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Improved shear correction factors for
deflection of simply supported very thick
rectangular auxetic plates
T. C. Lim

Abstract

Background: The first-order shear deformation theory (FSDT) for plates requires a shear correction factor due to
the assumption of constant shear strain and shear stress across the thickness; hence, the shear correction factor
strongly influences the accuracy of the deflection solution; the third-order shear deformation theory (TSDT) does
not require a correction factor because it facilitates the change in shear strain across the plate thickness.

Methods: This paper obtains an improved shear correction factor for simply supported very thick rectangular plates
by matching the deflection of the Mindlin plate (FSDT) with that of the Reddy plate (TSDT).

Results: As a consequence, the use of the exact shear correction factor for the Mindlin plate gives solutions that
are exactly the same as for the Reddy plate.

Conclusions: The customary adoption of 5/6 shear correction factor is a lower bound, and the exact shear correction
factor is higher for the following: (a) very thick plates, (b) narrow or long plates, (c) high Poisson’s ratio plate material,
and (d) highly patterned loads, while the commonly used shear correction factor of 5/6 is still valid for the following: (i)
marginally thick plates, (ii) square plates, (iii) negative Poisson’s ratio materials, and (d) uniformly distributed loadings.
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Background
It is well known that the shear correction factors of
plates are simpler than those for beams (Dong et al.,
2010; Puchegger et al., 2003; Hlavacek and Chleboun,
2000; Pai and Schultz, 1999; Popescu and Hodges, 2000;
Yu and Hodges, 2004; Chan et al., 2011; Pai et al., 2000;
Hutchinson, 1980; Hutchinson, 2001; Han et al., 1999);
this is due to the cross-sectional geometry in beams being
more varied than for plates. For plates, the commonly
adopted shear correction factor is typically 5/6; in some
instances, Poisson’s ratio is taken into account (e.g.,
Rössle, 1999; Lee et al., 2002). Exact shear correction fac-
tors for vibrating Mindlin plates have been proposed by
Stephen (1997) and Hull (2005, 2006). In this paper, exact
shear correction factors for simply supported very thick
rectangular Mindlin plates are derived by comparing its
deflection against that of Reddy plates. The Mindlin plate,

which adopts the first-order shear deformation theory
(FSDT), requires a correction factor due to its assumption
of uniform shear across the plate thickness while the
Reddy plate, which adopts the third-order shear deform-
ation theory (TSDT), does not require any correction as it
caters for the varying shear strain across the plate thick-
ness. The rigor of the Reddy plate, therefore, forms the
justification for its use as a benchmark for evaluating the
accuracy of Mindlin plate deflection—this has been done
for triangular plates (Lim, 2016a, b). Following a recent
preliminary analysis (Lim, 2016c) to evaluate the ratio of
maximum deflection of Reddy plate to that of Kirchhoff
plate or the classical plate theory (CPT), the TSDT is now
being employed for extracting the exact shear correction
factor of rectangular plates in the FSDT.

Methods
General consideration
Figure 1 illustrates a simply supported thick rectangular
plate of sides a and b, measured along the x and y axes,
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respectively, while the thickness h is measured along the
z axis. Recall that the Mindlin plate deflection wM is
related to the Kirchhoff plate deflection wK as

wM ¼ wK þ ΜK

κGh
ð1aÞ

where the moment sum, or Marcus moment, is defined
as

ΜK ¼ −D∇2wK ð1bÞ
and D is the plate flexural rigidity, while the Reddy plate
deflection wR is related to the Kirchhoff plate deflection
as

wR ¼ wK þ 1
Gh

αC1D∇2wR þ C4Μ
K

� � ð2aÞ

where 280C1 = 3h2 = 4/α, C4 = 17/14, and

λ20 ¼
Gh

αC1D
¼ 70Gh

D
; ð2bÞ

with G being the shear modulus of the plate.
With reference to Eqs.(1) and (2), it is useful to de-

scribe the plate flexural ridigity

D ¼ Eh3

12 1−v2ð Þ ð3aÞ

and the shear modulus

G ¼ E
2 1þ vð Þ ; ð3bÞ

where E is Young’s modulus, as the ratio

D
G

¼ h3

6 1−vð Þ ð3cÞ

so that Eqs.(1) and (2) can be expressed as

wM ¼ wK−
h2

6κ 1−vð Þ∇
2wK ð4aÞ

and

wR−
h2

420 1−vð Þ∇
2wR ¼ wK−

17h2

84 1−vð Þ∇
2wK ð4bÞ

respectively, to facilitate comparison. Equating the
Mindlin and Reddy plate deflections gives the following
general relationship under the same boundary condition:

1
κ
¼ 17

14
−

1
70

ΔwR

ΔwK
ð5aÞ

where

Δ ¼ ∇2 ¼ ∂2

∂x2
þ ∂2

∂y2
: ð5bÞ

Perusal to Eq. (5a) suggests that a meaningful exact
shear correction factor can be obtained if both the
Reddy plate and Kirchhoff plate deflections are known.
Neglecting the higher order term in Eq. (5a) gives a
shear correction factor of κ = 14/17. The two constant
shear correction factors of 5/6 and 14/17 have been dis-
cussed by Wang et al. (2000).

Uniform load
As the Kirchhoff plate deflection for a simply supported
rectangular plate under uniform load q = q0 is

Fig. 1 Geometrical nomenclature adopted for analysis
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wK ¼ 16q0
π6D

X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �2 ð6Þ

with m, n = 1, 3, 5,…, we adopt a similar profile deflec-
tion for the Reddy plate

wR ¼ AR
X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �2; ð7Þ

where AR is the amplitude term of the Reddy plate. Sub-
stituting the deflection profiles of Kirchhoff and Reddy
plates into the relationships described by Eq. (4) leads to

wM ¼ 16q0
π6D

�X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �2

þ π2h2

6κ 1−vð Þ
X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �
�

ð8Þ

and

AR ¼ 16q0
π6D

X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �2

þ 17π2h2

84 1−vð Þ
X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �
X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �2

þ π2h2

420 1−vð Þ
X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn m2

a2 þ n2

b2

� �

ð9Þ

Introducing the function

f a; b; x; yð Þ ¼

X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn b
am

2 þ a
b n

2
� �

X∞
m¼1

X∞
n¼1

sin mπx
a sin nπy

b

mn b
am

2 þ a
b n

2
� �2

ð10Þ

allows Eq. (9) to be contracted as

AR ¼ 16q0
π6D

1 þ 17π2h2

84 1−vð Þab f a; b; x; yð Þ
1 þ π2h2

420 1−vð Þab f a; b; x; yð Þ
: ð11Þ

The terms a/b in Eq. (10) and h=
ffiffiffiffiffi
ab

p
in Eq. (11) indi-

cate the plate aspect ratio and its relative thickness, re-
spectively. For a square plate, these reduce to a/b = 1
and h/a. Using Eq. (11) and equating the Mindlin and
Reddy plate deflection gives

1þ π2h2

420 1−vð Þab f a; b; x; yð Þ þ π2h2

6κ 1−vð Þab f a; b; x; yð Þ

þ π4h4

2520κ 1−vð Þ2a2b2 f a; b; x; yð Þð Þ2

¼ 1þ 17π2h2

84 1−vð Þab f a; b; x; yð Þ:

ð12Þ
Hence, the usual shear correction factor of

κ ¼ 5
6

ð13Þ

is obtained from Eq. (12) if the highest order term is
neglected. Taking into account the highest order term,
we have the exact shear correction factor

κ ¼ 5
6

1þ π2

420 1−vð Þ
h2

ab
f a; b; x; yð Þ

	 

: ð14aÞ

Since the maximum deflection takes place at the plate
center, it is practical to consider the shear correction fac-
tor there, i.e.,

κ ¼ 5
6

1þ π2

420 1−vð Þ
h2

ab
f a; b;

a
2
;
b
2

� �	 

ð14bÞ

where the function described by Eq. (10) becomes

f a; b;
a
2
;
b
2

� �
¼

X∞
m¼1

X∞
n¼1

−1ð Þmþn
2 −1

mn b
am

2 þ a
b n

2
� �

X∞
m¼1

X∞
n¼1

−1ð Þmþn
2 −1

mn b
am

2 þ a
b n

2
� �2

ð15Þ

at the plate center. For an extremely long and narrow
plate, Eq. (15) reduces to

lim
a
b
→∞

f a; b;
a
2
;
b
2

� �
¼ a

b
ð16Þ

We note that both the numerator and denominator of
Eq. (15) are dependent on the plate aspect ratio a/b. Set-
ting a ≥ b for the uniformly loaded plate, Table 1 lists the
denominator and numerator of Eq. (15) by performing
double series summation. The summation was per-
formed up to m = n = 41 in order to obtain sufficient nu-
merical accuracy.
A simple curve fit based on Table 1 gives the function

f a; b;
a
2
;
b
2

� �
¼ −0:0062

a
b

� �3
þ 0:1281

a
b

� �2

þ 0:1956
a
b

� �
þ 1:4598 ; 1≤a=b≤10; ð17Þ

with a statistical accuracy of R2 = 0.9998.
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Sinusoidal load
Suppose the load distribution takes a sinusoidal form

q ¼ q0 sin
mπx
a

sin
nπy
b

ð18Þ

instead of being uniformly distributed—whereby m and
n quantify the load waviness along the x and y axes,
respectively—then Eqs.(10) and (14a) reduce to

f a; b; x; yð Þ ¼ b
a
m2 þ a

b
n2 ð19Þ

and

κ ¼ 5
6

1þ π2

420 1−vð Þ
h2

ab
b
a
m2 þ a

b
n2

� �	 

ð20aÞ

respectively. Although Eq. (20a) can be written in a sim-
pler way as

κ ¼ 5
6

1þ π2h2

420 1−vð Þ
m2

a2
þ n2

b2

� �	 

; ð20bÞ

the former is instructive for showing the effect of rela-

tive plate thickness h=
ffiffiffiffiffi
ab

p
and aspect ratio a/b, in

addition to Poisson’s ratio. Unlike the previous section
on uniform load, this section on sinusoidal load allows
one to observe the interlacing effect of load waviness
pattern and plate aspect ratio on the shear correction
factor.
For the special case of square plate, perusal to Table 2

shows that load waviness increases the shear correction
factor. Reference to the same table also shows that wavi-
ness is strongly influenced by the aspect ratio of the
plate; the effect of load waviness along the longer side

diminishes as the plate becomes long or very narrow,
i.e.,

κ≈
5
6

1þ n2π2

420 1−vð Þ
h2

b2

	 

; a >> b

κ≈
5
6

1þ m2π2

420 1−vð Þ
h2

a2

	 

; a << b

ð21Þ

and consequently, the relative thickness is governed by
the ratio of the plate thickness to its shorter side.

Results and discussion
In determining the range of relative thickness that is ap-
plicable for the shear deformation theories, one may
refer to Steele and Balch (2009) who classified the plate
thickness into four categories: (i) a/h > 100, (ii) 20 < a/h
< 100, (iii) 3 < a/h < 20, and (iv) a/h < 3. This implies that
one may then adopt the membrane theory for h/a < 0.01,
CPT for h/a < 0.05, shear deformation theories for h/a <
0.3333, and elasticity theory for h/a > 0.3333. It therefore
follows that the TSDT-based shear correction factor for
FSDT problems are therefore applicable for relative
thickness range of h/a < 0.3333. As such, the following
results were computed for relative thickness up to 0.2
since shear deformation theories are not applicable for
relative thickness of 1/3 and above. As with the CPT and
FSDT, the TSDT is applicable for auxetic materials since
the development of these theories are not confined to
cases where Poisson’s ratio is positive.

Uniform load
Figure 2(a) and (b) shows the effect of relative plate
thickness and plate aspect ratio on the shear correction

Table 1 Computed results of Eq. (15)

Plate aspect ratio a
b

Numerator
X∞
m¼1

X∞
n¼1

−1ð Þmþn
2 −1

mn b
am

2 þ a
b n

2
� � Denominator

X∞
m¼1

X∞
n¼1

−1ð Þmþn
2 −1

mn b
am

2 þ a
b n

2
� �2

Ratio f a; b; a2 ;
b
2

� �

1.0 0.44895 0.24409 1.839281

1.2 0.44059 0.23578 1.868649

1.5 0.40575 0.20627 1.967082

2.0 0.34749 0.15215 2.283865

3.0 0.24622 0.08167 3.014816

5.0 0.15405 0.031175 4.941460

7.5 0.10389 0.013907 7.470339

10.0 0.07859 0.007824 10.04473

Table 2 Shear correction factor expressions for special cases of rectangular plates under sinusoidal loads

Simple sinusoidal load distribution (m = n = 1) General sinusoidal load distributions (m, n ≥ 1)

Square plates a = b κ ¼ 5
6 1þ π2

210 1−vð Þ
h2

a2

h i
κ ¼ 5

6 1þ π2
420 1−vð Þ

h2

a2 m2 þ n2ð Þ
h i

Rectangular plates a≠ b κ ¼ 5
6 1þ π2

420 1−vð Þ
h2

ab
b
a þ a

b

� �h i
κ ¼ 5

6 1þ π2
420 1−vð Þ

h2

ab
b
am

2 þ a
b n

2
� �h i
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factor of a uniformly loaded plate for the entire range of
Poisson’s ratio. Specifically, the shear correction factor
increases when (i) the plate becomes thicker, (ii) the
plate becomes longer or narrower, and (iii) Poisson’s ra-
tio of the plate material is greater. The curves of the
shear correction factors are plotted for Poisson’s ratio of
the range − 1 ≤ v ≤ 0.5. This range is applicable for iso-
tropic materials, in which solids of negative Poisson’s ra-
tio are termed “auxetic” materials (Lim, 2010, 2015a,
2016d); no bounds exist for Poisson’s ratio of anisotropic
ones (Ting, 2005; Lim, 2015b; Boldrin et al., 2016). The
dashed lines in this and subsequent figures indicate the
lower bound for the shear correction factor, i.e., κ = 5/6,
for comparison. The influence of the plate geometry, in
terms of the in-plane aspect ratio and the relative thick-
ness, on the shear correction factor is plotted in Fig. 3
for v = 0.3.

Sinusoidal load
In the case of sinusoidal load, there is a qualitatively
comparable trend in the effect of plate geometry (aspect
ratio and relative thickness) and Poisson’s ratio on uni-
form load. In addition, the waviness of the transverse
static load increases the shear correction factor, as evi-
denced in Fig. 4 for square plates.
In the special case of square plates, the shear correc-

tion factor is unchanged when the load waviness changes
direction. For example, the shear correction factor for
(m, n) = (3, 1) is similar to that for (m, n) = (1, 3); likewise,
the shear correction factor for (m, n) = (5, 1) is similar to
that for (m, n) = (1, 5). This observation, however, does
not hold for rectangular plates. Perusal to Eqs.(20) or
(21) shows that for very long or very narrow plates, the
load waviness measured along the shorter side has
greater influence than that along the longer side, as
shown in Fig. 5.

Comparison with other cases
This section makes two types of comparisons, i.e., (a)
with plates of other shapes but with similar boundary
condition and (b) with similar plates but other boundary
conditions. To put into perspective the current results
with other plates under similar boundary conditions, a
comparison is made with some recently improved shear
correction factors of very thick plates. Table 3 summa-
rizes the improved shear correction factors of very thick
plates evaluated at the plate centroid for three different
Poisson’s ratio within isotropic solids: extremely auxetic
(v = − 1), typical solids (v = 0.3), and incompressible
solids (v = 0.5). The plates considered for comparison
are simply supported isosceles right triangular plate
(Lim, 2016a), equilateral triangular plate (Lim, 2016b),
square plate, and rectangular plate of aspect ratio 4
under uniform load and possess the dimensionless plate
thickness of h/a = 0.2.

a b

Fig. 2 Shear correction factor versus Poisson’s ratio of a simply supported rectangular plate under uniform load with a variation in relative
thickness for a square plate and b variation in aspect ratio for a thick plate

Fig. 3 Influence of aspect ratio and relative thickness on the shear
correction factor of a plate with v = 0.3

Lim International Journal of Mechanical and Materials Engineering  (2016) 11:13 Page 5 of 8



The descriptions of shear correction factors devel-
oped herein apply only for rectangular plates of sim-
ply supported boundary condition, and are therefore
not applicable for thick rectangular plates of clamped
and/or free edges. Nevertheless, it is worthy to note
that the FSDT for Levy plates, as reviewed by Wang
et al. (2000), adopts a shear correction factor of 5/6.
Therefore, on this basis and on the basis of the re-
sults obtained from this paper, it can be said that the
shear correction factor of 5/6 could well continue to
be a tight lower bound and that Poisson’s ratio,
alongside the plate’s relative thickness, exerts influ-
ence on the shear correction factor.

Conclusions
Exact shear correction factors for simply supported very
thick rectangular plates under static loads have been de-
veloped herein for the case of uniform and sinusoidal
loads using the Mindlin-Kirchhoff relationship and the
Reddy-Kirchhoff relationship. Results obtained herein
for uniform and sinusoidal loads show that the exact
shear correction factor is higher than the commonly
used shear correction factor of 5/6 under the following
conditions:

(a)Very thick plates
(b)Very long or narrow plates
(c)Plates made from large Poisson’s ratio (especially

incompressible materials)
(d)Highly patterned loading pattern or sinusoidal load

with high load waviness

However, the use of the lower bound shear correction
factor of κ = 5/6 is valid under the following conditions:

(a)Marginally thick plates
(b)Square or almost square plates
(c)Plates made from auxetic materials, and
(d)Less wavy load pattern, especially uniform loads.

Nomenclature
A = Amplitude of plate deflection
a, b = In-plane dimensions of rectangular plate along

x, y axes
D = Plate flexural rigidity
E = Young’s modulus
G = Shear modulus
h = Plate thickness
Μ = Marcus moment
m, n = Load waviness along x, y axes
q = Load intensity

a b

Fig. 4 Effect of load waviness on the shear correction factor of a sinusoidally loaded square plate with varying a relative thickness and
b Poisson’s ratio

Fig. 5 Asymmetric effect of load waviness on shear correction factor
of a rectangular plate with Poisson’s ratio 0.3 and relative
thickness 0.2
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R2 = Coefficient of determination
w = Plate deflection
x, y = In-plane Cartesian coordinates
κ = Shear correction factor
v = Poisson’s ratio

Superscripts
K = Kirchhoff plate
M = Mindlin plate
R = Reddy plate

Subscript
0 = Maximum intensity for load.
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