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Abstract

results achieved demonstrate its viability.

Distributed firewall systems emerged with the proposal of protecting individual hosts against attacks originating from
inside the network. In these systems, firewall rules are centrally created, then distributed and enforced on all servers
that compose the firewall, restricting which services will be available. However, this approach lacks protection against
software vulnerabilities that can make network services vulnerable to attacks, since firewalls usually do not scan
application protocols. In this sense, from the discovery of any vulnerability until the publication and application of
patches there is an exposure window that should be reduced. In this context, this article presents Self-Adaptive
Distributed Firewall (SADF). Our approach is based on monitoring hosts and using a vulnerability assessment system
to detect vulnerable services, integrated with components capable of deciding and applying firewall rules on affected
hosts. In this way, SADF can respond to vulnerabilities discovered in these hosts, helping to mitigate the risk of
exploiting the vulnerability. Our system was evaluated in the context of a simulated network environment, where the
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1 Introduction
Several institutions all over the world deal with com-
plex network infrastructure, involving an increasing num-
ber of equipment (e.g., switches, routers) and servers,
usually providing different services. These environments
may contain several types of vulnerabilities that could
be exploited by an attacker. In this way, it is extremely
important to maintain software systems up to date with
versions that fix known vulnerabilities. Considering the
diversity of activities and variety of research topics con-
ducted throughout an university, it is common to find
situations where several services, and servers, need to be
provided for different groups of people, and more often
than not, maintained by these groups. This leads to an
inconsistency in management and security procedures,
where servers poorly configured, with outdated services,
or both may become potential targets for attacks.

In this context, the traditional approach for network
security, in which firewalls are deployed on the border
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of the network is no longer effective, as centralized bor-
der firewalls are not able to deal with attacks originated
from inside the security perimeter [1]. Today’s technol-
ogy movements, such as Bring Your Own Device (BYOD)
and the availability of 3G/4G connections, mean that a
malicious user has already penetrated the border defense.
This is exacerbated when we consider university environ-
ments, which are usually open to the public in general, and
contains some servers maintained by researchers, with
outdated and potentially vulnerable services.

Distributed firewall systems [2] have emerged as a solu-
tion for dealing with incidents originated from inside the
secure perimeter, by including firewalls in different points
of the network and servers. In such systems, a centralized
control mechanism is responsible for distributing firewall
rules to each point of the network, and hence it is possi-
ble to control what services running on those servers are
exposed on the network, and only for specific client hosts.

However, the application of distributed firewall also
brings some challenges, such as the management of these
firewalls and their rules, and the response time in case of
an incident. Traditional solutions for intrusion detection
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or vulnerability assessment usually notify an administra-
tor, who then assesses and decides how to respond to deal
with the situation [3]. However, this approach is usually
not fast enough for avoiding information theft, the infec-
tion of new systems/servers, or even service unavailability,
mainly for attacks conducted during strategic times, such
as the middle of the night or weekends, when the IT team
is usually out of service.

Moreover, it is possible to identify a gap on the inte-
gration between the several tools involved in securing
a network environment. For example, a Vulnerability
Assessment System (VAS) may detect a vulnerability on
a particular server, but the firewall of such system may
not react to such detection, as both systems are not inte-
grated. Such problem becomes more evident when we
consider the dynamic nature of a complex network envi-
ronment, in which new devices and services are constantly
added/removed, and new vulnerabilities are discovered
and patched. Finally, it is worth mentioning that, although
there are firewall solutions that inspect application pro-
tocols, in 2016 more than half of the corporate networks
were still using conventional firewalls [4].

In this context, the main contribution of this paper
is an architecture for network security based on self-
protection, named Self-Adaptive Distributed Firewall
(SADF). SADF integrates different components that are
part of a network for supporting the autonomic manage-
ment of its infrastructure in response to security-related
incidents. SADF has been deployed on a prototype inte-
grating a configuration management system with a VAS
for managing a distributed firewall, in which possible
threats can be detected (i.e., servers with vulnerabilities)
and appropriate decisions be made for mitigating their
impacts with minimal human intervention.

The motivation for using self-adaptation is the proven
effectiveness and efficiency of self-adaptation in dealing
with uncertainty in a wide range of applications, includ-
ing those related to security [5-7]. Our current prototype
of SADF monitors the hosts of a network, which are then
scanned by a VAS in the search for known vulnerabili-
ties. Once a vulnerability is discovered, firewall rules for
reacting to it are defined based on high-level policies.
These rules are then applied to individual hosts, effectively
mitigating the exposure window for the vulnerable server.

SADF was first proposed in [8], in which the main
issues related to the theme were presented, together with a
proposal of architecture and a prototype implementation
that demonstrated its viability. Compared to our previous
work, this article further details the proposed architec-
ture, which now fully implements a Monitor-Analyse-
Plan-Execute-Knowledge (MAPE-K) feedback control
loop [9] for managing the self-adaptation process. This
article also presents details about high-level policies
and the decision-making process used for controlling
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adaptation, and an evaluation of the whole implementa-
tion in a controlled environment.

The remaining of this paper is organized as follows:
Section 2 contextualizes our work defining its scope and
presenting some background on self-protection. Section 3
presents a conceptual view of the proposed SADF archi-
tecture. Section 4 describes a prototype that has been
implemented to demonstrate our approach feasibility.
Results from the experiments conducted in a controlled
environment to evaluate the proposed approach are pre-
sented and discussed in section 5. Section 6 discusses
some related work. Section 7 concludes the paper.

2 Contextualization

In a university network infrastructure, such as the Federal
University of Rio Grande do Norte (UFRN) in Brazil,
it is common to find several groups of servers hosting
from basic services, like e-mail, Web, and DNS (Domain
Name System), to specific applications. These institutions
usually maintain a network team responsible for manag-
ing these services. However, it is also common to find
other servers and equipment providing a set of local ser-
vices used and maintained by researchers in their respec-
tive laboratories. Such a diverse environment is prone to
inconsistency in management and security procedures,
causing it to be likely susceptible to vulnerable servers due
to misconfiguration or outdated software. Moreover, an
university network contains some workstations and wire-
less access points, which together with the trend of BYOD
and the availability of 3G/4G connectivity, constitute a
plethora of equipment outside the control of the central
management team.

The firewall is usually treated as the first line of defense
of computer networks [10]. A firewall is a trusted host
that acts as a choking point of one or more networks,
usually at the border between a public and a private net-
work. The traffic between the networks passes through
the firewall, which decides based on a set of rules, which
network packet should be allowed to continue or blocked.
However, as previously mentioned, the limitations of a
centralized firewall, which is not able to protect against
internal attacks, has motivated the definition of a dis-
tributed firewall model [2]. In a distributed firewall, secu-
rity policies are defined in a centralized fashion using
specific language, and then distributed, by secure means,
to be applied to different enforcement points. These
enforcers can either be located on different segregation
points inside the network, such as routers and switches,
or on each host of the network [1]. Figure 1 presents a
general view of a network infrastructure where we can
identify a Rules Management Server, which is responsible
for dealing with and distributing the firewall rules into the
different enforcement points, such as switches, servers,
or both.
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Fig. 1 General view of the distributed firewall scope considered in this paper

Operating and maintaining this infrastructure requires a
continuous effort as, even though there are different tools
for facilitating management and maintenance actions, it
is common to find out that most of these operations
are still manually conducted. For example, the majority
of institutions use, apart from firewalls, some tool for
configuration management, resource and service moni-
toring, intrusion detection and vulnerability assessment
systems, which scans the network pointing out vulner-
able services. These are important tools for maintain-
ing the network infrastructure, but there is a lack of
integration among them, requiring human intervention
for conducting some tasks, and wasting valuable time
between the moment an incident is detected, and an
administrator performs some corrective action to mitigate
its impact.

In this context, software self-adaptation can be used
for integrating such tools, contributing for automating
the security management of the network, with minimal
human intervention.

A self-adaptive software system is able to modify its
own structure or behaviour during run-time in order to
deal with changes in its requirements, the environment
in which it is deployed, or the system itself [9]. Among
the different properties of a self-adaptive system, self-
protection has been identified as a key concept for build-
ing autonomous self-managed systems. While systems’
architectures are becoming more dynamic and adaptive,
the majority of the protection mechanisms have kept sim-
ple, with security policies usually manually defined, in a
slow and costly way.

One way for achieving self-adaptation is through the
Monitor-Analyse-Plan-Execute-Knowledge = (MAPE-K)
feedback control loop over a target system [11]. In this
way, a self-protection mechanism allows the protected
system to monitor and analyze its resources to detect
possible problems, being able to react accordingly to
deal with the detected problem. This reaction depends
on the type of monitoring and analysis technique being
employed, type of incident and the type of system being
protected, and can range from emergency system shut-
down, deactivation of damaged module and replacement
for a new instance, user or connection blocking, etc. [7].

Figure 2 presents a reference architecture for a sys-
tem that implements self-protection. At a meta-level, we
have a protecting sub-system, responsible for implement-
ing the MAPE-K feedback control loop that protects the
protected sub-system at the base level. The protected sub-
system contains the system functionality associated with
the main application logic and may incorporate different
security mechanisms, such as access control and cryp-
tography, and different execution environment such as
Software Defined Networks with or without support for
Network Functions Virtualization. The meta-level subsys-
tem is responsible for detecting security-related incidents
and for the decision-making associated with the use of the
mechanisms available at the base-level [7]. The base-level
sub-system runs over and interacts with, a domain, which
can also be monitored for helping in the decision making
of the MAPE-K at the meta-level.

Thinking along these lines, a SADF solution can be
employed as a preventive mechanism for dealing with
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Fig. 2 Self-protection reference architecture [7]

well-known vulnerabilities. For example, whenever a par-
ticular server contains a vulnerability with a score greater
than a pre-defined value, the firewall could be configured
to only allow access to the server from clients in the same
network.

3 Architecture for self-adaptive distributed
firewall

Our solution for a Self-Adaptive Distributed Firewall
(SADF) is built on top of the MAPE-K reference model
as the means for logically structuring the different tasks
involved in the management of the security aspects for
network infrastructure, and for integrating the different
tools usually involved in those tasks, allowing for their

automation. Figure 3 presents a conceptual view of SADF
architecture.

Each phase of the MAPE-K feedback control loop is
implemented by an engine, which encapsulates the con-
crete components that allow for each engine functionality.
To perform self-adaptation, the Monitor, Analyze, Plan
and Execute engine components use different models that
provide an abstraction of relevant aspects of the managed
system, its environment, and the self-adaptation goals
[12]. These models are maintained by a knowledge base
represented in Fig. 3.

The Monitoring engine is responsible for collecting
information about the different servers of the network
infrastructure. This collection happens through Sensor
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Fig. 3 Conceptual architecture of the proposed solution
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interfaces in each server. This data is represented by
a Server description model, which is a format that can
be manipulated and reasoned upon by the components
of SADE. A service description model contains, among
other information, details about the operating system, IP
Address, services’ names, versions and network port. Fur-
thermore, it captures the firewall rules currently in effect
on the server. The Monitoring engine is also responsible
for obtaining Vulnerabilities descriptions from an exter-
nal Vulnerability base. Vulnerabilities are represented
through CVE!, which defines a dictionary and stan-
dard representation format for vulnerabilities descrip-
tions. These descriptions are published through the CVE
List and maintained by different vulnerabilities databases
(e.g., the NVD?). Vulnerabilities have an associated sever-
ity score calculated based on the CVSS?, which defines
metrics and formulas for deriving a vulnerability score,
and a standard format representation.

The Analyzer engine relies on a Vulnerability Assess-
ment System (VAS) to search for known vulnerabilities
on the services currently running on the network. A VAS
works by scanning the network and conducting different
tests to find vulnerabilities in systems and servers, pro-
ducing a vulnerability report for each server. Based on the
server descriptions, the VAS can be employed with higher
priority to scan known services running on each server,
usually, when there are changes in the server descrip-
tions or new vulnerabilities have been published. In the
meantime, full vulnerability analysis of servers can still be
performed. A High-level policy captures the requirements
of the administrator, and together with the VAS report
and the server description, is used for detection of policy
violations. For example, servers with a vulnerability score
greater than a particular threshold should only be acces-
sible from machines in the same network, but the current
firewall rules allow access from anywhere. All this data
is used by the Analyzer engine component for producing
Analysis report, which indicates, for example, servers with
known vulnerabilities.

The Decision engine component is responsible for the
plan phase of the MAPE-K loop. This component is
responsible for making decisions on how to respond to
the encountered situation based on the analysis report,
the server descriptions, the high-level policies, and a set
of Firewall rules templates. These templates provide a sort
of parametrized firewall rules for different services, which
can then be employed by the Decision engine for defining
specific firewall rules to be applied. The creation of fire-
wall rules must employ mechanisms for avoiding conflicts
between rules. Besides creating firewall rules to be applied
to the servers of the network, the Decision engine also
produces a report intended for a human administrator.

At the execute phase we have a Firewall rule application
engine component, which is responsible for effecting the
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new firewall rules on the servers. This component must
take in consideration mechanisms for guaranteeing secure
communication with each server, and configuration man-
agement techniques.

The MAPE-K reference architecture allows for the use
of different mechanisms for each of its phases, which can
be integrated in a number of different interaction pat-
terns [13, 14]. Thinking along these lines, an SADF-based
solution can be deployed with different components. In
our particular architecture, we employed a configuration
management system and a VAS with the roles of monitor-
ing and analyzing the network infrastructure. These can
be easily replaced by a metrics monitoring system, such as
Zabbix, with threshold-based policies for identifying the
necessity of adaptation, an IDS or any other analysis prod-
uct that can detect abnormal situation on the network
infrastructure. The decision-making process of our solu-
tion is based on high-level policies defined by an adminis-
trator, which must consider the execution environment to
be controlled. One advantage of such approach is the sep-
aration of concerns between the functions of the MAPE-K
loop. SADF controls a distributed firewall, but our archi-
tecture allows the management of more sophisticated
environments such as Software Defined Networks with
Network Function Virtualization capabilities when those
are available. Since we have taken as a basis a real scenario,
in which there is no support to SDN/NFV, we chose to
focus on the control of a distributed firewall, acting as a
proof-of-concept for deployment in such environment.

4 Instantiating the SADF
The proposed SADF architecture has been instantiated
into a prototype implementation using a combination
of existing open source and in-house developed compo-
nents. This instantiation has been used to build a case
study to demonstrate the feasibility of our approach. As
a scenario for presenting its instantiation, in this paper
we consider the protection of a Web server running
the Apache HTTPD software and the JBoss Application
Server.

In this section we present details about the different
representation models employed in our instantiation, fol-
lowed by a description of the developed prototype.

4.1 Model representation

One aspect that must be considered for a self-protection
solution is the representation of the protected environ-
ment, such as servers, services, and firewall rules.

For representing servers and their deployed services
we chose the representation language defined by the
Puppet* configuration management tool. The Puppet lan-
guage allows the description of servers, services, and
configurations using a parametrized approach and well-
defined semantics. Puppet configures systems in two
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main stages: compiling and applying a catalog. A cat-
alog is a document that describes the desired system
state. It lists all resources that need to be managed,
as well as any dependencies between those resources.
The core of the Puppet language is declaring resources.
Groups of resources can be organized into classes, which
are larger units of configuration. While a resource may
describe a single file or package, a class may describe
everything needed to configure an entire service or
application.

An example of representation for a server and its
services is shown in Listing 1. The node named sadf-
target.info.ufrn.br was previously added to the Puppet
ecosystem, which allows to describe and apply new con-
figurations to this server. As shown in Listing 1, the node
has two monitored services: the Apache HTTPD - a well-
known open source HTTP server -, and the JBoss - an
application server to the Java Platform, Enterprise Edition
(Java EE).

Listing 1 Example of a node description using the Puppet
language

node ’sadf—target.info.ufrn.br’ {

1

2

3| include apache::mod:: php

4| apache::vhost { ’apache’:
5| port => ’80’,

6| docroot => ’/var/www/html’,
7

8

}

9| include jboss

10| jboss:: default { ’jboss’
11| http_port => 8080,

12| ajp_port => 8009,

13| jmx_porp => 9090,

14| xms => 1024,

15| xmx => 1024,

16| }

17

18| include fw_sadf_target
19]}

Briefly, the settings on Listing 1 define that the Apache
HTTPD server must run the PHP module (line 3), and cre-
ate a VirtualHost listening to port 80 from DocumentRoot
/var/www/html (lines 4 to 7). Regarding JBoss service,
three ports must be configured: 8080 which is bound to
the HTTP connector, 8009 to the AJP connector, and 9090
that works as a managing interface to the JMX (lines 11
to 13). Moreover, the parameters xms and xmx are used
to determine the min and max memory size, respectively,
to be allocated on the HEAP (lines 14 and 15). The class
fw_sadf target (line 18), which will be detailed later on, is
applied to this node, defining a specific firewall rules for
the sadf-target.info.ufrn.br node.

Similarly, it is necessary to represent firewall rules in a
format that can be reasoned upon. For this purpose, we
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decided to employ the FLIP language [15, 16] for defin-
ing the firewall rules templates that SADF receives as
input. In FLIP, firewall rules are defined using a high-
level language that can be automatically translated into
device-specific format. FLIP provides a well defined lan-
guage with formal semantics, together with proven sound
and complete algorithms for conflict resolution and trans-
lation into device specific firewall rules. Its formalism was
one of the main reasons for choosing FLIP.

Listing 2 Example of firewall rules using the FLIP language

—

domain sadf—target.info.ufrn.br =
[10.3.128.12],

2| local —network = [10.3.128.0/24],

3

4lservice apache = tcp.[port=80],

5/ jboss = tcp.[port=8080, port=8009, port
] )

7|policy_group vulnerable_jboss{

8| incoming:

9| apache {allow x}

10| jboss {deny * except local —network}
11}

12

13lapply vulnerable_jboss on sadf—target.
info.ufrn.br;

Listing 2 presents an example of a rule in FLIP. The
first block (lines 1-2) defines the domains, which can
be networks or hosts. We define a target server (sadf-
target.info.ufrn.br) and a network (local-network) that
represents the network in which the target is running. The
second block (lines 4-5) of FLIP defines services, which
may have one or more ports. In this example, Apache and
JBoss were specified. In the sequence, we define a policy
group (lines 7-11), which specifies the behavior that will
be taken about services in a given scenario. One group
was created that allows access to Apache HTTPD (line 9)
and blocks access to JBoss (line 10) except when the con-
nection comes from sadf-engine.info.ufrn.br. Finally, it is
necessary to make a connection between the group and
the protected domain (line 13).

Figure 4 presents a class diagram with the meta-model
created for manipulating FLIP firewall rules as objects.
The Model class represents the language model that con-
sists of declarations. A Declaration is a generic block
that represents each of the terms supported by FLIP. The
Domain class describes a network or host, which has the
attributes name and address to represent the name of
the domain and the IP address. The Service class repre-
sents a service with names and ports. The Policy_group
class defines the policy that has a name, traffic direc-
tions, which can be incoming or outgoing, policy-related
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services and domains that can be inserted into the pol-
icy as the target domain of the action or exception to
the target group. Finally, the Apply class assigns policies
to domains, causing their traffic to meet the conditions
described in the FLIP policy.

In order to apply firewall rules, FLIP models need to be
translated into Concrete firewall rules . Since we employ
the Puppet language for describing and managing servers
and services, we employed Puppet’s firewall module® for
representing concrete firewall rules, and hence the fire-
wall rules can be applied by Puppet agents. To achieve
that, FLIP rules expressed in text files are instantiated into
Java objects, which are then used to create Puppet classes.
During the translation process, some fields are extracted
from the FLIP rules’ fields and then written as a Puppet
class describing each host and its services. This transla-
tion has been implemented as a Java class that handles the
FLIP Model and makes it possible to obtain its respec-
tive rule declarations as domains, services, policy_groups
and actions to perform the assembly of Puppet’s classes.
Listing 3 presents an example of the class that speci-
fies the firewall rules to the sadf-target.info.ufrn.br node,
which have been generated from the example pre-
sented in Listing 2. The first two rules (lines 3-12) are
included by SADF to guarantee access from its com-
ponents to the targeted host. The following rules (lines
13-30) blocks access to JBoss ports (8009, 8080, 9090)
except when the connection comes from the network
10.3.128.0/24.

Listing 3 Firewall rule created by using Puppet

llclass fw_sadf_target {

2| include firewall module

3| firewall {’001 accept connections from
puppet master’

4 proto => ’all’,

51 source => '10.3.225.163",

6 action => “accept’,

73

g firewall {’002 accept connections from

sadf—scanner ’
9 proto => ’all’,

100 source => ’10.3.227.777,

11| action => ’accept’,

12| }

13| firewall {’100 deny access to port
8009 :

14/ dport => 8009,
15| proto => tcp,

16| action => drop,

17| source => !10.3.128.0/24,

18| }

19| firewall {’101 deny access to port
8080°:

20 dport => ’80807,
21| proto => tcp,

22| action => drop,

23| source => !10.3.128.0/24,

24| }

25| firewall {’102 deny access to port
9090 :

26/ dport =>. 90907,

27| proto => tcp,

28/ action => drop,

29| source => !10.3.128.0/24,
300 }

31}
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We employ high-level policies to define how to respond
to found vulnerabilities in the monitored environment.
These policies are based on Event-Condition-Action
(ECA) rules. The basics of an ECA rule imply that when-
ever an event occurs, a predefined condition is evalu-
ated, which trigger a specific action when the condition
is true. The event may be represented by a complex
structure involving a number of sub-events. Similarly
to the event, the condition may be formed by several
sub-conditions that must be evaluated under a spe-
cific logic. Finally, an action may be a composition
of actions according to the condition and event that
activated it [17].

In our approach, an event is a discovered vulnerability,
while the condition captures the context of this vulnera-
bility in terms of its severity and other information that
can be used for decision making on how to respond, i.e.,
the action.

The syntax used to define a policy is given by the
set of fields {server, service, port, CVSS, CVE, action}
that can be mapped to four scopes: target, score, vul-
nerability, and execution, as described in Table 1. The
target scope defines the policy application range and is
formed by the fields server, service, and port. The score
scope - given by the CVSS field - specifies the CVSS
threshold value, hence addressing vulnerabilities with
CVSS equal or higher than this value. In contrast, the
vulnerability scope - given by the CVE field - directly
addresses the CVE, allowing to act only for specific vul-
nerabilities. The score and vulnerability scopes may be
optional, i.e., as long as one is provided, the other may be
omitted.

The target, score and vulnerability scopes comprise the
condition of our policy, while the action scope defines
how to respond when the specified condition is eval-
uated to true. Action in our policy refers to a fire-
wall rule template, which must be provided together
with the policy. In this way, the proposed system can
dynamically select the appropriate parametric rule tem-
plate for the detected situation, which is then popu-
lated based on the information about the affected host
description.

Table 1 High-level policy’s fields description
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4.2 Prototype implementation

In this section, we describe our prototype implementa-
tion, whose concrete architecture is illustrated in Fig. 5.
Implementation and functioning details for each devel-
oped module are also presented. Moreover, the iterations
between the modules and the tools/models employed in
the solution are discussed.

As previously mentioned, we employ the Puppet con-
figuration management language for describing servers’
configurations. Puppet provides tools for applying config-
urations, and for obtaining the current status of a host. A
Puppet agent component runs on each host, and reports
to (and receive commands from) the puppet-master com-
ponent, which stores servers description into the Puppet
catalog. Hence, Puppet agents fulfill the roles of sen-
sor and effector of servers, while the Puppet master is
responsible for the monitor and execute phases of the
MAPE-K.

4.2.1 Monitor engine

The function of this module is to collect information
regarding all sosts members and so creating the Server
description which is used by SADF to represent the servers
and its services. All hosts managed by the Puppet are taken
as members of our scheme. The Puppet collects informa-
tion regarding the servers by pooling agents (see Fig. 5)
- that plays the role of a sensor on SADF architecture -
and store it in its Catalog. Thus, the monitoring module
can gather information about all servers by communi-
cating to the PuppetDB® - a Data Warehouse that stores
information and allows the access to it through a specific
AP’

The UML sequence diagram in Fig. 6 illustrates
the interaction between the Monitor engine and the
PuppetDB. The Monitor engine first creates an empty list
of descriptions (call 1), then it contacts the PuppetDB to
collect the list of managed nodes (call 2), and finally, it
starts a loop to recover the list of services to each node
(call 3). The Monitor engine maintains a list of servers pre-
viously collected to detect when there is a change in one of
the servers. Thus, once all servers’ descriptions have been
obtained, the Monitor engine performs internal processing

Field Description Mandatory Input syntax

Server Target server for the policy Yes Hostname, network range or just ‘any’ to represent any server.
Service Target service for the policy Yes Server name or ‘any’ to represent any service.

Port Target port for the policy Yes List of integer numbers or ‘any’ to represent any port.

CVSS Score’s threshold value No A decimal value between 0.0 and 10.0

CVE Vulnerability ID. No List of CVEs.

Action Action to be executed for the policy. Yes List of supported action names.
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Fig. 5 Architectural view of the prototype implementation

(call 4) in order to identify servers that need to be scanned
again due to changes in their configuration.

It is important to mention that the description files defi-
nition for servers in Puppet is out of the scope of this work.

So there is an assumption that this task was previously

performed by the network administrator team. Thereby

L 1: create serverDescriptions()

: the focus of this work is to define and apply the firewall
[ rules according to the specified configuration, as well as
m targeting well-known vulnerabilities on servers.
|
I
» |

2: get nodes()

4.2.2 Analyzer engine
M 3: get services(node)

Considering that a list of all services running on each
oo semees server is known, a vulnerability evaluation may be used
4 pre-processing() as the trigger to an adaptation. The OpenVAS?® is used
to scan the servers. It provides an open source solu-
tion to identify, quantify and prioritize the vulnerabilities.
These properties were explored by the Analyzer engine.
In our solution, the OpenVAS Scanner conducts Net-
work Vulnerability Tests (NVT)® for all hosts. An NVT

Fig. 6 UML sequence diagram for the Monitor engine
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is formed by a script for vulnerability detection, and a
specification of the CVE and CVSS for each vulnerability
detected. OpenVAS Manager gets NVTs through the
OpenVAS NVT Feed, which is developed based on the
CVEs from the NVD.

The OpenVAS Manager is responsible for control-
ling the OpenVAS Scanner actions, by providing its
inputs and processing its outputs. All the interactions
between the Manager and the Scanner are performed
through the OpenVAS Transfer Protocol (OTP). OTP
supplies all the resources to control the scan’s execu-
tions. The Manager also includes the OpenVAS Man-
agement Protocol (OMP), an XML-based stateless API,
which may be used to interact with and control the
OpenVAS Manager.

The Analyzer engine configures and runs the OpenVAS
scans by using the server description. This interaction
is allowed by the OMP, which receives an XML entry
describing the target host and the scan tasks. A detailed
view of the interaction between the Analyzer engine and
the OpenVAS is presented in Fig. 7. The Analyzer engine
obtains the Server descriptions of those hosts that need to
be scanned (call 1) and builds scan tasks for each server
(see calls 2 and 3 in the figure). Each target defines a host,
listing the ports for all detected services, and thereby all
services managed by Puppet in each host can be scanned.
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A task is a scan configuration that defines how the target
will be tested.

The Analyzer engine starts each scan (call 4 of the
UML sequence diagram) and stores its ID. A scan may
take several minutes to complete, as the current Open-
VAS database includes more than 50,000 entries. Besides,
the scan duration may vary according to the number of
services on the target and the processing load on the Scan-
ner and the Server being scanned. Currently, the VAS
is queried every five seconds to check whether the scan
has finished, at which point the Analyzer engine uses the
stored ID as a key to recover its report (call 5). Each report
from the OpenVAS includes, among other data: the CVE,
the CVSS, the host, the port bound to the affected ser-
vice, the protocol, the suggested solution type, and the
affected software name. The Analyzer engine process the
received report (call 6) to check whether a vulnerability
has been detected, or a vulnerability previously detected
is no longer present. When a vulnerability is detected the
Decision engine is activated to handle it (call 7).

4.2.3 Decision engine

Once activated, the Decision engine must decide how to
properly respond to the detected vulnerability. Its behav-
ior is presented in Fig. 8. Initially, it loads the high-level
policies, the Analysis report, and the Server descriptions

Monitor engine Analyzer engine

OpenVAS Manager Decision engine

! 1: get descriptions() !
[E server descriptions

loop [for each server] J

T
|
|
|
[

o 2: create target()
target ID jj
€ —— -2

— A

5: get report(scan ID)

<____l

scan report
< P

6: check report(report)

|

‘ [
|

_V@galbility found |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
7. start adaptgtion(report) |

| il

|
|
|
|
|
|
|
|
|
|
|
|
| loop [for each scan] I
|
|
|
|
|
|
|
|
|
|

Fig. 7 UML sequence diagram for the Analyzer Engine
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Monitor engine |

| FLIP | | Executor engine

| 1: Load High-level policies()

2: Load report(report)

3: Get Server Description() -

loop [Policy violation] J

5: Aply actions()

6: Create firewall rules()

7: Translate firewall rules()

w | 8 Translate firewall rules()

Concrete firewall rules

9: Apply concrete firewall rules()

Concrete firewall rules
|

< ——

10: Notify administrator()

Fig. 8 UML sequence diagram for the Decision engine

R N A

(calls 1, 2, and 3). Then the policies are evaluated to
detect any violation (call 4). This verification involves a
set of iterations and conditional operations used to assert
the conditions according to the data collected from the
Analysis report.

When a violation is detected, an adaptation loop is
started. In the current prototype implementation, the exe-
cution module allows two actions: (1) the configuration of
the firewall rules on the affected servers, and (2) to send an
alert to the system administrator. The action to be taken
is defined by the high-level policy. If the selected action
requires blocking a port, then the Decision engine creates
the firewall rules using FLIP syntax and then request its
translation (calls 6 and 7). Following, the FLIP translates
the rules and creates the Concrete firewall rules model,
which is written using the Puppet notation (call 8). The
corresponding action is then requested to the Executor
engine, either to apply new firewall rules to a server (call
9) or to notify the system administrator (call 10).

Figure 9 presents a simplified algorithm describ-
ing the policy evaluation mechanism. Essentially, the
evaluation consists in looping through each server in
which a vulnerability has been detected, and checking
whether the conditions of the high-level policies hold
and apply.

1 Procedure verifyViolations:

2 serverDescriptions < list of servers

3 policies < list of policies

4 analysisReport < list of vulnerabilities
5 foreach server in serverDescriptions do

6 foreach policy in policies do

7 if server € policy.servers then

8 foreach vulnerability in analysisReport
do

9 if vulnerability.port € policy.port or

vulnerability.service €
olicy.service then

10 if vulnerability.cve == policy.cve
and vulnerability.cvss >=

policy.cvss then

11 | apply(policy.action)

12 else if vulnerability.cve ==

policy.cve then

13 | apply(policy.action)

14 else if vulnerability.cvss >=

policy.cvss then

15 ‘ apply (policy.action)

16 end

17 end

18 end

19 end

20 end

21 end

Fig. 9 Algorithm for policy evaluation
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4.2.4 Executor engine
Once the planning phase is finished, the Executor engine
is invoked to apply all the necessary actions.

To block ports, it would apply the Concrete firewall
rules by sending the generated classes to the directory
/etc/puppetlabs/code/environments/production/manifests
to be read by the puppet-master. Following this step,
each agent can contact the master to apply the sched-
uled firewall rules. The puppet-master together with the
firewall module manages and configures the generated
iptables and ip6tables rules to be applied directly to
each host.

The Zabbix!® monitoring system is employed in order
to support alerting system administrators. Zabbix is a
network monitoring system with support to triggered
notifications. SADF creates a list of alerts, which is used
as the basis for populating a monitoring template con-
figured into Zabbix. This template includes information
about the affected host, its service, and the discovered
vulnerability, with its respective CVSS. Through the tem-
plate, Zabbix can detect the alerts sent by SADF, creat-
ing triggers for each alert into Zabbix monitoring screen
that should be permanently exhibited on the Network
Operation Center. We have employed Zabbix on SADF
because this is the monitoring solution used by the
network administration team of where SADF is being
deployed.

The behavior of the Executor engine is presented in
Fig. 10. As previously mentioned, our current proto-
type supports two actions, the notification of admin-
istrators (call 1), or the application of firewall rules
through puppet-master (call 2). In case of applying fire-
wall rules, once the new rules have been saved, each
puppet-agent obtain them through the Puppet catalog
(call 3), and then applies the rules on their corresponding
hosts (call 4).
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5 Evaluation
This section presents an evaluation of SADF that has been
conducted in a controlled environment.

First, we present the complete operational flow of
SADF to demonstrate its feasibility (section 5.1). In the
sequence, we present a set of experiments to evaluate
SADF resource consumption (section 5.2). Finally, we
discuss the achieved results (section 5.3).

5.1 Demonstration

A set of servers and services in a controlled environ-
ment were deployed in order to demonstrate the func-
tionalities of the proposed SADE. All servers run the
CentOS 7. Such services are similar to what can be
found in a typical network infrastructure of a univer-
sity. Figure 11 presents a general view of the deployed
environment, in which we can find two groups of
servers. The first group corresponds to SADF compo-
nents and is composed by three servers: (i) puppet-
master agent that acts as a configuration management
server; (ii) sadf-engine, which contains all components
of SADF; and (iii) sadf-scanner corresponding to the
OpenVAS vulnerability assessment system. The second
group of servers represents the target environment, which
is controlled by SADEF, and corresponds to the dif-
ferent servers that will have their firewall rules man-
aged by our solution. For this first demonstration, we
have instantiated a total of 10 servers (sadf-targetOI
to sadf-target10), in which we have services managed
by Puppet.

Several services that are commonly found on complex
network infrastructure were selected in order to demon-
strate SADF functionality. The selection of services was
based on past experiences with incidents that occurred in
the UFRN'! network infrastructure. Therefore, we have
some services with vulnerabilities of different severity

Executor engine | | Zabbix Server |

I I

! 1: Notify adm\mstrator(A\erts)k 1

gl

2: Configure firewall(Concrete Flrfewall Rules)

| Puppet Master |

| Puppet Agent

T

loop [get Catalog] J ]

I
| |
| |
| |
| |
| |
» ! |
|
1
|
I

| 43 Get catalog(node data)

L_E Catalog

4: Apply catalog(Catalog)

=
|
|
|
|
|
|
|
I

Fig. 10 UML sequence diagram of Executor engine
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puppet-master sadf-engine sadf-scanner

sadf-target01 sadf-target02 sadf-targetNN

Fig. 11 Environment deployed for testing SADF

levels. Table 2 presents details about versions, ports, and
vulnerabilities of the services considered in this demon-
stration.

These services have been distributed in 10 servers sadf-
target according to Table 3. The column Vulnerability
Severity represents the server status based on the vulner-
abilities found on its deployed services. The classification
of vulnerabilities is based on the CVSS V2 specification '2,
which defines the intervals 0.0 — 3.9 as LOW, 4.0 — 6.9 as
MEDIUM, and 7.0 — 10.0 as HIGH.

Once all target servers are configured and managed
by puppet-master, SADF is capable of extracting their
Server descriptions to monitor and control them. The
next step is to configure the kigh-level policies that define
the behaviour of SADF. For this demonstration, we have
defined four policies that either block vulnerable services
or alert network administrators in different contexts. The
policies defined are listed below with an informal textual
description, and then using the policy definition rules of
SADE.

P1: Alert administrator if any vulnerability with CVSS
higher than 5.0 is found in any server:

“Server = any”, “Service = any”, “Port = any”, “CVSS =
5.0%, “Action = alert”

P2: Block any port on any server assigned to any service
in which with vulnerability “CVE-2013-4810"
(regarding to JBoss 5.1.0) has been detected:

“Server = any”, “Service = any”, “Port = any”, “CVE =
CVE-2013-4810”, “Action = block”

P3: Block any port assigned to any service with CVSS
equal or higher than 7.0 running on the server
sadf-target06.info.ufrn.br:

“Server = sadf-target06.info.ufrn.br”, “Service = any”,
“Port = any”, “CVSS = 7.0”, “Action = block”

P4: Block any server or port assigned to the service ftp
with CVSS equal or higher than 9.0:

“Server = any”, “Service = Ftp”, “Port = any”, “CVSS =

9.0”, “Action = block”

(2018) 9:12
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P5: Only allow connections from a particular network on
any server that belongs to this network in case any
vulnerability is found.

“Server = 10.2.59.0/24”, “Service = any”, “Port = any”,
“CVSS = any”, “Action = isolate”

Once the high-level policies are in place, SADF is ready
to start monitoring and controlling the target servers,
according to the MAPE-K feedback control loop. It starts
by obtaining the server descriptions of the target servers
and interacting with OpenVAS for creating the respective
scan routines. Based on OpenVAS results, which identi-
fied the existing vulnerabilities in the testing environment,
SADF employed the high-level policies to decide how to
respond. Following our case study, the OpenVAS found a
vulnerability with CVSS score 7.8 in HTTP service that
allows remote attackers to cause a denial of service (mem-
ory and CPU consumption). An extract of the XML report
is presented in Listing 4.

Listing 4 Extraction of OpenVAS report to a vulnerable HTTP
server

... <port>80/tcp

<host>10.3.128.20 </ host>

<severity >7.8</severity >

<threat >High</threat >

</port> <nvt oid
="1.3.6.1.4.1.25623.1.0.901203" >

<name>

7 Apache httpd Web Server Range Header

Denial of Service Vulnerability

8 </name>

G W N =

[*))

9 <family >Denial of Service </family>
10 <cvss_base >7.8</cvss_base >

11 <cve>CVE—2011-3192</cve>

12 <bid >49303</bid >

13

Based on policy P1, which defines the trigger of alerts
for vulnerabilities with CVSS above 5.0, we have the list
of alerts presented in Fig. 12, extracted from Zabbix.
SADF creates several objects and triggers in Zabbix with
information about the vulnerable services, using a color
classification according to the severity of the vulnerabil-
ity found. We can notice that some servers appeared more
than once in the list (such as sadf-target10), which indi-
cates that either the server contains more than one vul-
nerability, or that the same vulnerability has been found in
different ports.

Based on the other policies, SADF activated the Execu-
tor engine for blocking several ports. Policy P2 blocked
port 8080 on server sadf-target09, while policy P3 blocked
port 80 on server sadf-target06. policies P2 and P4 caused
the blocking of ports 21 and 8080 on server sadf-target01,
and policy P4 blocked port 21 on server sadf-target03.

Policy P5, in particular, is an example of a policy which
could be applied for isolating servers of a particular net-
work by only accepting connections from their network
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Table 2 Services and vulnerabilities used to test the prototype
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Service Port CVE CVSS Vulnerability

Apache 24.6 443 CVE-2016-2183, CVE-2016-6329 5.0 Confidential information leak.
Apache 2.4.6 80 CVE-2004-2320, CVE-2003-1567 58 Cross site

Apache 2.2.15 80 CVE-2004-2320, CVE-2003-1567 58 Cross site

Apache 2.2.15 80 CVE-2011-3192 78 Denial-of-service (DoS)

MySQL 5.5.52 3306 - - -

ProFTPD 1.3.4a 21 CVE-2015-3306 10.0 Arbitrary remote code execution.
JB0ss 5.1.0 8080 CVE-2013-4810 10.0 Arbitrary remote code execution.
JBoss 5.1.0 8009 - - -

JBoss 5.1.0 9090 - - -

Tomcat 85.16 8080 - - -

Tomcat 8.5.16 8009 - - -

Tomcat 8.5.16 9090 - - -

(10.2.59.0/24) when any vulnerability is found. Such pol-
icy triggers the application of firewall rules on all servers
managed by SADF that belong to the identified network.
The blocking of ports is achieved by manipulating
objects based on the FLIP meta-model defined by us.
These objects are then translated into Puppet classes con-
taining concrete firewall rules. Each server has its own
Puppet class with its respective firewall rules. Listing 5
presents an example of class for server sadf _targetO1.

Listing 5 New class created by the SADF to block ports 21 and
8080 on the server sadf-target01

fw_sadf_targetOl {
include firewall module

class

1

2

3| firewall { ’100’:
4| dport => ’80807,
5| proto => tcp,

6| action => drop,

7

8| firewall { ’101":
9| dport => 217,

10| proto => tcp,

11| action => drop,
12| }

13|}

The iptables tool was used on the affected servers in
order to confirm if the firewall rules have been correctly
applied.

Figure 13 presents the output for server sadf-target0l
before SADF has run. We can notice explicit rules allow-
ing (ACCEPT) packets from the servers that play the
role of puppet-master (IP address 10.3.225.163) and sadf-
scanner (IP address 10.3.227.77), and no closed ports
(indicated by the absence of rules, which means that all
connection are accepted). These rules are maintained by
the firewall module of Puppet, defining the servers that
are part of SADF as trusted. Figure 14 presents the ipta-
bles output for the same server (sadf-target01) after SADF

detected a vulnerability and reacted according to its poli-
cies. We can notice rules allowing connections from SADF
components (puppet-master and sadf-scanner), similar to
Fig. 13, and rules for blocking (DROP) incoming packets
(INPUT chain) on ports 21/tcp and 8080/tcp.

This procedure was repeated to all servers where we
confirmed the application of firewall rules according to
the high-level policies defined. We have repeated these
experiments, varying the services versions and known
vulnerabilities, services, and high-level policies. In all
occasions SADF worked as expected, demonstrating its
effectiveness in blocking vulnerable services and trigger-
ing alarms for alerting administrators when the blocking
is deemed a too harsh response.

5.2 Resource consumption experiments

After demonstrating the operational viability of SADE,
we have conducted a set of experiments for evaluating
its resource consumption. These experiments have been
conducted with the objective of providing subsides for

Table 3 Servers and services tested

Server Vulnerability severity Running services
sadf-target01 HIGH JBoss 5.1.0; ProFTPD 1.3.4a
sadf-target02 MEDIUM Apache 2.4.6; Tomcat 8.5.16
sadf-target03 HIGH Apache 2.4.6; ProFTPD 1.3.4a
sadf-target04 MEDIUM Apache 2.4.6; MySQL 5.5.52
sadf-target05 NONE Tomcat 8.5.16

sadf-target06 MEDIUM Apache 2.2.15

sadf-target07 NONE MySQL 5.5.52

sadf-target08 MEDIUM Apache 2.4.6

sadf-target09 HIGH JBoss 5.1.0; Apache 2.2.15
sadf-target10 MEDIUM Apache 2.2.15; MySQL 5.5.52
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Vulnerability found -> sadf-target09.info.uim.br:Apache from_source:80:CVE-2011-3192:7.8

Vuinerability found -> sadf-targetO6.info.ufm.br:Apache from_ source:80:CVE-2011-3192:7.8

Vulnerability found -> sadf-target02 info.ufm.br:Apache:80:CVE-2004-2320, CVE-2003-1567:5.8

Vulnerability found -> sadf-target08.info.ufm.br:Apache:80:CVE-2004-2320, CVE-2003-1567:5.8

Vulnerability found -> sadf-target10.info.ufm.br:Apache:443:CVE-2016-2183, CVE-2016-6329:5.0

Vulnerability found -> sadf-target10.info.ufm.br:Apache:80:CVE-2004-2320, CVE-2003-1567:5.8

Vulnerability found -> sadf-target10.info.ufm.br:Apache:443:CVE-2004-2320, CVE-2003-1567.5.8

Vulnerability found -> sadf-target.info.ufrn.br:Ftp:21:CVE-2015-3306:10.0

Vulnerability found -> sadf-target.info.ufrn.br:Jboss:8080:CVE-2013-4810:10.0

Vuinerability found -> sadf-target03.info.ufm.br:Fip:21: CVE-2015-3306:10.0

Vulnerability found -> sadf-tarqet03.info.ufm.br:Apache:80.CVE-2004-2320, CVE-2003-1567:5.8

Vulnerability found -> sadf-tarqet06.info.ufm.br:Apache from_source 80:CVE-2004-2320, CVE-2003-1567:5.8

Vulnerability found -> sadf-target08.info.ufm.br:Apache from_source:80:CVE-2004-2320, CVE-2003-1567:5.8

Vulnerability found -> sadf-target09.info.ufm.br:Jboss:8080:CVE-2013-4810:10.0

Fig. 12 Vulnerability alerts triggered on Zabbix system

the allocation of resources for SADF deployment. A first
observation allowed us to notice that the biggest overhead
of SADF is related to the vulnerability analysis. Based on
this, the experiments conducted have been divided into
two groups. The first group considered whether there is
an improvement in the use of OpenVAS when the ports
to be scanned are explicitly indicated (based on the ser-
vices’ ports configured via Puppet). The second group
considered the impact of increasing the number of servers
monitored and controlled.

These experiments have been conducted on the same
environment used for demonstrating SADF (which has
been presented in Fig. 11). The configurations of each
server used in these experiments are presented in Table 4.
The resources allocated to puppet-master server are based
on the official documentation of puppet!3, which recom-
mends a server with four cores and at least 4GB of RAM
for attending a number of 1000 servers. The resources
allocated for sadf-engine correspond to the server used
for its development. The server responsible for OpenVAS,
sadf-scanner, demands more computational power as it
will potentially conduct more than 50,000 NVTs in each
monitored host. The resources allocated to this server are

based on the resource allocation to similar services in our
real network infrastructure.

To run the first group of experiments, we replicated the
10 servers used in the demonstration of SADF, consider-
ing a growing number of servers, respectively, 1, 10, 20,
30, 40 and 50 servers, while employing the same distribu-
tion of services showed on Table 3. For these experiments,
OpenVAS has been used in its default configuration, up
to 10 NVTs running in parallel for each host, and a max-
imum of 30 hosts that can be verified simultaneously. In
this context, in case there are more than 30 servers to be
verified, the exceeding ones will be queued until the end
of the scans in execution. OpenVAS has been restarted
between each test, and the tests have been repeated
three times for obtaining the average execution time for
each run.

When considering the consumption of hardware
resources, we did not identify any significant difference
with and without the definition of ports. However, Open-
VAS took around 2 hours and 43 minutes to scan 50
servers in its default configuration. When comparing the
time necessary to run the tests with (Scan on defined
ports) and without (Scan without ports definition) port

/* 001 accept connections from puppet master */
/* 002 accept connections from sadf-scanner */

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all 10.3.225.163 0.0.0.0/0

ACCEPT all 10.3.227.77 0.0.0.0/0

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Fig. 13 Iptables output of firewall rules that are managed by Puppet on the server sadf-target01 before running SADF
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/* 001 accept connections from puppet master */
/* 002 accept connections from sadf-scanner */
multiport dports 8080 /* 100 */

multiport dports 21 /* 101 */

Chain INPUT (policy ACCEPT)

target prot opt source destination
ACCEPT all - 10.3.225.163 0.0.0.0/0
ACCEPT all -- 10.3.227.77 0.0.0.0/0
DROP tecp -- 0.0.0.0/0 0.0.0.0/0
DROP tcp -- 0.0.0.0/0 0.0.0.0/0
Chain FORWARD (policy ACCEPT)

target prot opt source destination
Chain OUTPUT (policy ACCEPT)

target prot opt source destination
Fig. 14 Iptables output of firewall rules that are managed by Puppet on the server sadf-targetO1 after running SADF

indication, we have a difference up to 20.53% for 50
servers (2 h and 25 min with ports defined). We con-
sidered these results as a substantial indication of the
benefits of directing OpenVAS scans as done by SADE,
which encouraged the execution of the second group of
experiments.

After that, we started to experiment with the full SADF
solution. As previously mentioned, the biggest overhead
of SADF is related to the vulnerability analysis. Thus, our
focus was on evaluating the analysis phase of SADF, which
includes OpenVAS to scan hosts on specific ports.

During these experiments, we have observed the
resource consumption of sadf-scanner to understand
its behavior and profile its hardware requirements. We
present the measurements for the experiments involving
50 hosts. Figure 15 presents CPU load, Fig. 16 presents the
RAM utilization, and Fig. 17 presents the network usage.

The higher CPU-load is expected, due to the number
of NVT executing simultaneously. Regarding memory and
network load, we notice a low usage, with some peaks
caused by the inner workings of NVTs, which involves
discovery and test of ports and service, followed by load-
ing and running of tests. These peaks represent when the
number of servers tested in parallel dropped below 30,
and the tests for the next servers in the queue have been
started. Regarding network consumption, a maximum
of 6.78 Mbits/s is viewed as a good result, considering
that the datacenter infrastructure is connected to at least
1Gbits/s, with 10 Gbits/s in several segments, and the
duration of the peak when compared to the whole testing
time.

Table 4 SADF servers resource configuration

Server Memory Processor
puppet-master 4GB 4 Cores
sadf-engine 16 GB 8 Cores
sadf-scanner 16 GB 16 Cores

The results obtained with these experiments have been
considered satisfactory. The time of 2 hours and 25 min
to scan 50 hosts is within the expected time given the
complexity of the vulnerability analysis process, and the
experience of the network administration team.

A more detailed discussion about the results obtained is
presented in the sequence.

5.3 Discussion

The experiments conducted have shown that SADF can
dynamically update firewall rules in response to dis-
covered vulnerabilities, following the high-level policies
defined by an administrator. Based on this, we conclude
that SADF indeed provides a significant improvement in
the administrative procedures of the network administra-
tion team of UFRN in detecting and protecting vulner-
able services. This is evidenced when we consider that
such procedure used to be conducted manually by net-
work administrators, usually by different teams, and the
response to a detected vulnerability took hours (some-
times days) to be implemented.

In its current implementation stage, SADF is only able
to deal with hosts. Although SADF supports the speci-
fication of more complex firewall rules using FLIP and
our high-level policies, we do not consider the deploy-
ment of firewall rules in other points of the network
infrastructure, such as routers and switches. This is due
to a simple decision-making implementation, which only
targets hosts. Through the use of adaptation rules, the
response can be anything supported by the controlled
environment. Thus, although the proposed SADF can, for
example, isolate a network employing firewall rules, such
isolation is achieved by applying firewall rules at each host
of the affected network.

The resource consumption experiments have confirmed
the overhead caused by the vulnerability scanner, and the
improvement of its use when the ports to be scanned are
identified. Although the time to scan 50 hosts is above
two hours, it is still substantially faster than the traditional
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[ CPU Load Average 1 min [avg] 0.2 014 7.43 27.74
[l CPU Load Average 5 min [avg] 6.22 0.06 697 16.86
[l CPU Load Average 15 min  [avg] 76 021 648 11.95
H CPU count [avg] 18 18 16 16

Fig. 15 Load average on the SADF server for 50 servers

manual approach. One aspect that has not been explored  as a satisfactory time, since the blocking action occurs in
is to deploy OpenVAS as a cluster using a master-slave  a preventive way, upon discovery of a vulnerable server.

architecture, which has the potential to provide horizon- Regarding the secure communication between the
tal scalability to our solution without any changes to its = SADF and protected servers, we employ the certificate
implementation. based security provided by the Puppet tool, which takes

Another aspect worth mentioning concerns the Puppet  care of authentication and secure transit between the
configuration management tool. Puppet presents a pull-  puppet-master and its agents through SSL certificates.
based model, in which agents query the master at pre- The number of 50 hosts have been used for the tests
determined intervals in search of new commands (usu- due to limitation of the infrastructure available for this
ally, 30 minutes). It might be considered an issue when project at the time of the experiments. Nevertheless, this
responding on-the-fly to detected situations, which is not = number has been considered relevant for the evaluation
the case in this paper. We focused on preventing the of the proposal when taking into account feedback from
exploitation of known vulnerabilities before they hap- the network management team, simulating an infrastruc-
pen, opposed to traditional IDPS systems, which focus on  ture capable of providing many applications and services.
responding to incidents in real-time. Hence, we consider  Also, this is the current number of servers that will be ini-
that 30 minutes is a reasonable time for applying fire- tially monitored when deployed in the UFRN data center.
wall rules blocking vulnerable services, although this time  Besides that, the results obtained provide us guidelines on
could be reduced. We have changed this configuration to  how to allocate resources to SADF components to repro-
10 minutes in our experiments, which is still considered  duce the experiments with a larger number of servers.

sadf-scanner: Memory used (2h 29m 31s)
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[J Memory in cache [avg] 359.24 MB 245MB 442,01 MB 899.99 MB
B Memory used [avg] 455.54 MB  449.01 MB 2.16 GB 15.36 GB

Fig. 16 RAM memory utilization on the SADF server for 50 servers
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Fig. 17 Network traffic on the SADF server for 50 servers
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6 Related work

The discussion on centralized and distributed firewalls is
well established in the literature [2, 18]. One of its first
implementation proposals has been presented by Ioanni-
dis [1], in which kernel extensions have been developed for
the OpenBSD distribution, together with a policy defini-
tion language (named KeyNote) and use of IPsec for secure
traffic amongst the hosts of the network. More recently
[19] introduces a distributed firewall system for Linux
platform that works upon Iptables/Netfilter for IPv6 net-
works with IPsec support. A distributed firewall archi-
tecture was proposed in order to improve performance,
handling the additional costs of encryption of packages
with IPsec.

Autonomic computing and self-protection have been
gaining traction as the means for dealing with new secu-
rity challenges and systems, in which static and rigid
security practices are not enough to deal with security
threats that need to be detected and mitigated at run-
time [7]. In this context, Yuan et al. [7] have done an
extensive systematic survey of the state of the art on
self-protecting software, identifying trends, patterns, and
gaps. Some works focus on adapting authorization poli-
cies, such as the Self-Adaptive Authorisation Framework
(SAAF) [5] that focus on adapting access control poli-
cies on the PERMIS system [20], and SecuriTAS [6], a
tool that enables dynamic decisions in awarding physical
access, based on a perceived state of the system and its
environment.

Several researchers focus on Intrusion Detection and
Response Systems. For example, Uribe and Cheung [21]
have looked into the integration between IDSs and fire-
walls, proposing an approach for optimizing IDS config-
uration by only analyzing traffic that is not considered by
the firewalls’ rules. Zhang and Shen [22] employ a statis-
tical learning based approach to reduce false positives on
IDSs. Rahbarinia et al. [23] use graph mining techniques

for analyzing download events for detecting malware
download. These works are concentrated on improving
an IDS, and present interesting discussions that could
complement SADF in a possible future work integrat-
ing IDS into its architecture. lannucci and Abdelwahed
[24] employ a Markov Decision Process together with an
Intrusion Response System for deciding which action to
perform in response to a detected intruder. Compared
to our work, their approach presents a formalism that
can be used for deciding which action to perform, con-
sidering cost and impact, from a list of possible actions.
Of-IDPS [25] is a system that considers network usage his-
tory and IDS alerts for extracting security rules that are
applied through a Software Defined Network (SDN) based
on OpenFlow controllers.

As stated by Shin et al. [26], SDN environment can be
combined with traditional security mechanisms to rein-
force the detection of attacks and to quickly react to them.
In the context of our work, the major impact of SDN on
a SADF solution would be twofold: at first, the decision
making now needs to deal with flows fate besides firewall
rules, and second, SADF can act upon switches through
Access Control Lists (ACL) which allows creating rules
connected to the network traffic [27]. In fact, our archi-
tecture would fit perfectly with an SDN environment, and
with the range of possibilities pointed out in the literature
[26, 27], being able to provide the link between a detec-
tion tool, the decision making process for deciding how
to react to the detected situation, and the commands that
will change the SDN environment. Similarly, an environ-
ment with NFV capabilities can provide more response
options for our architecture.

There are also works that aim to facilitate the configu-
ration of security mechanisms as part of the instantiation
process of virtual machines in cloud computing environ-
ment [28, 29]. This approach provides IDS/IPS, firewall,
and anti-malware in a solution Security-as-a-Service.
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Few works consider the analysis of vulnerabilities
for making a decision at the network level (ie., fire-
wall rules). Debar et al. [30] present formalisms for
the definition of security policies that can be dynam-
ically modified in response to detected threats. The
formalism presented in their paper is at an abstract
level and may consider vulnerability analysis in the
threat detection process. Compared to our work, their
approach can be considered as complementary, pro-
viding formalisms that could improve the robustness
of our approach regarding the definition of high-level
policies.

To the best of our knowledge, the closest work to ours
has been presented by Sheridan et al. [31] and involves the
automatic security of virtual machines in cloud comput-
ing environments. Their approach is based on three flows:
First, a VAS analyses a host during its instantiation, noti-
fying an administrator by e-mail in case a vulnerability is
found. Second, the firewall provided by the cloud platform
is activated for allowing access to services known dur-
ing instantiation. Third, the Chef configuration manage-
ment system is employed for automatically installing and
upgrading software packages for hardening and updat-
ing the operating system. Although their approach also
employs a VAS and activate firewall rules, the VAS out-
put is not used for decision making on which firewall
rules to apply, as we propose. Moreover, their approach
only considers a virtual machine during its creation, not
presenting any means for constant monitoring, and the
automatic update of software packages without any super-
vision (or an intelligence level) might be dangerous in a
critical environment.

An aspect that must be considered for a self-protection
solution is the representation of the protected environ-
ment, such as servers, services, and firewall rules. We
present here some of the options found in the litera-
ture during our searches. The Network Markup Language
(NML) [32] is a generic model defined by the OpenGrid
Forum (OGF)'* as a standard for modeling networks, such
as switches and links, which is out of the scope consid-
ered in this paper. Regarding the representation of firewall
rules, apart from the FLIP language (already presented),
there is also the AFPL2 [33] (Abstract Firewall Policy
Language 2), a domain-specific language that provides an
XML Schema for the definition of firewall rules indepen-
dent of firewall product. Although its support of NAT
rules, AFPL2 has not evolved as FLIP and does not pro-
vide conflict resolution of firewall rules. The Distributed
Management Task Force (DMTF) proposed the Com-
mon Information Model (CIM), a specification aimed
at allowing the interoperation of management informa-
tion. The CIM also provides an extensible XML model
and, although it has been employed by different ven-
dors, its extension for Network Policy Management [34]
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is still considered work-in-progress, and may be subject to
changes.

The research in the area of self-protection, when con-
sidering the network level, tend to focus on IDS/IRS. To
the best of our knowledge, we have not found any work
that employs vulnerability detection as the trigger for self-
adaptation, or that consider the addition of self-adaptive
capabilities to a distributed firewall.

7 Conclusions & future work

This article presented an approach for Self-Adaptive Dis-
tributed Firewall (SADF) based on the synergies between
the MAPE-K feedback control loop of self-adaptive sys-
tems with the increased network security provided by
distributed firewalls. The MAPE-K reference model is
used as the means for logically structuring the different
tasks involved in the management of network security,
employing a vulnerability analysis system to detect vul-
nerable hosts on the network infrastructure. Along these
lines, our approach can cope with the complexity on
the management of distributed firewalls, while reducing
the exposure windows of vulnerable hosts by automati-
cally applying firewall rules during run-time, according
to specified high-level policies, in response to detected
vulnerabilities.

We have developed a prototype of SADF using a com-
bination of existing open source and in-house developed
components, which has been used to conduct a series
of experiments, involving different services with a var-
ied degree of vulnerabilities. These experiments have
demonstrated the feasibility of SADF, which is able to
dynamically modify the firewalls on protected servers,
and presented a satisfactory performance of the environ-
ment in which it is being deployed. For example, SADF
managed to achieve a 20% reduction on the scanning
time for a group of 50 servers using the default configu-
rations of the OpenVAS vulnerability scanning system, a
significant performance gain which reduces the exposure
window of a detected vulnerability. These experiments
provided interesting feedback about its configuration and
operation that has been incorporated into our solution.

Although we obtained very encouraging results, SADF
presents some limitations. We employ the Puppet con-
figuration management tool for describing servers and
services, and for applying firewall rules on the affected
hosts. Accordingly, we assume the infrastructure has been
previously configured using this tool, as we employ Puppet
descriptions as part of our monitoring and execution
engine.

Another limitation is related to the use of NVTs. Each
NVT is updated based on the NVT Feed, maintained
by Greenbone Community'®. SADF is only able to react
to known vulnerabilities that have been published to
NVT Feed. Moreover, recently Greenbone has adopted
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measures to increase paid subscription to its service,
which might delay the availability of new NV Ts.

In its current stage, SADF only deal with hosts.
Although SADF supports the specification of more com-
plex firewall rules using FLIP and our high-level poli-
cies, we do not consider the deployment of firewall rules
in other points of the network infrastructure, such as
routers and switches. This is caused by a simple decision-
making process, which only targets hosts. Although it
is possible to isolate a network through firewall rules,
such isolation is achieved at each host of the affected
network.

Other improvements on the decision making might
allow more complex responses. For example, a host
firewall might redirect all incoming connection to
an application level firewall or IDS when a particular
vulnerability has been detected, adding an extra layer
of security while the vulnerability has not been fixed.
Another future work involves the integration of our
solution with traditional IDPSs on the monitoring and
analyses phases, allowing it to react to attacks exploiting
zero-day vulnerabilities. This would allow the use of less
disruptive firewall rules, such as blocking of vulnerable
services only from suspect sources. SADF can also be
easily scaled up by deploying OpenVAS into a cluster con-
figuration to deal with an elevated number of monitored
servers.

Another possible future work is related to Software-
Defined Networks (SDN) and virtualization. In our setup,
we have not considered the impact of such technologies.
An SDN-enabled infrastructure, combined with support
for virtualized network functions, would allow for more
sophisticated responses without direct host intervention.
New challenges arise from the dynamicity of the Virtual
Machines (VMs), which imposes frequent changes on the
virtual network topology, where VMs might be migrated
for resource management and optimization. We intent on
conducting further research in this direction in order to
support new responses, such as the dynamic redirection
of traffic to an application proxy that could perform a
second authentication.

Endnotes

! Common Vulnerabilities and Exposures sponsored by
US-CERT - https://cve.mitre.org

2National Vulnerability Database maintained by NIST -
https://nvd.nist.gov/

3 Common Vulnerability Scoring System sponsored by
FIRST - https://www.first.org/cvss

*https://puppet.com/

>https://forge.puppet.com/puppetlabs/firewall

¢ PuppetDB-Overview https://docs.puppet.com/puppetdb/
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7 PuppetDB 5.0: APl overview https://docs.puppet.com/
puppetdb/latest/api/index.html

8 OpenVAS http://www.openvas.org/

% http://www.openvas.org/nvt-dev.html

10 7abbix is an enterprise-class open source monitoring
solution for network monitoring and application monitor-
ing of millions of metrics - https://www.zabbix.com/

" Federal University of Rio Grande do Norte, Brazil

2NVD CVSS Support

metrics/cvss

https://nvd.nist.gov/vuln-

13 Puppet system requirements https://docs.puppet.
com/puppet/5.0/system_requirements.html

Y https://www.ogf.org/

15 Greenbone Community https://www.greenbone.net/
en/community-edition/
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