
Stoch PDE: Anal Comp (2019) 7:240–296
https://doi.org/10.1007/s40072-018-0127-8

Berry–Esseen theorem and quantitative homogenization
for the random conductance model with degenerate
conductances

Sebastian Andres1 · Stefan Neukamm2

Received: 7 May 2018 / Revised: 18 September 2018 / Published online: 12 October 2018
© The Author(s) 2018

Abstract
We study the random conductance model on the lattice Zd , i.e. we consider a linear,
finite-difference, divergence-form operator with random coefficients and the asso-
ciated random walk under random conductances. We allow the conductances to be
unbounded and degenerate elliptic, but they need to satisfy a strong moment condition
and a quantified ergodicity assumption in form of a spectral gap estimate. As a main
result we obtain in dimension d ≥ 3 quantitative central limit theorems for the random

walk in form of a Berry–Esseen estimate with speed t− 1
5+ε for d ≥ 4 and t− 1

10+ε for
d = 3. Additionally, in the uniformly elliptic case in low dimensions d = 2, 3 we
improve the rate in a quantitative Berry–Esseen theorem recently obtained byMourrat.
As a central analytic ingredient, for d ≥ 3 we establish near-optimal decay estimates
on the semigroup associated with the environment process. These estimates also play
a central role in quantitative stochastic homogenization and extend some recent results
by Gloria, Otto and the second author to the degenerate elliptic case.
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1 Introduction

Stochastic homogenization of elliptic equations in divergence formwith random coef-
ficients started from the pioneering works of Kozlov [37] and Papanicolaou-Varadhan
[49]. They established a qualitative homogenization result, which (adjusted to a dis-
crete setting) can be rephrased as follows. The unique bounded solution uε to the
elliptic finite difference equation

∇∗ω∇uε = ε2 f (ε ·) on Z
d (1.1)

with ω describing stationary and ergodic, uniformly elliptic, random coefficients, and
f an appropriate right-hand side, e.g. f ∈ Cc(R

d) with zero mean, converges after a
rescaling to the solution u0 of the deterministic, elliptic equation

−∇ · ωhom∇u0 = f on R
d ,

where ωhom denotes a deterministic coefficient matrix, the so-called homogenized
coefficients. Quantitative stochastic homogenization is concerned with finding the
rate of convergence of uε towards u0. The first result in this direction was obtained
by Yurinskii [51] and relied on probabilistic arguments. Recently, Gloria and Otto
in [29,30] and together with the second author in [28] obtained the optimal scaling
of the error for the discrete, uniformly elliptic case by combining input from elliptic
and parabolic regularity theory with input from statistical mechanics, in particular a
spectral gap inequality used to quantify ergodicity. Thereafter, an increasing interest
emerged in quantitative stochastic homogenization, e.g. see [6–10,12,14,15,22,25,31,
32,42].

Closely related to the topic of homogenization in PDE theory is the problem of
deriving invariance principles or functional central limit theorems for the so-called
random conductance model in probability theory, which refers to the random walk
X in random environment generated by the operator in (1.1). Roughly speaking, an
invariance principle states that the scaling limit of X converges to a Brownian motion
with a non-random covariance matrix �2 only depending on the law of the conduc-
tances, see Theorem 1.2 below. In particular, the covariance matrix of the limiting
process and the homogenized coefficients are related by the identity �2 = 2ωhom.
Such invariance principles are subject of very active research sincemore than a decade,
see the surveys [16,39] and references therein.

The goal of this paper is to extend the quantitative theories of stochastic homoge-
nization and invariance principles to the case of non-uniformly elliptic conductances.
In particular, we are interested in moment bounds and decay estimates for the so-
called corrector problem of homogenization and a Berry–Esseen theorem. Regarding
the latter, a first inspiring result in this direction has been obtained byMourrat [43] for
uniformly elliptic i.i.d. conductances. In the uniformly elliptic case, we improve this
result (in terms of the convergence rate) in dimension d = 2, 3, and we extend this
result to degenerate and correlated environments in dimension d ≥ 3 with a weaker
rate of convergence in dimension d = 3. Our analysis invokes input from the quan-
titative theory of stochastic homogenization as developed; in particular, we extend
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some key estimates obtained in [28] under the assumption of uniform ellipticity to
degenerate elliptic operators under moment conditions.

1.1 Themodel

Let d ≥ 2. We study the nearest-neighbour random conductance model on the d-
dimensional Euclidean lattice (Zd , Ed), where Ed := {e = {x, x ± ei } : x ∈ Z

d , i =
1, . . . , d } denotes the set of non-oriented nearest neighbour edges and {e1, . . . , ed}
the canonical basis in R

d . We endow the graph with positive random weights, which
we describe by a family ω = {ω(e), e ∈ Ed} ∈ � := (0,∞)Ed . We refer to ω(e) as
the conductance of an edge e ∈ Ed . To simplify notation, for any x, y ∈ Z

d , we set

ω(x, y) = ω(y, x) := ω({x, y}), ∀ {x, y} ∈ Ed ,

ω(x, y) := 0, ∀ {x, y} /∈ Ed ,

and define the matrix field ω : Zd → R
d×d by

ω(x) = diag(ω(x, x + e1), . . . , ω(x, x + ed)).

Henceforth, we consider random conductances that are distributed according to a
probability measure P on �, equipped with the σ -algebra F := B((0,∞))⊗Ed . We
write E for the expectation operator with respect to P. The measure space (�,F) is
naturally equipped with a group of space shifts

{
τx : x ∈ Z

d
}
, which act on � as

τxω(·) := ω(· + x),

where the shift by x of an edge e = {e, e} ∈ Ed is defined as e + x := {e + x, e + x}.
The random conductance model is defined as follows. For any fixed realisation ω it

is a reversible continuous time Markov chain, X = {Xt : t ≥ 0}, on Zd with generator
Lω acting on bounded functions f : Zd → R as

(Lω f )(x) =
∑

y∈Zd

ω(x, y)
(
f (y) − f (x)

)
. (1.2)

With the help of the discrete gradient ∇ and its adjoint ∇∗ (see Sect. 1.3 below), we
can represent the generator in the compact form Lω = −∇∗ω∇, which highlights
the fact that Lω is a (finite difference) second order operator in divergence form. We
denote by Pω

x the law of the process starting at the vertex x ∈ Z
d and by Eω

x the
corresponding expectation . This random walk waits at x an exponential time with
mean 1/μω(x) with μω(x) := ∑

y∈Zd ω(x, y) and chooses the vertex y for its next
position with probability ω(x, y)/μω(x). Since the law of the waiting times does
depend on the location, X is also called the variable speed random walk (VSRW). A
general assumption required in the context of invariance principles is stationarity and
ergodicity of the environment.
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Definition 1.1 (Stationarity and ergodicity) We say the measure P is stationary with
respect to translations of Zd , if P ◦ τ−1

x = P for all x ∈ Z
d . We say P is ergodic, if

P[A] ∈ {0, 1} for any A ∈ F such that τx (A) = A for all x ∈ Z
d .

First results in this context are annealed (or averaged) functional central limit
theorems that yield the convergence of the rescaled random walk under the annealed
measureP0 defined byP0[·] := ∫

�
Pω
0 [·] d P(ω). This has been established in [19] (cf.

also [36]) for general ergodic environments under the assumption of strict positivity
and a first moment condition

P
[
0 < ω(e) < ∞] = 1 and E[ω(e)] < ∞, for all e ∈ Ed . (1.3)

It is of particular interest to understand the finer question whether an invariance
principle also holds for P-a.e. ω, that is in a quenched form. In [1] the quenched
invariance principle has been shown for general i.i.d. conductances. However, in the
case of a general ergodic environment, due to a trapping phenomenon, it is clear
that some moment conditions (stronger than the one in (1.3)) are needed. Indeed,
Barlow, Burdzy and Timar [11] give an example onZ2 which satisfies a weak moment
condition, but not a quenched invariance principle. To formulate themoment condition
used in our paper, we set for any p, q ∈ [1,∞],

M(p, q) :=
d∑

i=1

(
E
[
ω(0, ei )

p]+ E
[
ω(0, ei )

−q]
)

∈ (0,∞]. (1.4)

Note that in the special case, when M(p, q) < ∞ for p = q = ∞, we obtain
the uniformly elliptic case, i.e. P[1/c ≤ ω(e) ≤ c] = 1 for some c > 0 and the
generator Lω = −∇∗ω∇ defines a uniformly elliptic discrete operator. Recently, the
following quenched invariance principle has been proven for random walks under
ergodic conductances.

Theorem 1.2 [2] Suppose that P is stationary and ergodic, and that the moment con-
dition M(p, q) < ∞ holds for exponents p, q ∈ (1,∞] satisfying p−1 +q−1 < 2/d.
For n ∈ N, define X (n)

t := 1
n Xn2t , t ≥ 0. Then, for P-a.e. ω, X (n) converges (under

Pω
0 ) in law towards a Brownian motion on R

d with a deterministic non-degenerate
covariance matrix �2.

For further invariance principles in the setting of random degenerate conductances
we refer to [1,16,39] and references therein; for recent results on (qualitative) stochastic
homogenization of elliptic operators in divergence form with degenerate coefficients,
see [13,23,40,48].

1.2 Main results

In this paper our main concern is to establish a quantitative central limit theorem for
the random walk X . For definiteness, let ξ ∈ R

d be fixed and set

σ 2
ξ := ξ · �2ξ,
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where �2 still denotes the covariance matrix in Theorem 1.2. Then, the invariance
principle of Theorem 1.2 yields for P-a.e. ω,

lim
t→∞ Pω

0

[
ξ · Xt ≤ σξ x

√
t
] = 	(x), (1.5)

where	(x) := (2π)−1/2
∫ x
−∞ e−u2/2 du denotes the distribution function of the stan-

dard normal distribution. Our goal is to quantify the speed of convergence in (1.5) for
d ≥ 3 by means of a Berry–Esseen theorem. For a general ergodic environment the
speed of convergence can be arbitrarily slow, since ergodic environments may have
very weak mixing properties. Therefore it is necessary to quantify the assumption of
ergodicity. For this purpose, following the approach of [28–30], we assume that P
satisfies a spectral gap estimate with respect to a Glauber dynamics on the field of
conductances.

Assumption 1.3 (Spectral gap) Suppose P is stationary, and assume that there exists
ρ > 0 such that

E
[
(u − E[u])2] ≤ 1

ρ

∑

e∈Ed

E

[(
∂eu
)2]

, (SG)

for any u ∈ L2(�). Here, the vertical derivative ∂eu is defined as

∂eu(ω) := lim sup
h→0

u(ω + hδe) − u(ω)

h
,

where δe : Ed → {0, 1} stands for the Dirac function satisfying δe(e) = 1 and
δe(e′) = 0 if e′ �= e.

Remark 1.4 (i) There is a certain freedom in the choice of the derivative that appears on
the right-hand side in (SG). In [28] the following vertical derivative is considered,

∂eu = u − E[u|Fe], (1.6)

where E[·|Fe] denotes the conditional expectation w.r.t. the σ -algebra Fe =
σ(ω(e′) : e′ �= e). In this form the (SG) turns into an Efron-Stein inequality,
which holds for any environment generated by i.i.d. random variables having sec-
ond moments, see e.g. [27, Lemma 7]. All results in our paper extend to this
version of (SG). Since (1.6) does not satisfy a Leibniz rule, using (1.6) instead
of the classical partial derivative appearing in (SG) leads to not very enlightening
technicalities in various calculations.

(ii) Any stationary environment satisfyingAssumption 1.3 is ergodic, see [27, Corol-
lary 6]. In a sense Assumption 1.3 can be interpreted as a quantified version of
ergodicity as it implies an optimal variance decay for the semigroup associated
with the “process of the environment as seen from the particle” induced by the
simple random walk on Z

d , cf. [27, Proposition 1 and Remark 5].
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(iii) Under Assumption 1.3 we have the following p-version of the spectral gap
estimate. For p ≥ 1 and any u ∈ L2p(�) with E[u] = 0,

E
[
u2p
] ≤ c(p, ρ)E

[( ∑

e∈Ed

(
∂eu
)2)p

]
, (1.7)

which basically follows by applying (SG) to the function |u|p, see [28, Lemma
11].

In addition to Assumption 1.3 we need to assume stronger moment conditions than
in Theorem 1.2. We do not keep track of the precise lower bounds for p and q in the
moment condition M(p, q) < ∞ that we require in our analysis, since our approach
is not optimal in that direction. Recall that in view of the counterexample in [11] a
moment condition is necessary already for the (non-quantitative) invariance principle
to hold.

Our first result is an annealed Berry–Esseen theorem in dimension d ≥ 3 with

speed t− 1
5+ε for d ≥ 4 and t− 1

10+ε for d = 3, as well as a quenched Berry–Esseen
theorem with the same speed but in an integrated form.

Theorem 1.5 (Berry–Esseen theorem) Let d ≥ 3 and suppose that Assumption 1.3
holds. For any ε > 0 there exist exponents p, q ∈ (1,∞) (only depending on d, ρ,
and ε) such that under the moment condition M(p, q) < ∞ the following hold.

(i) There exists a constant c = c(d, ρ, ε, M(p, q)) such that for all t ≥ 0,

sup
x∈R

∣∣∣P0
[
ξ · Xt ≤ σξ x

√
t
]− 	(x)

∣∣∣ ≤
{
c t− 1

10+ε if d = 3,

c t− 1
5+ε if d ≥ 4.

(ii) There exists a random variableX = X (d, ρ, ε, M(p, q)) ∈ L1(P) such that for
P-a.e. ω,

∫ ∞

0

(
sup
x∈R

∣∣∣Pω
0

[
ξ · Xt ≤ σξ x

√
t
]− 	(x)

∣∣∣
)5

(t + 1)−
1
2−ε dt

≤ X (ω) < ∞ if d = 3,

and

∫ ∞

0

(
sup
x∈R

∣∣∣Pω
0

[
ξ · Xt ≤ σξ x

√
t
]− 	(x)

∣∣∣
)5

(t + 1)−ε dt

≤ X (ω) < ∞ if d ≥ 4.

In the case of uniformly elliptic i.i.d. conductances an annealed Berry–Esseen
theorem as in (i) has been proven in [43] for arbitrary dimension d ≥ 1 with rate
t−1/10 (plus logarithmic corrections) for d = 2, and rate t−1/5 for d ≥ 3 (with some
logarithmic corrections for d = 3). Theorem 1.5 extends this result to unbounded
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and correlated random conductances. In Sect. 7 below we discuss some relevant
examples linked to Ginzburg-Landau interface models that naturally yield correlated
conductances. To our knowledge (ii) is the first quenched Berry–Esseen-type result
for the random conductance model.

Let us anticipate that the general strategy of our proof is the same as the one in [43].
However, there is a genuine difference between the uniformly elliptic case treated there
and the degenerate elliptic case considered here. In the uniformly elliptic case in [43]
the comparability (on the level resolvents) of the simple random walk and the random
walk in the random environment is exploited (see [43, Proof of Theorem 5.1]), which
comes in hand in studying the variance decay of the associated semigroup. In our
case, no such principle is available. Instead, following ideas in [28], we first establish
a semigroup estimate that invokes the gradient of the heat kernel associated with the
degenerate elliptic operator ∇∗ω∇. Another difference to [43] is that we introduce a
representation in divergence form for the carré du champ applied to harmonic coor-
dinates. It invokes the so called extended corrector (φi , σi ), which has been recently
introduced in the random case in [25]. Our refined argument allows to improve the
rates obtained in [43] in the uniformly elliptic case in low dimensions d = 2, 3:

Theorem 1.6 (Improved Berry–Esseen theorem in the uniformly elliptic case) Let
d ≥ 2. Suppose that Assumption 1.3 and uniform ellipticity hold, i.e. M(p, q) < ∞
for p = q = ∞. Then there exists a constant c = c(d, ρ, M(∞,∞)) such that for
all t ≥ 0,

sup
x∈R

∣∣∣P0
[
ξ · Xt ≤ σξ x

√
t
]− 	(x)

∣∣∣ ≤
⎧
⎨

⎩
c
(
log(t+1)

t+1

)1
5

if d = 2,

c (t + 1)− 1
5 if d ≥ 3.

The above result can be obtained by modifying the proof of Theorem 1.5 and is based
on recent estimates that are known to hold in the uniformly elliptic case. We describe
the modifications in Appendix A for the reader’s convenience.

The proof of Theorem 1.5 is given in Sect. 6 below. In the following we explain
the general strategy. The most classical approach to show an invariance principle is to
decompose the process X into a martingale part and a remainder (cf. e.g. [36]). It turns
out that for the invariance principle the remainder is negligible, and thus the scaling
limit of X is the same as the one for the martingale part. The latter can be analysed
by martingale theory as for instance the well-established Lindeberg-Feller functional
central limit theorem or Helland’s martingale convergence theorem (see [34]). In the
proof of Theorem 1.5 we follow the same strategy. Yet, since we seek for an estimate
on the rate of convergence, at various places we need to replace qualitative arguments
by estimates. A key result in this procedure is the following decay estimate for the
semigroup (Pt )t≥0 defined by

Pt : L∞(�) → L∞(�), (Ptu)(ω) :=
∑

y∈Zd

pω(t, 0, y) u(τyω),
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where pω(t, x, y) := Pω
x [Xt = y] denotes the transition densities or heat kernel

associated with Lω. Throughout the paper we will often write p(t, y) := pω(t, 0, y)
in short and use the fact that pτzω(t, x, y) = pω(t, x+z, y+z) due to the definition of
the space shifts. The semigroup (Pt )t≥0 can be interpreted as the transition semigroup
of the process (τXtω)t≥0, which is known as the process of the environment as seen
from the particle. It is a contraction and generated by the (degenerate) elliptic operator
−D∗ω(0)D, where D and D∗ denote the horizontal derivative and its adjoint (see
Sect. 1.3 for the precise definition). Our key estimate is the following.

Theorem 1.7 (Semigroup decay) Let d ≥ 3 and suppose that Assumption 1.3 holds.
Let ε ∈ (0, 1) and n ≥ d

2ε . Then there exist p, q ∈ (1,∞) (only depending on d, ε, n)
such that under the moment condition M(p, q) < ∞ the following holds. For any
F ∈ L8n(�,Rd) and all t ≥ 0 we have

E
[
(Pt D

∗F)2n
] 1
2n ≤ c (1 + t)−( d4 + 1

2 )+ε
∑

e∈Ed

E
[|∂eF |8n] 1

8n , (1.8)

where c = c(d, ρ, n, ε, M(p, q)).

Remark 1.8 (Comparison to the uniformly elliptic case) For uniformly elliptic con-
ductances, in [28], Gloria, Otto and the second author established the decay estimate

E
[
(Pt D

∗F)2n
] 1
2n ≤ c (1 + t)−( d4 + 1

2 )
∑

e∈Ed

E
[|∂eF |2n] 1

2n , (1.9)

and deduced various estimates in stochastic homogenization based on this decay esti-
mate. The estimate (1.9) is optimal in terms of the scaling in t and in terms of the
exponent of the norm on the right-hand side. In the degenerate elliptic case, we do not
expect to get the same scaling. However, under sufficiently strong moment conditions,
our estimate shows that we can get arbitrarily close to the scaling of the uniformly
elliptic case. The argument in [28] crucially relies on a deterministic parabolic regu-
larity estimate for ∇ pω with optimal scaling in t . In the degenerate elliptic case this
estimate is not valid. We replace it by a non-deterministic estimate on ∇ pω with near-
optimal scaling, see Proposition 2.1 below, which we combine with an interpolation
argument that exploits the contraction property of the semigroup. The latter is the
reason for the exponent 8n in our estimate.

Remark 1.9 Recently, a similar estimate has been obtained in [24] for conductances
uniformly bounded from above satisfying a moment condition on ω(e)−1. The proofs
of both Theorem 1.7 and the results in [24] follow the strategy in [28]. However, in
[24] the required on-diagonal estimate on the heat kernel is derived from the anchored
Nash inequality established in [45], whichmakes a uniform upper ellipticity necessary,
while in our setting the analogue heat kernel bound in Lemma 2.5 can be deduced
from the upper off-diagonal heat kernel estimates in [4,5]. For the opposite case, i.e.
conductances bounded from below having quadratic moments, we refer to [18], where
the simpler situation Pt f (instead of Pt D∗F) is studied.
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We will use Theorem 1.7 to quantify the convergence of the martingale part in the
decomposition of the process X mentioned above, which relies on harmonic coordi-
nates � : � × Z

d → R
d defined as

� = (ψ1, . . . , ψd), ψi (ω, x) := xi + φi (ω, x) − φi (ω, 0), i = 1, . . . , d,

(1.10)

where φi denotes the corrector from stochastic homogenization defined in Propo-
sition 1.10 below. Roughly speaking, φi is a sublinearly growing solution to the
equation ∇∗ω(∇φi + ei ). The corrector φi is a fundamental object in the qualitative
and quantitative theory of stochastic homogenization, see e.g. the seminal work by
Papanicolaou-Varadhan [49] or [28] for quantitative results. In particular, the covari-
ance matrix �2 of the limiting process in Theorem 1.2 may be represented in terms
of φi or ψi , respectively, as

�2
i j = E

[ ∑

y∈Zd

ω(0, y) ψi (ω, y) ψ j (ω, y)
]
, i, j = 1, . . . , d, (1.11)

see [2, Proposition 2.5]. It is well-known that for P-a.e. ω,

(i) the process M = �(ω, X) is a martingale (see Corollary 6.2 below) and thus
features an invariance principle;

(ii) the remainder X − M vanishes in the scaling limit due to the sublinear growth of
the corrector.

For our purpose we need to quantify both the speed of convergence in (i) and the
smallness of the remainder in (ii). For this reason we establish the existence of high
moments of the corrector φi (and an additional flux corrector σi , which we explain
below). In the followingwe say that a random variable u is stationary, if u(ω, x+ y) =
u(τyω, x) for all x, y ∈ Z

d and P-a.e. ω ∈ �.

Proposition 1.10 (Extended correctors and moment bounds) Let d ≥ 3 and suppose
that Assumption 1.3 is satisfied. Then there exist p, q ∈ (1,∞) (only depending on d
and, if applicable, on the upcoming parameters n, θ , pθ ) such that under the moment
condition M(p, q) < ∞ the following hold for i = 1, . . . , d.

(a) (Existence of a non-stationary extended corrector). There exist a (unique) random
scalar field φi : � ×Z

d → R and a (unique) random matrix field σi : � ×Z
d →

R
d×d with the following properties.

(a.1) For P-a.e. ω we have

∇∗ω
(∇φi + ei

) = 0 on Zd , (1.12a)

∇∗σi = qi on Z
d , (1.12b)

∇∗∇σi = Sqi on Z
d , (1.12c)
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where qi : � × Z
d → R

d and Sqi : � × Z
d → R

d×d are defined by

qi := ω
(∇φi + ei

)− ωhomei ,

Sqi := (Sqi )k� = ∇kqi� − ∇�qik,

and ωhom ∈ R
d×d denotes the homogenized coefficient matrix characterised

by

ωhomei = E
[
ω
(∇φi + ei

)]
, i = 1, . . . , d. (1.13)

(Above, the divergence ∇∗σi is defined as the vector with entries (∇∗σi )k =∑d
�=1 ∇∗

� σik�).
(a.2) P-a.s. the fields satisfy φi (0) = 0, σi (0) = 0, and σ is skew-symmetric, i.e.

σiαβ = −σiβα .
(a.3) The gradient fields ∇φi and ∇σi are stationary, have finite 2nd moments, and

vanishing expectation, i.e.

E
[∇φi

] = 0, E
[∇σi

] = 0, E

[∣∣∇φi
∣∣2 + ∣∣∇σi

∣∣2
]

≤ c,

for some c = c(d, ρ, M(p, q)).

(b) (Moment bound and stationary representation for φi ). Let n ∈ N. Then there exists
a random variable φ0

i with E[φ0
i ] = 0 and

E

[∣∣φ0
i

∣∣2n + ∣∣Dφ0
i

∣∣2n
] 1
2n ≤ c, (1.14)

for some c = (d, ρ, n, M(p, q)) and we have the stationary representation

φi (ω, x) = φ0
i (τxω) − φ0

i (ω).

(c) (Sublinear growth of σ ). Let θ satisfy

θ > 1
2 if d = 3,

θ > 0 if d = 4,
θ = 0 if d ≥ 5.

Then there exists pθ > 2 such that

E

[∣∣σi (x)
∣∣pθ
] 1

pθ ≤ c (|x | + 1)θ , (1.15)

for some c = c(d, ρ, θ, pθ , M(p, q)).

While the sublinearity of the corrector can be established for general ergodic environ-
ments satisfying the relativelyweak assumptions in Theorem1.2 (cf. [2]), the existence
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of high moments of φi and ∇φi as in Proposition 1.10 only holds true under suffi-
ciently strong mixing assumptions. In dimension d = 2, even in the case of uniformly
elliptic, i.i.d. conductances, the stationary version of the corrector does not exist. On
the other hand, for d ≥ 3, in the uniformly elliptic case and under sufficiently strong
mixing assumptions, the stationary representations of φi and σi exist and satisfy (high)
moment bounds. This has been first achieved on the level of φi in [29] (see also [28]
where bounds are obtained via a decay estimate similar to Theorem 1.7, and see [15]
for moment bounds on σi and ∇σi ). To our knowledge Proposition 1.10 is the first
result on moment bounds in the degenerate elliptic setting. The dependence on the
growth exponent on the dimension in statement (c) is non-optimal. In fact, we expect
the statements to hold for d ≥ 3 (with θ = 0 and arbitrary pθ < ∞) as in the uniformly
elliptic case; see Remark 2.4.

Using the moments of φi and ergodicity we obtain a sufficiently good control on
the remainder, see Proposition 6.8 below. In order to quantify the convergence of the
martingale part in (i), we use a Berry–Esseen estimate for martingales in [33] (see

Theorem 6.4 below). It requires to quantify the speed of convergence of Eω
0

[∣∣∣ 〈ξ ·M〉t
t −

σ 2
ξ

∣∣∣
2]

towards zero, where 〈ξ · M〉 denotes the quadratic variation process of the

martingale ξ ·M . For that purpose we establish the following result which also exploits
the moment bounds on (φi , σi ) obtained in Proposition 1.10.

Proposition 1.11 Let d ≥ 3, ε > 0, and suppose Assumptions 1.3 is satisfied. Then
there exist p, q ∈ (1,∞) (only depending on d and ε) such that under the moment
condition M(p, q) < ∞ the following holds. For any direction ξ ∈ R

d with |ξ | = 1,
we denote by φξ the corrector associated with ξ , i.e. φξ = ∑d

i=1 ξiφi with φi as in
Proposition 1.10, and by

ψξ (ω, x) := ξ · x + φξ (ω, x) − φξ (ω, 0) (1.16)

the associated harmonic coordinate. Consider

gξ : � → R, gξ (ω) := �ω(ψξ (ω, ·))(0),
where �ω denotes the opérateur carré du champ associated with Lω, i.e.

�ω f (x) :=
[
Lω f 2 − 2 f Lω f

]
(x).

Then there exists a constant c = c(d, ρ, θ, M(p, q)) such that

E

[(
Pt
(
gξ − E[gξ ]

))2]
1
2 ≤

{
c (t + 1)− 1

4+ε if d = 3,

c (t + 1)− 1
2+ε if d ≥ 4.

In the proof of the proposition we make use of the field σi defined in Proposition 1.10,
which allows us to represent the quadratic variation of M in divergence form, see
Lemma 5.1 below. Similarly as φi , the field σi is a classical object in periodic homog-
enization. Yet, in the stochastic case it has been utilised just recently, see e.g. [15,25].
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Remark 1.12 The exponent 1/5 in Theorem 1.5 is non-optimal. However, the decay
rates in Theorem 1.7 and Proposition 1.11 (for d ≥ 4) are optimal apart from the
ε which appears due to the degeneracy of the environment. The exponent 1/5 then
arises by the application of the general Berry–Esseen theorem for martingales (see
Theorem 6.4 below with the choice n = 2). In d ≥ 3 it can be deduced from the
moments bounds on the corrector in Proposition 1.10 that the jumps of the martingale
part are in Ln(Pω

0 ) for any n ∈ N (cf. Proposition 6.7 below). In such a situation the

results in [44] show that the decay Eω
0

[∣∣∣ 〈ξ ·M〉t
t − σ 2

ξ

∣∣∣
2]1/5

is optimal (for the choice

n = 2 in Theorem 6.4). Thus, a possibility to improve the exponent 1/5 (within the
above approach) is to apply the Berry–Esseen theorem for martingales in Theorem 6.4
for larger values of n which would require control on higher moments of

∣∣ 〈ξ ·M〉t
t −σ 2

ξ

∣∣
(cf. the discussion in [43, p. 6]). An alternative PDE-approach towards an optimal
resultwould be to estimate the difference between the heterogeneous and homogenized
parabolic Green’s function. Very recently, Armstrong et al. [7, Theorem 9.11] obtained
such an estimate for the equation on R

d in the case of uniformly elliptic coefficients
and under a finite range of dependence assumption. The estimate suggests that the
exponent in Theorem 1.5 (in the uniformly elliptic, i.i.d. case) can be improved to
1/2 (up to a logarithmic correction for d = 2). The rate 1/2 is the best one can hope
for, since it is the convergence rate for the simple random walk. The argument in [7]
relies on a large scale regularity theory for elliptic operators, which is not established
in the degenerate case yet. For general non-uniformly elliptic and (possibly strongly)
correlated coefficients, we expect the optimal rate of convergence to depend on the
parameters p and q as well as on the mixing behaviour of the environment. We remark
that the qualitative statement in form of a quenched invariance principle holds for
general i.i.d. conductances (cf. [1]) and is conjectured to hold for ergodic conductances
under the moment condition M(1, 1) < ∞, which is known to be necessary in the
case of general ergodic environments (cf. [11]).

1.3 Notation

We finally introduce some further notation used in the paper. We write c to denote
a positive, finite constant which may change on each appearance. Random constants
depending onω ∈ �will be denoted by calligraphic letters such asX ,Y etc. Further,�
means≤ up to a constant depending only on some quantities specified in the particular
context.

The cardinality of a set A ⊂ Z
d will be denoted by #A. For x = (x1, . . . , xd) ∈ R

d

let |x | = ∑d
i=1 |xi |. We denote by B(R) := {x ∈ Z

d : |x | < R} the ball with radius
R > 0 in Z

d . We denote by �r (Zd) and �r (Ed) (r ≥ 1) the usual �r spaces for
functions on Z

d and Ed , respectively. For any edge e ∈ Ed we denote by e, e ∈ Z
d

the unique vertices such that e = {e, e} and e − e ∈ {e1, . . . , ed}. For f : Zd → R

and e ∈ Ed we define the discrete derivative

∇ f : Ed → R, ∇ f (e) := f (e) − f (e),

and note that for f , g : Zd → R, the discrete product rule takes the form
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∇( f g)(e) = f (e)∇g(e) + g(e)∇ f (e). (1.17)

We define the discrete divergence of a function F : Ed → R by

∇∗F(x) :=
∑

e∈Ed
e=x

F(e) −
∑

e∈Ed
e=x

F(e) =
d∑

i=1

F({x − ei , x}) − F({x, x + ei }).

Since for all f ∈ �2(Zd) and F ∈ �2(Ed) we have

〈∇ f , F〉�2(Ed ) = 〈 f ,∇∗F〉�2(Zd ), (1.18)

∇∗ can be seen as the adjoint of ∇. Note that the generator Lω defined in (1.2) above
is a finite-difference operator in divergence form as it can be rewritten as

(Lω f )(x) = −∇∗(ω∇ f )(x).

We tacitly identify scalar functions defined on Ed with vector-valued functions on
Z
d . In particular, given F : Ed → Rwewrite F(x) := (F({x, x+e1}), . . . , F({x, x+

ed}); and given f : Z
d → R we write ∇ f (x) := (∇1 f (x), . . . ,∇d f (x)) with

∇i f (x) := f (x + ei ) − f (x). Likewise, for f : Zd × Z
d → R we define the second

mixed discrete derivatives as

∇∇ f : Ed × Ed → R,

∇∇ f (e, e′) := f (e, e′) − f (e, e′) − f (e, e′) + f (e, e′),

and denote by ∇∇ f (x, y) = (∇i∇ j f (x, y))i, j=1,...d the matrix valued function with
entries ∇i∇ j f (x, y) := ∇∇ f ({x, x + ei }, {y, y + e j }). Further, we will also use the
abbreviation

∣∣F(x)
∣∣2
ω

:=
d∑

i=1

ω(x, x + ei )
∣∣F({x, x + ei })

∣∣2, x ∈ Z
d . (1.19)

With any random variable ζ : � → R we associate its P-stationary extension
ζ̄ : � × Z

d → R via ζ̄ (ω, x) := ζ(τxω). Conversely, we say that a random field
ζ̃ : � ×Z

d → R is P-stationary if there exists a random variable ζ with ζ̃ = ζ̄ P-a.s.
For a random variable ζ : � → R we define the horizontal derivative Dζ via

Dζ
(
ω) := (D1ζ(ω), . . . , Ddζ(ω)

)
, Diζ(ω) := ζ(τei ω) − ζ(ω).

Its adjoint in L2(�) denoted by D∗ : L2(�)d → L2(�) is defined by

D∗ζ(ω) :=
d∑

i=1

D∗
i ζi (ω), D∗

i ζi (ω) := ζi (τ−ei ω) − ζi (ω).
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Note that we have (D∗ω(0)Du)(ω, x) = ∇∗ω(x)∇u(ω, x).

1.4 Structure of the paper

In Sect. 2 we establish the estimates on the gradient of the heat kernel and the Green’s
function needed in the proofs. Then Sect. 3 is devoted to the proof of the semigroup
decay stated in Theorem 1.7 and Sect. 4 to the construction and the moment bounds of
the extended corrector. The variance decay for the semigroup applied to the carré du
champ operator in Proposition 1.11 is shown in Sect. 5. Then, the Berry–Esseen esti-
mates in Theorem 1.5 are proven in Sect. 6. Finally, some relevant examples satisfying
our assumptions are discussed in Sect. 7.

2 Gradient heat kernel and annealed Green’s function estimates

In this section we establish regularity estimates for averages of the gradient of the
heat-kernel and the mixed second gradient of the elliptic Green’s function, which we
require for the proofs in Sect. 3. We consider both annealed estimates, where the
average is taken w.r.t. the probability measure P, and spatially averaged estimates in
weighted �2-spaces with weight m2α where

m(t, x) :=
(

(|x | + 1)2

t + 1
+ 1

)1/2
, x ∈ Z

d , t ≥ 0. (2.1)

In the case of uniformly elliptic and bounded conductances the upcoming estimates
are well-known. The estimates that we obtain in the degenerate case are weaker in two
ways.

• We only obtain near optimal estimates, in the sense that the decay rate deviates
from the optimal decay rate in the uniformly elliptic case by a small parameter
ε > 0.

• The estimates are random, in the sense that they hold up to a random constant,
whose integrability is monitored by an exponent n ≥ 1.

• The parameters ε and n can be chosen arbitrarily close 0 and ∞, respectively,
provided we impose sufficiently strong moment conditions on the conductances.

Throughout this section we assume d ≥ 2. We start with the following (spatially
averaged) decay estimate for the gradient of the heat-kernel, which is a key ingredient
for the proof of Theorem 1.7.

Proposition 2.1 Suppose that Assumption 1.3 holds. For any ε ∈ (0, 1), n ≥ 1 and
α ≥ 0 there exist p, q ∈ (1,∞) (only depending on d, ε, n, α) such that under the
moment condition M(p, q) < ∞ the following holds. There exists a family of random
variables (Zt )t≥0 with supt≥0 E[|Zt |n] ≤ c for some c = (d, ρ, ε, n, α, M(p, q))

such that P-a.s.
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( ∑

y∈Zd

m(t, y)2α
∣∣∇ p(t, y)

∣∣2
)1

2

≤ Zt (t + 1)−( d4 + 1
2 )+ε.

In the uniformly elliptic case, in particular in the special case of ∇∗ω∇ = ∇∗∇, the
estimate holds with ε = 0 (which corresponds to the optimal decay in time), and with
supt≥0 Zt bounded by a deterministic constant, see e.g. [28, Theorem 3]. In the present
situation the degeneracy of the conductances leads to a loss in the decay. As we will
explain in Sect. 2.1.1, our proof of the estimate relies on an on-diagonal upper heat
kernel bound. The result is then obtained by parabolic regularity arguments following
[28].

From Proposition 2.1 we deduce a couple of annealed estimates.

Corollary 2.2 (Suboptimal annealed heat kernel estimate)Suppose thatAssumption 1.3
is satisfied. For any ε ∈ (0, 1), n ≥ 1, and α ≥ 0, there exist p, q ∈ (1,∞) (only
depending on d, ε, n, α) such that under the moment condition M(p, q) < ∞ the
following holds. There exists c = c(d, ρ, ε, α, M(p, q)) such that for all x ∈ Z

d and
all t ≥ 0,

E

[∣∣∇ p(t, x, 0)
∣∣n
] 1
n ≤ c (t + 1)−( d2 + 1

2 )+ε+ 1
2
n−1
n m(t, x)−α,

E

[∣∣∇∇ p(t, x, 0)
∣∣n
] 1
n ≤ c (t + 1)−( d2 +1)+ε+ n−1

n m(t, x)−α.

The proofs of Corollaries 2.2 and the 2.3 below are presented in Sect. 2.2. Next we
establish an annealed estimate on the gradient and the mixed second derivative of the
elliptic Green’s function, which for P-a.e. ω and all x, y ∈ Z

d can be defined by the
integral

∇Gω(x, 0) :=
∫ ∞

0
∇ pω(t, x, 0) dt, ∇∇Gω(x, y) :=

∫ ∞

0
∇∇ pω(t, x, y) dt .

(2.2)

Corollary 2.3 (Suboptimal annealed Green’s function estimate) Suppose that Assump-
tion 1.3 holds and let ε ∈ (0, 1) and n ≥ 1. There exist p, q ∈ (1,∞) (only depending
on d, ε, n) such that under the moment condition M(p, q) < ∞ we have for all
x ∈ Z

d ,

E

[∣∣∇G(x, 0)
∣∣n
] 1
n ≤ c (|x | + 1)−(d−1)+ε+ n−1

n ,

E

[∣∣∇∇G(x, 0)
∣∣n
] 1
n ≤ c (|x | + 1)−d+ε+2 n−1

n ,

with c = (d, ρ, ε,m, M(p, q)).

The decay exponent in Corollary 2.3 is not optimal. For n = 1 we miss the optimal
decay by ε, and for large n by the additional exponent n−1

n and 2 n−1
n , respectively.

As shown recently in [41] in the uniformly elliptic case and under the assumption that
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P satisfies a logarithmic Sobolev inequality, the estimate holds for any n ∈ N with
the optimal decay exponent d − 1 and d, respectively. The argument in [41] lifts the
estimate for n = 1 to higher moments by using the logarithmic Sobolev inequality and
a deterministic regularity estimate,which is not available in our degenerate setting.Our
(simple, yet suboptimal) argument is as follows. For n = 1 the estimate follows from
Proposition 2.1 exploiting stationarity. For n � 1 we obtain it by interpolating with a
suboptimal estimate onhighmoments of∇ p, that follows fromProposition 2.1 aswell.

Remark 2.4 The non-optimality of the above estimate is the limiting factor that hinders
us to improve the decay exponent in ourmain result, Theorem 1.5, in dimension d = 3.
This becomes visible in the sublinear growth estimate for σ , see (1.15). In the proof
of this estimate we exploit that thanks to Corollary 2.3 we have

∑

x∈Zd

(
E

[∣∣∇∇G(x, 0)
∣∣n
] 1
n
)s

< ∞

for exponents 0 < n − 2 � 1 and s > d
d−1 . With the optimal estimate for ∇∇G at

hand, the above estimate would hold for any s > 1, and we would obtain (1.15) with
θ = 0 for any d ≥ 3. Eventually, this would improve the decay rate in Theorem 1.5
for d = 3 to 1

5 − ε.

2.1 Gradient heat kernel estimate: proof of Proposition 2.1

In this section we prove Proposition 2.1. The starting point of the argument is an
on-diagonal upper heat kernel bound.

Lemma 2.5 (On-diagonal heat kernel estimate) Suppose that Assumption 1.3 holds.
For any n ∈ N there exist p, q ∈ (1,∞) (only depending on d, n) such that under the
moment condition M(p, q) < ∞ the following holds. There exists a random variable
Y ≥ 1 with E

[|Y|n] ≤ c for some c = c(d, ρ, n, M(p, q)) such that P-a.s. for all
t ≥ 0,

∑

y∈Zd

p(t, y)2 ≤ Y (t + 1)−
d
2 . (2.3)

For the proof see Sect. 2.1.1 below. Next, we introduce the stationary weights

μω(x) :=
∑

y∈Zd

ω(x, y), νω(x) :=
∑

y∈Zd

1

ω(x, y)
, (2.4)

andwriteμ := μω(0) and ν := νω(0) for abbreviation.Henceforth the randomvarable
Y in (2.3) is fixed as defined in the proof of Lemma 2.5 below. In addition toY , further
random variables will appear in the estimates below. In this subsection, to keep the
presentation lean, we say X denotes a random variable of class X (c1, c2, . . . , cn) (in
short X = X (c1, c2, . . . , cn)), if it can be written in the form
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X (ω) := c0

( ∑

x∈Zd

(|x | + 1
)−(d+1) (

μω(x) + 1
)p1
)p2

,

with exponents p1, p2 ≥ 1 and a constant c0 ≥ 1 that can be chosen only depending on
the parameters c1, . . . , cn . Evidently, the class is stable under taking products, sums
and powers of such random variables. Moreover, finite moments of such a random
variable are bounded, provided E[μp] < ∞ for p sufficiently large.

Following [28], we lift the on-diagonal estimate of Lemma 2.5 to a weighted �2-
estimate for p and ∇ p.

Lemma 2.6 Suppose that (2.3) holds. Let α ≥ d
2 + 1 and ε > 0. Then there exists a

random variable X = X (d, α, ε) such that for all t ≥ 0 and T ≥ 1,

∑

y∈Zd

(|y| + 1
)2α

p(t, y)2 ≤ YX (t + 1)−
d
2 +ε+α, (2.5)

1

T

∫ 2T

T

∑

y∈Zd

(|y| + 1
)2α ∣∣∇ p(t, y)

∣∣2
ω
dt ≤ YX (T + 1)−

d
2 −1+ε+α. (2.6)

Remark 2.7 In the case of conductances that are bounded from above, we may choose
ε = 0 and thus recover the optimal scaling in t .

Based on Lemma 2.6 we establish the following variant of Proposition 2.1.

Lemma 2.8 Suppose that (2.3) holds. Let α ≥ 0 and 0 < ε < 1. Then there exists a
random variable X = X (d, α, ε) such that P-a.s. for all t ≥ 0,

∑

y∈Zd

m(t, y)2α
∣∣∇ p(t, y)

∣∣2
ω

≤ Xt (t + 1)−( d2 +1)+2ε,

where

Xt (ω) :=
∑

z∈Zd

m(t, z)−(d+1)

(t + 1)
d
2

∣∣(YX )(τzω)
∣∣
3
2
∣∣(YX )(ω)

∣∣
1
2 .

In particular, for every n ∈ N, supt≥0 E[|Xt |n] ≤ c for somec = (d, ρ, ε, n, M(p, q)).

The proofs of Lemma 2.6 and Lemma 2.8 are postponed to Sects. 2.1.2 and 2.1.3,
respectively. Proposition 2.1 easily follows from Lemma 2.8 and Lemma 2.5 as can
be seen by the following short argument.

Proof of Proposition 2.1 It suffices to consider n ≥ d
ε
. Let θ > 2d

n and set

ft (e) := (t + 1)(
d
2 +1)−2ε

(
m(t, e)2α+θ

∣∣∇ p(t, e)
∣∣2 ω(e)

)
.
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By Lemma 2.8 we have

‖ ft‖�1 ≤ Xt and sup
t≥0

E

[
X

nq
2q−n
t

]
< ∞, (2.7)

provided M(p, q) < ∞ for p and q sufficiently large. Next we consider

Zt (ω) := (t + 1)(
d
4 + 1

2 )−ε
( ∑

y∈Zd

m(t, y)2α
∣∣∇ p(t, y)

∣∣2
) 1

2
. (2.8)

Note that Z2
t = (t + 1)−ε

∑
e∈Ed

g(e) ft (e) where g(e) := m(t, e)−θ ω(e)−1.
Hence, Hölder’s inequality with exponent ( n2 , n

n−2 ) and the discrete estimate
‖ ft‖

�
n

n−2
≤ ‖ ft‖�1 yieldZ2

t ≤ (t+1)−ε‖g‖
�
n
2
‖ ft‖�1 .We take the n/2-thmoment and

apply Hölder’s inequality (w.r.t. P) with exponents (
2q
n ,

2q
2q−n ) and the shift-invariance

of P to obtain

E
[Zn

t

] ≤ (t + 1)−ε n
2 E

[(‖g‖
�
n
2
‖ ft‖�1

) n
2
]

= (t + 1)−ε n
2
∑

e∈Ed

m(t, e)−θ n
2 E

[
ω(e)−

n
2 ‖ ft‖

n
2
�1

]

≤
(

(t + 1)−ε n
2
∑

e∈Ed

m(t, e)−θ n
2

)
E

[∣∣ω(0)
∣∣−q
] n
2q

E

[
‖ ft‖

nq
2q−n

�1

] 2q−n
2q

.

Note that supt≥0(t+1)−ε n
2
∑

e∈Ed
m(t, e)−θ n

2 < ∞ since θn/2 > d and εn/2 > d
2 .

Furthermore, E
[|ω(0)|−q

]
< ∞ by the moment condition. Combined with (2.7) we

finally deduce that supt≥0 E
[Zn

t

]
< ∞, which completes the proof. ��

2.1.1 On-diagonal heat kernel estimate: proof of Lemma 2.5

The statement is a rather direct consequenceof anon-diagonal estimate (seeLemma2.9
below), which can be obtained from [5], and an application of the spectral gap estimate
of Assumption 1.3 used to control moments of the estimate’s random constant, see
Lemma 2.10. Assuming M(p, q) < ∞ for any p, q ∈ (1,∞), we denote by R =
R(ω, p, q) ≥ 1 the smallest integer such that for all R ≥ R,

1

#B(R)

∑

x∈B(R)

μω(x)p ≤ 2E[μp] < ∞,

1

#B(R)

∑

x∈B(R)

νω(x)q ≤ 2E[νq ] < ∞, (2.9)

with μω and νω defined in (2.4). Then, P-a.s.,R < ∞ by the ergodic theorem.
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Lemma 2.9 Let p, q ∈ (1,∞) satisfy 1
p + 1

q < 2
d . Suppose that P is stationary and

ergodic, and that the moment condition M(p, q) < ∞ is satisfied. Then, there exists
c = c(d, p, q, M(p, q)) such that for t ≥ R2,

p(t, 0) ≤ c (t + 1)−
d
2 .

Proof This on-diagonal bound follows immediately from the upper heat kernel bounds
in [5, Theorem 2.5], which is based on arguments in [4]. Indeed, by our assumptions
R = R(ω, p, q) defined via (2.9) is P-a.s. finite for p, q ∈ (1,∞) with 1

p + 1
q < 2

d .
Therefore the assumptions of [5, Theorem 2.5] are satisfied for P-a.e.ω. Alternatively,
the estimate can be deduced from the parabolic Harnack inequality established in [3],
see Proposition 4.7 and Remark 1.5 therein. ��
Lemma 2.10 Suppose that Assumption 1.3 holds and for any p, q ∈ (1,∞) let R be
defined via (2.9). Then, for any n ∈ N there exist p′, q ′ ∈ (1,∞) (only depending on
p, q, n) such that under the moment condition M(p′, q ′) < ∞ we have E

[|R|n] ≤ c
with c = c(d, ρ, p, q, n, M(p′, q ′)).

Proof We only present the argument for μω, since the argument for νω is the same.
To that end consider the random variable

fR = f ω
R := 1

#B(R)

∑

x∈B(R)

(μω(x)p

E[μp] − 1
)
.

which is well-defined since E[μp] > 0 by assumption. We claim that for any k ∈ N,

E
[| fR |2k] � R−dk

E
[
μ2(p−1)k]. (2.10)

Indeed, since E[ fR] = 0, the spectral gap inequality in form of (1.7) yields

E
[| fR |2k] � E

[( ∑

e∈Ed

|∂e fR |2
)k]

.

Since ∂eμ(x) = 1l{e,e}(x), we deduce that

∂e fR ≤
{

p
#B(R)

(
μp−1(e) + μp−1(e)

)
if e ∈ B(R) or e ∈ BR,

0 else.

Now, the combination of the previous two estimates gives (2.10).
Next, by a slight abuse of notation let R(ω) ≥ 1 be the smallest integer such that

sup
R≥R(ω)

| fR | ≤ 1.

Since μ is stationary and E[ fR] = 0, Birkhoff’s ergodic theorem shows that P-a.s.
supr≥R fr → 0 as R ↑ ∞. In particular, R < ∞ P-a.s. and R satisfies the first
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property in (2.9). We finally estimate the moments ofR by using (2.10). To that end,
note that for all R ∈ N with R ≥ 2,

P
[R = R

] ≤ P
[| fR−1| > 1

] (2.10)
� R−dk

E
[
μ2(p−1)k].

Hence,

E
[Rn] =

∑

R∈N
Rn

P
[R = R

]
�
∑

R∈N
Rn−dk

E
[
μ2(p−1)k].

We choose k > (n + 1)/d and p′ = 2(p − 1)k to get the claim. ��
Lemma 2.5 is now a simple consequence of the previous two results.

Proof of Lemma 2.5 Since p(2t, 0) =∑y∈Zd p(t, y)2 by the symmetry of the kernel,
and the fact that

∑
y∈Zd p(t, y) = 1, we deduce from Lemma 2.9 that

∑

y∈Zd

p(t, y)2 ≤ Y (t + 1)−
d
2 , Y := (c + 1) (R + 1)d .

By Lemma 2.10 we can achieve E[Yn] < ∞ if sufficiently high moments of ω and
ω−1 exist. ��

2.1.2 Proof of Lemma 2.6

Step 1. First we prove (2.5). For abbreviation we setm0(x) := 1+|x |, x ∈ Z
d . Recall

that ∂t p = −∇∗(ω∇ p). Hence, by (1.18) and the discrete product rule in (1.17) we
get

1

2

d

dt

∑

y∈Zd

m0(y)
2α p(t, y)2 =

∑

y∈Zd

m0(y)
2α p(t, y) ∂t p(t, y)

= −
∑

e∈Ed

ω(e)∇(m2α
0 p(t, ·))(e)∇ p(t, e)

≤ −
∑

e∈Ed

ω(e)m0(e)
2α
∣∣∇ p(t, e)

∣∣2 + ω(e) p(t, e)
∣∣∇m2α

0 (e)
∣∣ ∣∣∇ p(t, e)

∣∣.

Since
∣∣∇(m0(e)2α)

∣∣ ≤ √
cα m0(e)α−1 m0(e)α , Young’s inequality yields

∑

e∈Ed

ω(e) p(t, e)
∣∣∇m2α

0 (e)
∣∣ ∣∣∇ p(t, e)

∣∣

≤ √
cα

∑

e∈Ed

√
ω(e)m0(e)

α−1 p(t, e) ·√ω(e)m0(e)
α
∣∣∇ p(t, e)

∣∣
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≤ cα

2

∑

y∈Zd

μ(y)m0(y)
2α−2 p(t, y)2 + 1

2

∑

y∈Zd

m0(y)
2α
∣∣∇ p(t, y)

∣∣2
ω

with | · |ω as defined in (1.19). We conclude that

d

dt

∑

y∈Zd

m0(y)
2α p(t, y)2 ≤ cα

∑

y∈Zd

μ(y)m0(y)
2α−2 p(t, y)2

︸ ︷︷ ︸
=:I (t)

−
∑

y∈Zd

m0(y)
2α
∣∣∇ p(t, y)

∣∣2
ω
. (2.11)

To estimate I (t)we set θ := α+ε and write 2α−2 = 2α(1− 1
θ
)−2(1− α

θ
). Then

by Hölder’s inequality with exponent d+1
2(1− α

θ
)

> 1 and the discrete �q − �1-estimate

(for q ≥ 1) we get

I (t) ≤ X
∑

y∈Zd

m0(y)
2α(1− 1

θ
) p(t, y)2,

X := cα

( ∑

y∈Zd

μ(y)
θ

θ−α
d+1
2 m0(y)

−(d+1)
) θ−α

θ
2

d+1

.

In combination with

∑

y∈Zd

m0(y)
2α(1− 1

θ
) p(t, y)2 ≤

( ∑

y∈Zd

m0(y)
2α p(t, y)2

)θ−1
θ
( ∑

y∈Zd

p(t, y)2
)1

θ

,

Lemma 2.5 and (2.11) (where we drop the non-positive second term on the right-hand
side), this implies

d

dt
f (t) ≤ X Y 1

θ f (t)
θ−1
θ (t + 1)−

d
2
1
θ , f (t) :=

∑

y∈Zd

m0(y)
2α p(t, y)2.

Hence,

d

dt

(
f (t)

1
θ
) ≤ 1

θ
f (t)

1
θ
−1 d

dt
f (t) ≤ 1

θ
X Y 1

θ (t + 1)−
d
2
1
θ .

Since d
2
1
θ

< 1 as α > d
2 , an integration in t and the fact that f (0) = 1 yields (2.5).
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Step 2. Next we show (2.6). The starting point of the argument is (2.11), which we
recall in an integrated and rearranged form

1

T

∫ 2T

T

∑

y∈Zd

m0(y)
2α
∣∣∇ p(t, y)

∣∣2
ω

≤ 1

T

∑

y∈Zd

m0(y)
2α p(T , y)2 + 1

T

∫ 2T

T
I (t) dt .

By Step 1 the first term on the right-hand side is bounded byYX (T +1)− d
2 −1+ε+α .

Furthermore, by Hölder’s inequality and Step 1 we have for all t ∈ (T , 2T ),

I (t) ≤ X
∑

y∈Zd

m0(y)
2(α−1)+ε p(t, y)2 ≤ Y X (T + 1)−

d
2 −1+ε+α.

The combination of the previous estimates yields (2.6). ��

2.1.3 Proof of Lemma 2.8

Throughout the proof, X denotes a generic random variable (that might change from
line to line) of classX (d, α, ε). Moreover, we write� if≤ holds up to a constant only
depending on d, α, ε.
Step 1. First we show that there exists X = X (d, α, ε) such that for all t ≥ 0 and
T ≥ 1,

∑

y∈Zd

m(t, y)2α p(t, y)2 ≤ Y X (t + 1)−
d
2 +ε, (2.12)

1

T

∫ 2T

T

∑

y∈Zd

m(t, y)2α
∣∣∇ p(t, y)

∣∣2
ω
dt ≤ Y X (T + 1)−

d
2 −1+ε. (2.13)

We start with (2.12). First assume that α ≥ α0 := d
2 + 1. Since m(t, y)2α �(

(|y|+1)2α

(t+1)α + 1
)
,

∑

y∈Zd

m(t, y)2α p(t, y)2 �

⎛

⎝(t + 1
)−α

∑

y∈Zd

(|y| + 1
)2α

p(t, y)2 +
∑

y∈Zd

p(t, y)2

⎞

⎠ ,

which combined with Lemmas 2.6 and 2.5 yields the desired estimate. In the case
0 ≤ α ≤ α0 we proceed by interpolating the estimate for α = 0 and α = α0. Indeed,
Hölder’s inequality yields

∑

y∈Zd

m(t, y)2α p(t, y)2 ≤
⎛

⎝
∑

y∈Zd

m(t, y)2α0 p(t, y)2

⎞

⎠

α
α0
⎛

⎝
∑

y∈Zd

p(t, y)2

⎞

⎠

α0−α

α0

.
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The first term on the right-hand side can be estimated as above, and the second term
on the right-hand side is estimated by Lemma 2.5.

Next, we prove (2.13). First note that

1

T

∫ 2T

T

∑

y∈Zd

∣∣∇ p(t, y)
∣∣2
ω
dt ≤ Y X (T + 1)−

d
2 −1. (2.14)

Indeed, by integrating the identity 1
2

d
dt

∑
y∈Zd p(t, y)2 = −∑y∈Zd |∇ p(t, y)|2ω w.r.t.

t , we get 1
T

∫ 2T
T

∑
y∈Zd

∣∣∇ p(t, y)
∣∣2
ω
dt ≤ 1

2T

∑
y∈Zd p(T , y)2, which in combination

with Lemma 2.5 yields (2.14). Now, we argue as above to obtain (2.13) for α ≥ α0
by using Lemma 2.6. Finally, the estimate for 0 ≤ α ≤ α0 follows (as in the proof of
(2.12)) by interpolation.
Step 2. In this step we show that for any α ≥ 0 and 0 < ε < 1 there exists X =
X (d, α, ε) such that

m(t, z)α pω(t, 0, z) ≤ √
(YX )(ω) (YX )(τzω) (t + 1)−

d
2 +ε,

for all z ∈ Z
d and t ≥ 0. By the triangle inequality for the weight in form of

m(2t, z)α � m(t, z − y)α m(t, y)α , the semigroup property, and the shift property
pτzω(t, 0, y − z) = pω(t, y, z),

m(2t, z)α pω(2t, 0, z) �
∑

y∈Zd

m(t, y)α pω(t, 0, y)m(t, z − y)α pω(t, y, z)

�

⎛

⎝
∑

y∈Zd

m(t, y)2α pω(t, 0, y)2

⎞

⎠

1
2

⎛

⎝
∑

y∈Zd

m(t, z − y)2α pω(t, y, z)2

⎞

⎠

1
2

=
⎛

⎝
∑

y∈Zd

m(t, y)2α pω(t, 0, y)2

⎞

⎠

1
2

⎛

⎝
∑

y∈Zd

m(t, z − y)2α pτzω(t, y − z, 0)2

⎞

⎠

1
2

.

Using symmetry in form of pτzω(t, y − z, 0) = pτzω(t, 0, y − z) and applying (2.12)
yields
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m(2t, z)α pω(2t, 0, z) ≤ √(YX )(ω)(YX )(τzω)(t + 1)−
d
2 +ε.

Step 3. Now we show the statement. First note that it suffices to prove the claimed
estimate for t ≥ 1, since for 0 ≤ t ≤ 1 the estimate follows from (2.12) and the fact
that |∇ p(t, e)| ≤ p(t, e)+ p(t, e). For t ≥ 1, by the semigroup property and Jensen’s
inequality we have for all e ∈ Ed ,

∣∣∇ pω(t, 0, e)
∣∣2 ≤ 3

t

∫ 2
3 t

t
3

∑

z∈Zd

pω(t − s, 0, z)
∣∣∇ pω(s, z, e)

∣∣2 ds,

and by the triangle inequality for the weight in form of m(s, e)2α � m(t −
s, z)2α m(s, e − z)2α ,

I :=
∑

e∈Ed

m(t, e)2α
∣∣∇ pω(t, 0, e)

∣∣2 ω(e)

� 3

t

∫ 2
3 t

t
3

∑

z∈Zd

∑

e∈Ed

m(t, e)2α pω(t − s, 0, z)
∣∣∇ pω(t, z, e)

∣∣2 ω(e) ds

� 3

t

∫ 2
3 t

t
3

∑

z∈Zd

m(t − s, z)2α pω(t − s, 0, z)

⎛

⎝
∑

e∈Ed

m(s, e − z)2α
∣∣∇ pω(s, z, e)

∣∣2 ω(e)

⎞

⎠ ds.

Now, note that Step 2 implies for all s ∈ ( t3 ,
2t
3 ),

m(t − s, z)2α pω(t − s, 0, z)

= m(t − s, z)2α+d+1 pω(t − s, 0, z)m(t − s, z)−(d+1)

≤ √
(YX )(ω) (YX )(τzω)

(
t − s + 1

)− d
2 +ε

m(t − s, z)−(d+1)

≤ √
(YX )(ω) (YX )(τzω)

(
t + 1

)ε
m̃(t, z), m̃(t, z) := m(t, z)−(d+1)

(t + 1)
d
2

,

where we used in the last step that t
3 ≤ t − s ≤ 2t

3 . Further, the shift property
∇ pτzω(s, 0, e − z) = ∇ pω(s, z, e) gives that

∑

e∈Ed

m(s, e − z)2α
∣∣∇ pω(s, z, e)

∣∣2 ω(e) =
∑

y∈Zd

m(s, y)2α
∣∣∇ pτzω(s, 0, y)

∣∣2
τzω

.
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We conclude that

I �
(
t + 1

)ε ∑

z∈Zd

m̃(t, z)
√

(XY)(τzω) (XY)(ω)

⎛

⎝3

t

∫ 2
3 t

t
3

∑

y∈Zd

m(s, y)2α
∣∣∇ pτzω(s, 0, y)

∣∣2
τzω

ds

⎞

⎠

(2.13)≤ (t + 1)−
d
2 −1+2ε Xt , Xt :=

∑

z∈Zd

m̃(t, z)
(
(YX )(τzω)

) 3
2
(
(YX )(ω)

) 1
2 .

Finally, supt≥1 E
[|Xt |n

]
< ∞ for every n ∈ N since ‖m̃(t, x)‖�1 � 1 uniformly in

t and arbitrarily high moments of Y and X exist if M(p, q) < ∞ holds for p and q
sufficiently large. ��

2.2 Annealed estimates: proofs of Corollary 2.2 and Lemma 2.3

Proof of Corollary 2.2 Step 1. Estimates for ∇ p and ∇∇ p for n = 1.
Since the argument for ∇ p and ∇∇ p are similar, we only discuss the esti-

mate for ∇∇ p, which follows the discussion below [41, Proposition 1]. For
the reader’s convenience we sketch the short argument. Since p(t, x, x ′) =∑

y∈Zd p( t2 , x, y) p(
t
2 , y, x

′) by the semigroup property, for any e, e′ ∈ Ed we have

∇∇ p(t, e, e′) =
∑

y∈Zd

∇ p( t2 , e, y)∇ p( t2 , y, e
′).

We multiply this identity with m(t, e − e′)α and obtain by the triangle inequality for
the weight, i.e.m(t, e−e′)α ≤ 2αm(t, e− y)αm(t, e′ − y)α , and the Cauchy Schwarz
inequality in

∑
y∈Zd ,

m(t, e − e′)α
∣∣∇∇ p(t, e, e′)

∣∣

≤ 2α

⎛

⎝
∑

y∈Zd

m(t, e − y)2α
∣∣∇ p( t2 , e, y)

∣∣2
⎞

⎠

1
2
⎛

⎝
∑

y∈Zd

m(t, e′ − y)2α
∣∣∇ p( t2 , e′, y)

∣∣2
⎞

⎠

1
2

.

We take the expectation, apply Cauchy Schwarz w.r.t. P and exploit stationarity
and symmetry in form of E

[|∇ p(t, e, y)|2] = E
[|∇ p(t, e − y, 0)|2] to obtain

m(t, e − e′)α E

[∣∣∇∇ p(t, e, e′)
∣∣
]

≤ 2α
∑

y∈Zd

E

[∣∣∇ p( t2 , e − y, 0)
∣∣2 m(t, e − y)2α

]

≤ 2α
∑

e′′∈Ed

E

[∣∣∇ p( t2 , e
′′, 0)

∣∣2 m(t, e′′)2α
]

� (t + 1)−( d2 +1)+ε,
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where the last inequality holds by Proposition 2.1. Since e, e′ ∈ Ed are arbitrary, the
claim follows.
Step 2. Estimate for ∇ p and n � 1.

Proposition 2.1 yields

E

[∣∣∇ p(t, y)
∣∣n
] 1
n = E

[(
m(t, y)α |∇ p(t, y)|)n

] 1
n
m(t, y)−α

≤ E

⎡

⎢
⎣

⎛

⎝
∑

x∈Zd

m(t, x)2α
∣∣∇ p(t, 0, x)

∣∣2
⎞

⎠

n
2
⎤

⎥
⎦

1
n

m(t, y)−α

≤ E
[Zn

t

] 1
n (t + 1)−( d4 + 1

2 )+ε m(t, y)−α

� (t + 1)−( d4 + 1
2 )+ε m(t, y)−α,

where we used that Zt defined in (2.8) satisfies supt≥0 E[Zn
t ] 1

n < ∞.
Step 3. Estimates for ∇ p and ∇∇ p for n > 1.

For n > 1 we obtain the claimed estimates by interpolation of the estimates in
Step 1 and Step 2 via Hölder’s inequality in form of

‖u‖Ln(�) ≤ ‖u‖λ
L1(�)

‖u‖1−λ

L
n(1−λ)
1−λn (�)

, 0 < λ <
1

n
.

Indeed, applied to u = ∇ p, we obtain

E

[∣∣∇ p(t, y)
∣∣n
] 1
n � (t + 1)−( d2 + 1

2 )λ−( d4 + 1
2 )(1−λ)+ε m(t, y)−α

= (t + 1)−( d2 + 1
2 )+ d

4 (1−λ)+ε m(t, y)−α,

and the claimed estimate follows by choosing λ close to 1
n . For ∇∇ p first notice that

by the triangle inequality we have

E

[∣∣∇∇ p(t, x)
∣∣n
] 1
n � max

|x−x ′|≤1
E

[∣∣∇ p(t, x ′)
∣∣n
] 1
n
.

Now, the estimate follows by interpolating the estimate for ∇∇ p for n = 1 with the
estimate for ∇ p for n′ � n. ��
Proof of Corollary 2.3 First note that for θ > 0 and 0 ≤ α < 2θ , we have for all x ∈ Z

d

the elementary estimate
∫ ∞

0
(t + 1)−θ−1 m(t, x)−α dt ≤ c(d, α, θ)

(|x | + 1
)−α

, (2.15)

which follows by using that m(t, x)−α �
(|x | + 1

)−α(
t + 1

)α/2. Now, the claimed
estimates follow from the identities∇G(x, 0) = ∫∞

0 ∇ p(t, x, 0) dt and∇∇G(x, 0) =∫∞
0 ∇∇ p(t, x, 0) dt , the estimates in Corollary 2.2 and (2.15) by choosing α close to
2θ . ��
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3 Semigroup decay: proof of Theorem 1.7

In this sectionwe proveTheorem1.7,which yields a rate for the decay of the semigroup
Pt : L∞(�) → L∞(�) defined by Ptu(ω) := ∑

y∈Zd pω(t, 0, y) u(τyω). First we
recall some basic facts on the semigroup (Pt )t≥0. We refer to [28] for details.

• Since the heat kernel is normalised such that
∑

y∈Zd pω(t, 0, y) = 1, the semi-
group Pt is a contraction on L∞(�).

• The semigroup is characterised by a discrete heat equation on Zd . The connection
is based on the stationary extension that associates a random variable, say u(ω),
with the random field ū(ω, x) := u(τxω) called the stationary extension of u.
Now, consider u ∈ L∞(�) and v(t) := Ptu. Then for P-a.e. ω, the function
v̄(ω, ·, ·) : [0,∞) × Z

d → R, v̄(ω, t, x) := v(t, τxω) is the unique solution in
C([0,∞), �∞(Zd)) ∩ C1((0,∞), �∞(Zd)) to the Cauchy problem

(∂t + ∇∗ω∇)v̄ = 0 on (0,∞) × Z
d ,

v̄(0, ·) = ū on Zd ,
(3.1)

which directly follows from the definition of the semigroup.
• An alternative characterisation by a Cauchy problem in L∞(�) is as follows.
The stationary extension (·), the discrete derivatives ∇i ,∇∗

i and the horizontal
derivatives Di , D∗

i (see Sect. 1.3) are related by the identities

∇i ū(ω, x) = (Diu)(ω, x), ∇∗
i ū(ω, x) = (D∗

i u)(ω, x).

Therefore, (3.1) is equivalent to the Cauchy problem in L∞(�) given by

(∂t + D∗ω(0)D)v = 0 for t > 0,

v(0) = u.
(3.2)

• The family (Pt )t≥0 is the Markovian transition semigroup associated with the �-
valued process {τXtω}t≥0, which is known as the process of the “environment as
seen from the particle”. Furthermore, ifP is stationary and ergodic, and (1.3) holds,
then themeasureP is stationary, reversible and ergodic for the environment process
{τXtω}t≥0 and its semigroup (Pt )t≥0, respectively (see e.g. [2, Lemma 2.4]).

3.1 Proof of Theorem 1.7

We follow the argument of [28, Theorem 1], where the optimal estimate is obtained in
the case of uniformly elliptic coefficients. In our setting the lack of uniform ellipticity
leads to a loss of decay, since at various places we use Hölder’s inequality and the
moment conditions in order to move the conductances outside (or inside) of some
integrals. A central element is the weighted �2-regularity estimate for the gradient of
the heat kernel obtained in Proposition 2.1, which we apply in form of the following
two estimates, the proof of which are postponed to Sect. 3.2.
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Lemma 3.1 Let ε ∈ (0, 1), n ≥ d
2ε and θ ∈ (1, 2). There exists p, q ∈ (1,∞)

(only depending on d, n, ε, θ ) and a constant c = c(d, n, ε, θ, M(p, q)) such that if
M(p, q) < ∞ the following holds. For all F ∈ L2nθ (�,Rd) and t ≥ 0,

E

⎡

⎣

⎛

⎝
∑

y∈Zd

(
∇ p(t, y) · F̄(y)

)2
⎞

⎠

n ⎤

⎦

1
2n

≤ c (t + 1)−( d4 + 1
2 )+ε

E

[
|F |2nθ

] 1
2nθ

,

where F̄(ω, x) := F(τxω).

Remark 3.2 In the uniformly elliptic case Lemma 3.1 holds with ε = 0 and θ = 1,
which can be shown along the lines of [28]. For our purpose it is important that θ

and ε can be chosen arbitrarily close to 1 and 0, respectively, provided we suppose a
sufficiently strong moment condition.

Lemma 3.3 Let ε ∈ (0, 1) and n ≥ d
2ε . There exist p, q ∈ (1,∞) (only depending

on d, n, ε) and a constant c = c(d, n, ε, M(p, q)) such that if M(p, q) < ∞ the
following holds. For any random field H : � × Ed → R

d and t ≥ 0,

E

⎡

⎢
⎣

⎛

⎜
⎝
∑

e∈Ed

⎛

⎝
∑

z∈Zd

∇ p(t, z) · H(τzω, e − z)

⎞

⎠

2
⎞

⎟
⎠

n ⎤

⎥
⎦

1
2n

≤ c (t + 1)−( d4 + 1
2 )+ε

∑

e∈Ed

E

[∣∣H(ω, e)
∣∣4n
] 1
4n

.

For the proof of Theorem 1.7 we further need a non-linear Caccioppoli inequality
for the operator D∗ω(0)D. The following result is an extension of [28, Lemma 5] to
the degenerate setting.

Lemma 3.4 (Caccioppoli) Let v(t) = Ptu. Then for every n ∈ N and 1 < θ < 2 we
have

E

[∣∣Dv(t)
∣∣2nθ
] 1
2nθ

≤
(

−c
d

dt
E
[
v(t)2n

])
1
2n

2−θ
θ

E
[|u|8n] 1

8n
2θ−2

θ E

[∣∣ω(0)−1
∣∣
2(2−θ)
θ−1

] θ−1
4nθ

with c = c(d, n, θ).

A last ingredient is the decay estimate on ordinary differential inequalities.

Lemma 3.5 Assume that

0 ≤ a(t) ≤ c0

((
t + 1

)−γ +
∫ t

0

(
t − s + 1

)−γ
bδ(s) ds

)
,

0 ≤ b2n(t) ≤ − d

dt

[
a2n(t)

]
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with n ∈ [1,∞), γ ∈ [1,∞) and δ ∈ ( γ

γ+ 1
2n

, 1
)
. Then, there exists c =

c(n, γ, δ, c0) < ∞ such that

a(t) ≤ c (t + 1)−γ .

This is a generalisation of [28, Lemma 15], obtained in [24, Lemma 3.1].

Proof of Theorem 1.7 Let θ ∈ (1, 2) to be chosen later. In the following� stands for≤
up to a constant only depending on d, ρ, n, θ, ε and M(p, q). For abbreviation we set
γ := ( d4 + 1

2 ) − ε, u := D∗F and v(ω, t) := Ptu(ω) = ∑
y∈Zd pω(t, 0, y) ū(ω, y).

By the homogeneity of the estimate it suffices to consider the case

∑

e∈Ed

E

[∣∣∂eF
∣∣8n
]

≤ 1. (3.3)

We claim that for any θ ∈ (1, 2),

E
[
v(t)2n

] 1
2n � (t + 1)−γ +

∫ t

0
(t − s + 1)−γ

E

[∣∣Dv(s)
∣∣2nθ
] 1
2nθ

ds. (3.4)

We first note that E[u] = 0 implies E[v(t)] = 0 for all t ≥ 0. Hence, the n-version
of the spectral gap estimate in (1.7) gives

E
[
v(t)2n

] 1
2n � E

⎡

⎣

⎛

⎝
∑

e∈Ed

∣∣∂ev(t)
∣∣2
⎞

⎠

n⎤

⎦

1
2n

. (3.5)

In order to identify ∂ev, recall that v̄(ω, ·, ·) solves

(∂t + ∇∗ω∇)v̄ = 0 on (0,∞) × Z
d ,

v̄(t = 0, ·) = ū(·) on Zd .
(3.6)

Now we apply ∂e to this equation to get a characterisation of ∂ev̄. More precisely,
since ∂e(∇∗ω∇v̄) = ∇∗ω∇∂ev̄(s, ·) + ∇∗δe(·)∇v̄(s, e) (here δe : Ed → {0, 1}
denotes the Dirac function with δe(e) = 1 and δe(e′) = 0 for any e′ �= e), we have

(∂t + ∇∗ω∇)∂ev̄ = −∇∗δe(·)∇v̄(t, e) on (0,∞) × Z
d ,

∂ev̄(t = 0, ·) = ∂eū(·) on Z
d ,

and thus by Duhamel’s formula

∂ev(t) = ∂ev̄(t, 0) =
∑

z∈Zd

pω(t, 0, z) ∂eū(z) +
∫ t

0
∇ pω(t − s, 0, e)∇v̄(s, e) ds.
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We combine this identity with (3.5) and apply the triangle inequality to obtain

E

[
v(t)2n

] 1
2n � E

⎡

⎢
⎣

⎛

⎜
⎝
∑

e∈Ed

⎛

⎝
∑

z∈Zd

p(t, z) ∂eū(z)

⎞

⎠

2
⎞

⎟
⎠

n ⎤

⎥
⎦

1
2n

+
∫ t

0
E

⎡

⎣

⎛

⎝
∑

e∈Ed

(
∇ p(t − s, e)∇v̄(s, e)

)2
⎞

⎠

n ⎤

⎦

1
2n

ds

=: I + I I . (3.7)

For term I note that ū(ω, x) = ∇∗ F̄(ω, x) where F̄ denotes the stationary exten-
sion of F . By definition of ∂e, ∇∗ and the stationary extension, we have for any
random variable f the general calculus rules ∂e(∇i f ) = ∇i (∂e f ) and ∂e f̄ (ω, x) =
(∂ω(e−x) f )(ω, x). Hence,

∂eū(z) = ∂e∇∗ F̄(z) = ∇∗∂ω(e−z)F(z) = ∇∗H(τzω, e − z),

where H(ω, e) := ∂eF(ω). Hence, using an integration by parts, Lemma 3.3 and (3.3)
we get

I = E

⎡

⎢
⎣

⎛

⎜
⎝
∑

e∈Ed

⎛

⎝
∑

z∈Zd

∇ p(t, z) · H(τzω, e − z)

⎞

⎠

2
⎞

⎟
⎠

n ⎤

⎥
⎦

1
2n

� (t + 1)−γ . (3.8)

For term I I we use Lemma 3.1 and get for any θ ∈ (1, 2),

I I �
∫ t

0
(t − s + 1)−γ

E

[∣∣Dv(s)
∣∣2nθ
] 1
2nθ

ds,

which completes the argument for (3.4).
Next we apply Lemma 3.4 to obtain

E

[∣∣Dv(t)
∣∣2nθ
] 1
2−θ � − d

dt
E
[
v(t)2n

]
, (3.9)

where we have used that

E
[|u|8n] ≤ E

[∣∣D∗(F − E[F])∣∣8n
]

� E

⎡

⎢
⎣

⎛

⎝
∑

e∈Ed

∣∣∂eF
∣∣2
⎞

⎠

4n
⎤

⎥
⎦ ≤ 1,

thanks to (1.7), a discrete �2-�1-estimate and (3.3). Finally, in view of (3.4) and (3.9),
choosing θ > 1 sufficiently close to 1 (only depending on d, ε and n), we may apply
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Lemma 3.5 with a(t) := E
[
v(t)2n

] 1
2n , b(t) := E

[∣∣Dv(t)
∣∣2nθ
] 1
2n(2−θ)

and δ := 2−θ
θ

and get

E
[
v(t)2n

] 1
2n � (t + 1)−γ ,

which is the claimed estimate. ��

3.2 Proofs of Lemmas 3.1, 3.3 and 3.4

Proof of Lemma 3.1 In the following� stands for≤ up to a constant only depending on

d, n, θ and ε. Fix α > d
2n . Consider I :=

(∑
y∈Zd m(t, y)−2nα

∣∣F̄(y)
∣∣2n
) 1

n
. Hölder’s

inequality, the discrete �
n

n−1 -�1-estimate and Proposition 2.1 yield

∑

y∈Zd

(
∇ p(t, y) · F̄(y)

)2 ≤ I

⎛

⎝
∑

y∈Zd

(
m(t, y)2α

∣∣∇ p(t, y)
∣∣2
) n

n−1

⎞

⎠

n−1
n

≤ I

⎛

⎝
∑

y∈Zd

m(t, y)2α
∣∣∇ p(t, y)

∣∣2
⎞

⎠

≤ I Z2
t (t + 1)−( d2 +1)+ε.

We take the expectation of the n-th power to obtain

E

⎡

⎣

⎛

⎝
∑

y∈Zd

(
∇ p(t, y) · F̄(y)

)2
⎞

⎠

n⎤

⎦

1
2n

≤ (t + 1)−( d4 + 1
2 )+ ε

2 E

[
Z2n
t

∑

y∈Zd

m(t, y)−2nα
∣∣F̄(y)

∣∣2n
] 1

2n

≤ (t + 1)−( d4 + 1
2 )+ ε

2

⎛

⎝
∑

y∈Zd

m(t, y)−2nα
E

[
Z2n
t

∣∣F̄(y)
∣∣2n
]
⎞

⎠

1
2n

.

By Hölder’s inequality with exponents (θ, θ
θ−1 ) and by stationarity this can be further

estimated from above by

(t + 1)−( d4 + 1
2 )+ ε

2 E

[
Z2n θ

θ−1
t

] 1
2n

θ−1
θ

E

[∣∣F
∣∣2nθ
] 1
2nθ

⎛

⎝
∑

y∈Zd

m(t, y)−2nα

⎞

⎠

1
2n
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� (t + 1)−( d4 + 1
2 )+ ε

2+ d
4n E

[
Z2n θ

θ−1
t

] 1
2n

θ−1
θ

E

[∣∣F
∣∣2nθ
] 1
2nθ

,

where we used that
(∑

y∈Zd m(t, y)−2nα
) 1
2n � (t + 1)

d
4n thanks to 2nα > d. Since

we may assume that the 2n θ
θ−1 -moment of Zt is bounded by a constant independent

of t , and because d
4n ≤ ε

2 , the proof is complete. ��

Proof of Lemma 3.3 First we compute

E

⎡

⎢
⎣

⎛

⎜
⎝
∑

e∈Ed

⎛

⎝
∑

z∈Zd

∇ p(t, z) · H(τzω, e − z
)
⎞

⎠

2
⎞

⎟
⎠

n ⎤

⎥
⎦

1
2n

= E

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝
∑

x∈Zd

i=1,...,d

⎛

⎝
∑

z∈Zd

∇ p(t, z) · H(τzω, {x−z, x−z+ei }
)
⎞

⎠

2
⎞

⎟⎟
⎠

n ⎤

⎥⎥
⎦

1
2n

y=x−z= E

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝
∑

x∈Zd

i=1,...,d

⎛

⎝
∑

y∈Zd

∇ p(t, x − y) · H(τx−yω, {y, y+ei })
⎞

⎠

2
⎞

⎟⎟
⎠

n ⎤

⎥⎥
⎦

1
2n

x ′=x−y≤
∑

e′∈Ed

E

⎡

⎣

⎛

⎝
∑

x ′∈Zd

(
∇ p(t, x ′) · H(τx ′ω, e′)

)2
⎞

⎠

n ⎤

⎦

1
2n

.

In order to estimate the expectation, we apply Lemma 3.1 to F(ω) = H(ω, e′) for
any e′ ∈ Ed and obtain

E

⎡

⎢
⎣

⎛

⎜
⎝
∑

e∈Ed

⎛

⎝
∑

z∈Zd

∇ p(t, z) · H(τzω, e − z)

⎞

⎠

2
⎞

⎟
⎠

n ⎤

⎥
⎦

1
2n

≤ c
(
t + 1

)−( d4 + 1
2 )+ε

∑

e′∈Ed

E

[∣∣H(ω, e′)
∣∣2nθ
] 1
2nθ

.

Combined with Hölder’s inequality in form of E

[∣∣H(ω, e′)
∣∣2nθ
] 1
2nθ

≤ E

[∣∣H(ω, e′)
∣∣4n
] 1
4n

the claim follows. ��
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Proof of Lemma 3.4 We first claim that

I := E

[
d∑

i=1

∣∣Div(t)
∣∣2n ω(0, ei )

]

� − 1

2n

d

dt
E
[
v(t)2n

]
, (3.10)

where here and below we write� if the relation holds up to a constant only depending
on d, n and θ . Indeed, using the elementary estimate

(
a − b

)2n �
(
a2n−1 − b2n−1) (a − b

)
, a, b ∈ R,

by appealing to (3.2) we get

I �
d∑

i=1

E

[
ω(0, ei ) Div(t) Di

(
v(t)2n−1)

]

= E

[
D(v(t)2n−1) · ω(0)Dv(t)

]
= E

[
v(t)2n−1 D∗ω(0)Dv(t)

]

= −E

[
v(t)2n−1 ∂tv(t)

]
= − 1

2n

d

dt
E

[
v(t)2n

]
,

and thus the claimed inequality (3.10). Next, we need to estimate E
[∣∣Dv(t)

∣∣2nθ ] 1
2nθ

by the left-hand side in (3.10). To that end set θ0 = 2 − θ , so that θ = θ0 + 2(θ − 1).
Hölder’s inequality with exponents ( 1

θ0
, 1

θ−1 ) yields

E

[∣∣Dv(t)
∣∣2nθ
]

�
d∑

i=1

E

[
|Div(t)|2nθ0ω(0, ei )

θ0 |Div(t)|2n(θ−θ0)ω(0, ei )
−θ0
]

≤
(

d∑

i=1

E

[
|Div(t)|2nω(0, ei )

])θ0

(
d∑

i=1

E

[
|Div(t)|4nω(0, ei )

− 2−θ
θ−1

])θ−1

� I 2−θ
E

[
|Dv(t)|8n

] θ−1
2

E

[∣∣ω(0)−1
∣∣
2(2−θ)
θ−1

] θ−1
2

.

Using |Dv(ω, t)| �
∑

|x |≤1 |v(τxω, t)|, the shift-invariance of P and the contrac-

tivity of the semigroup Pt : L8n(�) → L8n(�), we deduce that

E

[
|Dv(t)|8n

]
� E

[
|v(t)|8n

]
≤ E

[
|u|8n

]
.

In combination with (3.10) these estimates give the claim. ��
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4 Moment bounds for the extended corrector: proof of
Proposition 1.10

In this section, unless stated otherwise, ξ denotes one of the coordinate vectors
e1, . . . , ed , and we drop the index in the notation for φ, σ and q. We split the proof
of Proposition 1.10 into three steps. In Step 1 we prove (a) and (b), i.e. the existence
of φ and σ , and the moment bounds for φ, which is a rather direct consequence of
Theorem 1.7. In Step 2 we establish a sensitivity estimate for the right-hand side of
(1.12c). In Step 3 we establish the growth bound for σ .
Step 1. Proof of (a) and (b).

We first claim that there exists φ0 ∈ L2n(�) with E[φ0] = 0 satisfying (1.14) such
that

D∗ω(0)
(
Dφ0 + ξ

) = 0.

For the argument set F := −ω(0)ξ , u(t) := Pt D∗F , and note that

E

⎡

⎣
( ∑

e∈Ed

∣∣∂eF
∣∣
)8(n+1)

⎤

⎦

1
8(n+1)

= E

⎡

⎣
(

d∑

i=1

∣∣∂{0,ei }F
∣∣
)8(n+1)⎤

⎦

1
8(n+1)

� |ξ | = 1.

Consequently, Theorem 1.7 yields E
[∣∣u(t)

∣∣2(n+1)
] 1
2(n+1) � (t + 1)−γ for some 1 <

γ < d
4 + 1

2 . Since γ > 1, we can define the sought random variable as Laplace
transform φ0 := ∫∞

0 u(t) dt .
Next, we set φ(ω, x) := φ0(τxω) − φ0(ω). By construction we have φ(ω, 0) = 0.

Since Di is the discrete generator of the shift τei , we deduce that

∇φ(ω, x) = Dφ(τxω), ∇∗ω(x)(∇φ(ω, x) + ξ)

=
(
D∗ω(0)(Dφ0 + ξ)

)
(τxω) = 0,

and we conclude that φ satisfies all the claimed properties.
Next, we prove the existence of σ . To that end we first rewrite the right-hand side in

(1.12c) in divergence form. For k, � = 1, . . . d we introduce the random vector fields

q0(ω) := ω(0)(Dφ0(ω) + ξ) − ωhomξ,

Q0
k�(ω) := (q0(τ�ω) · ek

)
e� − (q0(τekω) · e�

)
ek,

and denote by Qk�(ω, x) := Q0
k�(τxω) the stationary extension. Note that by con-

struction we have q(ω, x) = q0(τxω) and (Sq)k� = ∇∗Qk�. From the moment
bound (1.14) and moment condition on the conductances we deduce that q0 and
Q0 have finite second moments. Therefore, for any T ≥ 1 the regularized equation
( 1
T + D∗D)σ 0

T ,k� = D∗Q0
k� admits a unique solution in L2(�) satisfying the a priori

estimate
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1

T
E

[∣∣σ 0
T ,k�

∣∣2
]

+ 1

2
E

[∣∣∇σ 0
T ,k�|2

]
≤ 1

2
E

[∣∣Q0
k�

∣∣2
]

� 1.

Since the estimate on Dσ 0
T is uniform in T ≥ 1, we deduce that (up to a subse-

quence) Dσ 0
T ,k� weakly converges for T ↑ ∞ to some random variable Wk� =

(Wk�,1, . . . ,Wk�,d) with E[|Wk�|2] ≤ 1
2 E

[∣∣Q0
k�

∣∣2
]
satisfying

D∗Wk� = D∗Q0
k�. (4.1)

Note that E[Wk�] = 0, since E[Dσ 0
T ] = 0. Moreover, Wk� is curl-free in the

sense that DiWk�, j = DjWk�,i . Hence, there exists a random field σT ,k�(ω, x) with
σT ,k�(ω, 0) = 0 and ∇σT ,k�(ω, x) = Wk�(τxω), and (4.1) turns into ∇∗∇σT ,k� =
∇∗Qk�, which is (1.12c) due to the definition of Q. Moreover, σk� is skew-
symmetric in k, �, since so is (Sq)k�. Moreover, (1.12b) follows from the identity
∇∗∇(∇∗

� σk� − qk) = 0 (see e.g. [15, Proof of Lemma 9, Step 2]).
Step 2. Sensitivity estimate.

Let f : Zd → R be compactly supported and Q be defined as in Step 1. Consider
exponents s, r such that

s >
d

d − 1
, r ≥ 1, 1 + 1

2
= 1

s
+ 1

r
. (4.2)

Then for any p > 1 satisfying

s
d − 1

d
− p − 1

p

1

d
> 1 (4.3)

(i.e. for 0 < p − 1 � 1), we have

I := E

⎡

⎣

⎛

⎝
∑

e∈Ed

( ∑

y∈Zd

∣∣∇ f (y)
∣∣ ∣∣∂eQk�(y)

∣∣
)2
⎞

⎠

p⎤

⎦

1
2p

�
∥∥∇ f

∥∥
�r (Zd )

.

This can be seen as follows. By the triangle inequality (w.r.t. ‖ · ‖L p(�,P)), by
expanding the square, another application of the triangle inequality, and the Cauchy
Schwarz inequality,

I 2 ≤
∑

e∈Ed

E

⎡

⎢
⎣

⎛

⎝
∑

y∈Zd

∣∣∇ f (y)
∣∣ ∣∣∂eQk�(y)

∣∣

⎞

⎠

2p
⎤

⎥
⎦

1
p

=
∑

e∈Ed

E

⎡

⎣

⎛

⎝
∑

y,y′∈Zd

∣∣∇ f (y)
∣∣ ∣∣∇ f (y′)

∣∣ ∣∣∂eQk�(y)
∣∣∣∣∂eQk�(y

′)
∣∣

⎞

⎠

p⎤

⎦

1
p
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≤
∑

e∈Ed

∑

y,y′∈Zd

∣∣∇ f (y)
∣∣ ∣∣∇ f (y′)

∣∣ E
[(∣∣∂eQk�(y)

∣∣ ∣∣∂eQk�(y
′)
∣∣)p]

1
p

≤
∑

e∈Ed

∑

y,y′∈Zd

∣∣∇ f (y)
∣∣ ∣∣∇ f (y′)

∣∣ E
[∣∣∂eQk�(y)

∣∣2p
] 1
2p

E

[∣∣∂eQk�(y
′)
∣∣2p
] 1
2p

=
∑

e∈Ed

⎛

⎝
∑

y∈Zd

∣∣∇ f (y)
∣∣ E
[∣∣∂eQk�(y)

∣∣2p
] 1
2p

⎞

⎠

2

.

For the following discussion it is convenient to set

g(z) :=
∑

e={z,z+ei }
i=1,...,d

E

[∣∣∂eQ0
k�

∣∣2p
] 1
2p

.

Since Qk�(ω, y) = Q0
k�(τyω) we infer that ∂eQk�(ω, y) = (∂e−y Q0)(τyω). Since P

is stationary, we obtain E
[|∂eQk�(y)|2p

] 1
2p = E

[|∂e−y Q0
k�|2p

] 1
2p ≤ g(e − y), and

thus

I ≤
⎛

⎜
⎝
∑

z∈Zd

⎛

⎝
∑

y∈Zd

∣∣∇ f (y)
∣∣ g(z − y)

⎞

⎠

2
⎞

⎟
⎠

1
2

.

The inner sum is a convolution. Thanks to (4.2) Young’s estimate for convolutions
yields

I ≤ ‖∇ f ‖�r (Zd ) ‖g‖�s (Zd ),

and it remains to show that the norm of g is finite. It suffices to show that for some
γ > 0 with γ > d

s we have

E

[∣∣∂eQ0
k�

∣∣2p
] 1
2p �

(|e| + 1
)−γ

, ∀e ∈ Ed . (4.4)

We first note that

∣∣∂eDφ0(ω)
∣∣ ≤ ∣∣∇∇Gω(0, e)

∣∣ ∣∣Dφ0(τeω) + ξ
∣∣. (4.5)

Indeed, this follows from applying ∂e to (1.12a), which yields

∇∗ω∇∂eφ = ∇∗(∂eω(·)) (∇φ + ξ
)
. (4.6)
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Since |∂eω(·)| ≤ δ(· − e), and ∂eDφ0(ω) = ∇∂eφ(ω, 0), we obtain (4.5) by the
Green’s function representation for (4.6). Hence, applying ∂e to Q0 gives

∂eQ
0(ω) = δ(e)

(
Dφ0(ω) + ξ

)− ω(0) ∂eDφ0(ω),

and thus

∣∣∂eQ0(ω)
∣∣ ≤ δ(e)

(|Dφ0| + 1
)+ |ω(0)| ∣∣∇∇G(ω, 0, e)

∣∣ (|Dφ0(τeω)| + 1
)
.

Since we may assume that high moments of Dφ0 and ω(0) exist, Corollary 2.3 yields
for any p′ > p and any ε > 0,

E

[∣∣∂eQ0
∣∣2p
] 1
2p � E

[∣∣∇∇G(0, e)
∣∣2p′] 1

2p′

�
(|e| + 1

)−γ
, γ := d − 2

2p′ − 1

2p′ − ε,

provided the conductances satisfy sufficiently strong moment conditions with integra-
bility exponents that depend on p′ and ε. Note that for p′ ↓ p and ε ↓ 0, we have
γ ↑ γp := d − 2p−1

p = (d − 1) − p−1
p . Thanks to (4.3) we have γp

s
d > 1, and thus

we obtain γ > d
s by choosing p′ and ε sufficiently close to p and 0. This completes

the argument for (4.4).
Step 3. Sublinear estimate for σ .

We basically follow arguments in [26], where a similar statement is obtained for
uniformly elliptic, continuous systems, and [47], where the argument is carried out
for the corrector φ in the uniformly elliptic, discrete setting in dimension d = 2. The
argument is split into three substeps.
Substep 3.1. For L ≥ 1 consider

vL(ω) := σ(ω, 0) − 1

#B(L)

∑

y∈B(L)

σ (ω, y).

Then for any exponents r and p satisfying (4.2) and (4.3), we have

E

[∣∣vL
∣∣2p
] 1
2p �

⎧
⎪⎨

⎪⎩

L
d
r +(1−d) if r < d

d−1 ,

(log L)
1
r if r = d

d−1 ,

1 if r > d
d−1 .

For the argument let f : Zd → R denote the unique decaying solution to

∇∗∇ f = h, where h := δ0 − 1

#B(L)
1lB(L).
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By representing ∇ f with help of the discrete Green’s function for ∇∗∇ we find that

∣∣∇ f (y)
∣∣ �

(
L ∧ |y|) (|y| + 1

)−d
. (4.7)

Since σ(ω, ·) grows sublinearly P-a.s., we deduce that

vL(ω) =
∑

y∈Zd

σ(ω, y) h(y) =
∑

y∈Zd

∇σ(ω, y) · ∇ f (y). (4.8)

In particular, we find that E[vL ] = 0, since E[∇σ ] = 0. Thus, the p-version of the
Spectral Gap estimate, (1.7), yields

E

[∣∣vL
∣∣2p
] 1
2p � E

⎡

⎣

⎛

⎝
∑

e∈Ed

∣∣∂evL
∣∣2
⎞

⎠

p⎤

⎦

1
2p

. (4.9)

Note that ∂evL = ∑
y∈Zd ∇∂eσ(y) · ∇ f (y) = ∑

y∈Zd ∂eQ(y) · ∇ f (y), where we
used that

∇∗∇∂eσ = ∇∗∂eQ.

Hence, we can estimate the right-hand side of (4.9) by appealing to Step 2 and (4.7).
This completes the argument.
Substep 3.2. For x ∈ Z

d and L ≥ 1 consider

v′
L(ω) := 1

#B(L)

∑

y∈B(L)

(
σ(ω, x + y) − σ(ω, y)

)
.

Then for any r and p satisfying (4.2) and (4.3), we have

E

[∣∣v′
L

∣∣2p
] 1
2p � |x | L d

r −d log L.

For the argument let f : Zd → R denote the unique decaying solution to

∇∗∇ f = h, where h := 1

#B(L)

(
1lB(L)(· − x) − 1lB(L)(·)

)
.

By representing ∇ f with help of the discrete Green’s function for ∇∗∇ we find that

∣∣∇ f (y)
∣∣ � |x | (L ∨ |y|)−d log L, (4.10)

and, moreover,

v′
L(ω) =

∑

y∈Zd

σ(ω, y) h(y) =
∑

y∈Zd

∇σ(ω, y) · ∇ f (y).
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Hence, arguing as in Substep 3.2 we see that the claim follows from Step 2.
Substep 3.3. Let L := |x | + 1. Then we have

σ(ω, x) = σ(ω, x) − σ(ω, 0)

= σ(ω, x) − 1

#B(L)

∑

y∈B(L)

σ (ω, x + y)

+ 1

#B(L)

∑

y∈B(L)

(
σ(ω, x + y) − σ(ω, y)

)

+ 1

#B(L)

∑

y∈B(L)

σ (ω, y) − σ(ω, 0)

= vL(τxω) + v′
L(ω) − vL(ω),

where the last identity holds due to the identities of the previous steps, and by stationar-
ity of ∇σ in combination with identity (4.8). Hence, the triangle inequality, |x | ≤ L ,
and the estimates of Substep 3.1 und Substep 3.2 yield for any exponents r and p
satisfying (4.2) and (4.6) the estimate

E

[∣∣σ(x)
∣∣2p
] 1
2p � L

d
r −d+1 log L +

⎧
⎪⎨

⎪⎩

L
d
r +(1−d) if r < d

d−1 ,(
log L

) 1
r if r = d

d−1 ,

1 if r > d
d−1 .

In dimensions 3 ≤ d ≤ 4 any exponent 1 ≤ r < 2d
d+2 ≤ d

d−1 is admissible. Since the

upper bound r ↑ 2d
d+2 implies d

r + (1−d) ↓ 2− d
2 , the claimed statement follows. On

the other hand, in dimension d ≥ 5, we might choose any exponent d
d−1 < r < 2d

d+2 ,
which completes the argument. ��

5 Variance decay for the carré du champ: proof of Proposition 1.11

A key ingredient in the proof of Proposition 1.11 is the following lemma, which for
d ≥ 3 yields a representation of gξ in divergence form.

Lemma 5.1 Consider the situation of Proposition 1.10. Let ξ ∈ R
d be fixed and let

(φ, σ ) denote the associated extended corrector, i.e. (φ, σ ) := ∑d
i=1 ξi (φi , σi ) with

(φi , σi ) as in Proposition 1.10 (a). Consider

g(ω) :=
∑

y∈Zd

ω(0, y)ψ(ω, y)2 where ψ(ω, y) := ξ · y + φ(ω, y) − φ(ω, 0).

Then,

g(ω) − E[g] = g(ω) − 2ξ · ωhomξ = ∇∗H(ω, 0),
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where H = (H1, . . . , Hd) is defined by

Hi (ω, x) := ω(x, x + ei )
(
ξi + ∇iφ(ω, x)

)2

+ 2
(
σ(ω, x)tξ + φ(ω, x + ei )ω(x)

(
ξ + ∇φ(ω, x)

)) · ei .

Proof Define

H ′
i (ω, x) := ω(x, x + ei )

(
ξi + ∇iφ(ω, x))2

H ′′
i (ω, x) := φ(ω, x + ei )

(
ei · ω(x)(ξ + ∇φ(ω, x))

)
,

and note that Hi = H ′
i + 2(σ tξ) · ei + 2H ′′

i . We have ψ(ω, ei ) = ξi + ∇iφ(ω, 0) and
ψ(ω,−ei ) = −ξi − ∇iφ(ω,−ei ) = −ξi − ∇iφ(τ−ei ω, 0), thanks to stationarity of
∇φ (see Proposition 1.10 (a.3)). Hence,

g(ω) =
d∑

i=1

ω(0, ei )
(
ξi + ∇iφ(ω, 0)

)2 +
d∑

i=1

ω(−ei , 0)
(− ξi − ∇iφ(ω,−ei )

)2

=
d∑

i=1

H ′
i (ω, 0) +

d∑

i=1

H ′
i (τ−ei ω, 0) = 2

(
d∑

i=1

H ′
i (ω, 0)

)

+ D∗H ′(ω, 0)

= 2

(
d∑

i=1

H ′
i (ω, 0)

)

+ ∇∗H ′(ω, 0), (5.1)

where the last identity holds, since H ′ is stationary in the sense that H ′(τxω, y) =
H ′(ω, y + x).

With q(ω, x) := ω(x)
(
ξ + ∇φ(ω, x)

) − ωhomξ , we can rewrite the first term on
the right-hand side as

d∑

i=1

H ′
i (ω, 0) = (

ξ + ∇φ(ω, 0)
) · ω(0)

(
ξ + ∇φ(ω, 0)

)

= ξ · q(ω, 0) + ∇φ(ω, 0) · ω(0)
(
ξ + ∇φ(ω, 0)

)+ ξ · ωhomξ. (5.2)

In view of Proposition 1.10, the first term takes the form

ξ · q(ω, 0) = ∇∗(σ tξ)(ω, 0). (5.3)

For the second term on the right-hand side of (5.2) we use the general discrete
product rule

∇φ · F = ∇∗[φ, F] − φ (∇∗F), [φ, F]i := φ(· + ei ) Fi ,
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which we apply with F(x) = ω(x)
(
ξ + ∇φ(ω, x)

)
. By the corrector equation we

have ∇∗F = 0 and therefore

∇φ(ω, ·) · ω(·) (ξ + ∇φ(ω, ·)) = ∇∗H ′′(ω, ·).

Now the claimed representation follows from (5.1), (5.2) and (5.3), and the fact that
the mean of the right-hand side in (5.2) is ξ · ωhomξ . ��
Proof of Proposition 1.11 First we recall that

(�ω f )(x) :=
[
Lω f 2 − 2 f Lω f

]
(x) =

∑

y∈Zd

ω(x, y) ( f (y) − f (x))2 ,

which holds for any f : Zd → R as can be seen by a direct calculation. In order to
recover gξ (ω), we need to consider f (x) = ψξ (ω, x) and evaluate at x = 0. By the
definition of ψξ we have ψξ (ω, 0) = 0, and thus Lemma 5.1 yields

gξ (ω) = �ω(ψξ (ω, ·))(0) =
∑

|y|=1

ω(0, y) ψξ (ω, y)2

= E[gξ ] + ∇∗H(ω, 0),

where H is defined as in Lemma 5.1. Note that H(y) := H(ω, y) = H(τyω, 0). Thus,
by the definition of Pt , an integration by parts, Hölder’s inequality, and Proposition 2.1,
we get for all α > d and 0 < ε < 1,

I := E

[(
Pt
(
gξ − E[gξ ]

))2]
1
2 = E

⎡

⎢
⎣

⎛

⎝
∑

y∈Zd

pω(t, 0, y)∇∗H(y)

⎞

⎠

2
⎤

⎥
⎦

1
2

= E

⎡

⎢
⎣

⎛

⎝
∑

y∈Zd

∇ p(t, y) · H(y)

⎞

⎠

2
⎤

⎥
⎦

1
2

≤ E

⎡

⎣

⎛

⎝
∑

y∈Zd

∣∣∇ p(t, y)
∣∣2 m(t, y)α

⎞

⎠

⎛

⎝
∑

y∈Zd

∣∣H(y)
∣∣2 m(t, y)−α

⎞

⎠

⎤

⎦

1
2

≤ (t + 1)−( d4 + 1
2 )+ε

E

⎡

⎣Z2
t

⎛

⎝
∑

y∈Zd

∣∣H(y)
∣∣2m(t, y)−α

⎞

⎠

⎤

⎦

1
2

= (t + 1)−( d4 + 1
2 )+ε

⎛

⎝
∑

y∈Zd

m(t, y)−α
E

[
Z2
t

∣∣H(y)
∣∣2
]
⎞

⎠

1
2

.
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From the definition of H , the moment bounds of Proposition 1.10, and the property
that high moments of Zt are bounded uniformly in t (see Proposition 2.1), we deduce
that for any θ > 1

2 in dimension d = 3 and any θ > 0 in dimension d ≥ 4, we have

sup
t≥0

E

[
Z2
t

∣∣H(y)
∣∣2
]

� (|y| + 1)2θ ≤ (t + 1)θm(t, y)2θ ,

and thus

I � (t + 1)−( d4 + 1
2 )+ε+ θ

2

⎛

⎝
∑

y∈Zd

m(t, y)−α+2θ

⎞

⎠

1
2

.

Since
∑

y∈Zd m(t, y)−α+2θ � (t + 1)
d
2 (whenever α − 2θ > d

2 ), we conclude that

I � (t + 1)−
1
2+ε+ θ

2 .

Note that in dimension d ≥ 4 (resp. d = 3) we might choose θ arbitrarily close
0 (resp. 1

2 ), while we can choose ε > 0 as small as we wish. This completes the
proof. ��

6 Berry–Esseen theorem

In this section we prove Theorem 1.5. As mentioned earlier we will show a Berry–
Esseen theorem for the martingale part and afterwards derive that the corrector
converges sufficiently fast to zero along the path of the random walk. We start by
setting-up the decomposition of X . Recall the definition of the corrector in Proposi-
tion 1.10 and of the harmonic coordinates � : � × Z

d → R
d in (1.10) above. Let

χ : � × Z
d → R

d be defined by

χ(ω, x) := �(ω, x) − x .

Remark 6.1 The harmonic coordinates satisfy the cocycle property, that is for P-a.e.
ω,

�(ω, y) − �(ω, x) = �(τxω, y − x), ∀x, y ∈ Z
d ,

and a similar relation holds for χ . Note that conventions about the sign of the corrector
χ differ, compare for instance [2,16] and [50].

Corollary 6.2 For P-a.e. ω, the process

Mt := �(Xt ), t ≥ 0,
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is a Pω
0 -martingale and

Xt = Mt − χ(ω, Xt ), t ≥ 0. (6.1)

Moreover, for every ξ ∈ R
d , ξ ·M is a Pω

0 -martingale with quadratic variation process
given by

〈ξ · M〉t =
∫ t

0

∑

y∈Zd

ω(Xs, y)
(
ψξ (ω, y) − ψξ (ω, Xs)

)2
ds

=
∫ t

0
�ω
(
ψξ (τXsω, ·))(0) ds. (6.2)

Proof Clearly, ∇∗ω∇�i = 0 for every i = 1, . . . d, so �i is Lω-harmonic. In partic-
ular, M and hence also ξ · M are Pω

0 -martingales. The decomposition (6.1) follows
directly from the definition of χ . To compute 〈ξ · M〉, which is the unique predictable
process such that (ξ · M)2 − 〈ξ · M〉 is a martingale, recall that

〈ξ · M〉t =
∫ t

0
�ω(ψξ (ω, ·))(Xs) ds,

where �ω still denotes the opérateur carré du champ associated with Lω given by

�ω( f )(x) :=
[
Lω f 2 − 2 f Lω f

]
(x) =

∑

y∈Zd

ω(x, y)
(
f (y) − f (x)

)2
,

and ψξ = ξ · � as defined in (1.16). Finally, since ψξ (ω, 0) = 0 we observe that for
any x ∈ Z

d ,

∑

y∈Zd

ω(x, y)
(
ψξ (ω, y) − ψξ (ω, x)

)2 =
∑

y∈Zd

(τxω)(0, y) ψξ (τxω, y)2

= �ω
(
ψξ (τxω, ·))(0),

which completes the proof. ��

6.1 Quantitative CLT for themartingale part

In this section we show the following Berry–Esseen theorem for the martingale part.

Proposition 6.3 Let d ≥ 3 and suppose that Assumption 1.3 holds. For any ε > 0
there exist exponents p, q ∈ [1,∞) (only depending on d, ρ and ε) such that under
the moment condition M(p, q) < ∞ the following hold.

(i) There exists a constant c = c(d, ρ, ε, M(p, q)) such that for all t ≥ 0,

sup
x∈R

∣∣∣P0
[
ξ · Mt ≤ σξ x

√
t
]− 	(x)

∣∣∣ ≤
{
c t− 1

10+ε if d = 3,

c t− 1
5+ε if d ≥ 4.
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(ii) There exists a random X = X (d, ρ, ε, M(p, q)) in L1(P) such that for P-a.e. ω,

∫ ∞

0

(
sup
x∈R

∣∣∣Pω
0

[
v · Mt ≤ σξ x

√
t
]− 	(x)

∣∣∣
)5

(t + 1)−
1
2−ε dt

≤ X (ω) < ∞, if d = 3,

and

∫ ∞

0

(
sup
x∈R

∣∣∣Pω
0

[
v · Mt ≤ σξ x

√
t
]− 	(x)

∣∣∣
)5

(t + 1)−ε dt

≤ X (ω) < ∞, if d ≥ 4.

To prove Proposition 6.3 we will apply the following general quantitative central
limit theorem for martingales.

Theorem 6.4 Let (Nt )t≥0 be a locally square-integrable martingale (w.r.t. some prob-
ability measure P) and denote by �Nt := Nt − Nt− its jump process and by 〈N 〉t
its quadratic variation process. Then, for any n > 1, there exists a constant c > 0
depending only on n such that

sup
x∈R

∣∣P
[
N1 ≤ x

]− 	(x)
∣∣ ≤ c

(
E
[∣∣〈N 〉1 − 1

∣∣n]+ E
[ ∑

0≤t≤1

∣∣�Nt
∣∣2n
])1/(2n+1)

.

Proof See Theorem 2 in [33] (cf. also [35]). ��

Proposition 6.5 Let d ≥ 3 and suppose that Assumption 1.3 holds. For any ε > 0
there exist exponents p, q ∈ [1,∞) (only depending on d, ρ and ε) such that if
M(p, q) < ∞ the following hold.

(i) There exists a constant c = c(d, ρ, ε, M(p, q)) such that for all t > 0,

E

[
Eω
0

[∣∣∣
〈ξ · M〉t

t
− σ 2

ξ

∣∣∣
2
]]

≤
{
c t− 1

2+ε if d = 3,

c t−1+ε if d ≥ 4.

(ii) There exists a random X = X (d, ρ, ε, M(p, q)) in L1(P) such that for P-a.e. ω,

∫ ∞

0
Eω
0

[∣∣∣
〈ξ · M〉t

t
− σ 2

ξ

∣∣∣
2
]

(t + 1)−
1
2−ε dt ≤ X (ω) < ∞, if d = 3,

and

∫ ∞

0
Eω
0

[∣∣∣
〈ξ · M〉t

t
− σ 2

ξ

∣∣∣
2
]

(t + 1)−ε dt ≤ X (ω) < ∞, if d ≥ 4.
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Proof (i) Recall that gξ = �ω(ψξ (ω, ·))(0) and note that σ 2
ξ = E[gξ ] since

�2 = 2ωhom (cf. (1.11) and (1.13) above). Setting Gξ := gξ − E[gξ ], we have
by Corollary 6.2 that

〈ξ · M〉t
t

− σ 2
ξ = 1

t

∫ t

0
Gξ (τXsω) ds. (6.3)

Arguing as in [43, Sect. 6] we get

EEω
0

[( ∫ t

0
Gξ (τXsω) ds

)2] = 2
∫

0≤s≤u≤t
EEω

0

[
Gξ (τXsω)Gξ (τXuω)

]
ds du

= 2
∫

0≤s≤u≤t
EEω

0

[
Gξ (ω)Gξ (τXu−sω)

]
ds du

= 2
∫ t

0
(t − s)E

[
Gξ (ω) PsGξ (ω)

]
ds,

where we used the stationarity of (τXsω) in the second step and a change of variable in
the last step. Since (τXsω) is reversiblew.r.t.P, the semigroup operator Ps is symmetric
in L2(P) and we obtain that

EEω
0

[( ∫ t

0
Gξ (τXsω) ds

)2] = 2
∫ t

0
(t − s)E

[(
Ps/2Gξ (ω)

)2]
ds

≤ 2t
∫ t

0
E

[(
Ps/2Gξ (ω)

)2]
ds.

Now we apply Proposition 1.11, which gives for any ε > 0,

EEω
0

[( ∫ t

0
Gξ (τXsω) ds

)2] ≤
{
c t

3
2+ε if d = 3,

c t1+ε if d ≥ 4,
(6.4)

for some constant c = c(d, ρ, ε, M(p, q)) provided M(p, q) < ∞ for suitable p and
q. In view of (6.3) this finishes the proof of (i). Further, to show (ii), for a given ε > 0
we use Fubini’s theorem and apply (i) for any ε′ ∈ (0, ε) to obtain for d ≥ 4,

E

[ ∫ ∞

0
Eω
0

[∣∣∣
〈ξ · M〉t

t
− σ 2

ξ

∣∣∣
2
]

(t + 1)−ε dt

]

=
∫ ∞

0
E

[
Eω
0

[∣∣∣
〈ξ · M〉t

t
− σ 2

ξ

∣∣∣
2
]]

(t + 1)−ε dt

�
∫ ∞

0
(t + 1)−(1+ε−ε′) dt < ∞,

which implies (ii). In d = 3 the result follows by a similar argument. ��
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Remark 6.6 Using the ergodicity of the environment process in (6.3) one can apply
the theory of ‘fractional coboundaries’ of Derriennic and Lin [21] and deduce from
the statement in Proposition 6.5 (i), e.g. if d ≥ 4, that for any ε > 0 we have for P-a.e.
ω,

lim
t→∞ t

1
2−ε

∣∣∣
〈ξ · M〉t

t
− σ 2

ξ

∣∣∣ = 0, Pω
0 -a.s.

Proposition 6.7 Let d ≥ 3, n ∈ N and suppose that Assumption 1.3 holds. There exist
p = p(d, n) and q = q(d, n) such that if M(p, q) < ∞ we have that for P-a.e. ω,

Eω
0

[ ∑

0≤s≤t

∣∣ξ · Ms − ξ · Ms−
∣∣n
]

≤ X t, ∀t > 0,

for some random X = X (d, n) ∈ L1(P).

Proof Recall that for any function f : Zd × Z
d → R that vanishes on the diagonal,

the process

∑

0≤s≤t

f (Xs−, Xs) −
∫

(0,t]

∑

y∈Zd

ω(Xs−, y) f (Xs−, y) ds

is a local Pω
0 -martingale for P-a.e. ω. Then choosing f (x, y) = ∣∣ψξ (y) − ψξ (x)

∣∣n ,
we obtain by the cocycle property (cf. Remark 6.1) and the ergodic theorem that

Eω
0

[1
t

∑

0≤s≤t

∣∣ξ · Ms − ξ · Ms−
∣∣n
]

= Eω
0

[1
t

∑

0≤s≤t

∣∣ψξ (ω, Xs) − ψξ (ω, Xs−)
∣∣n
]

= 1

t

∫ t

0
ds Eω

0

[ ∑

y∈Zd

ω(Xs−, y)
∣∣ψξ (ω, y) − ψξ (ω, Xs−)

∣∣n
]

= 1

t

∫ t

0
ds Eω

0

[ ∑

y∈Zd

(τXs−ω)(0, y − Xs−)
∣∣ψξ (τXs−ω, y − Xs−)

∣∣n
]

→ E

[ ∑

y∈Zd

ω(0, y)
∣∣ψξ (ω, y)

∣∣n
]

< ∞

as t tends to infinity P-a.s. and in L1(�,P), provided sufficiently high moments of
ψξ (or the gradient of φξ , respectively) are finite, which can be ensured by Proposi-
tion 1.10, (1.14). Further, an application of the maximal ergodic theorem yields

X := sup
t>0

1

t

∫ t

0
ds Eω

0

[ ∑

y∈Zd

(τXs−ω)(0, y − Xs−)
∣∣ψξ (τXs−ω, y − Xs−)

∣∣n
]
∈L1(P),

which finishes the proof. ��
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Proof of Proposition 6.3 We shall apply the general result in Theorem 6.4 with the
choice n = 2 on the martingale

Ns := ξ · Mst√
t σξ

, 0 ≤ s ≤ 1.

Since

〈N 〉1 − 1 = 〈ξ · M〉t
t σ 2

ξ

− 1 = 1

σ 2
ξ

( 〈ξ · M〉t
t

− σ 2
ξ

)
,

we get by Proposition 6.5 that for any ε > 0,

E

[
Eω
0

[|〈N 〉1 − 1|2]
]

�
{
t− 1

2+ε if d = 3,

t−1+ε if d ≥ 4.
(6.5)

Moreover, for P-a.e. ω,

∫ ∞

0
Eω
0

[∣∣〈N 〉1 − 1
∣∣2
] (

t + 1
)− 1

2−ε
dt ≤ X (ω) < ∞, if d = 3, (6.6)

and

∫ ∞

0
Eω
0

[∣∣〈N 〉1 − 1
∣∣2
] (

t + 1
)−ε

dt ≤ X (ω) < ∞, if d ≥ 4. (6.7)

Furthermore,

∑

s≤1

∣∣�Ns
∣∣4 = (tσ 2

ξ )−2
∑

s≤t

∣∣ξ · Ms − ξ · Ms−
∣∣4,

and we obtain from Proposition 6.7 that

Eω
0

[ ∑

0≤s≤1

∣∣�Ns
∣∣4
]

� t−1. (6.8)

Now we apply Theorem 6.4, first under the annealed measure P0, which gives

sup
x∈R

∣∣∣P0
[
ξ · Mt ≤ x

√
t
]− 	( x

σξ
)

∣∣∣ = sup
x∈R

∣∣P0
[
N1 ≤ x

]− 	(x)
∣∣

�
(
E

[
Eω
0

[∣∣〈N 〉1 − 1
∣∣2
]]

+ E

[
Eω
0

[ ∑

0≤s≤1

∣∣�Ns
∣∣4
]]) 1

5

,
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so that (i) follows from (6.5) and (6.8). On the other hand, for P-a.e. ω we apply
Theorem 6.4 under Pω

0 and obtain

sup
x∈R

∣∣∣Pω
0

[
ξ · Mt ≤ x

√
t
]− 	( x

σξ
)

∣∣∣
5 = sup

x∈R

∣∣∣Pω
0

[
N1 ≤ x

]− 	(x)
∣∣∣
5

� Eω
0

[∣∣〈N 〉1 − 1
∣∣2
]

+ Eω
0

[ ∑

0≤s≤1

∣∣�Ns
∣∣4
]
,

which implies (ii) by (6.6) or (6.7), respectively, and (6.8). ��

6.2 Speed of convergence for the corrector

Proposition 6.8 (Suboptimal estimate for the growth of corrector) Let d ≥ 3 and
suppose that Assumptions 1.3 holds. For any δ ∈ (0, 1) and any n ∈ N there exist
p, q ∈ [0,∞) (only depending on d, δ and n) such that under the moment condition
M(p, q) < ∞ the following holds. There exists a random constantX = X (d, p, δ, n)

satisfying E[X n] < ∞ such that for P-a.e. ω,

Eω
0

[∣∣ξ · χ(ω, Xt )
∣∣
]

≤ X (ω) (t + 1)δ, t ≥ 0.

Proof We denote by d be the natural graph distance on Zd , i.e. d(x, y) is the minimal
length of a path between x and y and with a slight abuse of notation we set B(r) :=
{y ∈ Z

d | d(0, y) ≤ r}. Fix exponents α ∈ (d, d +2δ), k ∈ N such that d +2d/k < α

and ε ∈ (0, δ). Hence, with m denoting the weight of (2.1), we get by appealing to
Lemma 2.6 the estimate

∑

y∈Zd

pω(t, 0, y) d(0, y)
d
k ≤

( ∑

y∈Zd

pω(t, 0, y)2 m(t, y)α
)1/2

( ∑

y∈Zd

d(0, y)
2d
k m(t, y)−α

)1/2

≤ X (ω) (t + 1)−
d
4 + ε

2+ α
4 ≤ X (ω) (t + 1)δ,

where X denotes a random constant (with arbitrarily hight moments provided
M(p, q) < ∞ for p and q sufficiently large). Consider Rt := d(0, Xt ) and note
that

Eω
0

[
R

d
k
t
] =

∑

y∈Zd

pω(t, 0, y) d(0, y)
d
k ≤ X (ω) (t + 1)δ.
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Now, let (z0, . . . , zRt ) denote a nearest-neighbour path connecting z0 = 0 and zRt =
Xt . Then, by the cocycle property (cf. Remark 6.1),

∣∣ξ · χ(ω, Xt )
∣∣k ≤

Rt−1∑

i=0

∣∣ξ · χ(ω, zi+1) − ξ · χ(ω, zi )
∣∣k

=
Rt−1∑

i=0

∣∣ξ · χ(τzi ω, zi+1 − zi )
∣∣k .

Hence, with H(ω) := ∑
|e|=1

∣∣ξ · χ(ω, e)
∣∣k and H∗(ω) := supR>0

1
#B(R)

∑
y∈B(R)

H(τyω) (the associated maximal function), we get

∣∣ξ · χ(ω, Xt )
∣∣ � R

d
k
t

(
1

#B(Rt )

∑

y∈B(Rt )

H(τyω)

) 1
k

≤R
d
k
t (H∗)

1
k ≤ X (ω)(H∗)

1
k (t + 1)δ.

Note that E[H 2n
k ] < ∞ for any 2n > k provided M(p, q) < ∞ for p and q suffi-

ciently large (depending on n and k), see Proposition 1.10 (b). Hence, by the maximal
ergodic theorem (cf. e.g. [38, Theorem 6.3 in Chapter 1 and Chapter 6]), we have

E

[
(H∗) 2n

k

]
� E

[
H

2n
k

]
< ∞, and thus the claimed statement follows. ��

6.3 Proof of Theorem 1.5

Let δ ∈ (0, 1
10 ) be arbitrary and let p and q be such that the statements in Proposi-

tions 6.3 and 6.8 hold. Recall that Xt = Mt − χ(ω, Xt ), t ≥ 0, for P-a.e. ω. Hence,
for any x ∈ R,

Pω
0

[
ξ · Xt ≤ x

√
t
] ≤ Pω

0

[
ξ · Mt ≤ (x − t−

1
5 )

√
t
]+ Pω

0

[|ξ · χ(ω, Xt )| > t
3
10
]
.

Further, Proposition 6.8 gives that

Eω
0

[|ξ · χ(ω, Xt )|
]

� X (ω) (t + 1)δ,

and an application of Čebyšev’s inequality yields

Pω
0

[|ξ · χ(ω, Xt )| > t
3
10
]

� X (ω) (t + 1)−
1
5 .

Recall that 	 denotes the distribution function of the standard normal distribution.
Since 	′ is bounded by 1, we have

sup
x∈R

∣∣∣	( x+t−
1
5

σξ
) − 	( x

σξ
)

∣∣∣ ≤ σ−1
ξ t−

1
5 ,
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and we get

Pω
0

[
ξ · Xt ≤ x

√
t
]− 	( x

σξ
) ≤

∣∣∣Pω
0

[
ξ · Mt ≤ (x + t−

1
5 )

√
t − 	( x+t−

1
5

σξ
)
]∣∣∣

+
∣∣∣	( x+t−

1
5

σξ
) − 	( x

σξ
)

∣∣∣

+ Pω
0

[|ξ · χ(ω, Xt )| > t
3
10
]

� sup
y∈R

∣∣∣Pω
0

[
ξ · Mt ≤ y

√
t
]− 	(

y
σξ

)

∣∣∣

+ X (ω) (t + 1)−
1
5 .

On the other hand, since

Pω
0

[
ξ · Mt ≤ (x − t−

1
5 )

√
t
] ≤ Pω

0

[
ξ · Xt ≤ x

√
t
]+ Pω

0

[|ξ · χ(ω, Xt )| > t
3
10
]
,

we can derive a similar lower bound by using the same arguments. Thus,

∣∣∣Pω
0

[
ξ · Xt ≤ x

√
t
]− 	( x

σξ
)

∣∣∣ � sup
y∈R

∣∣∣Pω
0

[
ξ · Mt ≤ y

√
t
]− 	(

y
σξ

)

∣∣∣

+ X (ω)(t + 1)−
1
5

and the same estimate holds if we replace Pω
0 by P0. Hence, the claim follows from

Proposition 6.3. ��

7 Examples

In this section we discuss a class of environments satisfying Assumption 1.3 which are
related to the Ginzburg Landau ∇φ-interface model (see [20]). This is a well known
model for an interface separating two pure thermodynamical phases.We first explain a
slightly more general construction and then revisit that specific class of environments
at the end of the discussion. Our starting point is a shift-invariant probability measure
μ̃ on �̃ := R

Z
d
. We suppose that for any ũ ∈ C1(�̃,R) the measure μ̃ satisfies the

Brascamp-Lieb inequality

varμ̃(ũ) ≤ 1

ρ
Eμ̃

[ ∑

x∈Zd

∂̃ ũ(x)
(
G ∗ ∂̃ ũ

)
(x)
]
, (7.1)

whereG denotes theGreen’s function associatedwith the discreteLaplacian onZd , and
∂̃ ũ denotes the �2(Zd)-gradient of ũ, which for sufficiently smooth ũ is characterised
by

∂̃ ũ(ω̃, x) = lim
h→0

ũ(ω̃ + hδx ) − ũ(ω̃)

h
ω̃ ∈ �̃, x ∈ Z

d ,
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with Dirac function δx : Zd → {0, 1}. Further, let μ̄ be the probability measure on
�̄ := R

Ed defined as the pushforward of μ̃ under the transformation

T : �̃ → �̄, ω̃ �→ ∇ω̃,

(see Sect. 1.3 for the definition of the discrete gradient ∇). We denote by ∂ ū the
�2(Ed)-gradient of ū, which for sufficiently smooth ū is characterised by

∂ ū(ω̄, e) = ∂eū(ω̄) = lim
h→0

ū(ω̄ + hδe) − ū(ω̄)

h
ω̄ ∈ �̄, e ∈ Ed ,

with Dirac function δe : Ed → {0, 1}. It turns out that for any ū ∈ C1(�̄,R) we have
the spectral gap estimate

varμ̄(ū) ≤ 1

ρ
Eμ̄

[ ∑

e∈Ed

|∂eū|2
]
. (7.2)

This can be seen as follows. Setting ũ(ω̃) := ū(T ω̄) we get from the product rule the
relation

∂̃ ũ(x) =
∑

e∈Ed
e=x

∂ ū(e) −
∑

e∈Ed
e=x

∂ ū(e) = ∇∗∂ ū(x),

where ∇∗ denotes the (negative) discrete divergence operator, see Sect. 1.3. Hence,

∑

x∈Zd

∂̃ ũ(x) (G ∗ ∂̃ ũ)(x) =
∑

x,y∈Zd

∇∗∂ ū(x)G(x − y)∇∗∂ ū(y)

=
∑

e∈Ed

∂ ū(e)∇v(e),

where v : Zd → R denotes the convolution

v(x) :=
∑

y∈Zd

G(x − y)∇∗∂ ū(y).

Recall that G denotes the discrete Green function for ∇∗∇. In particular, v

solves ∇∗∇v = ∇∗∂ ū, and a standard energy estimate yields
∑

e∈Ed
|∇v|2 ≤

∑
e∈Ed

|∂ ū(e)|2. We conclude that

∑

x∈Zd

∂̃ ũ(x)(G ∗ ∂̃ ũ)(x) ≤
∑

e∈Ed

|∂ ū(e)|2,

which combined with (7.1) yields the spectral gap estimate in (7.2).
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Finally, we define the probability measure P on � = (0,∞)Ed as the pushforward
of μ̄ under the (nonlinear) transformation

� : �̄ → �, �(ω̄)(e) := λ(ω̄(e)),

with λ : R → (0,∞) denoting a Lipschitz function with global Lipschitz constant
cλ > 0. With any u ∈ L2(�,P)we may associate ū ∈ L2(�̄, μ̄) via ū := u ◦�. Then
the chain rule yields

∣∣∂eū
∣∣ = ∣∣∂e(u ◦ �)

∣∣ ≤ cλ

(|∂eu| ◦ �
)
,

and we thus obtain the spectral gap estimate in Assumption 1.3 in form of

E
[
(u − E[u])2] ≤ c2λ

ρ

∑

e∈Ed

E

[
|∂eu|2

]
.

Now we explain the link to the Ginzburg Landau ∇φ interface model. In d ≥ 3
consider an interface described by a collection of random height variables ϕ ∈ �̃

sampled from a Gibbs measure μ formally given by

μ(dϕ) = 1

Z
exp(−H(ϕ))

∏

x∈Zd

dϕ(x),

with formal Hamiltonian

H(ϕ) =
∑

e∈Ed

V (∇ϕ(e)),

and potential function V ∈ C2(R;R+), which we suppose to be even and strictly
convex with c− ≤ V ′′ ≤ c+ for some 0 < c− ≤ c+ < ∞. Note that in the special case
V (x) = 1

2 x
2 the field φ = {φ(x); x ∈ Z

d} becomes a discrete Gaussian free field. For
more details on the rigorous definition, which is based on taking the thermodynamical
limit of Gibbs measures on finite volume approximations of the infinite lattice Z

d ,
see [20, Sect. 4.5]. Then, thanks to the strict convexity we have the Brascamp-Lieb
inequality (see [17], cf. also [46])

varμ(F) ≤ c−1− Eμ

[ ∑

x∈Zd

∂̃F(x)
(
G ∗ ∂̃F

)
(x)
]
, F ∈ C1(�̃).

In particular, (7.1) holds for μ and the above considerations show that an environment
with random conductances of the form {ω(e) = λ(∇φ(e)), e ∈ Ed} for any positive,
even, globally Lipschitz function λ ∈ C1(R) satisfies Assumption 1.3.

As a further consequence from the Brascamp-Lieb inequality it is known that
exponential moments for ∇φ(e) exist (cf. [20,46]). Thus, the environment {ω(e) =
λ(∇φ(e)), e ∈ Ed}with λ as above also satisfies M(p, q) < ∞ for all p, q ∈ [1,∞).
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Appendix A. The uniformly elliptic case: Proof of Theorem 1.6

In this section we discuss the uniformly elliptic case and establish the improved rates
in the Berry–Esseen Theorem as stated in Theorem 1.6. We first recall a deterministic
heat kernel estimate, see e.g. [28] for a self-contained proof.

Lemma A.1 Let d ≥ 2 and assume that uniform ellipticity holds, i.e. M(p, q) < ∞
for p = q = ∞. Then, for all α ≥ 0 there exists a constant c = C(d, M(∞,∞), α)

such that for all t ≥ 0 we have

p(t, y) ≤ c (t + 1)−
d
2 m(t, y)−2α,

( ∑

y∈Zd

m(t, y)2α
∣∣∇ p(t, y)

∣∣2
)1

2 ≤ c (t + 1)−( d4 + 1
2 ).

In the uniformly elliptic case and under the assumption of a spectral gap, in [15,
28–30] moment bounds on the corrector have been obtained. The following lemma
additionally states that in d = 2 the extended corrector grows logarithmically. For a
proof see [47, Theorem 4.8] (see also [25] where the case of a continuum system is
treated).

Lemma A.2 (Bounds on the corrector) Let d ≥ 2 and suppose that Assumption 1.3
and uniform ellipticity hold, i.e. M(p, q) < ∞ for p = q = ∞. Then the extended
correctors (φi , σi ) exist in the sense of Proposition 1.10 (a) and for all n ∈ N and all
x ∈ Z

d we have

E

[∣∣φi (x)
∣∣2n + ∣∣σi (x)

∣∣2n
] 1
2n ≤ c

{
log

1
2 (|x | + 1) if d = 2,

1 if d ≥ 3,

E

[∣∣∇φi
∣∣2n + ∣∣∇σi

∣∣2n
] 1
2n ≤ c

with constant c = c(d, ρ, M(∞,∞), n).

For any direction ξ ∈ R
d with |ξ | = 1, we define the associated corrector φξ , the har-

monic coordinate ψξ , the opérateur carré du champ �ω, and gξ as in Proposition 1.11,
which we can now refine in the uniformly elliptic case.
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Lemma A.3 Let d ≥ 2. Suppose that Assumption 1.3 and uniform ellipticity hold, i.e.
M(p, q) < ∞ for p = q = ∞. Then there exists a constant c = c(d, ρ, M(∞,∞))

such that for all t ≥ 0,

E

[(
Pt
(
gξ − E[gξ ]

))2]
1
2 ≤ c

⎧
⎨

⎩

(
log(t+1)

t+1

)1
2

if d = 2,

(t + 1)− 1
2 if d ≥ 3.

Proof As in the proof of Proposition 1.11we deduce that gξ (ω)−E[gξ ] = ∇∗H(ω, 0),
where H is defined in Lemma 5.1. Thus,

I = E

[(
Pt
(
gξ − E[gξ ]

))2]
1
2 = E

[( ∑

y∈Zd

p(t, 0, y)∇∗H(y)
)2]

1
2

.

An integration by parts (which is applicable thanks to Lemma A.2) and an application
of Lemma A.1 yield (for α = d

2 + 1)

I = E

[( ∑

y∈Zd

∇ p(t, y) · H(y)
)2]

1
2

≤ E

[( ∑

y∈Zd

∣∣∇ p(t, y)
∣∣2 m(t, y)α

) ( ∑

y∈Zd

∣∣H(y)
∣∣2 m(t, y)−α

)] 1
2

� (t + 1)−( d4 + 1
2 )

E

[( ∑

y∈Zd

∣∣H(y)
∣∣2m(t, y)−α

)] 1
2

.

For d ≥ 3 the random field H is stationary and has finite second moments,

cf. Lemma A.2. We thus get the claimed estimate I ≤ c(t + 1)− 1
2 . For d = 2,

we infer from the definition of H and the moment bounds in Lemma A.2 that
E

[
|H(y)|2

]
≤ c log(|y| + 1), and thus the claimed estimate follows as well. ��

From Lemma A.3 we obtain the following refinement of Proposition 6.3 (i).

Proposition A.4 Let d ≥ 2. Suppose that Assumption 1.3 and uniform elliptic-
ity hold, i.e. M(p, q) < ∞ for p = q = ∞. Then there exists a constant
c = c(d, ρ, M(∞,∞)) such that for all t ≥ 0,

sup
x∈R

∣∣∣P0
[
ξ · Mt ≤ σξ x

√
t
]− 	(x)

∣∣∣ ≤
{
c
( log(t+1)

t+1

) 1
5 if d = 2,

c (t + 1)− 1
5 if d ≥ 3.

The proof is the same as the one for Proposition 6.3. The only difference is that we
appeal to Lemma A.3 to improve estimate (6.4). With Lemma A.1 and Lemma A.2 at
hand, we also obtain the following refinement of Proposition 6.8:
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Lemma A.5 Let d ≥ 2, suppose Assumption 1.3 and uniform ellipticity, i.e. M(p, q) <

∞ for p = q = ∞. Then there exists a random variable X such that for all t ≥ 0 and
n ∈ N,

E

[
Eω
0

[∣∣ξ · χ(ω, Xt )
∣∣
]n] 1

n ≤ c

{
log

1
2 (t + 1) if d = 2,

1 if d ≥ 3,

where c = c(d, ρ, M(∞,∞), n).

Proof We only discuss the case d = 2 since the argument for d ≥ 3 is similar but
simpler. W.l.o.g. let ξ = ei . By Lemma A.1 we have

Eω
0

[∣∣ξ · χ(ω, Xt )
∣∣
]

�
∑

x∈Zd

pω(t, 0, x)
∣∣φi (ω, x)

∣∣

� (t + 1)−
d
2
∑

x∈Zd

m(t, x)−2α
∣∣φi (ω, x)

∣∣,

and thus we get by Lemma A.2 (with α = d
2 + 1) for any n ∈ N,

E

[
Eω
0

[∣∣ξ · χ(ω, Xt )
∣∣
]n] 1

n � (t + 1)−
d
2
∑

x∈Zd

m(t, x)−2α log
1
2 (|x | + 1)

� log
1
2 (t + 1),

which is the claim. ��
With these estimates at hand, Theorem 1.6 follows by the same argument as in the
proof of Theorem 1.5.
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