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Abstract

In the context of improved navigation for micro aerial vehicles, a new scene recognition visual descriptor, called
spatial color gist wavelet descriptor (SCGWD), is proposed. SCGWD was developed by combining proposed Ohta
color-GIST wavelet descriptors with census transform histogram (CENTRIST) spatial pyramid representation
descriptors for categorizing indoor versus outdoor scenes. A binary and multiclass support vector machine (SVYM)
classifier with linear and non-linear kernels was used to classify indoor versus outdoor scenes and indoor scenes,
respectively. In this paper, we have also discussed the feature extraction methodology of several, state-of-the-art
visual descriptors, and four proposed visual descriptors (Ohta color-GIST descriptors, Ohta color-GIST wavelet
descriptors, enhanced Ohta color histogram descriptors, and SCGWDs), in terms of experimental perspectives. The
proposed enhanced Ohta color histogram descriptors, Ohta color-GIST descriptors, Ohta color-GIST wavelet
descriptors, SCGWD, and state-of-the-art visual descriptors were evaluated, using the Indian Institute of Technology
Madras Scene Classification Image Database two, an Indoor-Outdoor Dataset, and the Massachusetts Institute of
Technology indoor scene classification dataset [(MIT)-67]. Experimental results showed that the indoor versus
outdoor scene recognition algorithm, employing SVM with SCGWDs, produced the highest classification rates
(CRs)—95.48% and 99.82% using radial basis function kernel (RBF) kernel and 95.29% and 99.45% using linear kernel
for the IITM SCID2 and Indoor-Outdoor datasets, respectively. The lowest CRs—2.08% and 4.92%, respectively—
were obtained when RBF and linear kernels were used with the MIT-67 dataset. In addition, higher CRs, precision,
recall, and area under the receiver operating characteristic curve values were obtained for the proposed SCGWDs,

in comparison with state-of-the-art visual descriptors.
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Introduction

Classification of a scene as being indoors or outdoors is
a challenging task in the navigation of a micro aerial ve-
hicle (MAV). Outdoor scenes, due to different weather
conditions and the wide variety of objects involved, as
well as their unstructured nature, are much harder to
recognize than indoor scenes. Better indoor versus out-
door scene categorization will help MAV navigation
where global positioning systems (GPS) signals are not
available. Blockage or interruption of GPS signals by
dense and tall buildings, by trees and inside buildings
occurs in both the indoor and outdoor environment,
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and to overcome this limitation, the MAV (Fig. 1) needs
to have the ability to recognize the difference. A scene
classification method has been proposed for indoor ver-
sus outdoor scene classification, using a probabilistic
neural network that extracts color features, texture
features and shape features [1] from the indoor and out-
door images.

Others have considered this issue. Payne and Singh [2]
proposed a method based on edge straightness informa-
tion, extracted from indoor and outdoor images, for effi-
cient indoor and outdoor image classification. A circular
thresholding method [3], based on Otsu’s algorithm,
used color features, texture features and Otsu features,
for indoor versus outdoor image classification. Semantic,
high-level, scene image properties [4] can be identified
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Fig. 1 Parrot augmented reality drone2 quadrotor

in low level features extracted from the sub blocks of an
image, and Quattoni and Torralba [5] used local and global
spatial properties of a scene for indoor scene recognition.
Videos of indoor environments (corridors, staircases, and
rooms), captured by the forward-facing camera of the
MAV (Fig. 1) were transmitted, with an image resolution of
1280 x 720 pixels, via a Wi-Fi ad-hoc connection between
an augmented reality (AR) drone and a ground station.
Another indoor scene classification method [6] has been
proposed that combines orientational pyramid matching
features with spatial pyramid matching (SPM) features,
using 3 dimensional orientational features to discriminate
between confusing indoor scene categories.

Nearest neighbor-based metric functions [7] and Bag-of-
visual word schemes have been used to recognize indoor
scenes, while local image regions have been represented by
contextual visual words [8] for scene categorization. In an-
other study, a Scene Understanding (SUN) database [9] was
proposed for large-scale scene recognition, using 130,519
images from 899 scene categories.

Efficient scene recognition methods [10-12] have been
proposed by researchers across the world. Recently,
region-based contextual visual information, integrated
with the Bag-of-visual words approach and contextual
visual word-based image representation [13] of the
scene, was proposed for efficient scene categorization. In
another study, a query binary image retrieval method
[14] was proposed, using deep belief networks and a
Softmax classifier, while neural network classifiers [15]
have been used as a tool to categorize remotely sensed
images.

A divisive information theoretic feature clustering algo-
rithm [16] has been used to create compact, pyramid-
based image representation for object and scene recogni-
tion, while a sparse coding-based, SPM kernel [17] was
proposed to capture salient image properties for use in
image categorization, by applying sparse coding and
spatial max pooling to scale-invariant feature transform
(SIFT) descriptors. Spatial pyramid image representation,
achieved by computing histograms of SIFT descriptors
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[18] extracted from image sub-regions, has been proposed.
In a separate study, several state-of-the-art visual descrip-
tors [19] were evaluated, using classification accuracy
ratings for four benchmark scene data sets, such as an
eight-outdoor-scene data set, a 15-scene data set, a 67-in-
door-scene data set, and the SUN397 data set. The
major contribution of this study was the integration of
proposed Ohta Color-GIST wavelet descriptors and
CENTRIST (spatial pyramid representation) descriptors,
to recognize complex indoor versus outdoor scenes for
MAV navigation in GPS-denied indoor and outdoor envi-
ronments. Finally, several additional scene recognition
methods [20-22] have been proposed, for indoor versus
outdoor scene and indoor scene categorization.

Related scene recognition visual descriptors

Visual descriptors—such as SIFT-ScSPM, SIFT-LLC,
SIFT-SPM, histogram of oriented gradients (HOG)-
SPM, Enhanced-GIST, CENTRIST, CENTRIST (spatial
pyramid representation), speeded-up Robust Features
(SURF)-SPM, Color-GIST descriptors, Ohta Color-GIST
wavelet descriptors, and spatial color gist wavelet de-
scriptors (proposed visual descriptors)—have been used
for indoor versus outdoor scene categorization. Several
of the feature extraction methods used in these descrip-
tors for scene categorization have been discussed in the
following sub-sections.

Sift

SIFT keypoints extracted using the SIFT algorithm proposed
by Lowe [23] are immune to rotation, translation, and image
illumination and scaling changes. In this method, scale-
space extreme detection, keypoint localization, orientation
assignment, and calculation of keypoint descriptors are the
four steps involved in SIFT descriptor extraction. Difference
Gaussian filters are applied to the image frames to identify
stable keypoint locations in scale space, in a step where, to
detect stable keypoints, unstable keypoints below the thresh-
old value are discarded. For each stable keypoint, orienta-
tions are assigned by computing the local image gradient,
before gradient magnitudes and orientations are computed
for each keypoint, to extract any SIFT descriptor in the 16 x
16 neighborhood of the pixel. Gradient magnitude and
orientation are weighted using a Gaussian window around
the location of the keypoint, to create orientation histograms
with 8 bins over 4 x4 (16 regions) sub regions, so that a
128-element, feature vector SIFT descriptor is extracted
from each 4 x 4 sub-region. SIFT key points extracted from
an indoor image are shown in Fig. 2a, in which the circle
center and radius represent the detected SIFT keypoints and
the average keypoint scale, respectively. Average keypoint
orientation is represented by the arrow inside the circle.



Ganesan and Balasubramanian Visual Computing for Industry, Biomedicine, and Art

(2019) 2:20 Page 3 of 13

(e)

Fig. 2 lllustration of visual descriptors. a Scale-invariant feature transform key points detected in an outdoor image; b Speeded up robust features
key points detected in an indoor image; ¢ Histogram of oriented gradients features detected in an outdoor image; d Input indoor image; e
Horizontal directional morphological gradient; f Vertical directional morphological gradient; g GIST descriptor

®

Surf

As for the SIFT descriptor, a scale invariant and rotation
invariant visual descriptor [24] has been proposed, using
determination of a hessian matrix. In this method, key-
points are selected from the detected SURF interest
points in multi-scale space, using non-maximum sup-
pression. Next, within a sliding orientation window, the
sum of all Haar wavelet responses is calculated, to esti-
mate the orientation of the keypoint with the longest
vector. The Haar wavelet responses for each 4 x 4 sub-
region around the key point are computed, in the hori-
zontal (d,) and the vertical (d,) directions, so that, for
each 4 x4 sub-region, the feature vector is denoted as
v=(Xd,, Xd,, ¥ |d,|, ¥|d,|). SURF key points are ex-
tracted as shown in Fig. 2b. The circle center and radius
represent the detected SURF keypoints and the average
keypoint scales, respectively. Average keypoint orienta-
tion is represented by the arrow inside the circle.

Hog

The HOG descriptor [25] was proposed to detect pedes-
trians in grayscale images. In the HOG method, local
gradient orientation histograms are computed from
grayscale images, to extract the HOG descriptor. Firstly,
image gradients along the horizontal and vertical direc-
tions are computed, followed by dividing the image into
circular or rectangular connected regions—each with the
dimensions of 16 x 16 pixels—called cells. Thirdly, gradi-
ent orientation histograms of are computed within each

cell's pixels, and each cell’s pixels contribute to the
weighted score for a histogram. Finally, the L2-norm
method is used to normalize cell histograms (9 bins) to
obtain the HOG descriptor. A HOG descriptor detected
in a grayscale image for 16 x 16 pixel cell size can be
seen in Fig. 2c.

Centrist

CENTRIST is a scene categorization visual descriptor de-
veloped [26] by replacing each pixel intensity value in a
grayscale image with a census transform (CT) value. In this
method, to convert the input grayscale image into a Census
Transformed image (Fig. 3b) the center pixel intensity is
compared with those of its 3 x 3-pixel neighborhood. Bit
“1” is assigned to the neighboring pixel if the center pixel
value is greater than the value of the neighboring pixel;
otherwise the pixel value is set to “0”. After obtaining the
CT value (Fig. 3c), histograms of CT values are used to ob-
tain the 256-dimensional CENTRIST descriptor (not using
principal component analysis). To extract CENTRIST de-
scriptor spatial representation, an indoor or outdoor image
is divided into 31 blocks (25 + 5 + 1), for a level 2, 1, and 0
split in a spatial pyramid. The CENTRIST descriptors ex-
tracted from the 31 image blocks are then concatenated, to
produce a spatial representation of the 7936 (31 x 256) di-
mensional CENTRIST descriptor. Therefore, to reiterate,
CENTRIST descriptors with spatial pyramid representation
and CENTRIST descriptors differ from each other in the
feature extraction stage.
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Fig. 3 Census transformed output. a Indoor image; b Census transformed Indoor image; ¢ Census transformed value
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Enhanced-GIST descriptor

The Enhanced-GIST descriptor method was proposed
[27] to recognize corridors, staircases, and room types,
in indoor scenes, by encoding the spatial envelope and
geometric structure of the indoor scene. In this method,
a bank of 32 Gabor filters is applied to an indoor and
outdoor grayscale image (256 x 256 pixels), at 4 scales
and 8 orientations, to produce 32 feature maps. These
32 feature maps are then divided into 4 x4 grids, and
the filtered outputs within each of the 16 regions are av-
eraged, to produce a 512-dimensional (16 x 32) GIST de-
scriptor (Fig. 2g). Directional morphological gradient
[28] features (Fig. 2e and f) are extracted for horizontal
and vertical direction «, by using a line structuring elem-
ent, as shown in Eq. (1):

8La(f) = OLo(f)-eLa(f) (1)

where JL,(f) denotes the dilated image and eL,(f) denotes
the eroded image. Histograms of horizontal and vertical
directional morphological gradient (HODMG) features
are used for scene classification. GIST (512-dimensional)
and HODMG (512-dimensional) descriptors are then
combined, to produce 1024-dimensional Enhanced-GIST
descriptors.

Bag-of-words algorithms

Bag-of-words algorithms—such as SIFT-SPM, SIFT-
ScSPM, and SIFT-LLC—have been employed for indoor
versus outdoor scene classification. In the feature extrac-
tion phase, dense SIFT features are extracted from a
regular grid, and quantized into discrete visual words,
and the SPM algorithm was proposed [18] to categorize
natural scenes. To extract SIFT-SPM, HOG-SPM, and
SURF-SPM from indoor and outdoor images, the input
image is first divided into regular grids (grid spacing of 8
pixels), and SIFT, SURF and HOG descriptors are
extracted from each grid. The visual vocabulary is then
formed, by applying k-means clustering to the extracted
features. The vector quantization (VQ) technique is then

applied, to form discrete visual words, with local features
represented based on the trained dictionary (codebook).
Spatial histograms of coded features constitute the final
feature vectors. In the sparse coding-based, SPM method
proposed by Yang et al. [17], the VQ method was re-
placed with the sparse coding method, to quantize the
local features used in SPM. In SPM and ScSPM, the his-
tograms and the max operator are used for spatial pool-
ing, and locality-constrained linear coding (LLC) [29] is
used for image classification. Linear-weighted combina-
tions of similar bases are learned from the trained visual
words, and represent local features.

Wavelet descriptors
In this method, an input RGB image is converted into CIE-
LAB (Lab) color space, and the resultant Lab color space
image is re-sized with a scale factor value of 1/16. Wavelet
descriptors [30] are computed by means of three-level
wavelet decomposition, using a Biorthogonal wavelet trans-
form. The Lab color space and 2-D wavelet decomposition
image are shown in Fig. 4. The 2-D (2 dimensional) wavelet
decomposition is performed on the “L” channel of the Lab
color space, and the approximation coefficients at level 3
are extracted using biorthogonal wavelets (Bior 2.6).
Laplacian filtering is then applied to the extracted
approximation coefficients, to obtain the Laplacian-
filtered coefficients. Finally, the percentage of wavelet
energy for 2-D wavelet decomposition—corresponding
to the approximation coefficients (Laplacian-filtered co-
efficients), and the horizontal, vertical, and diagonal de-
tail coefficients—is computed, and is used as a feature
vector for indoor and outdoor image classification.

Color-GIST descriptors

Visual perception of a scene from red, green, and blue
channel, RGB indoor and outdoor images, at a glance, is
known as Color-GIST recognition of an indoor versus
outdoor scene. Red channel, blue channel and green chan-
nel information is extracted from the input RGB image
(resolution: 256 x 256 pixels). For the red channel, blue
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Fig. 4 Wavelet descriptors. a CIELAB color space image; b 2 dimensional wavelet decomposition output

(b)

channel, and green channel, GIST descriptors [31] are ex-
tracted by applying 64 Gabor filters, at 4 scales and 16 ori-
entations, to produce 64 feature maps. In each channel,
the resultant maps are divided into 16 regions, and the fil-
tered outputs within each region are then averaged to pro-
duce 1024-dimensional (64 x 16) descriptors. Color-GIST
descriptors (Fig. 5) are extracted by concatenating the
GIST descriptors extracted from each channel, to produce
a 3072-dimensional (1024 x 3) descriptor.

Methods

Real time indoor and outdoor scene recognition capabilities
are needed, in order to navigate an MAV successfully. By
recognizing scenes as indoor or outdoor, an MAV can follow

a navigation strategy suitable for the performance of high
level missions. A block diagram for a proposed indoor versus
outdoor scene recognition framework is shown in Fig. 6.

The indoor versus outdoor scene recognition model
consists of training and testing stages. In the training
stage, visual descriptors, such as Ohta Color-GIST wavelet
descriptors and CENTRIST (spatial pyramid) descriptors,
are extracted from indoor and outdoor training images.
The extracted SCGWDs are learned using a support vec-
tor machine (SVM) classifier, with linear and nonlinear
kernels. In the testing stage, SCGWDs are extracted from
the test image, and the SVM classifier with linear and
nonlinear kernel classify the scene category as indoor or
outdoor based on the scene recognition model learned at
the training stage.

Fig. 5 Visual illustration of Color-GIST descriptora RGB outdoor image; b Red channel (RGB image); ¢ Green channel (RGB image); d Blue channel
(RGB image); e-g Color-GIST descriptor extracted applying 32 Gabor filters at 4 scales and 8 orientations from red channel (e) green channel (f)
and blue channel (g); h-j Color-GIST descriptor extracted applying 64 Gabor filters at 4 scales and 16 orientations from red channel (h) green

channel (i) and blue channel (j)
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This study included comparative testing between several
state-of-the-art visual descriptors and the proposed SCGWD,
from both experimental and methodological perspectives, for
indoor versus outdoor scene categorization tasks performed
in the challenging Indian Institute of Technology Madras —
Scene Classification Image Database two (IITM-SCID2), an
Indoor-Outdoor Dataset, and the Massachusetts Institute of
Technology indoor scene classification dataset (MIT)-67). In
our study, several existing, state-of-the art visual descriptors
have been applied to the challenge of indoor versus outdoor
scene categorization. The proposed SCGWD, Ohta Color-
GIST wavelet descriptors, Ohta Color-GIST descriptor, and
Enhanced Ohta color histogram descriptors have been com-
pared with state-of-the-art visual descriptors, including
CENTRIST-spatial pyramid, Color-GIST descriptors, Wave-
let descriptors, Census Transform Histogram (CENTRIST),
SIFT transformed with Sparse coding-based SPM (SIFT-
ScSPM), SIFT with Locality-Constrained Linear Coding
(SIFT-LLC), SIFT with SPM (SIFT-SPM), HOG with SPM
(HOG-SPM), Speeded Up Robust Features with SPM
(SURF-SPM), and Enhanced-GIST descriptors. The major
contribution from the study has been integration of the pro-
posed Ohta Color-GIST wavelet descriptors with CENTRIST
(spatial pyramid) descriptors, to categorize indoor versus out-
door scene images for MAV navigation in GPS-denied in-
door and outdoor environments.

Enhanced Ohta color histogram descriptors (proposed
visual descriptors)

Ohta color space [32] is a linear transformation of RGB
color space, in which color channels are computed for
the indoor and outdoor image as follows:

[1=R+G+B
I2=R-B (2)
I3=R-2G +B

For each color channel, histogram features are extracted,
using 32, 64, 128, and 256 bins, respectively, and then these
features are concatenated, to form the Enhanced Ohta
color histogram descriptors (480 dimensional descriptor).

Ohta color-GIST descriptors and Ohta color-GIST wavelet
descriptors (proposed visual descriptors)

Ohta color histogram descriptors and Color-GIST descrip-
tors are combined to produce Ohta Color-GIST descriptors
(3552-dimensional descriptor (3072 +480)). For each in-
door and outdoor image, the Enhanced Ohta color histo-
gram descriptors, Color-GIST descriptors, and wavelet
descriptors are combined, to produce the proposed Ohta
Color-GIST wavelet descriptors (480 + 3072 + 22 = 3574-di-
mensional descriptor).
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SCGWDs (proposed visual descriptor)

SCGWDs are a new visual descriptor, created for the indoor
versus outdoor scene classification task by combining Ohta
Color-GIST wavelet descriptors with CENTRIST (spatial
pyramid representation) descriptors. In this method, En-
hanced Ohta color histogram descriptors were initially ex-
tracted, using 32, 64, 128, and 256 histogram bins. Then,
Color-GIST descriptors were extracted from the image
frame red, green, and blue channels, by applying 64 Gabor
filters, at four scales and sixteen orientations, to obtain 64
feature maps. We then divided the 64 feature maps into 4 x
4 grids and averaged the Gabor-filtered outputs to obtain
the Color-GIST descriptors. In the next stage, wavelet de-
scriptors were extracted by computing 2-D wavelet decom-
position at level 3 on the “L” channel of the Lab color space
image. The energy coefficients from the Laplacian-filtered
approximation coefficients, and the horizontal, vertical, and
diagonal detail coefficients were then combined, to produce
wavelet descriptors. After this, CENTRIST (spatial pyramid)
descriptors were extracted by dividing the image into 31
blocks and concatenating the histogram of the Census
Transformed values into 31 image blocks, to produce spatial
pyramid representations of the CENTRIST (spatial pyramid)
descriptors. Finally, Enhanced Ohta color histogram descrip-
tors, Color-GIST descriptors, wavelet descriptors, and CEN-
TRIST (spatial pyramid) descriptors were combined, to
produce the proposed SCGWDs.

Implementation of indoor versus outdoor scene
visual descriptors

In this section, we have discussed using state-of-the-art vis-
ual descriptors and the proposed Ohta color-GIST descrip-
tors, Ohta color-GIST wavelet descriptors, and SCGWDs
for indoor versus outdoor scene classification.

To extract the Enhanced-GIST descriptor, the input
grayscale image was divided into 16 regions, and 32 Gabor
filters were applied, at 4 scales and 8 orientations, to ob-
tain 32 GIST features. The 32 Gabor-filtered output re-
sponses within 16 regions were then averaged, to produce
a 512-dimensional (16 x 32) GIST descriptor. Finally, the
extracted GIST descriptors (512-dimensional) were com-
bined with HODMG features (also 512-dimensional), to
produce a 1024-dimensional, Enhanced-GIST descriptor.

Three different feature vector encoding methods—
SPM, LLC and ScSPM—were used to encode the SIFT-
based descriptor. To implement the SIFT-ScSPM, SIFT-
LLC, and SIFT-SPM descriptors, dense SIFT features
were extracted from overlapping 16 x 16 patches, on
dense grids, established every 8 pixels.

SIFT-ScSPM  descriptors were extracted by applying
sparse coding to the dense SIFT features, and then a lin-
ear SPM kernel, based on this sparse coding, was ob-
tained by applying spatial max pooling. For SIFT-ScSPM
use in our study, the sparse constraint parameter value
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was set at 0.15, and a trained dictionary of 1024 words
was used. This 1024-word, feature dictionary was ob-
tained by applying the K-means clustering algorithm to
local features. Finally, using the ScSPM algorithm, global
features were produced from the dense SIFT descriptors.
The feature vector encoding capabilities of the SIFT-
ScSPM, SIFT-LLC, and SIFT-SPM descriptors were eval-
uated and compared—with the results shown in Table 1.

SIFT-SPM descriptors were extracted by applying the
SPM algorithm from dense SIFT descriptors to global
descriptors from the indoor and outdoor image. Three
pyramid layers in the SPM scheme, and a codebook size
of 400, were used here to extract the SIFT-SPM descrip-
tors. A visual vocabulary of 400 visual words was obtained
from the training set, by applying K-means clustering to a
random subset of patches, and then local features were
quantized, using the trained visual words. Finally, SIFT-
SPM descriptors with 8400 bins were obtained, by concat-
enating the quantized SIFT feature histograms obtained
from the indoor and outdoor image.

SIFT-LLC descriptors were extracted from the image
by applying the LLC algorithm to dense SIFT features. A
1024-entry codebook, trained using the K-means cluster-
ing technique, was used to obtain the LLC codes from
indoor and outdoor images. In the LLC feature extrac-
tion stage in our study, the K-nearest neighbor value
was set to 5. Finally, max pooling was applied to the
LLC codes of the dense SIFT descriptors, to produce
SIFT-LLC descriptors.

HOG-SPM descriptors were extracted from overlap-
ping 16 x 16 patches, by extracting local features from a
dense grid which had a step size of 8 pixels. Firstly,
image gradients were computed along the horizontal
and vertical directions of the grayscale indoor and out-
door images, and then histograms were computed for
multiple orientations, to produce HOG features. Global
features were obtained by applying the SPM algorithm
to the HOG descriptors. In HOG-SPM for this study, 3
pyramid layers (4200 dimension) and a 200-word code-
book were used.

SUREF-SPM descriptors were extracted by detecting
SURF interest points (100 interest points) in 256 x 256
pixel resolution, grayscale images. Global features (SURF-
SPM) were obtained using the SPM algorithm, and in
SUREF-SPM, as used here, 3 pyramid layers (8400-dimen-
sion) and a codebook size of 400 and were used.

CENTRIST descriptors were extracted by comparing
the center pixel to the intensity values of its 3 x 3 pixel
neighborhood. Bit “0” was assigned to the neighboring
pixel if the center pixel value was less than the neighbor-
ing pixels, otherwise bit “1” was assigned. The CENTRIST
descriptors extracted from indoor and outdoor images
were 256-dimensional descriptors. Spatial representation
of CENTRIST descriptors was extracted by dividing the
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Table 1 Scene categorization performance on the Indian institute of technology madras-scene classification image database

two dataset

No Algorithms CR Precision Recall F-measure AUC

1 CENTRIST-spatial pyramid (RBF) 92.93% 92.93% 9291% 92.92% 92.92%
2 CENTRIST-spatial pyramid (linear) 92.53% 92.53% 92.54% 92.53% 92.54%
3 Color-GIST descriptors (RBF) 89.59% 89.58% 89.58% 89.58% 89.37%
4 Color-GIST descriptors (linear) 81.73% 81.77% 81.68% 81.73% 81.68%
5 Wavelet descriptors (RBF) 75.05% 75.10% 75.09% 75.09% 75.09%
6 CENTRIST (linear) 85.06% 85.08% 85.09% 85.08% 85.10%
7 CENTRIST (RBF) 86.24% 86.27% 86.28% 86.28% 86.28%
8 SIFT-ScSPM (linear) 92.92% 92.92% 92.94% 92.93% 92.94%
9 SIFT-LLC (linear) 92.53% 92.52% 92.54% 92.53% 92.55%
10 SIFT-SPM (Chi-square) 86.05% 87.42% 85.84% 86.62% 85.84%
" HOG-SPM (Chi-square) 80.74% 86.31% 80.32% 83.20% 80.32%
12 SURF- SPM (Chi-square) 84.47% 88.34% 84.13% 86.19% 84.14%
13 Enhanced-GIST (RBF) 89.98% 90.19% 89.90% 90.05% 90%

14 Enhanced-GIST (linear) 84.28% 84.40% 84.21% 84.21% 84.22%
15 Enhanced Ohta color histogram descriptors (RBF)-proposed 76.03% 77.04% 76.23% 76.63% 76.23%
16 Ohta Color-GIST descriptors (RBF)-proposed 90.57% 90.56% 90.56% 90.56% 90.57%
17 Ohta Color-GIST descriptors (linear)-proposed 88.21% 88.21% 88.21% 88.21% 88.21%
18 Ohta Color-GIST wavelet descriptors (linear)-proposed 88.61% 88.61% 88.59% 88.60% 88.59%
19 Ohta Color-GIST wavelet descriptors (RBF)-proposed 90.57% 90.56% 90.56% 90.56% 90.57%
20 spatial color-gist wavelet descriptors (linear) -proposed 95.29% 95.28% 95.28% 95.28% 95.28%
21 spatial color-gist wavelet descriptors (RBF)-proposed 95.48% 95.50% 95.47% 95.48% 95.47%

AUC Area under the receiver operating characteristic curve, CR Classification rate, RBF Radial basis function kernel, SIFT-LLC SIFT with locality-constrained linear
coding, SIFT-ScSPM SIFT with sparse coding based spatial pyramid matching, SIFT-SPM SIFT with spatial pyramid matching, SPM Spatial pyramid matching, HOG
Histogram of oriented gradients, SURF Speeded up robust features, CENTRIST Census transform histogram

input image into 31 blocks, and the obtained histogram of
Census Transformed values were concatenated into 31
blocks, to produce a 7936-dimensional descriptor.

To extract Wavelet descriptors, RGB input images were
converted into CIELAB color space images. 2-D Wavelet
decomposition, using biorthogonal wavelets (Bior 2.6),
was applied, on the “L” channel of the Lab color space
image. Wavelet energy coefficients—such as approxima-
tion coefficients (Laplacian-filtered coefficients), and hori-
zontal, vertical, and diagonal detail coefficients—were
extracted at level 3 and used as feature vectors. To extract
the Enhanced Ohta color histogram descriptors, RGB im-
ages were converted into Ohta color space channels 11, 12,
and I3, and Ohta color channel histograms were com-
puted with 32, 64, 128, and 256 bins. The color histogram
features were then concatenated, to produce Enhanced
Ohta color histogram descriptors.

To extract Color-GIST descriptors, input RGB
image red, green, and blue channels were each divided
into 16 regions, and 64 Gabor filters were applied, at 4
scales and 16 orientations, to obtain 64 GIST feature
maps. The 64 Gabor-filtered output responses within
16 regions were then averaged, to produce a 1024-

dimensional (16 x 64) GIST descriptor. GIST descriptors
extracted from each channel were then combined, to pro-
duce 3072-dimensional (1024 x 3) Color-GIST descriptors.

The extracted Enhanced Ohta color histogram descrip-
tors and Color-GIST descriptors were combined, to pro-
duce the proposed Ohta Color-GIST descriptors—which
were 3552-dimensional descriptors. The Enhanced Ohta
color histogram descriptors, the Color-GIST descriptors,
and the wavelet descriptors were then combined, to pro-
duce the proposed Ohta Color-GIST wavelet descriptors
(3574-dimensional descriptors).

SCGWDs were then extracted for indoor and out-
door images by combining the Enhanced Ohta color
histogram descriptors, the Color-GIST descriptors, the
wavelet descriptors, and the CENTRIST (spatial pyra-
mid) descriptors.

Experimental evaluation and results

This section presents an experimental evaluation of the pro-
posed visual descriptor’s performance, with respect to
current, state-of the-art visual descriptors. All visual descrip-
tors were evaluated using the IITM-SCID2 Dataset and
Indoor-Outdoor Dataset, using five performance measures—
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CR, precision, recall, F-measure, and area under the curve
(AUQC).

Dataset for indoor versus outdoor scene recognition
Scene classification experiments were conducted using the
IITM-SCID2 and Indoor-Outdoor datasets. We used com-
plex and confusing indoor and outdoor images, which re-
quired visual descriptors with strong discriminative ability to
classify the indoor and outdoor scenes. Indoor scene classifi-
cation experiments were conducted on the MIT-67 Dataset.
The IITM-SCID2 Dataset is a challenging benchmark
dataset containing 902 images of indoor and outdoor
scenes. From this dataset, 193 indoor images and 200 out-
door images were used in the training phase, to train the
SVM classifier, while in the testing phase, 249 indoor
images and 260 outdoor images were used, based on the
trained scene recognition model. The Indoor-Outdoor
Dataset consists of eight outdoor scene categories,
including tall buildings, cityscapes, streets, highways,
mountains, forests, open country, and coastal images, in a
4485-image dataset, and three indoor scene categories, in-
cluding corridors, staircases, and rooms. Real time image
frames were acquired from MAVs, with an image reso-
lution of 1280 x 720 pixels. The dataset contained 1100
training images (300 indoor and 800 outdoor images), and
550 testing images (150 indoor and 400 outdoor images).
The MIT-67 Dataset contains 15,620 images in 67 cat-
egories of complex indoor scenes. Here, 100 images or so
from each of the 67 categories were chosen, so that
around 6700 images were used for training and testing the
classifier, using ten-fold cross validation, respectively.

Performance measures and kernels used for indoor versus
outdoor scene recognition

In this paper, five different performance measures, in-
cluding CR, precision, recall, f-measure, and AUC of the
receiver operating characteristic (ROC) curve were used
to assess indoor versus outdoor scene classification
performance. In out testing, CR was defined as the per-
centage of correctly categorized test images, and four
measures—true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN)— could be com-
puted, using the obtained confusion matrix.

Precision rate was expressed as shown in Eq. (3):

TP
P=———— 3
TP + FN 3)
where TP and FN represent the TP and FN, respectively.
Recall rate was expressed as shown in Eq. (4):

TP
=" 4
R TP + FP )

where TP and FP represent the TP and FP, respectively.
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The F-measure was defined as shown in Eq. (5):

2PR
= piR (5)
where P and R represent the precision rate and recall
rate, respectively.

Area under the ROC curve, or AUC, was used as a
performance measure to evaluate the indoor versus out-
door scene classification algorithm.

In this work, SVM with three different types of ker-
nels—linear, RBF, and chi-squared—were used to classify
the indoor and outdoor scenes.

The linear kernel for SVM classification could be com-
puted as shown in Eq. (6):

K (x,%)) = %1% (6)

where x; and x; represent two feature vectors.
The RBF kernel for SVM classification could then be
computed as shown in Eq. (7):

K (%, %)) = exp{—y||xi—x/||2} (7)

where y is a positive scalar, and x; and x; denote two fea-
ture vectors.

The Chi-square kernel could be then computed as
shown in Eq. (8):

N

-2 Tty

i=1

2oy ®)

k(x,y) = it )

where x; and y; represent two feature vectors. The Recog-
nition rate, Precision (P), Recall (R), F-measure (F) and
AUC were calculated, and the performance of the visual
descriptors with SVM classifiers was evaluated using the
IITM-SCID2 and Indoor-Outdoor datasets.

Classification results using the IITM-SCID2, indoor-
outdoor, and MIT-67 datasets

Indoor versus outdoor scene classification results achieved
on the IITM-SCID2 Dataset and Indoor-Outdoor Dataset
using state-of-the-art visual descriptors and three pro-
posed visual descriptors—Ohta color-GIST descriptors,
Ohta color-GIST wavelet descriptors and SCGWD—have
been listed in Tables 1 and 2. Scene classification experi-
ments were conducted on a laptop computer equipped
with an Intel i7-7500U CPU, operating at 2.70 GHz, and
using 16 GB of RAM.

Experimental results indicated that, among the two
datasets (the benchmark IITM-SCID2 Dataset and
the Indoor-Outdoor Dataset), the IITM-SCID2 Data-
set was the most difficult and challenging dataset
from which to classify indoor and outdoor images.

The benchmark, eight-outdoor-scene data set (Out-
door images) included in the Indoor-Outdoor Dataset
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Table 2 Scene categorization performance on the Indoor Outdoor dataset

No Algorithms CR Precision Recall F-measure AUC

1 CENTRIST-spatial pyramid (RBF) 97.27% 97.47% 95.62% 96.54% 95.63%
2 CENTRIST-spatial pyramid (linear) 95.81% 95.36% 94% 94.67% 94%

3 Color-GIST descriptors (RBF) 89.63% 92.89% 81.41% 86.77% 81.42%
4 Color-GIST descriptors (linear) 83.27% 78.84% 81.83% 80.31% 81.83%
5 Wavelet descriptors (RBF) 74.54% 69.11% 71.45% 70.26% 71.46%
6 CENTRIST (linear) 93.63% 92.88% 90.83% 91.84% 90.83%
7 CENTRIST (RBF) 97.27% 96.14% 97.08% 96.61% 97.08%
8 SIFT-ScSPM (linear) 98.72% 98.49% 98.29% 98.39% 98.29%
9 SIFT-LLC (linear) 99.27% 98.88% 99.29% 99.08% 99.29%
10 SIFT-SPM (Chi-square) 57.81% 51.75% 52.04% 51.89% 52.04%
11 HOG-SPM (Chi-square) 71.81% 51.79% 50.20% 50.98% 50.21%
12 SURF- SPM (Chi-square) 73.27% 86.56% 51% 64.18% 51.00%
13 Enhanced-GIST (RBF) 97.81% 96.73% 97.87% 97.30% 97.88%
14 Enhanced-GIST (linear) 96.72% 94.98% 97.12% 96.04% 97.12%
15 Enhanced Ohta color histogram descriptors (RBF)-proposed 7345% 65.11% 61.33% 63.16% 61.33%
16 Ohta Color-GIST descriptors (RBF)-proposed 98.73% 98.29% 98.50% 98.39% 98.50%
17 Ohta Color-GIST descriptors (linear)-proposed 96.72% 94.86% 97.33% 96.08% 97.33%
18 Ohta Color-GIST wavelet descriptors (linear)-proposed 97.27% 95.70% 97.70% 96.69% 97.71%
19 Ohta Color-GIST wavelet descriptors (RBF)-proposed 98.73% 98.29% 98.50% 98.39% 98.50%
20 Spatial Color-gist wavelet descriptors (linear) -proposed 99.45% 99.21% 99.42% 99.31% 99.42%
21 spatial color-gist wavelet descriptors (RBF)-proposed 99.82% 99.67% 99.87% 99.77% 99.88%

AUC Area under the receiver operating characteristic curve, CR Classification rate, RBF Radial basis function kernel, SIFT-LLC SIFT with locality-constrained linear
coding, SIFT-ScSPM SIFT with sparse coding based spatial pyramid matching, SIFT-SPM SIFT with spatial pyramid matching, SPM Spatial pyramid matching, HOG
Histogram of oriented gradients, SURF Speeded up robust features, CENTRIST Census transform histogram

was the easiest to classify, in comparison to the out-
door images in the IITM-SCID2 Dataset. The highest
average CRs—95.48% and 99.82% using the RBF ker-
nel, and 95.29% and 99.45% using the linear kernel—
attained from the IITM-SCID2 Dataset and Indoor-
Outdoor Dataset were achieved by the SCGWDs. CR,
Precision, Recall, F-measure, and area under the ROC
(AUC) performance measures indicated that the SCGWD
achieved results better than those of the state-of-the-art
visual descriptors.

The proposed method could be used as a scene clas-
sifier for navigating MAVs in indoor and outdoor en-
vironments. The results inferred that the combination

Table 3 Computational cost calculation

of color features (Enhanced Ohta color histogram de-
scriptors and color-GIST descriptors) and texture fea-
tures [Wavelet descriptors and CENTRIST (spatial
pyramid representation)] was very effective in classify-
ing indoor and outdoor scenes.

Our study was a comparative study between several
state-of-the-art visual descriptors and the proposed
Ohta color-GIST descriptors, Ohta color-GIST wavelet
descriptors and SCGWD, from both methodological
and experimental perspectives, for indoor versus out-
door scene and indoor scene classification tasks. Indoor
scene SCGWD classification results achieved using the
MIT-67 dataset have been listed in Table 3, and CRs of

Type of feature SVM IITM-SCID2 Dataset Indoor-Outdoor Dataset MIT-67 indoor scene classification
classifier Dataset
method Recognition  Average time elapsed, Recognition Average time elapsed, Recognition Average time elapsed,
rate in seconds per frame in seconds per frame  rate in seconds per frame
Spatial color gist linear 95.29% 258 99.45% 2.80 4.92% 1.74
wavelet descriptors  kernel
RBF 95.48% 2.60 99.82% 2.89 2.08% 212
kernel

SVM Support vector machine, I[TM-SCID2 Indian institute of technology madras-scene classification image database two, RBF Radial basis function kernel
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Fig. 7 Confusion matrices obtained for spatial color gist wavelet descriptors on Indian institute of technology madras-scene classification image

database two dataset. a Linear kernel; b Radial basis function kernel
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2.08% and 4.92% were obtained using the RBF and lin-
ear kernels.

These experimental results indicated that SCGWDs per-
formed better for indoor versus outdoor scene categorization
as opposed to indoor scene categorization. In fact, the
SCGWDs were proposed mainly for indoor versus outdoor
scene categorization, but descriptor effectiveness was also
tested, and was found to be unsuitable for the indoor scene
classification task, as the spatial layout, color, and texture in-
formation extracted from indoor scenes using the SCGWD
was insufficient for recognition of indoor scenes.

Compared to other visual descriptors, SCGWD had
the highest CR on the IITM-SCID2 Dataset and Indoor-
Outdoor Dataset, as shown in Tables 1 and 2.

The confusion matrices obtained when applying the
SCGWD to the IITM-SCID2 and Indoor-Outdoor data-
sets are shown in Figs. 7 and 8, respectively. The rows
and columns in the confusion matrices correspond to
actual and predicted classes, respectively, while the diag-
onal values show the average CR for each indoor and
outdoor image category.

Computation times taken, per frame, have been docu-
mented in Table 3.

Conclusions

Indoor versus outdoor scene classification is difficult,
due to intra-class variability, inter-class similarity in the
case of indoor scenes, and the variability of outdoor
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Fig. 8 Confusion matrices obtained for Spatial color gist wavelet descriptors on Indoor Outdoor dataset. a Linear kernel; b Radial basis
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scene content caused by different weather conditions and
the nature of the objects involved in outdoor scenes. In this
paper, a new visual descriptor, called the SCGWD and
based on the combination of proposed Ohta color-GIST
wavelet descriptors and CENTRIST (spatial pyramid repre-
sentation) descriptors for Indoor-Outdoor scene classifica-
tion task, has been described. The proposed new visual
descriptor consists of color, texture, and spatial information
content of the scene. When faced with the IITM-SCID2
dataset and Indoor-Outdoor Dataset, SCGWDs produced
recognition rates of 95.48% and 99.82%, using SVM with an
RBF kernel, and 95.29% and 99.45% using SVM with a lin-
ear kernel. Furthermore, using SCGWDs for scene classifi-
cation, higher CR, precision, recall, and area under the
ROC curve values were obtained, with respect to other,
state-of-the-art visual descriptors.

In contrast, CRs of only 2.08% and 4.92% were ob-
tained using RBF and linear kernels with the MIT-67
dataset, which showed that the SCGWD was unsuitable
for use in the categorization of complex, 67 indoor scene
image categories. Overall, however, we were able to con-
clude that the proposed scene recognition algorithm
could be used as a scene classifier (Indoor versus Out-
door) for navigating MAVs.
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