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Abstract. Since the introduction of betting exchanges in 2000, there has been 

increased interest of ways to monetize on the new technology. Betting exchange 

markets are fairly similar to the financial markets in terms of their operation. Due 

to the lower market share and newer technology, there are very few tools 

available for automated trading for betting exchanges. The in-depth analysis of 

features available in commercial software demonstrates that there is no 

commercial software that natively supports machine learned strategy 

development. Furthermore, previously published academic software products are 

not publicly obtainable.  Hence, this work concentrates on developing a full-stack 

solution from data capture, back-testing to automated Strategy Agent 

development for betting exchanges. Moreover, work also explores ways to 

forecast price movements within betting exchange using new machine learned 

trading strategies based on Artificial Neuron Networks (ANN) and Cartesian 

Genetic Programming (CGP). Automatically generated strategies can then be 

deployed on a server and require no human interaction. Data explored in this 

work were captured from 1st of January 2016 to 17th of May 2016 for all GB 

WIN Horse Racing markets (total of 204GB of data processing). Best found 

Strategy agent shows promising 83% Return on Investment (ROI) during 

simulated historical validation period of one month (15th of April 2016 to 16th 

of May 2016). 
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1   Introduction 

People have loved to bet on various events since the beginning of written history [1]. 

In particular, many people are gambling on sporting events. In past few years gambling 

has grown into multi billion industry. In the UK alone, remote (online) gambling sector 

generated £4.47bn (April 2015 - March 2016). Out of that, online betting and betting 

exchanges generated total of £1.72bn Gross Gambling Yield (GGY) [2]. This have led 

to increased interest in forecasting sporting event outcomes using mathematics and 

statistics for years.  

With the rise of betting exchanges in 2000, punters can not only take bets, but also 

offer their own, in peer to peer fashion. Following the concept of more familiar stock 

exchange markets. This have attracted a new sort of customer, the full time, high-

volume trader who buy and sell odds just like financial traders buy and sell stock or 

trade on foreign currency exchange. Although, the value of betting exchanges cannot 



be compared to financial markets, Betfair – the leading betting exchange -  processes 

more than seven million transactions each day – more than all European stock 

exchanges combined [3].  

 

This research investigates possible advantages of using machine learning with Feed 

forward multilayer perceptron (MLP) Artificial Neural Networks (ANN) and Cartesian 

Genetic Programming (CGP) to predict price movements on pre-race GB horse racing 

markets. The paper has been structured as follow: Section 2 explores current state of 

the art approaches, Section 3.1 outlines the machine learning and back testing platform 

and Section 3.2. describes the machine learning models explored. Furthermore, Section 

4 reports on the results achieved.   

2   Related work 

There have been various attempts to predict the outcome of various sporting events 

using machine learning –dog racing (greyhound) [4] [5], tennis [6] [7], soccer [8] [9] 

[10], cricket [11] and horse racing [12] [13] [14].  

However, little work has been done on forecasting the price movements inside the 

betting exchanges. Because betting exchange is very similar to traditional stock or 

currency exchange markets, there have been couple of attempts using stock market 

strategies and analysis on betting exchange markets. For example, [15] looked at how 

human behavior affects the price movements and volumes, trading patterns and 

strategies.  

Detailed introduction to the domain of financial time series prediction using artificial 

neural networks are described in [16] and [17]. Whereas [18] goes into details of 

financial time series prediction using Cartesian Genetic Programming and ANN hybrid 

– Neuro Evolution.  

Most of the academic papers in betting exchange forecasts, focus on tennis trading, 

mainly due to hierarchical nature of the tennis markets. [19] investigates set-by-set 

analysis based on [20] and Markov chains. In contrast, [21] uses artificial neural 

networks to predict the price movements on in-play markets with a custom cost 

function. Furthermore, [22] utilizes machine learning to boost the performance of plain 

strategies in Horse Racing markets, while [23] explores mathematical and statistical 

dynamics of Horse Racing markets.   

The most relevant work has been compared in Table 1. To the best of the author’s 

knowledge, there has not been any work done in price movement forecasting in Horse 

Racing markets. In addition, datasets used to predict the outcome of the event is very 

small compared to datasets needed to predict and back-test price movements. This 

provides unique niche for research which is conducted in this paper.  



Table 1.  Current state of the art compared 

Work 
Forecast 

type 

Market 

type 

Number 

of 

markets 

Approximate 

number of 

selections1 

Machine 

learning tools 

used 
J. P. A. Santos, 

2014  [22] 
Outcome 

Horse 

Racing 
1 8432 15 062 RapidMiner 

A. Bunyan,  

2014 [24] 
Outcome 

Horse 

Racing 
14 1123 R & WEKA 

M. Sipko,  

2015 [7] 
Outcome Tennis 6 315 12 630 

Logic 

Regression and 

ANN 

Ø. Norstein,  

2008 [21] 

Price 

movements 
Tennis 388 776 ANN4 

Proposed work 
Price 

movements 

Horse 

racing 
3 040 24 964 ANN and CGP 

 

Furthermore, in order to accommodate the machine learning algorithms, an 

underlying platform is required. There are various commercial trading tools available 

that offers users to create transactions at betting exchanges. The most popular ones - 

Market Feeder Professional, Gruss Software, Bet Angel, BFExplorer, Geeks Toy. 

However, none of these offer integrated machine learning features and only one – 

Market Feeder Pro allows back-testing. JBet [22] is a betting exchange tool developed 

in Java that allows users to access, record and replay markets. It also implements 

machine learning techniques to assist strategy development. SPORTSBET [25] is a 

framework that is built on an open-source event-driven platform called URBI. It allows 

dynamic market re-construction and evaluate strategy performance. Although it 

implements some stochastic search heuristic in order to improve strategy performance, 

it does not use any machine learning techniques to develop the strategy itself.  Since 

both JBet and SPORTSBET are not available to general public, they cannot be used as 

the platform for this paper. However, the concepts of both these works are used as basis 

in developing machine learning and back-testing platform described in this paper.   

                                                           
1 Each event has number of selections, for example Tennis match has only 2 possible outcomes, 

Soccer (matched odds) – only 3 outcomes (Team 1 win, Team 2 win or Draw). Horse racing 

has on average 8 possible outcomes. 
2 Source does not specify total number of markets in the dataset, total number of markets was 

retrieved from 2014/01/01 to 2014/04/01 for all GB WIN horse racing events.  
3 Assuming each horse market contains 8 selections on average 
4  Feed-forward multilayer perceptron (MLP) 



3   Methods and implementation 

3.1. Framework 

Fig 1 demonstrates the overall framework diagram. At first, technical market data, 

such as price and volume, is extracted from Betfair API. Data is then transferred to a 

local server on a weekly basis where it is formatted in open-source Protobuf-net for fast 

deserialization speeds and processing. Additionally, fundamental data such as horse 

form and running history is imported into the MySQL database. On the local server, 

each Strategy gathers the necessary data (if any) and develops a model based on either 

machine learning (ANN or CGP), statistics or plain strategies. Each model then can be 

used by Strategy agents to either put bets “live” with Betfair API, or for back-testing 

purposes within Simulator. Once bets are placed, Analyser displays each Strategy 

agent’s performance based on various metrics such as profit, yield, number of bets and 

similar. 

 

Fig 1. Proposed framework diagram 

 

3.1.1. Data extraction and processing 

Most betting exchanges offer different Application Programming Interfaces (API’s) 

for their customers and Betfair is no exception. API products allow to build custom 

applications with direct access to the Betfair servers.  The interface is simple - the client 

sends a JSON/JSON-RPC request to Betfair server and receives a response. For 

instance, the client could be requesting the current odd status or making an order request 



(a bet). Betfair API provided C# example code5 was used as basis of developing the 

data collection agent.  

 Time-stamped price data6 were collected for around 3000 markets from 1st of 

January 2016 to 17th of May 2016 using custom built C# application. Data recording 

for each market begins 3 hours before the scheduled start time. At early stages of the 

market, odds are saved only every 5 minutes. As the market matures, it is being saved 

more often. 10 minutes before the race, the market is saved every second and the refresh 

rate decreases to 0.2 seconds as the market goes in-play. It was found that Protobuf-

net7 serialization format allows the fastest deserialization time, compared to all other 

C# serializers while maintaining reasonable file size per market. During the recorded 

period, all GB WIN horse race market consumed 204GB of storage in Protobuf-net 

format.  

3.1.2. Machine learning 

Artificial Neural Networks (ANN) have been mainly used for pattern recognition, 

however, they can also be used for forecasting financial time series. The general idea 

of forecasting financial and economical time series is to extract features of price and 

volume information and use that as the input for machine learning tools to predict either 

overall price direction (classification), specific price at given future time (regression) 

or a custom loss function such as profit generated. [26] goes into great detail explaining 

the design of neural network for forecasting financial and economic time series. Feature 

extraction approaches and output definitions for all models are described in 3.2.1 and 

3.2.2.  

There are many open source machine learning frameworks for ANN and Encog8 is 

one of them. This work utilizes Encog C# library, as it has a simple API and is C# 

based, allowing simple integration into already developed framework. All ANN results 

in this paper are based on feed-forward multilayer perceptron (MLP) (BasicNetwork 

class in Encog) with one hidden layer of 50 neurons and ActivationElliott error function 

(except for Profit, where a custom loss function is used). Furthermore, implementation 

uses QuickPropagation training with learning rate of 2.  

 

Authors have previously developed a Cartesian Genetic Programming (CGP) 

algorithm, described in [27], where it was successfully used for time series multi-step 

ahead forecasting for various industrial time series. Thus, building on top of that 

knowledge, in this paper we apply CGP for financial time series forecast. 

CGP is based on  (1+ λ) evolutionary strategy [28], where during each generation, 

the number of parents (P) are selected to produce a number of children (C) using 

mutation operator only. Mutation rate (M) is expressed as percentage of the number of 

genes that are being mutated. The quality of the chromosome is evaluated using a 

fitness function. The best chromosomes in the population are defined as fittest 

members. Furthermore, the fittest member(s) of the population now becomes the 

                                                           
5 Open source code. Available at: https://github.com/betfair/API-NG-sample-code 
6 Betfair Time-stamped data scheme - https://historicdata.betfair.com/Betfair-Historical-Data-

Feed-Specification.pdf 
7 Open source framework. Available at: https://github.com/mgravell/protobuf-net 
8 Encog Machine Learning Framework - http://www.heatonresearch.com/encog/ 



parent(s) and the process repeats till some end condition is met such as number of 

generations, fitness value or wall-clock time. 

Each chromosome represents one approximation equation. The equation is 

assembled using arithmetic operators defined by primary arithmetic equations, also 

called gates. Each gate can have a maximum of number of inputs, J. Each gate type 

defines one primary arithmetic operation, see Fig 2. Variations of primary arithmetic 

equations used in evolutionary process are defined in the function library in 

advance.  Therefore, each gate is represented using collection of the following genes:  

 The number of inputs to the gate  

 Gate type  

 Collection of inputs for a specific gate  

 Gate constant  

Each chromosome is defined as following:  

 Collection of gates, G  

 Collection of chromosome outputs  

The number of chromosome outputs is defined by the number of outputs to be 

forecasted. The evolutionary process is driven by mutation that is focused on:  

 Changing the number of inputs in gate  

 Changing the gate function out of the function library  

 Changing the gate inputs  

 Changing the gate constant  

Furthermore, mutation of chromosome outputs is also allowed and the initial 

population is randomly generated.  

 
Fig 2. Graphical representation of gate and chromosome. In this example, 3 inputs are used to 

generate 2 outputs. Only 2 gates are used and one additional input (avg). Output 1 uses first gate 

(output label 4), whereas Output 0 uses output of the second gate (output label 5).   

 

From previous work in [27], it was concluded that CGP offers competitive results 

compared to ANN and Support Vector Machines (SVM). The best configuration of 

CGP found in [27] is used in this work, see Table 2. 

  



 

Table 2. Cartesian Genetic Programming parameters used for all test cases (except for Profit 

where custom fitness function is used). More detailed implementation of the architecture, please 

refer to previous work in [27]. 

The number of gates (G) in chromosome  50  

Mutation rate (M)  5%  

The number of children (C)  2  

Population size (P)  8  

Termination criteria 24 hours elapsed  

The maximum number of inputs in a gate (J)  20  

Fitness function  Mean Square Error  

 

Furthermore, Function library primitive arithmetic functions used are as follows: 
sum(i1,i2,i3,...);  
multiply(i1,i2,i3,...);  
const*sum(i1,i2,i3,...);  
subtract(i1,i2,i3,...);  
division(i1,i2);  
multiply(i1,i2,const);  
const*i1^2;  
const*i1^3;  
i1^const 

 

Where i corresponds to a double value input in the Gate and const corresponds to the Gate 

constant as described in Fig 2. If the output of the gate is not a number or has overflowed, first 

input value of the gate is passed as the output.  

 

Moreover, Fig 3 shows an overview of machine learning strategy development. 

Initially, a form of strategy is defined with its corresponding feature set – properties 

that defines individual entry. These inputs can be either technical data, such as previous 

price history, volume matched, or fundamental data, such as horse form, previous race 

history or combination of both. Furthermore, inputs will be used as feature sets for the 

supervised machine learning stage by either CGP or ANN.  

 

The dataset is then split into three groups – Training set, Testing set and Validation 

set, 50%, 25% and 25% respectively. The machine learning algorithm trains the model 

based on the training dataset. In order to estimate model forecasting performance, the 

trained model is then presented with the test dataset. The prediction performance on 

test dataset is then evaluated based on overall profit. If performance is not adequate, 

strategies/model parameters, such as number of gates (CGP) or number of hidden 

neurons (ANN), are adjusted and the model trained again. If the model is accepted, it 

is implemented as a Strategy agent. Newly created Strategy agent then goes through the 

simulation stage on completely unseen data (validation set).  If the agent is producing 

profit, it is being accepted and deployed for live trading. However, if the agent is 

making a loss, it is discarded and the whole process restarts.  

 



 

Fig 3. Flowchart of machine learning strategy development 

3.1.3. Strategy agents and Agent manager 

Strategy agent – an automated algorithm that trades on the betting exchange, obeying 

predefined rules. Each machine learning strategy that passes verification discussed in 

Section 3.1.2, gets implemented as a Strategy agent. Statistical or empirical (plain) 

strategies can be implemented directly as a Strategy agent without the lengthy machine 

learning process.  



Agent manager, as name suggests, manages all strategy agents and place bets 

accordingly. For every price update from Betting exchange/Simulator (referred as API 

in this section), Agent manager provides the new data to each Strategy agent and 

receives betting instructions in return. If received instructions specify that a bet must 

be placed, Agent manager places that bet in the buffer. Once all Strategy agents are 

notified and bet instructions received, Agent manager places all bets with API. API 

then responds with either bet success or failure. Manager notifies each Strategy agent 

with the corresponding response, if bet was not accepted, Strategy agent can try placing 

the bet again on the next price update.  Furthermore, if the bet was only partially 

accepted, Strategy agent can try and place the remaining stake at a later stage. Placing 

orders (bets) via Agent manger and buffering them, allows consolidation of orders on 

the same selection and therefore minimizes the overall number of API requests. API 

requests take considerable time (depending on the network speed and physical 

location), in the range of 10-200ms per JSON-RPC request. Overall bet placement flow 

is shown in Fig 4. 

 

Fig 4. Bet placement flow using Agent manager where Simulator is the Betfair API betting 

exchange simulator. Arrows represent the communication/information sharing paths. 

“Wisdom of the crowds refers to the ability of statistical aggregates based on multiple 

opinions to outperform individuals, including experts, in various prediction and 

estimation tasks” [29].  Wisdom of the crowds can also be applied for betting exchange 

domain, where each Strategy agent votes for a specific outcome, such as price 

movement and a higher-level Strategy agent decides the final outcome (represented in 

Fig 4 as Strategy Agent C). The final decision can be based on average prediction, how 

contradictory the individual Agent’s predictions are or combination of both.   



3.1.4. Simulator 

In order to correctly calculate a strategy’s performance, it needs to be emulated 

correctly on real-life data. This is done using Simulator, see Fig 5. SimInterface class 

uses the IClient interface to replicate Betfair API calls, therefore, shifting from 

Simulator (development) to Betfair API (live) is done simply by changing the interface 

object.  

At the start, Simulator requests a list of all market catalogues of interest, for example, 

all WIN horse racing markets for given day. SimInterface API then gathers the 

necessary information from MySQL database and responds to the Simulator with 

corresponding market/event IDs. Furthermore, API loads all requested market technical 

data in RAM.  Simulator then creates a thread for each market. Moreover, each market 

has its own agent manager, which requests prices from the API. When an order is 

placed, API saves corresponding bet, with its associated bet ID, onto a file for further 

analysis. Once an event has finished, Simulator destroys corresponding market objects.  

 

Fig 5. Overview of Simulator implementation 

 

  



Requesting prices 

It is essential that every single Agent manager’s requested price information is a 

correct representation of the price at that time of the market. This is achieved by using 

system wide time. Time is increased in 10ms intervals and can be varied in speed by a 

speed factor. For instance, a speed factor of 1 would allow simulation of strategies in 

real time. However, that would take long time and be impractical for a month-long 

simulation. A speed factor of 100, would mean that every 100 seconds of historical data 

is processed in 1 second on simulation.  

Every request to the API is time-stamped based on the system-wide time and can be 

used to match the corresponding price entry in the historical data. If such entry does not 

exist, the closest previous entry is returned. This approach allows to correctly emulate 

sequential time series on multiple markets and multiple events. Therefore, for example, 

in a football tournament, one team winning a match just before another match has 

started, could impact the price of correlated event dramatically.   

Although, sequential market processing would allow the most accurate results, it 

takes a long time. A month worth of simulation at speed factor of 100, would take 7.2 

hours, excluding any input/output overheads. Hence a parallel approach, where each 

market is processed individually, has also been implemented.  

Placing orders 

When a strategy is being back-tested, there can be instances where the bet stake 

exceeds the available volume on the specified price. For example, placing a bet of £100 

when only £10 is available, would end up as £10 matched and £90 unmatched. 

However, when the next set of data comes in, there is a high chance that the £10 that 

was previously matched in Simulator would be still available. This is not correct, as in 

real market that volume would have been already matched. Therefore, there is a need 

to keep track of the placed bets and the matched volume for the specific price. For 

above example, if £90 is left unmatched, Simulator should be able to distinguish any 

new volume on that price and keep matching the unmatched bet, or keep it unmatched, 

if price moves in other direction. Back-testing emulator based on [25] has been 

implemented. 

3.1.5. Analyzer 

When simulation is finished, it is necessary to evaluate the performance of a given 

strategy [25]. This can be done via various back testing metrics, such as plain profit, 

profit after commission, number of winning/losing bets, number of consecutive 

wins/losses, Max Drawdown (MDD), Max Run-up (MRU), Average win/loss, Return 

on Investment (ROI), Risk Adjusted Rate of Return (RAR), Pessimistic return on 

margin (PROM), Perfect Profit (PP), Strategy Efficiency (SE) and T-test, all 

documented in [25]. 

T-test is statistical test that examines how likely results have occurred by chance 

alone. A T-test below 1.6 suggest that results are more likely occurred by pure chance, 

above 1.6 - has the potential for a long term sustained results. The higher the score, the 

more likely strategy will be able to perform long term [30]. 

 



These metrics are evaluated for each strategy agent and an Excel spreadsheet created 

automatically to display all statistics in a user-friendly format. 

3.2. Machine learning models 

Price movements in horse racing markets are volatile and on average, the most 

volume (money) matched is in the last 10 minutes before the race start time. From 

recorded data analysis it was concluded, that the largest drifts of pre-race are observed 

starting at around 6 minutes before the race start time. Due to more trading 

opportunities, strategies explored in this paper concentrates on predicting the Starting 

Price (price at time 0) 6 minutes before the race start time. The machine learning inputs 

are described in 3.2.2 while the output handling and bet execution are described in 

3.2.1.  

3.2.1. Objectives 

All objectives in this section, except for Profit are evaluated based on Mean Square 

Error (MSE):  

 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑒𝑖)

2𝑛
𝑖=1    (1) 

 
Where 𝑦 is the forecast output and 𝑒 is the expected output for a given dataset entry 𝑖 and 𝑛 

is the is the total number of dataset entries. 

Regression 

This objective tries to predict the exact exit price at time 0. For example, if entry 

price (6 minutes before the race start time) is 2.04 – 2.06, where 2.04 is the available 

Back price and 2.06 is the available Lay price, and exit price (at time 0) is 2.22 and 

2.24, the expected output would be 2.22. Thus, a profitable trade would be a Lay bet at 

2.06 and a Back bet at 2.22. The implied probability odds format is used instead of 

decimal format due to the normalized range of 0 to 1. Bet execution criteria – forecasted 

price is higher or lower than actual price.  

Ticks 

This objective tries to predict the number of tick changes and direction. The expected 

output is normalized by dividing the number of ticks by 100. Furthermore, the expected 

output is either positive or negative with an offset of 0.5.  For example, an entry price 

of 2.04 – 2.06 and exit price of 2.22 and 2.24 have a tick gap of 8 (between 2.06 and 

2.22) and as a profitable trade would be a Lay bet, 8 is assumed to be negative. 

Therefore, the expected output would be 0.5+(-8/100) = 0.42.  If the entry bet is a Back 

bet, the tick gap is assumed to be positive. Bet execution criteria – a tick threshold of 3 

ticks is applied for both Back and Lay bets, so a forecast output of 1 tick would not lead 

to a bet execution.  

Classification 



This objective tries to classify the betting options into three classes – Back bet, No 

bet and Lay bet, where Back bet is an expected output of 1, No bet is 0.5 and Lay bet 

is 0. For example, for the entry price of 2.04 – 2.06, and exit price of 2.06 and 2.08, the 

expected output would be 0.5, as no profit could be made. Furthermore, for an entry 

price of 2.04 – 2.06 and exit price of 2.00 - 2.02, the expected output would be 1 – a 

back bet. Bet execution criteria - a threshold of 0.1 is applied for both Back and Lay 

bets, so an output of 0.88 means no bet, since it is below the threshold (1 - 0.1 = 0.9).  

Profit 

Instead of focusing on forecasting error, this objective calculates the possible trade 

profit based on  Equation 2: 

 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑎𝑘𝑒 =  
𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒
∗ 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑆𝑡𝑎𝑘𝑒    (2) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 =  {
𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑎𝑘𝑒 − 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑆𝑡𝑎𝑘𝑒 𝐼𝑓 𝑓𝑖𝑟𝑠𝑡 𝑏𝑒𝑡 𝑤𝑎𝑠 𝐵𝑎𝑐𝑘
𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑆𝑡𝑎𝑘𝑒 − 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑆𝑡𝑎𝑘𝑒 𝐼𝑓 𝑓𝑖𝑟𝑠𝑡 𝑏𝑒𝑡 𝑤𝑎𝑠 𝐿𝑎𝑦

 

 

 For instance, using classification example above, if forecast output is 0.05 (a lay 

bet) and the entry price is 2.06 – 2.08 and exit price (price at time 0) is 2.22 – 2.24, the 

cost function would be evaluated based on profit made on a Lay-Back trade. Therefore, 

the overall profit with a stake of 10 units would be 10-((2.08/2.22) *10) = 0.63, after 

5% commission, the profit is 0.6 units. As both CGP and ANN try to minimize the 

error, the trade profit is multiplied by -1. Consequently, a trade leading to a negative 

profit would have a larger error compared to a profitable trade. If the model does not 

meet the bet execution criteria, a profit of 0 is returned. 

3.2.2. Machine learning inputs 

This section derives 6 different trading models by altering how the raw data is 

processed before used as inputs for ANN and CGP.  

6min_AP - Average prices 

This model uses average minute prices from 30 to 6 minutes before the race to 

predict a Back or Lay bet and exit the trade at time 0. The average price for a one minute 

period is calculated by adding all Back-Lay price pairs together and dividing by total 

records during that interval – n (Equation 3).  

𝑃𝑎𝑣𝑔 =  
1

𝑛
∑ (

𝑃𝑏𝑎𝑐𝑘+𝑃𝑙𝑎𝑦

2

𝑛 )    (3) 

 

This approach allows consolidation of input prices and also standardizes the input 

vector for the machine learning algorithm, thus eliminating any inconsistencies in 

record sample rates. The input vector is then normalized by using the inverse of the 

values.  

6min_APC - Average price changes 

Instead of using raw recorded prices, this model pre-processes the input prices 

further by calculating the price change between intervals t (Equation 4).  The model 

uses price intervals from 30 to 6 minutes to predict a profitable trade at 6 minutes before 



the race with an exit bet at time 0. The implied probability price changes are then used 

as machine learning inputs.   

𝑃𝛥 = 𝑃𝑎𝑣𝑔(𝑡) − 𝑃𝑎𝑣𝑔(𝑡−1)   (4) 

  



6min_AP_WOM - Average prices with custom Weight of Money 

This model explores the relationship between average Weight of Money (WOM) 

and average interval price. For given back or lay price 𝑃 at tick offset 𝑖 the available 

volume 𝑉 is weighted against the distance for given price (Equation 5 and Equation 6 

for back and lay volume respectively). This would penalize available volume that is far 

from the current best price, while reward available volume closer to the best price. 

Furthermore, the overall Weight of Money is then calculated as a ratio between 

weighted volume available to back against both back and lay WOM (Equation 7).  

 

𝑊𝑏𝑎𝑐𝑘 =  ∑
𝑉𝑃𝑏𝑎𝑐𝑘(𝑖)

𝑖

5
𝑖=1     (5) 

𝑊𝑙𝑎𝑦 =  ∑
𝑉𝑃𝑙𝑎𝑦(𝑖)

𝑖

5
𝑖=1     (6) 

𝑊𝑂𝑀 =  
𝑊𝑏𝑎𝑐𝑘

𝑊𝑏𝑎𝑐𝑘+𝑊𝑙𝑎𝑦
    (7) 

 

The WOM is calculated for every entry within the minute interval and averaging 

value used as the input vector for machine learning, similarly to the average interval 

price.  

6min_AP_2OUT - Average prices with stop profit. 

This model uses the same inputs as in 6min_AP, with the additional output of the 

exit price. 6min_AP only tries to predict the entry bet direction and exits the trade at 

time 0, whereas this model tries to forecast the entry bet direction 6 minutes before the 

race and also proposes an exit price. If during the 6-minute period price reaches the 

proposed exit price, an exit trade is made. If the proposed exit price is not reached, exit 

trade is made at time 0 the same way as for 6min_AP. If proposed exit price is lower 

than entry price, the proposed exit price is ignored and exit trade is made at time 0.  

6min_AP_3OUT – Average prices with stop profit and dynamic staking 

This model is an extension of 6min_AP_2OUT, where it tries to propose an 

additional output – stake size. If the stake size exceeds the maximum liability, it is 

capped at maximum. Furthermore, if the proposed value is negative, an absolute value 

is used instead.  

top5_AP_WOM – Top 5 favorite relationships 

This model tries to explore the relationship between top 5 selections (horses) within 

a given market. Only markets with at least 5 selections are used in this model. The top 

5 selections are determined 30 minutes before the race scheduled start time. Inputs for 

all 5 selections are pre-processed the same way as in 6min_AP_WOM and all inputs 

combined. Furthermore, this model expects to have 5 entry bet predictions at 6 minutes 

before the race and 5 exit bets at time 0.  

 



4   Results 

This section describes results for multiple strategy models. All models were trained 

on training set for 24 hours using Intel Core i7 3930K @ 4.2GHz CPU (100% of CPU 

utilisation with parallel processing), then evaluated based on overall profit during 

training set (Table 4) and for unseen data - testing set (Table 5). Furthermore, all models 

used a limited liability staking plan of 100 units. Which means that with any single bet 

maximum potential loss is 100 units. Default Back/Lay bet stake is 10 units (used for 

all models except 6min_AP_3OUT). However, if the lay bet exceeds the maximum 

liability, it is capped at the maximum. For instance, if the proposed bet from the model 

is a lay bet at odds of 21, the stake is 100/(21-1) = 5 units.  

 

Table 3. Overall profit (after 5% commission) for Training set for 36 models (1st of January 2016 

to 10th of March 2016, GB WIN horse markets). One result represents one run. 

 

Table 4. Overall profit (after 5% commission) for Test set for 36 models (11th of March 2016 to 

14th of April 2016, GB WIN horse markets). One result represents one run. 

 

Through result analysis, it was concluded that CGP prefers to “play safe” and not 

enter into market as much as ANN and hence, the strategy efficiency for ANN on 

average is higher. Using Profit as objective produce higher profit on average on the 

training set. 

As shown in Table 3, almost all models are capable of forecasting profitable trades 

on the training set. However, only few models are able to generalise the underlying 

relationship such that it can be also applied to unseen data – test set. Out of 36 models 

8 were able to make profit on the test set, from which only two (6min_APC – Profit – 

ANN and 6min_AP_WOM – Profit – ANN) have potential to be financially beneficial 

 
Training set profit (5% commission included), in units 

  
Objective / Approach 

  Regression Ticks Classification Profit   
CGP ANN CGP ANN CGP ANN CGP ANN 

In
p
u

ts
 

6min_AP 1.7 187.56 147.74 231.15 23.47 102.74 589.61 634.32 

6min_APC 10.56 174 185.91 142 175.98 127.55 311.87 444.47 

6min_AP_WOM 12.5 202.53 95.61 144.92 105.3 173.08 325.55 660.17 

6min_AP_2OUT x x x x x x 470.74 441.02 

6min_AP_3OUT x x x x x x 3874.68 6234.09 

top5_AP_WOM -120.77 673.25 13.08 770.5 15.64 775.92 -286.16 982.01 

 
Test set profit (5% commission included), in units 

  
Objective / Approach 

  
Regression Ticks Classification Profit   

CGP ANN CGP ANN CGP ANN CGP ANN 

In
p
u

ts
 

6min_AP 0.15 -52.3 -65.1 -83.6 4.41 -25.36 -213.32 -287.63 

6min_APC 6.2 -15.39 -88.07 -27.38 9.65 -24.7 2.69 33.14 

6min_AP_WOM -4.69 -63.82 -15.69 -20.44 -5.32 -17.45 20.01 157.74 

6min_AP_2OUT x x x x x x -110.25 -135.88 

6min_AP_3OUT x x x x x x -1481.15 -3003.59 

top5_AP_WOM -58.8 -482.91 -33.7 -563.99 -0.4 -753.73 -249.51 -657.61 



long term. Both of these models are explored in more detailed – models implemented 

as Strategy agents and run on the betting exchange Simulator on validation set (15th of 

April 2016 to 16th of May 2016) and result metrics (discussed in Section 3.1.5) 

recorded. 

 

4.1. 6min_APC-Profit with ANN 

This Strategy Agent uses Profit as an objective and is trained with ANN as described 

in Section 3.2.2. This model was run on Simulator and the overall trades analysed. 

During the validation set (15th of April 2016 to 16th of May 2016), 1295 bets were 

placed and overall profit (after 5% commission) was £41.35 (see Table 5). Although 

overall profit is positive, one should note that the total number of losing bets are by 

margin larger than the number of winning bets, but since average win is higher than 

average loss, it is still possible to make a profit. Furthermore, Risk-adjusted rate of 

return (RAR) of 33.11% shows a promising return. However, a T-test of 1.25 would 

suggest that the results have occurred by chance alone and therefore should not be 

proceeded with.  

Table 5. 6min_APC-Profit with ANN Analyser output 

Metrics 

Number of trades 1295 
Profit after commission 41.35 

Number of losing trades 706 
Number of winning trades 589 

Maximum sequential losses 12 
Maximum sequential winnings 10 

Average loss -1.17 
Average win 1.48 

Max drawdown -12.45 
Max run up 19.98 

Return on Investment (ROI) 41.35% 
Risk-adjusted rate of return (RAR) 33.11% 

The pessimistic return on margin 
(PROM) 

36.69% 

T-test 1.25136 
Strategy efficiency (SE) 1.59% 

 

4.2. 6min_AP_WOM-Profit with ANN 

6min_AP_WOM-Profit with ANN on Test dataset (1 month) produced a profit of 

157.74 units. Hence, this model was also implemented as a Strategy Agent and 

evaluated on validation set (15th of April 2016 to 16th of May 2016). Total of 1015 

trades were executed, producing a profit of £83.03 (see Table 6). Risk-adjusted rate of 

return (RAR) of 54.63% shows very promising results for this Strategy Agent. 

Furthermore, average win and average loss are the same, however, because the total 

number of winning bets exceeds the total number of losing bets, the overall profit is 

positive. As there are only marginally more winning trades than losing trades, it is worth 

noting that it would only take a shift of 4.2% of trades in order to make a profitable 

Strategy Agent a losing one.  Moreover, a T-test of 1.6 would suggest that it is more 

likely to be a profitable Strategy Agent long term compared to 6min_APC-Profit with 

ANN. 



Table 6. 6min_AP_WOM-Profit with ANN Analyser output 

Metrics 
Number of trades 1015 

Profit after commission 83.03 

Number of losing trades 486 
Number of winning trades 529 

Maximum sequential losses  9 
Maximum sequential winnings  8 

Average loss -1.96 
Average win 1.96 

Max drawdown -26.00 
Max run up 12.89 

Return on Investment (ROI) 83.03% 
Risk-adjusted rate of return (RAR) 54.63% 

The pessimistic return on margin (PROM) 81.22% 
T-test 1.60232 

Strategy efficiency (SE) 2.95% 

5   Conclusion 

This research has addressed multiple challenges designing and implementing a back-

testing and machine learning framework for betting exchange markets. Furthermore, 

developed entirely new trading strategies using machine learning algorithms. 

The proposed framework is generic enough that it can be adopted to various financial 

markets, however, the only difference is that betting markets are time constrained, i.e., 

market is finalized as the winner is determined, while most other financial markets are 

continuous in time. However, all the machine learning approaches explored can also be 

adapted to any other betting market and is not limited to Horse Racing. 

From these findings, it can be concluded that using trading strategies, generated 

using machine learning algorithms, have the potential for high-risk/high potential return 

investment. This form of investment would classify as Speculative and therefore could 

lead to the loss of large amount of funds if money management and risk control where 

incorrectly applied. Furthermore, additional risk is added by the ever-changing betting 

exchange fees and regulations. As Betfair is market leader by a large margin, it has the 

power to apply additional charges to their users. For instance, additional fees such as 

Premium Charge9 can be introduced without a notice and therefore decrease the overall 

Return on Investment. Moreover, additional barriers to entry – a fee for live API key 

that was introduced in May 2016 - can be enforced on users. It is uncertain what other 

charges might be applied in the future and hence increased risk on this sort of 

investment. Additionally, profitable strategy can lose its “edge” and become un-

profitable once markets adjust to the new change, according to the efficient market 

hypothesis [30].  

Further work includes live-testing and dynamic re-training of the best performing 

models. However, this would require much faster model training times, therefore, 

further investigation in hardware accelerators such as General Processing Units (GPUs) 

would be useful. 

                                                           
9 http://www.betfair.com/aboutUs/Betfair.Charges/# 
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