
A refined interpretation of intuitionistic logic by
means of atomic polymorphism

José Espı́rito Santo and Gilda Ferreira

July 16, 2018

Abstract

We study an alternative embedding of IPC into atomic system F whose transla-
tion of proofs is based, not on instantiation overflow, but instead on the admissibil-
ity of the elimination rules for disjunction and absurdity (where these connectives
are defined according to the Russell-Prawitz translation). As compared to the em-
bedding based on instantiation overflow, the alternative embedding works equally
well at the levels of provability and preservation of proof identity, but it produces
shorter derivations and shorter simulations of reduction sequences. Lambda-terms
are employed in the technical development so that the algorithmic content is made
explicit, both for the alternative and the original embeddings. The investigation
of preservation of proof-reduction steps by the alternative embedding enables the
analysis of generation of “administrative” redexes. These are the key, on the one
hand, to understand the difference between the two embeddings; on the other hand,
to understand whether the final word on the embedding of IPC into atomic system
F has been said.

Keywords: Intuitionistic propositional calculus, predicative polymorphism, Russell-
Prawitz translation, permutative conversion, instantiation overflow.

1 Introduction
Since 2006, it is known that the intuitionistic propositional calculus IPC can be em-
bedded into system Fat – the restriction of Girard’s polymorphic system F to atomic
universal instantiations [1]. Such embedding of IPC into Fat relies on the Russell-
Prawitz’s translation of the connectives bottom and disjunction, ⊥:= ∀X.X and A ∨
B := ∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X , and on instantiation overflow – the possi-
bility of deriving in Fat the instantiation of the above universal formulas by any (not
necessarily atomic) formula1. This embedding, which we call the canonical embed-
ding, works at the levels of provability and proof reduction, with βη-conversions being
preserved by the translation [3, 4], and commutative conversions being mapped to βη-
equalities [2].

1Initially conjunction was not considered as primitive in Fat but in recent publications [4, 5] it has been
the case. See the discussion about the advantages of taking ∧ as primitive in the atomic polymorphic system
in Section 5 below.

1

Instantiation overflow may be seen as a proof transformation. For instance, given
in Fat a proof M of A ∨ B and an arbitrary formula C, there is in Fat another proof
io(M,A,B,C) of ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C obtained from M . In this paper we
challenge instantiation overflow as the basis on which the embedding of IPC into Fat

rests. Specifically, we define an alternative translation of proofs of IPC into proofs
of Fat based on the proof transformations that witness the admissibility in Fat of the
elimination rules for⊥ andA∨B. We develop the alternative translation of proofs and
show it produces an embedding of IPC into Fat that works at the levels of provability
and proof reduction as well as the original, canonical embedding.

In addition, instantiation overflow is an immediate corollary of the referred admis-
sibility. For instance, let us see the case of A ∨ B. Given in Fat a proof M of A ∨ B
and proofs P (resp. Q) of C depending on x : A (resp. y : B), there is in Fat a
proof case(M,x.P, y.Q,C) of C obtained from M . Then instantiation overflow is
derivable, as seen in the following equation written in λ-notation:

io(M,A,B,C) = λz(A⊃C)∧(B⊃C).case(M,xA.z1x, yB .z2y, C) . (1)

Although the alternative embedding enjoys similar properties of preservation of reduc-
tion steps, it produces a much more economical simulation, in the sense that fewer
reduction steps in the target calculus are needed to simulate each source reduction step.
This leads us to analyze the reason for this parsimony, and we conclude that there are
redexes in the translation of a proof that correspond to no redex in the original proof,
but instead are created by the translation itself.

An example of such an “administrative” redex is seen in the following equation:

case(M,xA.P, yB .Q,C) = io(M,A,B,C)〈λxA.P, λyB .Q〉 . (2)

Here we see how to derive elimination of disjunction A ∨ B from instantiation over-
flow - such derivation is used in the canonical embedding to translate an occurrence
of disjunction elimination in a given IPC proof. The r.h.s. of this equation denotes
the elimination of the implication ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C, implication which is
introduced by the inference represented by io(M,A,B,C): this is a redex created by
the translation, whether or not a redex is present in the given IPC proof, i.e. whether
or not M represents an introduction.

It will turn out that the alternative embedding is more efficient than the original
one in avoiding the creation of redexes, because it is based on (1) rather than (2),
with instantiation overflow derived from the admissibility of disjunction and absurdity
elimination rules, and not the other way around. More precisely, as we will show, the
alternative translation of a given IPC proof is obtained from its canonical translation
by reducing redexes that were created at translation time.

Another concern of the present paper is the algorithmic content of the embedding of
IPC into Fat. In previous papers on atomic polymorphism (e.g. [2, 3]), the embedding
of IPC into Fat and subsequent studies involving such embedding were done in the
natural deduction calculus, with proofs displayed as formula trees. Making use of the
Curry-Howard isomorphism, in the present paper we adopt λ-notation not only for
the new embedding but also for the original canonical embedding (and instantiation
overflow) which are recalled in such notational framework, allowing for more concise

2

proof presentations and for a clearer understanding of the algorithms involved in the
processes of proof translation and transformation.

Overview. The paper is structured as follows. In the next section we recall the
systems involved in the present study: IPC and Fat. In Section 3 we present the
alternative translation of IPC into Fat We derive instantiation overflow and we prove
the soundness of the new translation. In Section 4 we give a detailed analysis of the
preservation of proof-reduction steps by the alternative translation. Section 5 recasts
the canonical embedding with λ-terms, which allows a precise comparison with the
alternative embedding (a supplementary comparison, by means of an example in terms
of natural deduction trees, is given as an appendix to the present paper). We finish the
paper in Section 6 by discussing whether the “best” translation of IPC into Fat has
already been found.

2 Systems
In the first subsection we present system IPC while in the second we present atomic
system F.

2.1 System IPC

The types/formulas are given by

A,B,C ::= X | ⊥ |A ⊃ B |A ∧B |A ∨B

We define ¬A := A ⊃⊥.
The proof terms M,N,P,Q are inductively generated as follows:

M ::= x (assumption)
| λxA.M |MN (implication)
| 〈M,N〉 |M1 |M2 (conjunction)
| in1(M,A,B) | in2(N,A,B) | case(M,xA.P, yB .Q,C) (disjunction)
| abort(M,A) (absurdity)

We work modulo α-equivalence, in particular we assume the name of the bound vari-
ables is always appropriately chosen.

As we will see, the type annotation in the bound variable of binders, in ini(M,A,B)
and in abort(M,A) are needed to ensure both the correspondence between proof terms
and derivations, and uniqueness of type. The last argument in case(M,xA.P, yB .Q,C)
is a type annotation with a different purpose, to be used in the definition of the transla-
tion studied in the next section. In any case, such type annotations will often be omitted
when possible.

If the components of the pair 〈P1, P2〉 are denoted by long expressions which can
be written uniformly on i = 1, 2, then we may write this pair as 〈Pi〉i=1,2.

The typing/inference rules are in Fig. 1. As a logical system, those rules define
a natural deduction system for intuitionistic propositional logic. Γ denotes a set of
declarations x : A such that each variable is declared at most one time in Γ.

3

Figure 1: Typing/inference rules of IPC

Γ, x : A ` x : A
Ass

Γ, x : A `M : B

Γ ` λxA.M : A ⊃ B
⊃I Γ `M : A ⊃ B Γ ` N : A

Γ `MN : B
⊃E

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A ∧B ∧I Γ `M : A ∧B

Γ `M1 : A
∧E1

Γ `M : A ∧B
Γ `M2 : B

∧E2

Γ `M : A
Γ ` in1(M,A,B) : A ∨B ∨I1

Γ ` N : B
Γ ` in2(N,A,B) : A ∨B ∨I2

Γ `M : A ∨B Γ, x : A ` P : C Γ, y : B ` Q : C

Γ ` case(M,xA.P, yB .Q,C) : C
∨E

Γ `M :⊥
Γ ` abort(M,A) : A

⊥E

A proof term M is typable if there are Γ and A such that Γ ` M : A is derivable
from the typing rules. The following proposition explains in what sense does a typable
proof term represent a unique typing/logical derivation, and does a typable proof term
have a unique type.

Proposition 1. Given Γ and M , if Γ `M : A is derivable for some A, then such an A
is unique, and the derivation of Γ `M : A is unique.

Proof. By induction onM . For each case ofM , one analyzes the corresponding typing
rules. The type annotation in the bound variable of binders ensure one applies the
induction hypothesis with a determined set of declarations. The type annotations in
ini(M,A,B) and in abort(M,A) ensure uniqueness despite the fresh formulas that
show up in the conclusion of rules ∨I and ⊥E. Notice that the type annotation that
constitutes the sixth argument of case plays no role in the analysis of rule ∨E.

For the purpose of defining some reduction rules and the translation of proof terms,
it is convenient to arrange the syntax of the system in a different way:

(Terms) M ::= V | E [M]
(Values) V ::= x |λx.M | 〈M,N〉 | in1(M,A,B) | in2(N,A,B)

(Elim. contexts) E ::= []N | []1 | []2
| case([], x.P, y.Q,C) | abort([], A)

A value V ranges over terms representing assumptions or introduction inferences. E
stands for an elimination context, which is a term representing an elimination inference,

4

Figure 2: Typing rules for elimination contexts

Γ| ⊥ ` abort([], A) : A Γ|A1 ∧A2 ` []i : Ai
(i = 1, 2)

Γ ` N : A
Γ|A ⊃ B ` []N : B

Γ, x : A ` P : C Γ, y : B ` Q : C

Γ|A ∨B ` case([], x.P, y.Q,C) : C

Γ `M : A Γ|A ` E : B

Γ ` E [M] : B

Figure 3: Reduction rules
Detour conversion rules:

(β⊃) (λx.M)N → [N/x]M
(β∧) 〈M1,M2〉i → Mi (i = 1, 2)
(β∨) case(ini(M), x1.P1, x2.P2) → [M/xi]Pi (i = 1, 2)

Commutative conversion rules for disjunction:

(π©) E©[case(M,x.P, y.Q)] → case(M,x.E©[P], y.E©[Q]) (© =⊃,∧,∨,⊥)

Commutative conversion rules for absurdity:

($©) E©[abort(M)]→ abort(M) (© = ∧,⊃,∨,⊥)

η-rules:
(η⊃) λx.Mx → M (x /∈M)
(η∧) 〈M1,M2〉 → M
(η∨) case(M,x.in1(x), y.in2(y)) → M

but with a “hole” in the position of the main premiss. E [M] denotes the term resulting
from filling the hole of E with M .

In Fig. 2 one finds the typing rules for elimination contexts. In a sequent Γ|A `
E : B, the type A is the type of the hole of E and B is the type of the term obtained by
filling the hole of E with a term of type A.

The reduction rules are given in Fig. 3. The detour conversion rules make use
of ordinary substitution [N/x]M . The commutative conversion rules make use of a
specific organization of the definition of elimination contexts:

E ::= E⊃ | E∧ | E∨ | E⊥ E⊃ ::= []N E∨ ::= case([], x.P, y.Q)
E∧ ::= []1 | []2 E⊥ ::= abort([])

We let β := β⊃ ∪β∧ ∪β∨ and similarly for η; we let π := π⊃ ∪π∧ ∪π∨ ∪π⊥ and

5

similarly for $. Equivalent definitions of π and $ are:

(π) E [case(M,x.P, y.Q)] → case(M,x.E [P], y.E [Q])
($) E [abort(M)] → abort(M) .

Given a reduction ruleR of IPC, we employ the usual notations concerning reduc-
tion relations generated by R: the compatible closure of R is denoted→R; and→+

R,
→∗R, =R denote respectively the transitive closure, the reflexive-transitive closure, and
the reflexive-symmetric-transitive closure of→R. If R = R1 ∪R2, then we mau omit
“∪” in out notation and write→R1R2 , etc. The same notations apply to system Fat to
be introduced in the next subsection.

Proposition 2. Let R be a reduction rule of IPC. If Γ ` M : A is derivable and
M →R N then Γ ` N : A is derivable.

Proof. By induction on M →R N .

This is the “subject reduction” property, which states that reduction preserves types.
The proof shows how to obtain a derivation of Γ ` N : A from a given derivation of
Γ `M : AwhenM →R N . The interesting case is the base case, corresponding to the
reduction rule itself: the derivation of Γ ` N : A is obtained by the familiar procedures
that eliminate a maximal formula, or shorten a segment, etc. We may see the proof of
this proposition as defining the proof transformation induced by the reduction rule R.

2.2 System Fat

The atomic system F, denoted Fat, is the fragment of system F induced by restricting
to atomic instances the elimination inference rule for ∀, and the corresponding proof
term constructor. We give a precise definition of Fat by saying what changes relatively
to IPC.

Regarding formulas,⊥ andA∨B are dropped, and the new form ∀X.A is adopted.
The quantifier ∀X binds free occurrences of X , inducing the obvious concept of free
occurrence of a type variable in a type. Concerning α-equivalence, we deal with type
variables as we deal with term variables, relying on silent α-renaming. We write X /∈
A to say that X does not occur free in A; given the silent α-renaming in A, we may
assume X does not occur bound in A either. Another novelty is type substitution in
types, which we only require in the atomic form [Y/X]A, meaning: substitution in A
of each free occurrence of X by Y .

Regarding proof terms, the constructions relative to ⊥ and A ∨ B are dropped,
and the new forms ΛX.M and MX are added. The latter gives rise to E∀ ::= []X .
Types occur in proof terms, not only via MX , but also via the type annotations in λ-
abstractions; in particular, this is how type variables may occur free in proof terms. Ac-
cordingly, there is the operation of type substitution in proof terms, denoted [Y/X]M ,
defined by recursion on M : the critical equations are [Y/X](MX) = ([Y/X]M)Y
and [Y/X](λxA.M) = λx[Y/X]A.[Y/X]M . Again, we write X /∈ M to say that X
does not occur free in M , which is the same to say X does not occur at all in M , due
to the assumed α-renaming of type variables.

6

Regarding typing rules, those relative to ⊥ and A ∨ B are dropped, and two rules
relative to ∀X.A are adopted:

Γ `M : A
Γ ` ΛX.M : ∀X.A ∀I

Γ `M : ∀X.A
Γ `MY : [Y/X]A

∀Eat

where the proviso for ∀I is: X does not occur free in some type in Γ. The new form of
elimination contexts E∀ is typed with:

Γ|∀X.A ` []Y : [Y/X]A

Regarding reduction rules, we drop commutative conversion rules (since they are
relative to ∨ and ⊥). What remains are the β and η-rules (but we drop those relative to
disjunction). For ∀, these are:

(β∀) (ΛX.M)Y → [Y/X]M
(η∀) ΛX.MX → M (X /∈M)

We let β := β⊃ ∪ β∧ ∪ β∀. Similarly for η.

3 Alternative translation
As an alternative to the canonical embedding of IPC into Fat [2, 3, 4], in this sec-
tion we introduce another translation (·)◦ : IPC → Fat. The alternative translation
comprises the Russell-Prawitz translation of formulas and a translation of proof-terms
(which induces a translation of derivations). In this section we show the soundness of
the translation and the derivation of instantiation overflow.

Definition 1. In Fat:

1. A∨B := ∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X , with X /∈ A,B.

2. ⊥ := ∀X.X .

We define the Russell-Prawitz translation of formulas. Using the abbreviations just
introduced, the definition can be given in a homomorphic fashion:

X◦ = X
⊥◦ = ⊥

(A ⊃ B)◦ = A◦ ⊃ B◦
(A ∧B)◦ = A◦ ∧B◦
(A ∨B)◦ = A◦∨B◦

The translation of proof terms will rely on the following, crucial definition:

Definition 2. In Fat:

1. Given M,A,B, given i ∈ {1, 2}, we define

ini(M,A,B) := ΛX.λw(A⊃X)∧(B⊃X).wiM ,

where the bound variable X is chosen so that X /∈M,A,B.

7

2. Given M,P,Q,A,B,C, we define case(M,xA.P, yB .Q,C) by recursion on C
as follows:

case(M,xA.P, yB .Q,X) = MX〈λxA.P, λyB .Q〉
case(M,xA.P, yB .Q,C1 ∧ C2) = 〈case(M,xA.P i, yB .Qi, Ci)〉i=1,2

case(M,xA.P, yB .Q,C ⊃ D) = λzC .case(M,xA.P z, yB .Qz,D)
case(M,xA.P, yB .Q,∀X.C) = ΛX.case(M,xA.PX, yB .QX,C)

where, in the third clause, the bound variable z is chosen so that z 6= x, z 6= y
and z /∈ M,P,Q; and in the fourth clause, the bound variable X is chosen so
that X /∈M,P,Q,A,B.

3. Given M,A, we define abort(M,A) by recursion on A as follows:

abort(M,X) = MX
abort(M,A1 ∧A2) = 〈abort(M,A1), abort(M,A2)〉
abort(M,B ⊃ C) = λzB .abort(M,C)
abort(M,∀X.A) = ΛX.abort(M,A)

where, in the third clause, the bound variable z is chosen so that z /∈M ; and in
the fourth clause, the bound variable X is chosen so that X /∈M .

Next we see how in, case and abort behave w.r.t. typing, substitution and com-
patibility. The first lemma states that the inference rules for disjunction and absurdity
are admissible in Fat.

Lemma 1. The typing rules in Fig. 4 are admissible in Fat.

Proof. The first rule has a straightforward proof. Each of the remaining two rules is
proved by induction on C. The three proofs use admissibility of weakening in Fat: if
Γ `M : A is derivable and Γ ⊆ ∆ then ∆ `M : A is derivable.

We do not give more details, we just argue that the proviso of ∀I is satisfied when
typing each occurrence of Λ in the definitions of in, case and abort. Notice that:

Regarding the definition of ini(M,A,B), in item 1 of Def. 2, and given Γ satisfy-
ing the premiss of the first rule in Fig. 4, the bound variable X can be chosen so that,
additionally, X does not occur in a type in Γ.

Regarding the fourth clause of the definition of case(M,x.P, y.Q,C), in item 2
of Def. 2, and given Γ satisfying the three premisses of the second rule in Fig. 4, the
bound variable X can be chosen so that, additionally, X does not occur in a type in Γ.

Regarding the fourth clause of the definition of abort(M,A), in item 3 of Def. 2,
and given Γ satisfying the premiss of the third rule in Fig. 4, the bound variable X can
be chosen so that, additionally, X does not occur in a type in Γ.

Lemma 2. In Fat:

1. (a) [N/z]ini(M,A,B) = ini([N/z]M,A,B).

(b) [Y/X]ini(M,A,B) = ini([Y/X]M, [Y/X]A, [Y/X]B).

2. (a) [N/z]case(M,xA.P, yB .Q,C) = case([N/z]M,xA.[N/z]P, yB .[N/z]Q,C).

8

Figure 4: Admissible typing rules of Fat

Γ `M : Ai
Γ ` ini(M,A1, A2) : A1∨A2

(i = 1, 2)

Γ `M : A∨B Γ, x : A ` P : C Γ, y : B ` Q : C

Γ ` case(M,xA.P, yB .Q,C) : C

Γ `M : ⊥
Γ ` abort(M,C) : C

Figure 5: Compatibility rules of Fat

M RM ′

ini(M,A,B)R ini(M
′, A,B)

M RM ′

case(M,x.P, y.Q,C)R case(M ′, x.P, y.Q,C)

P RP ′

case(M,x.P, y.Q,C)R case(M,x.P ′, y.Q,C)

QRQ′

case(M,x.P, y.Q,C)R case(M,x.P, y.Q′, C)

M RM ′

abort(M,C)R abort(M ′, C)

(b) [Y/X]case(M,xA.P, yB .Q,C) =

= case([Y/X]M,xA
′
.[Y/X]P, yB

′
.[Y/X]Q,C ′),

where A′ = [Y/X]A, B′ = [Y/X]B, and C ′ = [Y/X]C.

3. (a) [N/z]abort(M,C) = abort([N/z]M,C).

(b) [Y/X]abort(M,C) = abort([Y/X]M, [Y/X]C).

Proof. The first two items are immediate. Each of the remaining four are proved by
induction on C.

Lemma 3. Let R be a relation compatible in the proof-terms of Fat. Then the com-
patibility rules in Fig. 5 are admissible in Fat.

Proof. The first rule is immediate. Each of the remaining four rules is proved by in-
duction on C.

9

Figure 6: The translation of proof expressions

x◦ = x

(λxA.M)◦ = λxA
◦
.M◦

〈M,N〉◦ = 〈M◦, N◦〉
(ini(M,A,B))◦ = ini(M

◦, A◦, B◦) (i = 1, 2)
(E©[M])◦ = E◦©[M◦] (© =⊃,∧)

(case(M,xA.P, yB .Q,C))◦ = case(M◦, xA
◦
.P ◦, yB

◦
.Q◦, C◦)

(abort(M,A))◦ = abort(M◦, A◦)

([]N)◦ = []N◦

([]i)◦ = []i

Due to Definition 2, the translation of proof terms can be given in a purely homo-
morphic fashion:

Definition 3. Given M ∈ IPC, M◦ is defined by recursion on M as in Fig. 6.

Notice that (MN)◦ = M◦N◦ and (Mi)◦ = M◦i. Also observe the use of the type
information provided by the last argument in case(M,xA.P, yB .Q,C): from C we
determine the argument C◦ required by case.

Given Γ in IPC, let Γ◦ denote {x : A◦|x : A ∈ Γ}. The next result means that
the alternative embedding works well at the level of provability.

Proposition 3 (Type soundness). If Γ `M : A in IPC, then Γ◦ `M◦ : A◦ in Fat.

Proof. By induction on Γ `M : A, using Lemma 1.

The constructive content of the proof of this lemma is the proof transformation
induced by the proof-term mapping.

What is the role of instantiation overflow in the alternative embedding we just
proved? The third rule in Fig. 4 is already the example of instantiation overflow relative
to the definition of absurdity in Fat. The second rule gives the other example, relative
to disjunction, which has been discussed in the introduction of this paper.

Corollary 1 (Instantiation overflow). Let C be an arbitrary type in Fat, and let

io(M,A,B,C) := λz(A⊃C)∧(B⊃C).case(M,xA.z1x, yB .z2y, C) .

The following typing rule is admissible in Fat:

Γ `M : A∨B
Γ ` io(M,A,B,C) : ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C

Proof. Follows immediately from admissibility of the second rule in Fig. 4.

So instantiation overflow, like the alternative embedding of IPC into Fat, is a
consequence of the admissibility of the elimination inference rules for absurdity and
disjunction.

10

4 Analysis of the alternative translation
This section analyzes how the alternative embedding maps proof-reduction steps, lead-
ing to Theorem 1. There is a first lemma about the commutation of the embedding with
substitution, and a long sequence of lemmas, from Lemma 5 to Lemma 12, about the
admissibility in Fat of the reduction rules relative to ∨ and ⊥, that is, the respective
β-, η-, and commutative rules. Proofs are given in considerable detail, to allow a later
analysis of administrative redexes.

Lemma 4. [N◦/x]M◦ = ([N/x]M)◦.

Proof. By induction on M . All cases follow by definitions and IH, except the cases
M = ini(M0, A,B), M = case(M0, y1.P1, y2.P2, C), and M = abort(M0, A),
which also require respectively items 1(a), 2(a), and 3(a) of Lemma 2. We just show
one of these cases.

Case M = case(M0, y1.P1, y2.P2, C).

LHS
= [N◦/x]case(M◦0 , y1.P

◦
1 , y2.P

◦
2 , C

◦) ((by def. of (·)◦))
= case([N◦/x]M◦0 , y1.[N

◦/x]P ◦1 , y2.[N
◦/x]P ◦2 , C

◦) (by item 2.(a) of Lemma 2)
= case(([N/x]M0)◦, y1.([N/x]P1)◦, y2.([N/x]P2)◦, C◦) (by IH)
= RHS (by defs. of (·)◦ and subst.)

Lemma 5 (Admissible β∨). In Fat: case(ini(N), x1.P1, x2.P2, C)→+
βη [N/xi]Pi.

Proof. By induction on C. In each case, the first equality in the calculation is justified
by the definition of case. Additionally, the first equality of case C = Y uses the
definition of ini(N).

Case C = Y .

LHS = (ΛX.λz(A⊃X)∧(B⊃X).ziN)Y 〈λx1.P1, λx2.P2〉
→β∀ (λz(A⊃Y)∧(B⊃Y).ziN)〈λx1.P1, λx2.P2〉
→β⊃ 〈λx1.P1, λx2.P2〉iN
→β∧ (λxi.Pi)N
→β⊃ [N/xi]Pi

Case C = D1 ⊃ D2.

LHS = λz.case(ini(N), x1.P1z, x2.P2z,D2)
→+ λz.[N/xi](Piz) (by IH)
= λz.([N/xi]Pi)z
→η⊃ [N/xi]Pi

Case C = D1 ∧D2. Similar, uses η∧.
Case C = ∀Y.D.

LHS = ΛY.case(ini(N), x1.P1Y, x2.P2Y,D)
→+ ΛY.[N/xi](PiY) (by IH)
= ΛY.([N/xi]Pi)Y
→η∀ [N/xi]Pi

11

Lemma 6 (Admissible η∨). In Fat:

case(M,xA.in1(x,A,B), yB .in2(y,A,B), A∨B)→+
βη M .

Proof.

LHS
= ΛX.case(M,x.(ΛY.λz.z1x)X, y.(ΛY.λz.z2y)X, ((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)
→2
β∀

ΛX.case(M,x.λz.z1x, y.λz.z2y, ((A ⊃ X) ∧ (B ⊃ X)) ⊃ X)

= ΛX.λw.case(M,x.(λz.z1x)w, y.(λz.z2y)w,X)
→2
β⊃

ΛX.λw.case(M,x.w1x, y.w2y,X)

= ΛX.λw.MX〈λx.w1x, λy.w2y〉
→2
η⊃ ΛX.λw.MX〈w1, w2〉
→η∧ ΛX.λw.MXw
→η⊃ ΛX.MX
→η∀ M

Lemma 7 (Admissible π©, for© =⊃,∧,∀). In Fat:

1. (case(M,x.P, y.Q,C ⊃ D))N →β⊃ case(M,x.PN, y.QN,D).

2. case(M,x.P, y.Q,C1 ∧ C2)i→β∧ case(M,x.P i, y.Qi, Ci).

3. (case(M,xA.P, yB .Q,∀X.C))Y →β∀ case(M,xA.PY, yB .QY, [Y/X]C).

Proof. Proof of 1.

LHS
= (λz.case(M,x.Pz, y.Qz,D))N (by def. of case)
→β⊃ [N/z]case(M,x.Pz, y.Qz,D)

= case([N/z]M,x.[N/z](Pz), y.[N/z](Qz), D) (by item 2.(a) of Lemma 2)
= RHS (since z /∈M,P,Q)

Proof of 2.

LHS = 〈case(M,x.Pj, y.Qj, Cj)〉j=1,2i (by def. of case)
→β∧ RHS

Proof of 3.

LHS
= (ΛX.case(M,xA.PX, yB .QX,C))Y (by def. of case)
→β∀ [Y/X]case(M,xA.PX, yB .QX,C)

= case(M,xA.[Y/X](PX), yB .[Y/X](QX), [Y/X]C) (*)
= RHS (since X /∈ P,Q)

where the justification for the equality (∗) is item 2.(b) of Lemma 2 and X /∈M,A,B.

12

Lemma 8 (Admissible $©, for© =⊃,∧,∀). In Fat:

1. (abort(M,A ⊃ B))N →β⊃ abort(M,B).

2. abort(M,A1 ∧A2)i→β∧ abort(M,Ai), i = 1, 2.

3. (abort(M,∀X.A))Y →β∀ abort(M, [Y/X]A).

Proof. Proof of 1.

LHS = (λzA.abort(M,B))N (by def. of abort)
→β⊃ [N/z]abort(M,B)

= abort([N/z]M,B) (by item 3. (a) of Lemma 2)
= RHS (since z /∈M)

Proof of 2.

LHS = 〈abort(M,A1), abort(M,A2)〉i (by def. of abort)
→β∧ RHS

Proof of 3.

LHS = (ΛX.abort(M,A))Y (by def. of abort)
→β∀ [Y/X]abort(M,A)

= abort([Y/X]M, [Y/X]A) (by item 3. (b) of Lemma 2)
= RHS (since X /∈M)

Lemma 9 (Admissible $∨). In Fat:

case(abort(M,A∨B), x.P, y.Q,C)→+
β abort(M,C) .

Proof. By induction on C.
Case C = X .

LHS = abort(M,A∨B)X〈λx.P, λy.Q〉 (by def. of case)
= (ΛY λz(A⊃Y)∧(B⊃Y).MY)X〈λx.P, λy.Q〉 (by def. of abort)
→β∀ (λz(A⊃X)∧(B⊃X).MX)〈λx.P, λy.Q〉 (since Y /∈M,A,B)
→β⊃ MX (since z /∈M)

= RHS (by def. of abort)

Case C = C1 ⊃ C2.

LHS = λzC1 .case(abort(M,A∨B), x.Pz, y.Qz,C2) (by def. of case)
→+
β λzC1 .abort(M,C2) (by IH)

= RHS (by def. of abort)

Case C = C1 ∧ C2.

LHS = 〈case(abort(M,A∨B), x.P i, y.Qi, Ci)〉i=1,2 (by def. of case)
→+
β 〈abort(M,C1), abort(M,C2)〉 (by IH twice)

= RHS (by def. of abort)

13

Case C = ∀Y.D.

LHS = ΛY.case(abort(M,A∨B), x.PY, y.QY,D) (by def. of case)
→+
β ΛY.abort(M,D) (by IH)

= RHS (by def. of abort)

Lemma 10 (Admissible $⊥). In Fat:

abort(abort(M,⊥), A)→+
β∀

abort(M,A) .

Proof. By induction on A.
Case A = Y .

LHS = (ΛX.MX)Y (by def. of abort)
→β∀ MY (since X /∈M)

= RHS (by def. of abort)

Case A = B ⊃ C.

LHS = λzB .abort(abort(M,⊥), C) (by def. of abort)
→+
β∀

λzB .abort(M,C) (by IH)
= RHS (by def. of abort)

Cases A = B1 ∧ B2 and A = ∀Y.B follow similarly by IH and definition of abort.
Notice that case A = B1 ∧ B2 calls the IH twice, and this explains that the lemma is
stated with→+

β∀
rather than→β∀ .

Now we see that the remaining reduction rules of IPC hold in Fat as admissible
equalities.

Lemma 11 (Admissible π∨-equality). In Fat:

case(case(M,xA1
1 .P1, x

A2
2 .P2, B1∨B2), yB1

1 .Q1, y
B2
2 .Q2, C) =β

case(M,xA1
1 .case(P1, y

B1
1 .Q1, y2.Q2, C), xA2

2 .case(P2, y
B1
1 .Q1, y

B2
2 .Q2, C), C).

Proof. By induction on C. The type annotations in bound variables will be omitted
after the base case.

Case C = Y . The LHS term is, by definition of case,

(ΛX.λw(B1⊃X)∧(B2⊃X).MX〈λxA1
1 .P1Xw, λx

A2
2 .P2Xw〉)Y 〈λyB1

1 .Q1, λy
B2
2 .Q2〉 ,

which, after one β∀-reduction step, becomes

(λw(B1⊃Y)∧(B2⊃Y).MY 〈λxA1
1 .P1Y w, λx

A2
2 .P2Y w〉)〈λyB1

1 .Q1, λy
B2
2 .Q2〉 ,

because X /∈ M,P1, P2, A1, A2, B1, B2. This term, in turn, yields, after one β⊃-
reduction step,

MY 〈λxA1
1 .P1Y 〈λy1.Q1, λy2.Q2〉, λxA2

2 .P2Y 〈λyB1
1 .Q1, λy

B2
2 .Q2〉〉 .

14

This is the RHS terms, by definition of case.
Case C = C1 ⊃ C2. The LHS term is, by definition of case,

λzC1 .case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1z, y2.Q2z, C2) ,

which, by IH, is β-equal to

λzC1 .case(M,x1.case(P1, y1.Q1z, y2.Q2z, C2), x2.case(P2, y1.Q1z, y2.Q2z, C2), C2) .
(3)

On the other hand, the RHS term is, by definition of case,

λzC1 .case(M,x1.(case(P1, y1.Q1, y2.Q2, C))z, x2.(case(P2, y1.Q1, y2.Q2, C))z, C2) ,

which, after two β⊃-reduction steps (in the “wrong” direction), yields the term (3).
These β⊃-reduction steps are justified by item 1 of Lemma 7.

Case C = C1 ∧ C2. The LHS terms is, by definition of case,

〈case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1i, y2.Q2i, Ci)〉i=1,2 ,

which, by application of IH twice, is β-equal to

〈case(M,x1.case(P1, y1.Q1i, y2.Q2i, Ci), x2.case(P2, y1.Q1i, y2.Q2i, Ci), Ci)〉i=1,2 .
(4)

On the other hand, the RHS term is, by definition of case,

〈case(M,x1.case(P1, y1.Q1, y2.Q2, C)i, x2.case(P2, y1.Q1, y2.Q2, C)i, Ci)〉i=1,2 ,

which, after four β∧-reduction steps (in the “wrong” direction), yields the term (4).
These β∧-reduction steps are justified by item 2 of Lemma 7.

Case C = ∀Y.D. The LHS term is, by definition of case,

ΛY.case(case(M,x1.P1, x2.P2, B1∨B2), y1.Q1Y, y2.Q2Y,D)

which, by application of IH, is β-equal to

ΛY.case(M,x1.case(P1, y1.Q1Y, y2.Q2Y,D), x2.case(P2, y1.Q1Y, y2.Q2Y,D), D) .
(5)

On the other hand, the RHS term is, by definition of case,

ΛY.case(M,x1.(case(P1, y1.Q1, y2.Q2, C))Y, x2.(case(P2, y1.Q1, y2.Q2, C))Y,D) ,

which, after two β∀-reduction steps (in the “wrong” direction), yields the term (5).
These β∀-reduction steps are justified by item 3 of Lemma 7.

Lemma 12 (Admissible π⊥-equality). In Fat:

abort(case(M,xA.P, yB .Q,⊥), C) =β case(M,xA.abort(P,C), yB .abort(Q,C), C) .

15

Proof. By induction on C. The proof has the same pattern as that of the previous
lemma. The inductive cases generate β-reduction steps in the “wrong” direction, jus-
tified by Lemma 8. The type annotations in bound variables will be omitted after the
base case.

Case C = Y .

LHS = case(M,xA.P, yB .Q,⊥)Y (by def. of abort)
= (ΛX.MX〈λxA.PX, λyB .QX〉)Y (by def. of case)
→β∀ MY 〈λxA.PY, λyB .QY 〉 (since X /∈M,P,Q,A,B)

= MY 〈λxA.abort(P, Y), λyB .abort(Q,Y)〉 (by def. of abort)
= RHS (by def. of case)

Case C = C1 ⊃ C2. The LHS term is, by definition of abort,

λzC1 .abort(case(M,x.P, y.Q,⊥), C2) ,

which, by IH, is β-equal to

λzC1 .case(M,x.abort(P,C2), y.abort(Q,C2), C2) . (6)

On the other hand, the RHS term is, by definition of case,

λzC1 .case(M,x.abort(P,C1 ⊃ C2)z, y.abort(Q,C1 ⊃ C2)z, C2) ,

which β⊃-reduces (in the “wrong direction”) to (6). The reduction is justified by item
1 of Lemma 8.

Case C = C1 ∧ C2. The LHS term, is, by definition of abort,

〈abort(case(M,x.P, y.Q,⊥), Ci)〉i=1,2 ,

which, by IH applied twice, is β-equal to

〈case(M,x.abort(P,Ci), y.abort(Q,Ci), Ci)〉i=1,2 . (7)

On the other hand, the RHS term is, by definition of case,

〈case(M,x.abort(P,C1 ∧ C2)i, y.abort(Q,C1 ∧ C2)i, Ci)〉i=1,2 ,

which β∧-reduces (in the “wrong direction”) to (7). The reduction is justified by item
2 of Lemma 8.

Case C = ∀Y.D. The LHS term is, by definition of abort,

ΛY.abort(case(M,x.P, y.Q,⊥), D) ,

which, by IH, is β-equal to

ΛY.case(M,x.abort(P,D), y.abort(Q,D), D) . (8)

On the other hand, the RHS term is, by definition of case,

ΛY.case(M,x.(abort(P,∀Y.D))Y, y.(abort(Q,∀Y.D))Y,D) ,

which β∀-reduces (in the “wrong direction”) to (8). The reduction is justified by item
3 of Lemma 8.

16

We are ready to give the full picture of how (·)◦ maps reduction steps.

Theorem 1. Let R be a reduction rule of IPC given in Fig. 3.

• Case R /∈ {π∨, π⊥}: if M →R N in IPC, then M◦ →+ N◦ in Fat.

• Case R ∈ {π∨, π⊥}: if M →R N in IPC, then M◦ =β N
◦ in Fat.

Proof. By induction on M → N . Let us check the base cases.
Case R ∈ {β∧, η∧, η⊃}. Trivially one has M◦ →R N

◦.
Case R = β⊃: Again M◦ →R N

◦, using Lemma 4.
Case R = β∨: By Lemmas 4 and 5.
Case R = η∨: By Lemma 6.
Case R = π©,© =⊃,∧: By Lemma 7.
Case R = $©,© =⊃,∧: By Lemma 8.
Case R = $©,© = ∨,⊥: By Lemmas 9 and 10.
Case R = π©,© = ∨,⊥: By Lemmas 11 and 12.
Inductive cases are routine since the relations→+ and =β are compatible relations

(hence enjoy the compatibility rules in Fig. 5).

Comments on Theorem 1. Given a reduction step M → N in IPC, we give
an analysis of the reduction steps in Fat between M◦ and N◦, profiting from the
detailed proofs given before, and trying to “explain” why Theorem 1 fails to preserve
the direction of reduction in some cases. The interesting reduction rules are those
relative to disjunction or absurdity, that is, β∨, η∨, and the commutative rules π© and
$©. We have to go back to Def. 2, and make four observations.

First observation. As seen in its definition (item 1 of Def. 2), the term ini(M,A,B)
is expecting some data: an atomic typeX and a pair of type (A ⊃ X)∧(B ⊃ X). This
data is provided in the base case of the definition of case(M,x.P, y.Q,C), that is, the
case C = X: the atomic type X and the pair 〈λx.P, λy.Q〉 are ready to be “passed”
to M . Sometimes, the data request meets the data provision: we see this happening in
the first reduction steps either of the base case of the proof of Lemma 5, or the proof of
Lemma 6.

Second observation. The definition of case(M,x.P, y.Q,C) generates a tree of
recursive calls homomorphic to the syntactic tree of type C, whose leaves correspond
to the occurrences of atomic types in C. In each such leave, relative to atomic type X ,
say, one finds MX〈λx.P ′, λy.Q′〉, where P ′ and Q′ are respectively P and Q applied
to the same sequence of formal parameters and projection symbols, leading from type
C to type X; and that sequence is dictated by the sequence of abstractions and pairings
corresponding to the path in the tree from the root to such a leave. This has the flavor
of η-expansion, and indeed one sees two situations where one has to recover from such
“η-expansion” by doing η-reduction: in the non-atomic cases of the proof of Lemma
5, and in the proof of Lemma 6.

Third observation. The term case(M,x.P, y.Q,C) (resp. abort(M,A)) is used
to translate an elimination inference in IPC; but, when C (resp. A) is not atomic, the
term does not represent an elimination inference in Fat, as it begin with an abstraction

17

or is a pair. This is useful most of the time: that is how commutative reductions in
IPC are turned into β-reductions in Fat - recall the proofs of Lemmas 7, 8, 9, and
10. Even in the proofs of Lemmas 11 and 12 we see that the LHS term starts doing
β-reduction in the “correct” direction. However, there is a risk in such a translation of
an elimination by an introduction - as we see in the next observation.

Fourth observation. In the second, third and fourth clauses of the definition of
case(M,x.P, y.Q,C), the expressions Pi, Pz and PX are redexes if P is a pair
or abstraction (and similarly for Q). This happens (1) when P is the translation of an
introduction inference in IPC - see for instance the LHS term in the proof of Lemma 6;
(2) when P or Q are the translation of some inference in IPC eliminating disjunction
or absurdity, that is, P or Q are some case or abort - see the RHS terms of the non-
atomic cases of the proofs of Lemmas 11 and 12: in such cases a redex is seen in
case(M,x.P, y.Q,C) that corresponds to no redex in the source IPC-proof. We call
administrative such redexes, which are created by the translation, “at translation time”.
As it happens, the reduction of administrative redex is often needed, as seen both in the
proof of Lemma 6, and in the non-atomic cases of the proofs of Lemmas 11 and 12 -
and the reduction of the latter is the only reduction that goes in the “wrong” direction
in the entire proof of Theorem 1.

Summarizing, if R is a reduction rule of IPC relative to disjunction or absurdity,
a reduction step M →R N gives rise to the following diagram, where double-headed
arrows denote 0, 1 or more reduction steps:

M - M◦
admin -- •

N

R

?
- N◦

admin -- •

βη

??

5 The canonical translation
In this section, we compare the alternative embedding of IPC into Fat we proposed
in Section 3 with the original, canonical embedding. This requires to present the lat-
ter in λ-notation, which is in itself interesting, as it works out the algorithmic content
of the canonical embedding. (In the appendix to this paper we compare, using natu-
ral deduction derivations, the alternative and canonical translations of a certain IPC
proof.)

The canonical embedding is by now described in several publications but always
in natural deduction style. See for instance [3, 2] or [5, 4]. In the former references
conjunction is interpreted in Fat by the Russell-Prawitz’s translation of formulas while
in the latter references conjunction is a primitive symbol of Fat. Atomic F was de-
veloped with the purpose of avoiding the “bad” connectives of the natural deduction
calculus (see the eloquent exposition about the defects of some natural deduction rules
in [6] Chapter 10). Being ∧ a “good” connective there is no obstacle in considering it
as primitive in Fat. On the contrary, recent studies in the canonical translation [5, 4]

18

Figure 7: Admissible typing rule in Fat

Γ `M : A∨B
Γ ` cio(M,A,B,C) : ((A ⊃ C) ∧ (B ⊃ C)) ⊃ C

show that the implementation of the η-conversions into atomic F or the validity of
the Rasiowa-Harrop disjunction property in Fat require conjunction to be primitive
in the system. To help the comparison with the alternative translation of the previ-
ous sections which considers ∧ as primitive in Fat we take the canonical translation
with primitive conjunction in the target system. Also, for the sake of comparabil-
ity, in the canonical embedding we consider the translation of A ∨ B in the form
∀X.((A ⊃ X) ∧ (B ⊃ X)) ⊃ X instead of ∀X.(A ⊃ X) ⊃ ((B ⊃ X) ⊃ X)
(see [5], Final Comment (2)).

The canonical translation of formulas is exactly the one presented in the beginning
of Section 3 – Russell-Prawitz’s translation. The canonical translation of proofs relies
crucially on the phenomenon of instantiation overflow: (i) given in Fat a proof M of
⊥ and an arbitrary formula C, there is a proof in Fat of C obtained from M , which is
represented by the previously defined term abort(M,C); (ii) given in Fat a proof M
ofA∨B and an arbitrary formulaC, there is a proof in Fat of ((A ⊃ C)∧(B ⊃ C)) ⊃
C obtained from M , which is represented by cio(M,A,B,C), defined as follows:

Definition 4 (Canonical instantiation overflow). In Fat: Given M,A,B,C, we define
cio(M,A,B,C) by recursion on C as follows:

cio(M,A,B,X) = MX
cio(M,A,B,C1 ∧ C2) = λz.〈cio(M,A,B,Ci)〈λxA.z1xi, λyB .z2yi〉〉i=1,2

cio(M,A,B,C1 ⊃ C2) = λz.λuC1 .cio(M,A,B,C2)〈λxA.z1xu, λyB .z2yu〉
cio(M,A,B,∀X.C1) = λz.ΛX.cio(M,A,B,C1)〈λxA.z1xX, λyB .z2yX〉

where, in the second, third and fourth clauses, the bound variables z is chosen so that
z /∈ M ; in the fourth clause, the bound variable X is chosen so that X /∈ M,A,B;
and, in the second, third, and fourth clauses, the type of the bound variable z is respec-
tively (A ⊃ (C1 ∧ C2)) ∧ (B ⊃ (C1 ∧ C2)), (A ⊃ C1 ⊃ C2) ∧ (B ⊃ C1 ⊃ C2), and
(A ⊃ ∀X.C1) ∧ (B ⊃ ∀X.C1).

Lemma 13. The typing rule in Fig. 7 is admissible in Fat.

Proof. By induction on C. As in the proof of Lemma 1, we rely on admissibility of
weakening in Fat. We just argue that the proviso of ∀I is satisfied when typing the
occurrence of Λ in the fourth clause of the definition of cio(M,A,B,C). Notice that,
given Γ satisfying the premiss of the rule in Fig. 7, not only X /∈M,A,B, but also we
may assume X does not occur in a type in Γ. Therefore, X does not occur in a type in
Γ, z : (A ⊃ ∀X.C1) ∧ (B ⊃ ∀X.C1).

The constructive contents of the proof of this lemma is the proof transformation
that underlies instantiation overflow as captured in [5, 4]. Def. 4 gives the algorithmic
content of such proof transformation.

19

Lemma 14. The following compatibility rule is admissible in Fat:

M RM ′

cio(M,A,B,C)R cio(M ′, A,B,C)

Definition 5 (Canonical translation). Given M ∈ IPC, the canonical translation of
M , written M?, is defined by recursion on M exactly as M◦, except for one case,
which now reads:

(case(M,xA.P, yB .Q,C))? = cio(M?, A?, B?, C?)〈λxA
?

.P ?, λyB
?

.Q?〉

Lemma 15. In Fat:

cio(M,A,B,C)〈λxA.P, λyB .Q〉 →∗β case(M,xA.P, yB .Q,C)

Proof. Fixing M , A and B we prove, by induction on C, that for all terms P and Q
we have cio(M,A,B,C)〈λxA.P, λyB .Q〉 →+

β case(M,xA.P, yB .Q,C).
Case C = X .

LHS = (MX)〈λxA.P, λyB .Q〉 (by def. of cio)
= RHS (by def. of case)

Case C = C1 ⊃ C2.

LHS
= (λz.λuC1 .cio(M,A,B,C2)〈λwA.z1wu, λrB .z2ru〉)〈λxA.P, λyB .Q〉 (a)
→+
β λuC1 .cio(M,A,B,C2)〈λwA.(λxA.P)wu, λrB .(λyB .Q)ru〉)
→+
β λuC1 .cio(M,A,B,C2)〈λxA.Pu, λyB .Qu〉
→∗β λuC1 .case(M,xA.Pu, yB .Qu,C2) (b)
= RHS (c)

Justifications: (a) By definition of cio. (b) By IH. (c) By definition of case.
Case C = C1 ∧ C2.

LHS
= (λz.〈cio(M,A,B,Ci)〈λwA.z1wi, λrB .z2ri〉〉i=1,2)〈λxA.P, λyB .Q〉 (a)
→+
β 〈cio(M,A,B,Ci)〈λwA.(λxA.P)wi, λrB .(λyB .Q)ri〉〉i=1,2

→+
β 〈cio(M,A,B,Ci)〈λxA.P i, λyB .Qi〉〉i=1,2

→∗β 〈case(M,xA.P i, yB .Qi, Ci)〉i=1,2 (b)
= RHS (c)

Justifications: (a) By definition of cio. (b) By IH twice. (c) By definition of case.
Case C = ∀XC1.

LHS
= (λz.ΛX.cio(M,A,B,C1)〈λwA.z1wX,λrB .z2rX〉)〈λxA.P, λyB .Q〉 (a)
→+
β ΛX.cio(M,A,B,C1)〈λwA.(λxA.P)wX,λrB .(λyB .Q)rX〉)
→+
β ΛX.cio(M,A,B,C1)〈λxA.PX, λyB .QX〉
→∗β ΛX.case(M,xA.PX, yB .QX,C1) (b)
= RHS (c)

20

Justifications: (a) By definition of cio. (b) By IH. (c) By definition of case.

Theorem 2 (Canonical vs. alternative translations). For all M ∈ IPC, M? →∗β M◦.

Proof. The proof is by induction on M . Since (·)? and (·)◦ coincide except for the
elimination of disjunction, we just need to prove that

(case(N, xA.P, yB .Q,C))? →∗β (case(N, xA.P, yB .Q,C))◦

given the induction hypotheses N? →∗β N◦, P ? →∗β P ◦ and Q? →∗β Q◦.
We have

LHS = cio(N?, A?, B?, C?)〈λxA?

.P ?, λyB
?

.Q?〉 (by def. of (·)?)
→∗β case(N?, xA

?

.P ?, yB
?

.Q?, C?) (by Lemma 15)
→∗β case(N◦, xA

◦
.P ◦, yB

◦
.Q◦, C◦) (by IH + Lemma 3)

= RHS (by def. of (·)◦)

Comments on Theorem 2. We argue that the reduction M? →∗β M◦ stated in
Theorem 2 is administrative, in the following sense: it starts by the reduction of an
administrative redex in M?, continues with the immediate reduction of the redexes
created by this initial reduction step, and continues, if it continues at all, by picking
another administrative redex, that is the “descendant” of some redex already present in
the initial term, and repeating this process. Incidentally we observe that, if M? →∗β
M◦, then the size of M? is bigger than the size of M◦.

We make a preliminary remark. If C is not atomic, cio(M,A,B,C) is an ab-
straction. This has two consequences. On the one hand, the second (resp. third,
fourth) equation in Def. 4 creates a redex, if some Ci (resp. C2, C1) is not atomic.
Let us refer to such a redex as a redex created at cio(M,A,B,C). On the other
hand, the definition of (·)? creates several redexes whenever it translates an occur-
rence of case(M,x.P, y.Q,C) with C non-atomic: not only the redexes created at
cio(M?, A?, B?, C?) (and possibly at subtypes of C?), but also the term displayed in
Def. 5. All these redexes are administrative.

Let us define

CASE(M,xA.P, yB .Q,C) := cio(M,A,B,C)〈λxA.P, λyB .Q〉 .

This definition recalls (2) in the introduction of the present paper; and reduces the
difference between the canonical and the alternative embeddings to the difference be-
tween translating case with case or CASE. Additionally, Lemma 15 can be stated as
CASE(M,xA.P, yB .Q,C)→∗β case(M,xA.P, yB .Q,C).

Recall the equations defining case in Def. 2. They should be contrasted with the
following reductions, seen to hold simply by inspecting the proof of Lemma 15:

CASE(M,x.P, y.Q,C ⊃ D) →∗β λzC .CASE(M,x.Pz, y.Qz,D)

CASE(M,x.P, y.Q,C1 ∧ C2) →∗β 〈CASE(M,x.P i, y.Qi, Ci)〉i=1,2

CASE(M,xA.P, yB .Q,∀X.C) →∗β ΛX.CASE(M,x.PX, y.QX,C)
(9)

21

We could have taken (9) as axioms generating the reduction relation stated by Lemma
15; therefore, the same if true of the reduction relation stated by Theorem 2, because
the latter is generated by a single call to Lemma 15, in the inductive case relative
to M = case(N, xA.P, yB .Q,C) displayed in the proof of Theorem 2. Reduction
M? →∗β M◦ is shown to be administrative by an analysis of reductions (9).

We detail the analysis of the first reduction in (9), the one relative to C ⊃ D. Let
LHS := CASE(M,x.P, y.Q,C ⊃ D) and RHS := λzC .CASE(M,x.Pz, y.Qz,D).
It is evident that the size of LHS is bigger than the size of RHS. Based on the
preliminary remark above and its immediate consequences, and on the inspection of
the pertinent inductive case in the proof of Lemma 15, we make three additional ob-
servations. (1) LHS is a redex and the reduction LHS →∗β RHS consists in an
initial step reducing this redex, followed by the immediate reduction of the redexes
created by this initial step. (2) LHS contains the term cio(M,A,B,C ⊃ D). (3)
If D is not atomic, then: (i) LHS contains a redex created at cio(M,A,B,C ⊃
D); (ii) CASE(M,x.Pz, y.Qz,D) is a redex contained in RHS; (iii) the reduction
LHS →∗β RHS transforms the redex created at cio(M,A,B,C ⊃ D)into the redex
CASE(M,x.Pz, y.Qz,D), hence the latter is a “descendant” of the former.

We will omit the similar observations about the second and third reductions in (9),
relative to C1 ∧ C2 and ∀X.C.

We end this discussion by completing the diagram at the end of Section 4, induced
by a reduction step M →R N in IPC, with R a reduction rule relative to disjunction
or absurdity.

M - M? admin -- M◦
admin -- •

N

R

?
- N? admin -- N◦

admin -- •

βη

??

6 Final remarks
In this paper we proposed an alternative embedding of IPC into atomic system F,
based on the admissibility of disjunction and absurdity elimination rules, rather than
instantiation overflow, and proved that the alternative embedding works as well as the
original one at the levels of provability and preservation of proof reduction. In fact, the
alternative embedding preserves βη-conversions and maps commutative conversions to
β-equalities, exactly as the original embedding; but the alternative embedding is more
economical, as it produces Fat proofs of smaller size and Fat simulations of smaller
length. In this sense, we may speak of a “refined” embedding.

Given the existence of an alternative embedding, one cannot view the existence of
an embedding of IPC into atomic system F as necessarily based on the phenomenon
of instantiation overflow, and one immediately questions, not only what is the role of
that phenomenon in the embedding, but also (and mainly) whether there is a “truly

22

canonical” translation of IPC proofs into Fat proofs - as stable as Russell-Prawitz
translation at the level of formulas.

Our results go far enough to sketch what an answer to the latter question might
be. The key technical tool is that of an “administrative” redex, a redex created by the
translation itself. We have proved that the translation of a given IPC proof by the al-
ternative embedding is obtained from the translation of the same proof by the original
embedding through the reduction of administrative redexes which the original transla-
tion created (this already explains why the alternative embedding is more economical,
and in what sense the alternative embedding is an optimization of the original one). In
addition, the alternative embedding also creates administrative redexes. This explains
why the alternative embedding falls short of delivering preservation of reduction steps
in all cases; but, more important, this suggest how the alternative embedding could be
further optimized. In fact, the main suggestion we offer is that the “truly canonical”
embedding will be the embedding free from administrative redexes.

So the final question is: is there such a fully optimized, “truly canonical” embed-
ding, which: (i) can be defined by recursion on the syntax of the given IPC proof; (ii)
by virtue of being free from administrative redexes, delivers preservation of reduction
steps in all cases? We do not have an answer. But, having developed the original and
the alternative embeddings with λ-terms, we can now recognize the problem as a prob-
lem of program optimization, and conjecture that it can be solved by techniques like
reduction “on the fly” (at compile time) that have been successfully employed since
long in the study of other program transformations [7].

A Appendix
Since most of the previous work on Fat was written in the natural deduction calculus,
we illustrate, for curiosity, the difference between the canonical and the alternative
translation in tree-style derivation, showing how a concrete proof in IPC is translated
into Fat via both the above embeddings.

Let D be the following derivation of (¬Z) ∨W ` Z ⊃W in IPC:

(¬Z) ∨W

[Z ⊃ ⊥]v [Z]u

⊃ E⊥ ⊥E
W ⊃ Iu

Z ⊃ W
[W]v

⊃ I
Z ⊃ W

∨Ev
Z ⊃ W

Via the canonical translation, we obtain the following derivation D? in Fat:

∀X.(((Z ⊃ ∀Y.Y) ⊃ X) ∧ (W ⊃ X)) ⊃ X

i.o.
(((Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)) ∧ (W ⊃ (Z ⊃ W))) ⊃ (Z ⊃ W)

[Z ⊃ ∀Y.Y] [Z]

∀Y.Y

W

Z ⊃ W

(Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)

[W]

Z ⊃ W

W ⊃ (Z ⊃ W)

((Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)) ∧ (W ⊃ (Z ⊃ W))

Z ⊃ W

where the double line of instantiation overflow hides the following portion of derivation

23

∀X.(((Z ⊃ ∀Y.Y) ⊃ X) ∧ (W ⊃ X)) ⊃ X
(((Z ⊃ ∀Y.Y) ⊃ W) ∧ (W ⊃ W)) ⊃ W

P1 P2

((Z ⊃ ∀Y.Y) ⊃ W) ∧ (W ⊃ W)

W

Z ⊃ W
(((Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)) ∧ (W ⊃ (Z ⊃ W))) ⊃ (Z ⊃ W)

where P1 and P2 are respectively the derivations

[((Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)) ∧ (W ⊃ (Z ⊃ W))]

(Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W) [Z ⊃ ∀Y.Y]

Z ⊃ W [Z]

W

(Z ⊃ ∀Y.Y) ⊃ W

and

[((Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)) ∧ (W ⊃ (Z ⊃ W))]

W ⊃ (Z ⊃ W) [W]

Z ⊃ W [Z]

W

W ⊃ W

Via the alternative translation, we obtain the following derivation D◦ in Fat, con-
siderably simpler than the previous one:

∀X.(((Z ⊃ ∀Y.Y) ⊃ X) ∧ (W ⊃ X)) ⊃ X
(((Z ⊃ ∀Y.Y) ⊃ W) ∧ (W ⊃ W)) ⊃ W

[Z ⊃ ∀Y.Y] [Z]

∀Y.Y
W

Z ⊃ W [Z]

W

(Z ⊃ ∀Y.Y) ⊃ W

[W]

Z ⊃ W [Z]

W

W ⊃ W
((Z ⊃ ∀Y.Y) ⊃ W) ∧ (W ⊃ W)

W

Z ⊃ W

Observe that the original derivation D has no redexes; D? has a single redex of
the form (((Z ⊃ ∀Y.Y) ⊃ (Z ⊃ W)) ∧ (W ⊃ (Z ⊃ W))) ⊃ (Z ⊃ W), which
is administrative (created by the translation (·)?); from the results of the present paper
it follows that D? reduces to D◦; the latter derivation has two redexes of the form
Z ⊃ W , which are administrative (created by the translation (·)◦), and descendant of
the single redex in D?.

References
[1] F. Ferreira. Comments on predicative logic. Journal of Philosophical Logic, 35:1–

8, 2006.

[2] F. Ferreira and G. Ferreira. Commuting conversions vs. the standard conversions
of the “good” connectives. Studia Logica, 92:63–84, 2009.

[3] F. Ferreira and G. Ferreira. Atomic polymorphism. The Journal of Symbolic Logic,
78(1):260–274, 2013.

24

[4] G. Ferreira. Eta-conversions of IPC implemented in atomic F. Logic Jnl IGPL,
25(2):115–130, 2017.

[5] G. Ferreira. Rasiowa-Harrop disjunction property. Studia Logica, 105(3):649–664,
2017.

[6] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

[7] G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

Affiliations:

José Espı́rito Santo
Centro de Matemática
Universidade do Minho
4710-057 Braga
Portugal
jes@math.uminho.pt

Gilda Ferreira
Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
Faculdade de Ciências da Universidade de Lisboa
Campo Grande, Ed. C6
1749-016 Lisboa
Portugal
gmferreira@fc.ul.pt

25

