitions.

Taking into account the needs for a robust com-

putational algorithm for modeling multiply-

connected river networks, we implemented a central-

upwind scheme (Kurganov and Petrova 2007) for

open water flow in multiply-connected channel net-

works as a practical alternative to the Preissmann

scheme. In the framework of second-order central-

upwind schemes, we propose a novel reconstruction

of water surface elevation that does not require

additional correction in partially flooded cells. The

basic piecewise linear reconstruction in a central-

upwind scheme for partially flooded cells can pro-

duce a negative value of water depth on cell

boundary. Additional correction of the negative water

depths proposed by Kurganov and Petrova (2007)

artificially distort the free water surface that leads to

the appearance of fictitious water velocities. Under

additional correction to eliminate fictitious water

velocities Bollermann et al. (2013) suggested to take

into account water surface elevation in neighboring

flooded computational cells. However, on a coarse

grid, a partially flooded cell may not have neigh-

boring flooded cells. Our reconstruction algorithm is

a generalization of the reconstruction (Bollermann

et al. 2013) and it is applicable for any bottom

topography and its flooding.

The semi-discretization form of a central-upwind

scheme is obtained by approximation of integral

equations for the mass conservation and momentum

balance. The integral form of the momentum con-

servation equation includes terms that account for the

forces due to changes in channel width and bed ele-

vation (Cunge et al. 1980). Assuming that the water

and bed surface elevations and channel cross-section

depend linearly on the water and bed elevations, and

that channel cross sections are defined at cell faces,

we can exactly calculate the source term integrals on

any internal cell interval. The exact values of the

source term integrals with our proposed
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reconstruction will guarantee that the hydrostatic

fluxes at a cell are balanced by the source terms that

account for the sloping bed and variable channel

width for various wetting/drying steady states at rest.

One of the challenges is the treatment of a channel

junction in the modeling of open water flow in a

multiply-connected channel network. In many used

hydraulic engineering codes, it is assumed that two

groups of hydraulic conditions are held at a channel

junction (Cunge et al. 1980). One is that the sum of the

discharges has to be zero at the junction, and a second

is that the water levels or energy levels at the ends of

linked channels (reaches) are equal at the junction.

Such hydrodynamic models as CHARIMA, FEQ,

MIKE-11 (DHI 2017), RIVICE (Carson and Sydor

2013) and ONE-D (Environment Canada and Envi-

ronment 1995) use the equality of water surface

elevations at the junction. Others such as HEC-RAS

and FEQ are energy-based models. Usually, these

hydraulic conditions are specified as interior boundary

conditions. In the general case, the assumption of

equality of inflow and outflow discharges at a junction

does not, in principle, permit to simulate open water

flow in a channel network under wetting/drying con-

ditions. Yoshioka et al. (2015, 2016) use as the internal

boundary conditions at the junction the continuity

equation discretized on a dual mesh around it and the

momentum flux at the junction calculated as a

weighted linear combination of the momentum fluxes

inflowing into it. Sanders et al. (2001) and Bellamoli

et al. (2018) simulated open water flow in channel

networks by nesting a 2D model at junctions. Con-

tarino et al. (2016) developed the implicit solver for

the junction-generalized Riemann problem which was

applied to construct a high-order ADER scheme for

stiff hyperbolic balance laws in networks. We consider

a channel junction as a computational cell that may

have more than two inflows and outflows. For such

cell, we integrate the continuity and momentum con-

servation equations over a control volume around the

channel junction. We use in simulations two kinds of

junction models: (1) based only on continuity equation

for subcritical flow, and (2) based on mass and

momentum conservation equations for supercritical

flow. The first junction model is an analog of the

model of the equality of water surface elevations. The

junction treatment with the continuity equation also

applied in the staggered Abbott-Ionescu type schemes

(Cunge et al. 1980).

Constraints on the time step under which the

scheme is positivity preserving may be very restrictive

since they depend on the ratio of wetted cross-sectional

areas at cell faces. To overcome this, similarly to

(Bollermann et al. 2013), (Bollermann et al. 2011), we

limit the outflow fluxes from the draining cell by

introducing the so-called local draining time that is

smaller than the CFL time restriction. This approach

provides positivity preserving of the scheme without a

reduction of the CFL time restriction.

The schemes which can simulate wetting/drying

processes are important for water flow computation in

river channels, especially, for mountain rivers. The

wetting/drying possibilities are key requirements for

the schemes used for 1D and 2D modeling of long-

wave run-up in coastal areas [see, e.g., (Shokin et al.

2016)]. The paper presents the scheme and the

algorithms for modeling water flow in a wet/dry

multiply-connected channel network.

The paper is organized as follows. The definitionof a

channel network and open-flow water equations in

channels are presented inSect. 2. InSect. 3.1,webriefly

describe the central-upwind scheme from (Kurganov

and Petrova 2007) implemented for the Saint–Venant

equations. InSect. 3.2,we present relations for the exact

discretization of source terms in the Saint–Venant

equations. We describe the new reconstruction method

in Sect. 3.3. The slope friction treatment and channel

junction models are given in Sects. 3.4 and 3.5,

respectively. Boundary conditions, which are usually

applied inmodeling a subcritical openflow in a channel,

are presented in Sect. 3.6. The positivity preserving and

well-balancing properties of the scheme are proven in

Sects. 3.7 and 3.8, respectively. Section 4 contains

different numerical tests illustrating the merits of the

scheme. Section 5 provides some concluding remarks.

2. Channel Network Definition and Water Flow

Equations

The definition sketch of a channel network is

shown in Fig. 1 that is similar to CHARIMA (Holly

et al. 1990). We will consider any channel network as

a certain directed graph in which the edges are
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separate channels (links), and the vertices are points

(nodes) in which channels may merge into a single

channel or one channel may diverge into separate

ones. The graph may also include loops that corre-

spond to channels around islands.

The link represents the flow path between two

nodes, and each link l is divided into non-uniform

computational cells, which are numbered from 1 at

the upper end of the link to nl at the lower end of the

link. Note that ‘‘lower’’ and ‘‘upper’’ generally,

although not necessarily, mean ‘‘downstream’’ and

‘‘upstream’’, respectively. Each link should have at

least one computational cell.

The natural channel cross-section is replaced by

its piecewise linear approximation (Fig. 2), which is

assumed to be known for each computational cell

edge.

One-dimensional shallow water flow in a natural

channel with irregular cross-sections is described by

the Saint–Venant equations (Cunge et al. 1980):

oA

ot
þ oQ

ox
¼ 0 ð1Þ

oQ

ot
þ
o Q2

�
A þ gI1

� �

ox
¼ gI2 � gAðS0 þ Sf Þ ð2Þ

where t is the time; x is the distance along the lon-

gitudinal axis of the channel; Q is the discharge; A is

the wetted cross-section area; g is the gravitational

constant; Sf is the friction slope due to the bed

resistance; S0 is the bed slope; I1 is the hydrostatic

pressure force; I2 is the wall pressure force.

The friction slope Sf is assumed to be given by the

Manning equation

Sf ¼
n2Q Qj j
A2R4=3

ð3Þ

where n is the Manning’s roughness coefficient; R is

the cross-sectional hydraulic radius.

The hydrostatic pressure force, wall pressure

force, wetted cross-section area and bed slope are

defined, respectively, as (Cunge et al. 1980)

I1 ¼
Z hðx;tÞ

0

ðh � yÞrðx; yÞdy;

I2 ¼
Z hðx;tÞ

0

ðh � yÞ orðx; yÞ
ox

dy

ð4Þ

A ¼
Z hðx;tÞ

0

rðx; yÞdy; S0 ¼
oB

ox
ð5Þ

where h is the water depth; rðx; hÞ is the channel

width of a cross-section at point x and water depth h;

B is the bed surface elevation (talweg or thalweg in

geomorphology).

Figure 1
Definition sketch of the channel network

Figure 2
Channel cross-section and its piecewise linear approximation

3424 S. Kivva et al. Pure Appl. Geophys.



3. Numerical Discretization

We consistently renumber all channels (links) and

nodes in a network, that is, each channel and node has

its own unique number. The numbering of channels

does not depend on the numbering of nodes.

In general, the index of the computational cells

consists of the channel number and the cell number.

The edges of the channel connected to one node are

indexed by the node number and the channel number.

Further, to simplify formulas where there will be no

confusion, we omit some of the indices.

For simplicity, we assume that a channel geom-

etry and a bottom topography do not change with

time and depend only on the spatial coordinate. The

other variables depend both on time and space. Also,

where it will be possible, we will omit the temporal

and spatial arguments.

3.1. Semi-Discrete Central-Upwind Scheme

A central-upwind scheme proposed by Kurganov

and Petrova (2007) is used for numerical discretiza-

tion of the Saint–Venant Eqs. (1) and (2).

We divide the spatial domain into grid cells

xj�1=2; xjþ1=2

� �
of length Dxj, where xj is the center of

a grid cell, and denote by �UjðtÞ the cell averages of

the solution U ¼ A;Qð ÞT
of (1) and (2) computed at

time t

�Uj ¼
1

Dxj

Zxjþ1=2

xj�1=2

Uðx; tÞdx ð6Þ

Then, a semi-discretization of (1) and (2) can be

written as the following system of ODEs

d

dt
�UjðtÞ ¼ �

Hjþ1=2ðtÞ � Hj�1=2ðtÞ
Dxj

þ 1

Dxj

Zxjþ1=2

xj�1=2

SðU; xÞ þ GðU; xÞ½ �dx ð7Þ

where Hjþ1=2 are numerical fluxes at the cell inter-

faces xj�1=2, SðU; xÞ ¼ 0; gI2 � gAS0ð ÞT
and

GðU; xÞ ¼ 0;�gASf

� �T
.

The central-upwind numerical fluxes Hjþ1=2 are

given by

Hjþ1=2 ¼
aþjþ1=2FðU�

jþ1=2;Bjþ1=2Þ � a�jþ1=2FðUþ
jþ1=2;Bjþ1=2Þ

aþjþ1=2 � a�jþ1=2

þ
aþjþ1=2a

�
jþ1=2

aþjþ1=2 � a�
jþ1=2

Uþ
jþ1=2 � U�

jþ1=2

h i

ð8Þ

where U�
jþ1=2 ¼ A�

jþ1=2;Q�
jþ1=2

� �T

are the right/left-

sided values of the piecewise linear reconstruction U

at x ¼ xjþ1=2; FðU;BÞ ¼ Q;Q2
�

A þ gI1
� �T

is the flux

at the cell interface, and the one-sided local speeds

are obtained using the eigenvalues of the Jacobian

aþ
jþ1=2 ¼ max 0; uþ

jþ1=2 þ cþjþ1=2; u�
jþ1=2 þ c�jþ1=2

n o

a�
jþ1=2 ¼ min 0; uþ

jþ1=2 � cþjþ1=2; u�
jþ1=2 � c�jþ1=2

n o

ð9Þ

Here u ¼ Q=A and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gA=rT

p
, and rT is the

width of the channel at the water surface. The wetted

water area at the cell interface may be very small and

may lead to large values of flow velocity. In order to

prevent this, we use the regularization technique

suggested in (Kurganov and Petrova 2007)

u� ¼
ffiffiffi
2

p
A�Q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�Þ4 þmax ðA�Þ4; eÞ

� �r ð10Þ

where e is a small a priori chosen positive number.

For consistency, the values of the discharge at cell

interfaces are recomputed using Q�
j�1=2 ¼

A�
j�1=2u�

j�1=2, where u�
j�1=2 are given by (10).

The interface values U�
jþ1=2 are obtained from the

cell averages �Uj by a piecewise linear reconstruction

which will be described below.

3.2. Auxiliary Relationships

In this section, we obtain relationships for comput-

ing the water volume between two specified channel

cross-sections for an arbitrary free surface of the water.

We also obtain formulas for calculating the hydrostatic

pressure force I1 and the wall pressure force I2.

We replace the bed function B and wetted area A

on the interval xj�1=2; xjþ1=2

� �
by their piecewise

linear approximation

BðxÞ ¼ Bj�1=2 þ ðBjþ1=2 � Bj�1=2Þ
x � xj

Dxj
; ð11Þ
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Aðx; tÞ ¼ 1

Dxj

Z hðx;tÞ

0

rjþ1=2ðyÞðx � xi�1=2Þ þ ri�1=2ðyÞðxjþ1=2 � xÞ
� �

dy

ð12Þ

Assuming that the open water surface w is linear

in a computational cell xL; xR½ �, below we will use the

following relations. Water volume V(x1, x2; wL, wR)

between points x1 and x2 (Fig. 3) equals to

Vðx1; x2;wL;wRÞ ¼
Z x2

x1

Aðx; hÞdx

¼
Z x2

x1

Z hðx;tÞ

0

rðx; yÞdydx

Changing the order of integration, we obtain

Vðx1; x2;wL;wRÞ ¼
ðx2 � x1Þð2xR � x1 � x2Þ

2Dx

�
Z h1

0

rLdy � ðxR � x2Þ2

2Dx

Z h2

h1

rLdy þ Dx

2Dh2

�
Z h2

h1

rL ðhR � yÞ2 dy þ ðx2 � x1Þðx1 þ x2 � 2xLÞ
2Dx

�
Z h1

0

rRdy þ ðx2 � xLÞ2

2Dx

Z h2

h1

rRdy � Dx

2Dh2

�
Z h2

h1

rR ðy � hLÞ2 dy

ð13Þ

where hi ¼ wi � Bi, Dx ¼ xR � xL and Dh ¼ hR � hL.

Note that for h1 ¼ h2, the second, third, fifth and sixth

terms on the right-hand side of (13) are zero.

Similarly, the hydrostatic pressure force I1 at a

point x1 can be calculated as

I1ðx1; h1Þ ¼
ðxR � x1Þ

Dx

Z h1

0

ðh1 � yÞ rLðyÞ dy

þ ðx1 � xLÞ
Dx

Z h1

0

ðh1 � yÞ rRðyÞ dy ð14Þ

Integration of the wall pressure force I2 and AS0

over an interval x1; x2½ � yields the following

expressions

I2ðx1; x2Þ ¼
Z x2

x1

I2dx

¼ x2 � x1
Dx

Z h1

0

ðrR � rLÞ
h1 þ h2

2
� y


 �
dy

þ 1

2Dh

Z h2

h1

ðrR � rLÞðh2 � yÞ2dy

ð15Þ

Bxðx1; x2Þ ¼
Z x2

x1

A
oB

ox
dx

¼ BR � BL

2Dx
Vðx1; x2;wL;wRÞ ð16Þ

Remark

1. Note that for linear approximation of the water

surface and bottom on an interval xj�1=2; xjþ1=2

� �
,

if the values of w�
j�1=2 and Bj�1=2 are known at the

cell faces xj�1=2, then it is easy to calculate x�

(Fig. 3) and integrals (13)–(16) for any internal

interval x1; x2½ � and nonnegative hðx; tÞ.
2. The integrals (13)–(16) can be also computed for

any piecewise-linear approximation of the water

surface on an interval xj�1=2; xjþ1=2

� �
.

3.3. Reconstruction of the Interface Values U�
jþ1=2

We present an algorithm of cell linear approxi-

mation of the UjðxÞ that takes into account all

possible combinations of bottom topography and cell

flooding. The slope of a cell linear reconstruction is

defined by Ux;j that is calculated as Ux;j ¼ min mod

ðD�Uj;D
þUjÞ where D�Uj and DþUj are the back-

ward and forward difference derivatives. We denote

by hav;j, wj and wst;j the depth of water which the

surface is parallel to the cell bed, water surface

Figure 3
Water surface w in a partially flooded cell xL; xR½ �. Calculation of

the water volume between x1 and x2
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elevation and the still water surface elevation in the

cell j, respectively. In addition, we denote

h� 0 ¼ maxð0; hÞ.
Substituting w1 ¼ w2 ¼ wst;j into Eq. (13) and

taking into account that hjþ1=2 � hj�1=2 ¼
Bj�1=2 � Bjþ1=2 ¼ �DB, we obtain the following

equation for finding wst;j

1

2

Z ðwst;j�Bj�1=2Þ� 0

0

rj�1=2dy þ 1

2

Z ðwst;j�Bjþ1=2Þ� 0

0

rjþ1=2dy

þ 1

2DB2

Z ðwst;j�Bjþ1=2Þ� 0

ðwst;j�Bj�1=2Þ� 0
ðwst;j � Bjþ1=2 � yÞ2rj�1=2dy

� 1

2DB2

Z ðwst;j�Bjþ1=2Þ� 0

ðwst;j�Bj�1=2Þ� 0
ðy � wst;j þ Bj�1=2Þ2rjþ1=2dy ¼ �Aj

ð17Þ

Equation (17) is a quartic equation for the piece-

wise linear approximation of the channel cross-

section, and we can use the Newton–Raphson method

or Ferrari’s method for its solution. We calculate wst;j

only for cells in which still water may occur.

Similarly, substituting h1 ¼ h2 ¼ hav;j into

Eq. (13), we obtain the following equation for finding

hav;j

1

2

Z hav;j

0

rj�1=2 dy þ 1

2

Z hav;j

0

rjþ1=2 dy ¼ �Aj ð18Þ

which is a quadratic equation since

Z h

0

rjþ1=2 dy

¼
Xp�1

k¼0

ðhjþ1=2;kþ1 � hjþ1=2;kÞ
rjþ1=2;k þ rjþ1=2;kþ1

2

þ ðh � hjþ1=2;pÞ rjþ1=2;p þ
1

2

rjþ1=2;pþ1 � rjþ1=2;p

hjþ1=2;pþ1 � hjþ1=2;p

ðh � hjþ1=2;pÞ
� 


for hjþ1=2;p\h	 hjþ1=2;pþ1

ð19Þ

We divide conditionally all computational cells

into two groups: ‘‘wet’’ and ‘‘dry’’. A cell j will be

called ‘‘wet’’ if wst;j �maxðBj�1=2;Bjþ1=2Þ, and ‘‘dry’’

otherwise. We assume wj ¼ wst;j for the ‘‘wet’’ cells

and wj ¼ hav;j þ ðBjþ1=2 þ Bj�1=2Þ
�
2 for the ‘‘dry’’

cell. For ‘‘dry’’ cells in which still water may occur,

we assume wj ¼ wst;j and lj ¼ ðwst;j � Bj�1=2Þ
�
DBj

�� ��.
For all other cells lj ¼ 1.

Depending on the combination of two neighbor-

ing cells, we use different formulas for approximating

the forward and backward difference derivatives for

w and Q. We approximate the backward difference

derivative D� by the following way (Fig. 4):

1. j - 1 and j cells are both ‘‘wet’’. Then

D�wj ¼
wst;j � wst;j�1

xj � xj�1

; D�Qj ¼
�Qj � �Qj�1

xj � xj�1

ð20Þ

2. j - 1 cell is ‘‘wet’’ and j cell is ‘‘dry’’

• if Bjþ1=2 [Bj�1=2

D�wj ¼ 2
wst;j � wst;j�1

Dxj�1 þ ljDxj
; D�Qj ¼ 2

�Qj � �Qj�1

Dxj�1 þ ljDxj

ð21Þ

• otherwise

D�wj ¼2
Bj�1=2 þ hav;j � wst;j�1

Dxj
;

D�Qj ¼2
�Qj � �Qj�1

Dxj

ð22Þ

3. j - 1 cell is ‘‘dry’’ and j cell is ‘‘wet’’

• if Bj�3=2 [Bj�1=2

D�wj ¼2
wst;j � wst;j�1

ð1þ lj�1ÞDxj�1 þ Dxj
;

D�Qj ¼2
�Qj � �Qj�1

ð1þ lj�1ÞDxj�1 þ Dxj

ð23Þ

• otherwise

D�wj ¼2
wst;j � Bj�1=2 � hav;j�1

Dxj
;

D�Qj ¼2
�Qj � �Qj�1

Dxj

ð24Þ

4. j - 1 and j cells are both ‘‘dry’’
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• if Bj�3=2 [Bj�1=2 and Bjþ1=2 [Bj�1=2

D�wj ¼2
wst;j � wst;j�1

ð1þ lj�1ÞDxj�1 þ ljDxj
;

D�Qj ¼2
�Qj � �Qj�1

ð1þ lj�1ÞDxj�1 þ ljDxj

ð25Þ

• otherwise

D�wj ¼
Bjþ1=2 � Bj�1=2

Dxj
; D�Qj ¼ 0 ð26Þ

The forward derivatives Dþ for w and Q are

calculated in the similar way.

The interface point-values w�
j�1=2 are obtained by

a piecewise linear reconstruction

wþ
j�1=2 ¼

wj � 0:5 lj wx;j Dxj; if lj � 0

wj � 0:5 ð1� ljÞwx;j Dxj; otherwise

�

ð27Þ

and

w�
jþ1=2 ¼

wj þ ð1� 0:5ljÞwx;j Dxj; if lj � 0

wj þ 0:5ð1þ ljÞwx;j Dxj; otherwise

�

ð28Þ

According to (Kurganov and Tadmor 2000), this

reconstruction will be second-order accurate if the

approximate values of the derivatives wx;j are at least

first-order approximations of corresponding exact

derivatives. To ensure the non-oscillatory property in

our numerical scheme, we evaluate wx;j using the

minmod limiter (Nessyahu and Tadmor 1990),

(Sweby 1984), (van Leer 1974)

wx;j ¼ min mod ðD�wj;D
þwjÞ ð29Þ

where min mod ða; bÞ ¼ 0:5ðsgnðaÞþ sgnðbÞÞ min

ð aj j; bj jÞ.
The interface values Q�

j�1=2 we calculate in the

similar way. In the next step, water depth h�
j�1=2 at the

cell faces is computed from the water surface

elevation. Then, the area A�
j�1=2 is calculated from

water depth based on channel geometry. Finally, we

determine the numerical fluxes Hj�1=2 andR xjþ1=2

xj�1=2
SðU; xÞdx from (7), (8) using formulas (14)–

(16) to compute I1, I2ðxj�1=2; xjþ1=2Þ, and

Bxðxj�1=2; xjþ1=2Þ.

3.4. Friction Slope Treatment and Time Evolution

We calculate the second component G
ð2Þ
j ofR xjþ1=2

xj�1=2
GðU; xÞdx using the midpoint rule and de-

singularization procedure

1

Dxj

Z xjþ1=2

xj�1=2

GðU; xÞdx ¼ gn2
�Qj

�� ��

maxð �A R4=3; e1Þ
�Qj

¼ G
ð2Þ
j

�Qj ð30Þ

where e1 is a priori chosen small positive number.

In the general case, the friction slope term in (7)

can be a source of stiffness for the ODE system when

the depth of water is very small (Chertock et al.

2015). The explicit treatment of the friction term

imposes a severe time step restriction, the result of

which is that the time step should be several times

less than a typical time step under the CFL condi-

tions. To overcome this difficulty, we use the forward

Euler method of time integration of the ODE system

(7) with an implicit treatment of only a part of the

friction slope term. As a result, we obtained the

following fully discrete central-upwind scheme

Figure 4
Approximation of the backward difference derivative D�w
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�Ajðt þ DtÞ ¼ �AjðtÞ �
Dt

Dxj
H

ð1Þ
jþ1=2ðtÞ � H

ð1Þ
j�1=2ðtÞ

� �

ð31Þ

where H
ð1Þ
jþ1=2 and H

ð2Þ
jþ1=2 are the first and second

component of the numerical fluxes (8).

3.5. Node of Junction

For modeling of the hydraulic conditions at a

junction, we will use one of two approaches: (1)

assuming that only the mass conservation equation

holds at the junction, and (2) based on mass and

momentum conservation.

Consider a node s that connects two or more

channels, where Js,in is a set of channels which inflow

and Js,out that outflow from it (Fig. 5). Denote by xin
s;i

and xout
s;j the coordinates of the ends of channels

connected to the node s. Channel cross-sections and

bottom levels are known at these points. In the first

case, water surface elevation Ys, or water surface

elevation Ys and water discharge Qs for the second

case at the junction are also given.

Approximating that water surface is horizontal,

the continuity equation over the control volume

around a junction s can be discretized as follows

Accordingly, the difference scheme for the equa-

tion of momentum conservation can be written in the

form

Figure 5
Sketch of a node that is the junction of channels

�Qjðt þ DtÞ ¼
�QjðtÞ � ðDt=DxjÞ H

ð2Þ
jþ1=2ðtÞ � H

ð2Þ
j�1=2ðtÞ � gI2ðxj�1=2; xjþ1=2Þ þ gBxðxj�1=2; xjþ1=2Þ

� �

1þ Dt G
ð2Þ
j ðtÞ

ð32Þ

FA
s Ysðt þ DtÞð Þ ¼

X

i2Js;in

Vðxi;niþ1=2; xin
s;i; Ysðt þ DtÞ; Ysðt þ DtÞÞ � Vðxi;niþ1=2; xin

s;i; YsðtÞ; YsðtÞÞ
h i

þ
X

j2Js;out

Vðxout
s;j ; xj;1=2; Ysðt þ DtÞ; Ysðt þ DtÞÞ � Vðxout

s;j ; xj;1=2; YsðtÞ; YsðtÞÞ
h i

� Dt
X

i2Js;in

aþ
i;niþ1=2Q

�
i;niþ1=2 � a�

i;niþ1=2Q
þ
i;niþ1=2

aþ
i;niþ1=2 � a�

i;niþ1=2

þ
aþ

i;niþ1=2a
�
i;niþ1=2

aþ
i;niþ1=2 � a�

i;niþ1=2

Aþ
i;niþ1=2 � A�

i;niþ1=2

h i
( )

þ Dt
X

j2Js;out

aþ
j;1=2Q�

j;1=2 � a�
j;1=2Qþ

j;1=2

aþ
j;1=2 � a�

j;1=2

þ
aþ

j;1=2a
�
j;1=2

aþ
j;1=2 � a�

j;1=2

Aþ
j;1=2 � A�

j;1=2

h i
( )

¼ 0

ð33Þ
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The interface values A�
jþ1=2 are calculated from

the water surface elevation, which is reconstructed in

a similar way as described in Sect. 3.3. The interface

values Q�
jþ1=2 are computed: in the first case as

Qþ
i;niþ1=2 ¼ Q�

i;niþ1=2, Q�
j;1=2 ¼ Qþ

j;1=2, and in the second

case as Qþ
i;niþ1=2 ¼ Q�

j;1=2 ¼ �Qs.

The functions FA
s and FQ

s may be thought of as the

residuals of the continuity and momentum conserva-

tion Eqs. (33)–(34), respectively. The water surface

elevation Ysðt þ DtÞ and the water discharge Qsðt þ
DtÞ are found from the solution of Eqs. (33)–(34).

The Newton–Raphson method is used to solve the

nonlinear Eq. (33). Note that the derivative of

FA
s Ysðt þ DtÞð Þ with respect to Ysðt þ DtÞ can be

expressed as

where h� 0 ¼ maxð0; hÞ. Note that for hi;niþ1=2 ¼ hs;i

and hj;1=2 ¼ hs;j the expressions in the corresponding

curly brackets on the right-hand side of (35) are zero.

3.6. Boundary Conditions

For the numerical solution of the ODEs (7), we

should specify values of the central-upwind numer-

ical fluxes Hjþ1=2 at an upstream, and if required

downstream, boundary of the computational area. We

consider the most commonly used boundary condi-

tions in the modeling of a subcritical fluid flow with a

free surface in channel networks. In the following, we

discuss the boundary treatment at the left boundary.

FQ
s

�Qsðt þ DtÞð Þ ¼ �Qsðt þ DtÞ � �QsðtÞð Þ
X

i2Js;in

ðxin
s;i � xi;niþ1=2Þ þ

X

j2Js;out

ðxj;1=2 � xout
s;j Þ

" #

� Dt
X

i2Js;in

H
ð2Þ
i;niþ1=2 � gI1ðxin

s;i; hsÞ þ gI2ðxi;niþ1=2; xin
s;iÞ � gBxðxi;niþ1=2; xin

s;iÞ
n o

þ Dt
X

j2Js;out

H
ð2Þ
j;1=2 � gI1ðxout

s;j ; hsÞ � gI2ðxout
s;j ; xj;1=2Þ þ gBxðxout

s;j ; xj;1=2Þ
n o

� Dt �Qsðt þ DtÞ
X

i2Js;in

G
ð2Þ
s;i ðxin

s;i � xi;niþ1=2Þ þ
X

j2Js;out

G
ð2Þ
s;j ðxj;1=2 � xout

s;j Þ
" #

¼ 0

ð34Þ

oFA
s

oYs
¼ 1

2

X

i2Js;in

xin
s;i � xi;niþ1=2

� �
ri;niþ1=2 h� 0

i;niþ1=2

� �
þ rs;i h� 0

s;i

� �h

� Bs;i � Bi;niþ1=2

� ��2
ri;niþ1=2 h� 0

i;niþ1=2

� �
þ rs;i h� 0

s;i

� �h i
Bs;i � Bi;niþ1=2

� �2n

� 2

Z ðYs�Bs;iÞ� 0

ðYs�Bi;niþ1=2Þ� 0
ðYs � Bs;i � yÞri;niþ1=2ðyÞ þ ðy � Ys þ Bi;niþ1=2Þrs;iðyÞ
� �

dy

)#

þ 1

2

X

j2Js;out

xj;1=2 � xout
s;j

� �
rs;j h� 0

s;j

� �
þ rj;1=2 h� 0

j;1=2

� �h

� Bj;1=2 � Bs;j

� ��2
rs;j h� 0

s;j

� �
þ rj;1=2 h� 0

j;1=2

� �h in
Bj;1=2 � Bs;j

� �2

� 2

Z ðYs�Bj;1=2Þ� 0

ðYs�Bs;jÞ� 0
ðYs � Bj;1=2 � yÞrs;jðyÞ þ ðy � Ys þ Bs;jÞrj;1=2ðyÞ
� �

dy

)#

ð35Þ
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The boundary treatment at the right boundary can be

done in a similar way.

Discharge boundary conditions Let a water

discharge Q(t) be provided on the left boundary.

We will consider the following approximation of the

boundary numerical fluxes H1=2

Q ¼
aþ
1=2Q

�
1=2 � a�1=2Qþ

1=2

aþ
1=2 � a�

1=2

þ
a�
1=2a

þ
1=2

aþ
1=2 � a�

1=2

Aþ
1=2 � A�

1=2

� �

Q2

A�
1=2

þ gI1ðh�1=2Þ ¼
aþ
1=2ðQ�

1=2Þ
2
.

A�
1=2 � a�1=2ðQ

þ
1=2Þ

2
.

Aþ
1=2

aþ
1=2 � a�

1=2

þ
a�1=2a

þ
1=2

aþ
1=2 � a�

1=2

Qþ
1=2 � Q�

1=2

� �

þ g
aþ
1=2I1ðh�1=2Þ � a�1=2I1ðhþ1=2Þ

aþ
1=2 � a�

1=2

ð36Þ

The values of Q�
1=2 and h�

1=2 are found from a

solution of the system of Eqs. (36).

Surface boundary condition Let a water surface

elevation Y(t) be specified at the left boundary. Then

we will use the following approximation of the

boundary fluxes.

Q�
1=2 ¼

aþ
1=2Q�

1=2 � a�
1=2Q

þ
1=2

aþ
1=2 � a�

1=2

þ
a�
1=2a

þ
1=2

aþ
1=2 � a�

1=2

Aþ
1=2 � A�

1=2

� �

ðQ�
1=2Þ

2

AðhÞ þ gI1ðhÞ ¼
aþ
1=2ðQ�

1=2Þ
2
.

A�
1=2 � a�1=2ðQ

þ
1=2Þ

2
.

Aþ
1=2

aþ
1=2 � a�

1=2

þ
a�
1=2a

þ
1=2

aþ
1=2 � a�

1=2

Qþ
1=2 � Q�

1=2

� �
þ g

aþ
1=2I1ðh�

1=2Þ � a�
1=2I1ðh

þ
1=2Þ

aþ
1=2 � a�

1=2

ð37Þ

where h ¼ Y � B1=2; Q�
1=2 and h�

1=2 are found from a

solution of the Eqs. (37).

We will also consider a simpler approximation of

the surface boundary conditions. In this case, we

assume that

Q�
1=2 ¼ Qþ

1=2

h�
1=2 ¼ h

ð38Þ

Outflow boundary condition For outflow, we use

the following extrapolations on the boundary

Q�
1=2 ¼ Qþ

1=2

h�
1=2 ¼ hþ

1=2

ð39Þ

3.7. Positivity Preserving

In this section, we show that the resulting central-

upwind scheme is positivity preserving. A sufficient

condition for this is to ensure that at each time step no

more water outflows from a cell than there is at the

moment. For the positivity, our result is similar to the

one obtained in (Balbás and Hernandez-Duenas

2014).

For any computational cell k of the link p, we

define Dtp;k as

Dtp;k ¼ min

Dxp;k

aþp;k�1=2 � a�p;kþ1=2

;
Dxp;k

�An
p;k

aþp;kþ1=2 A�
p;kþ1=2 � a�p;k�1=2 Aþ

p;k�1=2

( )

ð40Þ

For any node s, which has two or more links, we

denote by Dts

Dts ¼ min min
i

Dxin
s;i

aþ
i;niþ1=2

;
�Dxin

s;i
�Ain;n

s;i

a�
i;niþ1=2 Aþ

i;niþ1=2

" #

;

(

min
j

�Dxout
s;j

a�
j;1=2

;
Dxout

s;j
�Aout;n

s;j

aþ
j;1=2 A�

j;1=2

" #) ð41Þ

where Vðxout
s;j ; xj;1=2; YsðtÞ; YsðtÞÞ ¼ Dxout

s;j
�Aout;n

s;j and

Dxout
s;j ¼ xj;1=2 � xout

s;j . The values of
�Ain;n

s;i and Dxin
s;i are

defined in a similar way.

Theorem 1 Consider the semi-discrete central-up-

wind scheme (7)–(10), (33) with the piecewise linear

reconstruction described in Sect. 3.3 and the dis-

cretization of the source terms (14)–(16). Assume that

the system of ODEs (7) is solved by the forward Euler

method with an implicit treatment of the friction slope

and for all computational cells and nodes hn
j � 0.

Then all hnþ1
j � 0, if

Dt 	min min
p;k

Dtp;k;Dts

� �
ð42Þ

where Dtp;k and Dts are calculated from (40) to (41).

Proof The cross-sectional area A(h) is a nonnega-

tive increasing function of water depth. Therefore,

our task is to obtain conditions that will ensure the
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non-negativity of the cross-sectional area at the next

time step.

Note, as follows from (9), that aþ
jþ1=2 � 0,

a�
jþ1=2 	 0, aþ

jþ1=2 � uþ
jþ1=2 � 0, and u�

jþ1=2 �
a�

jþ1=2 � 0 for all j. Moreover, the following inequal-

ities 0	 u�
jþ1=2

�a�
jþ1=2

aþ
jþ1=2

�a�
jþ1=2

	 1, 0	
aþ

j�1=2
�uþ

j�1=2

aþ
j�1=2

�a�
j�1=2

	 1 are

satisfied for all j. Then for any computational cell k

of link p from (31), we have

�Anþ1
p;k ¼ �An

p;k �
Dt

Dxp;k
aþp;kþ1=2

u�p;kþ1=2 � a�p;kþ1=2

aþp;kþ1=2 � a�p;kþ1=2

 !

� A�
p;kþ1=2 �

Dt

Dxp;k
a�p;kþ1=2

aþ
p;kþ1=2 � uþp;kþ1=2

aþ
p;kþ1=2 � a�p;kþ1=2

 !

Aþ
p;kþ1=2

þ Dt

Dxp;k
aþ

p;k�1=2

u�p;k�1=2 � a�
p;k�1=2

aþp;k�1=2 � a�
p;k�1=2

 !

A�
p;k�1=2

þ Dt

Dxp;k
a�

p;k�1=2

aþp;k�1=2 � uþ
p;k�1=2

aþp;k�1=2 � a�
p;k�1=2

 !

Aþ
p;k�1=2

ð43Þ

The third and fourth terms on the right-hand side

of (43) are nonnegative, so that for �Anþ1
p;k � 0 it is

sufficient if the following inequality is satisfied

Dxp;k
�An

p;k

� Dt aþ
p;kþ1=2A

�
p;kþ1=2 � a�

p;k�1=2Aþ
p;k�1=2

� �
� 0

ð44Þ

For any node s, we rewrite (33) in the following

way
X

i2Js;in

Dxin
s;i

�Ain;nþ1
s;i þ

X

j2Js;out

Dxout
s;j

�Aout;nþ1
s;j

¼
X

i2Js;in

Dxin
s;i

�Ain;n
s;i þ

X

j2Js;out

Dxout
s;j

�Aout;n
s;j

þ Dt
X

i2Js;in

aþ
i;niþ1=2

u�i;niþ1=2 � a�
i;niþ1=2

aþi;niþ1=2 � a�
i;niþ1=2

 !(

�A�
i;niþ1=2 þ a�i;niþ1=2

aþi;niþ1=2 � uþi;niþ1=2

aþi;niþ1=2 � a�i;niþ1=2

 !

Aþ
i;niþ1=2

)

�Dt
X

j2Js;out

aþ
j;1=2

u�
j;1=2 � a�

j;1=2

aþ
j;1=2 � a�

j;1=2

 !

A�
j;1=2

(

þ a�
j;1=2

aþ
j;1=2 � uþ

j;1=2

aþ
j;1=2 � a�

j;1=2

 !

Aþ
j;1=2

)

ð45Þ

It is clear that the left-hand side of (45) will be

nonnegative if

Dxin
s;i

�Ain;n
s;i þ Dt a�

i;niþ1=2Aþ
i;niþ1=2 � 0 ð46Þ

Dxout
s;j

�Aout;n
s;j � Dt aþ

j;1=2 A�
j;1=2 � 0 ð47Þ

The statement of the theorem follows from (44),

(46)–(47) and the CFL restriction.

From (41), one can see that the positivity

preserving step depends on the ratios A�
j�1=2

.
�Aj.

Due to bottom topography, irregular channel geom-

etry and the possibility of a channel drying, these

ratios can be much more than unity. In this case, the

positive preserving time step restrictions are more

severe than the CFL restrictions. In order to over-

come these restrictions and guarantee the positivity

preserving of our scheme, we adopt a draining time

step technique from Bernstein et al. (2016), Boller-

mann et al. (2013), Bollermann et al. (2011). The

basic idea of this approach is to reduce the time step

locally only for the cell faces at which the inequalities

(44), (46)–(47) do not necessarily hold.

Following (Bollermann et al. 2011), we introduce

the draining time step

Dtdrain
p;k ¼

Dxp;k
�An

p;k

maxð0;H
ð1Þ
p;kþ1=2Þ þmaxð0;�H

ð1Þ
p;k�1=2Þ

ð48Þ

Dtin;drain
s;i ¼

Dxin
s;i

�Ain;n
s;i

a�
i;niþ1=2 Aþ

i;niþ1=2

aþ
i;niþ1=2 � a�

i;niþ1=2

aþ
i;niþ1=2 � uþ

i;niþ1=2

 !

ð49Þ

Dtout;drain
s;j ¼

Dxout
s;j

�Aout;n
s;j

aþ
j;1=2 A�

j;1=2

aþ
j;1=2 � a�

j;1=2

u�
j;1=2 � a�

j;1=2

 !

ð50Þ

which describes the time when the water contained in

cell in the beginning of the time step outflows from it.

Now the evolution step in (43), (45) is replaced by

�Anþ1
p;k ¼ �An

p;k �
Dtp;kþ1=2 H

ð1Þ
p;kþ1=2 � Dtp;k�1=2 H

ð1Þ
p;k�1=2

Dxp;k

ð51Þ
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X

i2Js;in

Dxin
s;i

�Ain;nþ1
s;i þ

X

j2Js;out

Dxout
s;j

�Aout;nþ1
s;j

¼
X

i2Js;in

Dxin
s;i

�Ain;n
s;i þ

X

j2Js;out

Dxout
s;j

�Aout;n
s;j

�
X

j2Js;out

Dtj;1=2 H
ð1Þ
j;1=2 þ

X

i2Js;in

Dti;niþ1=2 H
ð1Þ
i;niþ1=2

ð52Þ

The outflow of a cell is the inflow of its neighbor.

Thus, to keep the conservativity of the scheme, we

define Dtp;kþ1=2 as

Dtp;kþ1=2 ¼ minðDt;Dtdrain
p;m Þ;

m ¼ k þ 1

2
�
sgnðHð1Þ

p;kþ1=2Þ
2

ð53Þ

where Dt satisfies CFL conditions.

For consistency, the momentum conservation

Eq. (32) should be rewritten in the form

where H
ð2;aÞ
p;k�1=2 and H

ð2;gÞ
p;k�1=2 are the advective and

gravity-driven parts of the H
ð2Þ
p;k�1=2, which are defined

as

H
ð2;aÞ
p;kþ1=2 ¼

aþ
p;kþ1=2

aþ
p;kþ1=2 � a�

p;kþ1=2

ðQ�
p;kþ1=2Þ

2

A�
p;kþ1=2

�
a�

p;kþ1=2

aþ
p;kþ1=2 � a�

p;kþ1=2

ðQþ
p;kþ1=2Þ

2

Aþ
p;kþ1=2

þ
aþ

p;kþ1=2 a�
p;kþ1=2

aþ
p;kþ1=2 � a�

p;kþ1=2

Qþ
p;kþ1=2 � Q�

p;kþ1=2

h i

ð55Þ

H
ð2;gÞ
p;kþ1=2

¼ g
aþp;kþ1=2 I1ðxp;kþ1=2; h�p;kþ1=2Þ � a�p;kþ1=2 I1ðxp;kþ1=2; hþp;kþ1=2Þ

aþ
p;kþ1=2 � a�p;kþ1=2

ð56Þ

3.8. Well-balancing

The system (1), (2) admits smooth steady-state

solutions, satisfying

Q ¼ uA ¼ Const; E ¼ 1

2

Q2

A2
þ gðh þ BÞ ¼ Const

as well as nonsmooth steady-state solutions. One of

the most important steady-state solutions is a trivial

stationary one (lake at rest)

Q ¼ 0; h þ B ¼ Const

A numerical scheme that exactly preserves steady

flow at rest is called well-balanced.

Theorem 2 Consider the semi-discrete central-up-

wind scheme (51)–(52), (54) with the piecewise linear

reconstruction described in Sect. 3.3 and the dis-

cretization of the source terms (14)–(16). Assume that

the numerical solution U(tn) corresponds to the

steady state at rest. Then U(tn?1) = U(tn), that is, the

scheme is well–balanced.

Proof As a result of the reconstruction, we have

w�
j�1=2 ¼ wj and Q�

j�1=2 ¼ 0. It is clear that the

equations of the mass conservation (51), (52) are

satisfied. Thus, we have to show that in the

momentum conservation Eq. (54), there has to be a

balance between the flux gradient and the source

term.

For the second component H
ð2Þ
jþ1=2 from (55) to

(56), we obtain

�Qnþ1
p;k ¼

Dxp;k
�Qn

p;k � Dtp;kþ1=2 H
ð2;aÞ
p;kþ1=2 þ Dtp;k�1=2 H

ð2;aÞ
p;k�1=2

Dxp;k 1þ Dt G
ð2Þ
p;k

� �

� Dt

Dxp;k

H
ð2;gÞ
p;kþ1=2 � H

ð2;gÞ
p;k�1=2 � gI2ðxp;k�1=2; xp;kþ1=2Þ þ gBxðxp;k�1=2; xp;kþ1=2Þ

1þ Dt G
ð2Þ
p;k

ð54Þ
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H
ð2;aÞ
jþ1=2 þ H

ð2;gÞ
jþ1=2 ¼ g I1ðxjþ1=2; hjþ1=2Þ ð57Þ

as hþ
jþ1=2 ¼ h�

jþ1=2 and Aþ
jþ1=2 ¼ A�

jþ1=2. On the other

hand, from (14) to (16) we have

I1ðxjþ1=2; hjþ1=2Þ � I1ðxj�1=2; hj�1=2Þ
� I2ðxj�1=2; xjþ1=2Þ þ Bxðxj�1=2; xjþ1=2Þ

¼
Z xjþ1=2

xj�1=2

d

dx

Z h

0

ðw � B � yÞrðx; yÞdy dx

�
Z xjþ1=2

xj�1=2

Z h

0

ðw � B � yÞ d

dx
rðx; yÞdy dx

þ
Z xjþ1=2

xj�1=2

dB

dx

Z h

0

rðx; yÞdy dx ¼ 0

ð58Þ

which ensures a balance of source terms with the flux

terms in steady states at rest.

4. Numerical Results

In this section, we examine the scheme accuracy

on the problem with smooth solutions and compare

numerical results with analytical and measured data

and also with the results obtained earlier using some

other schemes.

In all tests, unless otherwise mentioned, we

assume that water flow is frictionless, the CFL

number is 0.5, the acceleration of gravity g = 9.81,

and Dxj ¼ 0:005.

4.1. Accuracy of the Scheme in Smooth Regions

We expect that the scheme (51), (52), (54) has

first-order accuracy in time and second-order accu-

racy in space. We consider the test proposed in

(Balbás and Hernandez-Duenas 2014) to check

second-order accuracy of the scheme in space for

smooth flows by evaluation of L1 error over the

successively thinner grids.

Let a flat channel have a trapezoidal geometry

rðx; yÞ ¼ 1þ 0:3y

Initial water surface and velocity are described by

w0ðxÞ ¼ 1:6þ 0:1 cos
pðx � 0:4Þ

0:2


 �
; u0ðxÞ ¼ 1;

0	 x	 1

The outflow boundary conditions are set at the

channel ends.

We compute L1 error for Dx ¼ 1=N,

N = 80,160,320,640,1280 and 2560 at the final time

T = 0.05. The reference solution was computed with

N = 5120. In order to suppress the scheme error in

time, we provide all calculations with temporal step

Dt ¼ 1� 10�8, which is less than

ðDxÞ2 ¼ ð1
.
5120Þ2 
 0:38� 10�7. The L1 error is

shown in Table 1. The results indicate the second-

order accuracy in space of the scheme.

4.2. Large Perturbation of Rest

The following test is also taken from (Balbás and

Hernandez-Duenas 2014), but with another channel

geometry. In this test, propagation of perturbation of

a steady-state solution at the left part of the simulated

area is considered. When the perturbation propagates,

part of it reflects back and part is transmitted,

inundating the right side and leaving the area through

the right boundary. According to (Balbás and

Hernandez-Duenas 2014), the bottom topography is

described by a piecewise spline. At the beginning, we

Table 1

Accuracy test for the scheme in smooth regions. The errors at T =

0.05

N w Q

L1-error Order L1-error Order

80 9.60751 9 10-4 1.09671 9 10-2

160 2.37650 9 10-4 2.015 2.85182 9 10-3 1.943

320 6.19365 9 10-5 1.940 7.33061 9 10-4 1.960

640 1.64387 9 10-5 1.914 1.89283 9 10-4 1.953

1280 4.45586 9 10-6 1.883 4.97988 9 10-5 1.926

2560 1.07261 9 10-6 2.055 1.14461 9 10-5 2.121
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construct the cubic spline of defect one with knots

(0,0.3), (0.05,0.3), (0.1,0.2), (0.15,0.5), (0.3,0.4),

(0.4,0.6), (0.75,0.6) and zero-values of the second

derivatives at the boundaries. Then the spline is

rescaled by a factor of 0.5 for x	 0:53 and of 1.3 for

x� 0:53. Finally, we assume that near the boundaries

the bottom is flat and equals to 0.12 for x	 0:0693

and 0.8 for x� 0:7386.

The geometry is given by (Fig. 6)

rðx; yÞ ¼ 1þ 3

4
cosðpxÞ


 �
1� y

2

� �
; 0	 x	 1; 0	 y	 2

ð59Þ

Figure 7
Propagation of the perturbation at different times for the conditions of the test proposed in (Balbás and Hernandez-Duenas 2014)

Figure 6
3D view of the channel geometry
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We consider the left boundary as open (Antono-

poulos and Dougalis 2017), (Shiue et al. 2011), and

outflow condition is set up on the right boundary.

The initial water surface elevation at rest is

w ¼ 0:8, and a piecewise-constant perturbation from

water surface of size e ¼ 0:3 is applied on the interval

[0.1,0.15]. Propagation of the perturbation at different

times is shown in Fig. 7. The wave partially reflects

back and partially transmits through the bottom ridge,

overtopping it and then propagating through the

shore. These computed results are qualitatively

similar to results obtained in (Balbás and Hernan-

dez-Duenas 2014).

4.3. Convergence to a Smooth Subcritical Steady

State

In this example from (Hernandez-Duenas and

Beljadid 2016) the topography is described by the

cubic spline of defect one with knots (0.2,0),

(0.3,0.6), (0.4,0.4), (0.5,0.5), (0.6,0.2), (0.7,0) and

zero-value of the second derivatives at the bound-

aries. The channel geometry is given by (59).

Figure 8
Left: Comparison of computed and exact water surface elevation for the smooth subcritical steady state. Right: 3D view of the channel

geometry

Figure 9
Comparison of computed and exact discharges and energies for the

smooth subcritical steady state
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The initial data is

wðx; 0Þ ¼ 0:8 and uðx; 0Þ ¼ 0

At the left (inflow) boundary, the discharge Qin ¼
0:3343 and at the right (outflow) boundary the water

surface elevation w ¼ 0:8 are specified. Hernandez-

Duenas and Beljadid (2016) calculated that the

subcritical steady-flow with the given conditions

has constant energy E = 10.0748. In our simulations,

we obtained almost the same value of the energy E ¼
10:0307 with accuracy to four decimal places.

Comparison of computed water surface elevation,

discharge, and energy for the smooth subcritical

steady state with their exact values are shown in

Figs. 8 and 9. In Fig. 9, the vertical axis extends by

0.15% of the exact value in each direction. We also,

as in (Hernandez-Duenas and Beljadid 2016), calcu-

lated the maximal error between computed and exact

solutions, and relative error in the L2 norm defined as

err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b � a

Z b

a

f ðxÞ � fexactðxÞ
fexactðxÞ


 �2

dx

s

; x 2 ½a; b�

ð60Þ

We obtained that for the discharge, the maximal

error is 3:82� 10�4 and the relative error is

1:84� 10�4. For the energy, the maximal error is

5:67� 10�4 and the relative error is 2:15� 10�5.

4.4. Convergence to a Transcritical Steady State

With Shock Wave

This test is also taken from (Hernandez-Duenas

and Beljadid 2016). The topography is given by

Figure 11
Water discharge and energy for steady transcritical flow over a

bump with a shock

Figure 10
Left: Water surface elevation for steady transcritical flow over a bump with a shock. Right: 3D view of the channel geometry
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BðxÞ ¼
1
2
þ 1

2
cos p x�0:5

0:4

� �
; x 2 ½0:5; 0:9�

0; x 2 ½0; 1�n½0:5; 0:9�

�

The geometry is

rðx; yÞ ¼
1
2
þ 3

8
� 1

8
cos p x�0:7

0:2

� �� � ffiffiffi
y

p
; x 2 ½0:5; 0:9�

1þ ffiffi
y

p

2
; x 2 ½0; 1�n½0:5; 0:9�

(

The boundary conditions are Qin= 2.5561 and

wout= 1.9968.

Figure 12
Comparison of water surface and flow rate for wet-bed dam break in a triangular channel (N = 400, t = 80 s)

Figure 13
Comparison of water surface and flow rate for dry-bed dam break in a triangular channel (N = 400, t = 45 s)
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Figure 10 shows that a good agreement is

obtained between the analytical solution and the

computed water surface elevation. A comparison of

the computed discharge and energy with the theoret-

ical results is shown in Fig. 11.

4.5. Dam-Break Problem in a Triangular Channel

In this test (Lai and Khan 2012), a dam-break

problem in a frictionless, horizontal, triangular chan-

nel is considered. The channel is 1000 m long with a

side slope of 1H:1V. The dam is located in the middle

of the channel. Both wet-bed and dry-bed conditions

Figure 14
Comparison of water surface and flow rate for dry-bed dam break in a triangular channel (N = 1000, t = 45 s)

Figure 15
Water surface for dry-bed dam break in a triangular channel for

different cell sizes (t = 45 s)

Figure 16
3D-view showing the topography at the bottom and lateral channel

walls
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Figure 17
Water surface elevation under drain on a non-flat bottom at different times for the test (Balbás and Karni 2009, Hernandez-Duenas and Karni

2011) (N = 200)
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downstream of the dam are simulated. The upstream

water depth was 1 m for both cases, and the

downstream water depth was 0.1 m for the wet-bed

case. For the wet-bed case, we compute the solution

with 400 computational cells. For the dry-bed, we

used two computational grids with 400 and 1000

cells.

The exact solutions of dam-break problems for a

horizontal triangular channel can be found in Chen

et al. (2011), Wu et al. (1993), Wu et al. (1999)). A

comparison of the numerical and exact solutions for

the wet-bed dam break at 80 s after dam removal is

shown in Fig. 12. The dry-bed numerical results for

water surface and flow rate at 45 s after dam removal

are given in Figs. 13 and 14. In the dry-bed case, one

can see that the greatest error is at the front of the

moving water (Fig. 15), which decreases as the cell

size is reduced. These results are similar to that

obtained by Sanders (2001) and Lai and Khan (2012)

using TVD schemes of second-order accuracy.

4.6. Drain on a Non-Flat Bottom

In this example, taken from Balbás and Karni

(2009), Hernandez-Duenas and Karni (2011), a

symmetric reservoir is being drained through a

rectangular channel with a parabolic contraction.

Due to the symmetry, the flow is computed on half

the domain. The contraction is described by the

quadratic interpolant through the points (0.25,1.0),

(0.5,0.8), and (0.75,1.0), where the first number is the

x-coordinate, and the second one is the width of the

channel. The bottom topography consists of one

hump (Fig. 16)

BðxÞ ¼ 0:25 1þ cosðpðx � 0:5Þ=0:1Þ½ �; if x � 0:5j j\0:1
0; otherwise

�

Due to symmetry of the domain at x = 0, we

specify wall boundary conditions on the left bound-

ary. The right boundary condition is an outflow

condition on a dry bed. This boundary condition on

the right side of the domain allows the water that was

at rest to flow freely through the right boundary into

the initially dry region.

In Fig. 17, we show the solution obtained for the

initial water surface elevation at 0.8.

Figure 18
Water surface elevation under drain on a non-flat bottom at t = 1 for the test (Balbás and Karni 2009, Hernandez-Duenas and Karni 2011) for

different number of cells (left N = 100 and right N = 400)

Figure 19
Outline of dam-break flows in a rectangular channel with a junction
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Figure 21
Comparisons of the simulated water depths and discharges with different junction treatments at selected cross-sections

Figure 20
Simulated water surface profiles of the entire channel at t = 5 s and 18 s
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After drainage begins, the solution converges to a

steady-state solution in which water exists only on

left-hand side of the hump. The obtained simulated

results are in good qualitative agreement with

numerical results in Balbás and Karni (2009) for all

times except t = 1. The numerical results for t = 1

differ from Balbás and Karni (2009) by the presence

of small waves. We carried out additional numerical

computations with N = 100 and N = 400. The

obtained results are illustrated in Fig. 18 and anyone

can see the absence of the waves on the rough

computational grid and their presence on the detailed

grid.

4.7. Subcritical Dam-Break Flow in a Rectangular

Channel With a Junction

We consider a subcritical dam-break flow in a

frictionless, horizontal, rectangular channel, 34 m

long and 3 m wide. The channel is divided into two

parts by a dam located 15 m from the left end.

Initially, the water at rest to the left of the dam was at

a level of 0.5 m and 0.1 m to the right. Vertical walls

are placed at the ends of the channel, and their height

is enough to prevent any spilling of water out of the

channel (Fig. 19). The channel cross-sections for

numerical solution comparisons G1 and G2 were

respectively located 4.4 m and 5.9 m downstream

from the dam.

After abrupt dam failure, the water flows down-

stream until it reaches the vertical wall at the right

channel end and reflects from it. The left vertical wall

reflects the flow too. The simulations are carried out

for a uniform Dx ¼ 0:1 m and Dt ¼ 0:01 s. Numer-

ical simulations are performed for a computational

grid with and without channel junction that is located

5 m downstream from the dam. We apply two types

of junction treatment for a control volume around the

channel junction: (1) based on mass conservation

(CUJ1) and (2) based on the Saint–Venant equations

(CUJ2). We consider the numerical solution on the

computational grid without junction (CU) as the

reference solution.

Simulated water profiles for the two times, at 5 s

and 18 s, are given in Fig. 20. For different junction

treatments, comparisons of the simulated water

depths at two channel cross-sections G1 and G2 are

shown in Fig. 21. Note that the numerical solution

with CUJ1 (red line in Figs. 20, 21) locally is slightly

different from the reference solution CU (black line).

Figure 22
Sketch of modeling area for dam-break problem in a rectangular channel with a loop
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Therefore, applying only the mass conservation

equation for a channel junction can lead to small

errors in the modeling of a subcritical open water

flow.

4.8. Dam-Break Flow in a Rectangular Channel

With a Loop

The purpose of this test is to compare different

treatments of an open channel junction for subcritical

and supercritical flows. Similar to the previous

section, we consider a dam-break problem in a

frictionless, horizontal, rectangular channel with a

loop (Fig. 22). There are two vertical walls at the

ends of the channel located at x = - 15 m and

x = 19 m. The channel width before and after the

loop is 3 m. The width of the lower loop channel

(channel B in Fig. 22) is 2 m, and the upper (channel

C) is 1 m. The channel is divided into two parts by a

dam at x = 0 m. Initially, the upstream water depth is

1 m (supercritical flow), or 0.5 m (subcritical flow),

Figure 23
Comparison of the simulated water depths at channel cross-sections G1, G2, G3, and G4 for the subcritical flow

Table 2

Relative errors in L1 and L2 norms between 1D and 2D solutions at

the cross-sections for the subcritical flow

Relative error in L1 norm Relative error in L2 norm

CUJ1 CUJ2 CUJ1 CUJ2

G1 0.0298 0.0249 0.0626 0.0578

G2 0.0284 0.0384 0.0506 0.0793

G3 0.0520 0.0725 0.0970 0.1473

G4 0.0230 0.0216 0.0524 0.0711
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Figure 24
Comparison of the simulated water depths by CUJ2 and COASTOX at the channel cross-sections G1, G2, G3, and G4 for the supercritical

flow

Figure 25
River network of the Lower Danube River. Left: the inflow nodes of the river network are indicated by triangles (blue and green), and outflow

nodes are indicated by yellow squares. Red circles denote the river channel junctions with their node numbers. Right: red circles denote the

location of the water gage stations D1–D10. Yellow squares denote the junction nodes in which the water surface levels calculated by the

CUJ1 and CHARIMA models are compared
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and the downstream water depth is 0.1 m. The dam is

then breached, and instantaneously water discharges

from the higher to the lower level as a downstream-

directed bore while a depression wave propagates

upstream. The flow is reflected when the water front

reaches the walls at the ends of the channel. Four

channel cross-sections for comparison of numerical

solutions G1, G2, G3, and G4 were located at

different parts of the channel as shown in Fig. 22.

The simulations are performed with Dx ¼ 0:1 m

and Dt ¼ 0:01 s. The 2D model COASTOX (Zhe-

leznyak et al. 1992), (Kivva et al. 2018), (Zheleznyak

et al. 2016) and 1D model are used to simulate dam-

break problem. COASTOX is an unstructured finite

volume model for solving the shallow water equa-

tions by using the Godunov scheme. COASTOX

numerical solutions are the reference for comparison

of the 1D numerical solutions. In 1D simulations, the

junction treatment in the channel network is repre-

sented by two kinds of models: (1) mass conservation

(CUJ1), and (2) mass and momentum conservation

(CUJ2). These two junction models are compared at

the four cross-sections with each other and with

respect to the 2D numerical solution that averaged

over the cross-section.

Comparison of the simulated water depths by

using two junction models at the four cross-sections

for the subcritical flow is presented in Fig. 23.

Relative errors in L1 norm and L2 norm calculated

by relation (60) between 1D and 2D solutions at the

cross-sections for the subcritical flow are given in

Table 2.

CUJ1 produces similar relative errors as CUJ2

does for the subcritical flow in this test. At the same

time, the results of CUJ1 much better describe the

dynamics of the first wave in the cross-section G2.

For the supercritical flow in a channel network CUJ1

does not produce a physical numerical solution.

Comparison between CUJ2 and COASTOX numer-

ical solutions for the supercritical flow at the four

gages is shown in Fig. 24. Agreement between 1D

and 2D numerical results for subcritical and super-

critical flows is generally satisfactory when only the

CUJ2 approach is used for the supercritical flows.

As one might suppose, the greatest error in the

numerical solution of a 1D model in comparison with

a 2D model is observed at the bore front under

passing of the channel junction. Therefore, it is better

to apply 2D or 3D models to simulate a bore

propagation in a multiply-connected channel

network.

4.9. Lower Danube River

As a test of the applicability of the above-

presented numerical scheme for a large-scale natural

open flow, we simulate the river network of the

Lower Danube from 01/01/2000 to 31/12/2000

(Zheleznyak et al. 2016). The river network consists

of 29 links and 26 nodes (Fig. 25, left). Blue and

green triangles denote inflow nodes, yellow squares

indicate outflow nodes and red circles mark channel

junctions. Water gages D1–D10 are located at points

indicated by red circles shown in Fig. 25, right. The

total length of the main channels is more than

900 km. The total length of the main channels

between water gages D1 and D10 is more than

500 km. For this part of the river network, we have

only 10 channel cross-sections located at the water

gages.

The river network is discretized by a non-uniform

grid with cell sizes varying from 1061.37 to

3948.45 m. The computational grid includes 321

cells and 338 cell interfaces. The CFL number is set

to 0.8. To simulate water flow in the river network,

we will use two models: (1) the described-in-this-

Table 3

Values of the NSE at water gages D1–D10

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

NSE 0.9509 0.9496 0.9799 0.9779 0.9716 0.9592 0.8956 0.9834 0.9884 0.8960
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paper central-upwind scheme with the junction

treatment based on the continuity equation (CUJ1)

and (2) an analog of the CHARIMA model (Holly

et al. 1990). CHARIMA simulates water flow in a

channel by applying the Preissmann implicit finite-

difference scheme (Preissmann 1961). This scheme is

a weighted four-point scheme. At a junction node, it

is assumed that: (1) inflow discharges should be equal

outflow discharges from all tributaries at the junction,

and (2) the water levels at the ends of linked channels

are equal at the junction.

The friction slope is evaluated from Man-

ning’s Eq. (3). The hydraulic radius is calculated as

A/P, where P is the wetted perimeter. Note that CUJ1

and CHARIMA have different difference approxi-

mations of the friction slope.

Water discharge is specified at the inflow nodes.

At that, the water discharge at a node indicated by

green in Fig. 25 (left) is simulated as a lateral inflow

to the corresponding channel junction. Water surface

elevation is set up at the outflow nodes (yellow

squares).

The calibration of CUJ1 is performed by adjusting

Manning’s coefficient n inside the river network by

using the CMA Evolution Strategy (Suttorp et al.

2009). We assumed that 0:01	 n	 0:04, and for its

evaluation we adopted pCMALib code (Müller et al.

2009). The Nash–Sutcliffe model efficiency coeffi-

cient (NSE) is applied to assess the approximation of

the measured water surface elevation at a water gage

by the simulated water surface elevation. We took

data of water surface level measurements at all water

Figure 26
Comparison of simulated and observed water surface elevations at various gage stations
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Figure 27
Comparison of the water surface elevations at junctions calculated by CUJ1 and CHARIMA

Figure 28
Sketch of a channel network

Table 4

Characteristics of network channels

Channel Length, m Width, m Elevation of channel ends, m

Upper Lower

AB 10.0 0.1 0.25 0.20

BC 20.0 0.1 0.20 0.10

CD 10.0 0.1 0.10 0.0

EF 20.0 0.2 0.35 0.20

FB 15.0 0.2 0.25 0.20

FC 15.0 0.2 0.30 0.10

HG 10.0 0.2 0.35 0.30

GB 10.0 0.2 0.30 0.20

GC 20.0 0.2 0.30 0.10
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Figure 29
Open water surface elevations at different times along channels EFB
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gages D1–D10 for the Manning’s coefficient evalu-

ation. Thus, the objective functional is taken as

= ¼
X10

i¼1

NSEi ¼
X10

i¼1

1�
Pm

j¼1 wiðtjÞ � w0
i ðtjÞ

� �

Pm
j¼1 w0

i ðtjÞ � �w0
i

� �

" #

! max

where �w0
i is the mean of observed water surface

elevations at an i-th water gage; w0
i ðtjÞ is the observed

water surface elevation at an i-th water gage in time

tj; wiðtjÞ is the modeled water surface elevation at an

i-th water gage in time tj; m is the number of times.

When the functional = reached a value of 9.5527, we

interrupted the calibration. Values of the Nash–Sut-

cliffe coefficients at gages D1–D10 are given in

Table 3.

Post-calibrated values of Manning’s n were used

in simulations of the two models under the same

computational grid, initial and boundary conditions.

Comparisons of simulated and observed water sur-

face elevations at the Borcea (D3), Izvoarele (D4),

Gropeni (D8) and Braila (D10) water gages are

shown in Fig. 26. Comparisons of the water surface

elevations at junctions 3, 8, 17 and 22 (Fig. 25, right)

calculated by the CUJ1 and CHARIMA are presented

in Fig. 27.

Figure 30
Open water surface elevations at different times along channels EFC
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Figure 31
Open water surface elevations at different times along channels HGB
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A good agreement between the water surface

elevations at the channel junctions calculated by the

CUJ1 and CHARIMA models indicates that the

continuity equation at a junction for a subcritical flow

can be used instead a traditional internal boundary

condition based on equality of the both discharges

and water levels. That provides the possibility to

apply the described central-upwind scheme CUJ1 for

a multiply-connected channel network for subcritical

flows through junctions.

4.10. Inundation of a Dry Channel Network

In this section, we simulate inundation of a dry

channel network which consists of 9 inclined rectan-

gular channels and four junction nodes (Fig. 28). We

will denote each channel by the node names bound-

ing this channel. In a channel name, the left letter will

mark the upper end of the channel. Upper ends of

channels AB, EF and HG are bounded by vertical

walls. Characteristics of network channels are given

in Table 4. Note that in the junction F channel ends

connected with it have different elevations.

At the upper ends of the channels AB, EF and HG,

there are water sources, rates of water inflow (m2/s)

of which in the continuity equation are calculated by

formulas

QAðtÞ ¼ 0:01 sinðpðt � 1Þ=60Þ if 1	 t	 61

0 otherwise

�

QEðtÞ ¼
0:0075 sinðpðt � 1Þ=30Þ if 1	 t	 31

0:05 sinðpðt � 150Þ=60Þ if 150	 t	 210

0 otherwise

8
<

:

QHðtÞ ¼ 0:0075 sinðpðt � 50Þ=80Þ if 50	 t	 130

0 otherwise

�

Such geometry of the channel network and the

time distribution of the water source discharges were

selected for this test to generate the consequence of

the waves inundating and drying the network.

The channel network was discretized by a uniform

grid with cell size of 0.2 m. Manning’s roughness

coefficient was equal to 0.01 (s/m1/3). The outflow

boundary condition was specified at the node

D. Numerical simulations were carried out for the

CFL number equal to 0.9. Since flow along a dry

bottom is supercritical we used the CUJ2 model to

simulate open water flow in the channel network

under inundation.

Figure 32
Open water surface elevations at different times along channels HGC
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Figure 33
Open water surface elevations at different times along channels ABCD

Vol. 177, (2020) Open Water Flow in a Wet/Dry Multiply-Connected Channel 3453



Open water surface elevations along various

channels of the network at different times are shown

in Figs. 29, 30, 31, 32 and 33. Time series of water

surface elevations and the Froude number at the

junction nodes B, C, F and G are given in Fig. 34, 35.

In Figs. 29 and 30, anyone can see that during the

passing of first wave along channel EF inflow

discharge of water to the junction node F does not

equal to outflow discharges from it, which are zero at

this time. Thus, the condition that the sum of the

discharges has to be zero at the junction, which is

used in many hydrological models as the internal

boundary condition for the junction treatment, is not

valid in general case.

5. Conclusions

A central-upwind scheme has been applied to

simulate shallow water flow in a multiply-connected

channel network with arbitrary channel geometry and

bottom topography. A new reconstruction algorithm

of water surface elevation for partially flooded cells

has been proposed. This reconstruction algorithm,

that is a generalization of the idea from (Bollermann

et al. 2013), with the exact integration of source terms

of the shallow water equations, provides the well-

balanced property and positivity preserving of the

scheme. We considered two models of a channel

junction treatment based on: (1) the continuity

Figure 34
Time series of open water surface elevations at the junction nodes
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equation for a subcritical flow and (2) mass and

momentum conservation equations for a supercritical

flow. Using such channel junction treatment instea-

d of the traditional internal boundary conditions

allows a simpler way to apply other difference

schemes instead of the Preissmann scheme and sim-

plified forms of the Saint–Venant equations to

simulate open water flow in a multiply-connected

channel network. It is shown that for a subcritical

flow the continuity equation at a channel junction is a

generalization of the model of the equality of water

surface elevations. Applying the local draining time

approach from (Bollermann et al. 2011) to limit

outflowing flux from the draining cell, we provide the

positivity preserving without of a reduction of the

CFL time step restriction. Implicit treatment of only a

part of the friction slope according to Chertock et al.

(2015) holds the scheme stability without additional

time step restriction.

The set of the numerical tests demonstrates the

scheme accuracy, positivity preserving and well-

balancing, convergence of numerical results to

steady-state solutions and their good agreement with

exact solutions and experimental data, including

measurements in the multiply-connected river chan-

nel network. We propose the new specialized test for

the simulation of inundation and drying of the

channel network by consequence of supercritical and

subcritical flows. The test results demonstrate the

stability of the scheme and the robustness of the new

numerical algorithm for the simulation of the wetting/

drying flow in the multiply-connected channel

network.
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