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Abstract

- Omid Mir! . René Mayrhofer’

Providing methods to anonymously validate user identity is essential in many applications of electronic identity (eID) systems.
A feasible approach to realize such a privacy-preserving elD is the usage of group signature protocols or pseudonym-based
signatures. However, providing a revocation mechanism that preserves privacy is often the bottleneck for the scalability of
such a system. In order to bridge this gap between practicability and privacy, we propose a new pseudonym-based mobile
elD signature scheme suitable for smart cards and secure elements that also enables efficient and scalable revocation checks.
By using a pseudorandom function, we derive one-time verification tokens used for identity verification as well as revocation
checks and generate proofs of validity using a new method referred to as disposable dynamic accumulators. Our scheme
preserves unlinkability and anonymity of the eID holder even beyond revocation and does not require online connectivity to

a trusted party for verification and revocation checks.

Keywords Electronic identities - Privacy-preserving revocation - Scalability - Dynamic accumulators

1 Introduction

State-of-the-art technology that provides a privacy-pre-
serving eID can be broadly categorized into two main
approaches: pseudonym-based signatures and group signa-
tures. Pseudonym-based signatures [8,9,32] use public key
cryptography (e.g., RSA, ECC) and provide each prover with
a list of pseudonyms. These pseudonyms usually consist of
a private key, a public key, and a signed certificate from the
issuer. For every signature creation within an identity val-
idation process, the prover may use different pseudonyms.
Group signatures, first introduced by Chaum and van Heyst
[14], provide methods that allow each member within a group
to sign messages on behalf of the whole group [5,6,13,27].
A major issue in such signature schemes is the missing
capability of revoking individual members without under-
mining their privacy. This is due to signatures that become
linkable after revocation. As a result, each usage of a single
elD could be linked together in order to create a full activity

This paper is the extended full version of [20].

B Michael Holzl
hoelzl @ins.jku.at

Institute of Networks and Security, JKU Linz,
Altenbergerstrafe 69, 4040 Linz, Austria

profile of its holder. This is particularly problematic when
such a system is used in a variety of scenarios in form of a
mobile eID (e.g., to identify with the police, age check by
disco bouncer, etc.) That is, a core privacy guarantee of this
elD would relinquish as soon as, for example, the mobile
device of an eID holder is stolen or lost.

Although expensive for a large population, the easiest
approach to achieve privacy-preserving revocation is to re-
enroll the whole group of valid members whenever an
identity is revoked. A less complex mechanism is to let
provers attest that no entry on a revocation list connects
to their own identity [7,28]. While this can be done in a
zero-knowledge fashion and therefore provides good pri-
vacy, it also becomes very slow in large groups. To improve
the performance, this check can also be done by the veri-
fier (referred to as verifier-local revocation [5]) but has the
downside that additional, potentially privacy degrading infor-
mation, is sent to the verifier. A property called backward
unlinkability [23,27] ensures that users’ privacy is not com-
promised when revoked. That is, even if an identity appears
on the revocation list, adversaries cannot link any previous
verification to this specific identity. While a few existing
schemes already preserve privacy beyond revocation, they
lack efficiency, scalability, or offline capability, which are
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required for a mobile eID. This is particularly problematic
for governmental elDs with a large population.

To address this issue in practicability of privacy-preserving
elD systems, we propose a new pseudonym-based signa-
ture scheme that enables scalable identity revocation and
preserves the privacy of users beyond it. We make use of
a simple, but effective, generation of pseudonyms (i.e., we
refer to them as one-time verification tokens) which pro-
vides anonymity in the population as well as unlinkability
and backward unlinkability. To prove the validity of these
tokens, we introduce a new method which we refer to as
disposable dynamic accumulators, a variant of the dynamic
accumulator [12]. Applying a protocol that splits the com-
putation of this accumulator between two entities allows its
execution on computationally restricted prover devices, such
as smart cards. By using Bloom filters [4], we keep the revo-
cation list small and the revocation check efficient (can be
performed in constant time). Finally, we evaluate our scheme
for populations with multiple hundred thousands of revoked
elDs and show that it stays efficient for mobile devices and
smart cards.

To summarize, in this paper we introduce a new pseu-
donym-based signature scheme that is:

— Efficient for the prover Can be efficiently executed on
devices with limited resources (e.g., smart cards).

— Efficient for the verifier Identity verification as well as
revocation checks are fast and performed in constant time
on mobile devices.

— Scalable Even with large populations, the execution time
of the verification and revocation checks stay constant
and the required data remains small.

— Privacy-preserving Revoked as well as non-revoked eIDs
can not be linked or deanonymized.

— Offline capable lIdentity verification and revocation
checks can be done with offline provers as well as offline
verifiers.

2 Privacy-preserving elD

We define a privacy-preserving eID based on the require-
ments of group signature protocols in [13]: anonymity,
unforgeability, and unlinkability. Additionally, we consider
backward unlinkability [23,27], revocability, and scalability:

— Anonymity The identity of users shall not be determinable
within the whole population (k-anonymity with k being
the population size).

— Unforgeability Only members of the group can create
valid eID signatures.

— Unlinkability Verification processes and revocation infor-
mation of the same user shall not be linkable.
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— Backward unlinkability Tt shall not be possible to link
verification processes of a revoked elD.

— Revocability 1t shall be possible for issuer, verifier (i.e.,
service provider), and elD holder to revoke eIDs in a
privacy-preserving manner.

— Scalability Verification and revocation checks shall be
efficient for large populations.

Adversary model
We consider three types of adversaries:

1. Malicious provers trying to forge a valid proof of an
invalid identity. Such adversaries have access to all pub-
lic parameters of the system and try to mislead a genuine
verifier into believing that they are a valid eID holder
(i.e., forgery or identity theft).

2. Malicious provers that try to circumvent the revoca-
tion check although their eIDs have been revoked. Such
attackers have access to all public parameters and can use
their eIDs to attempt to make genuine verifiers believe
that they still own a valid eID.

3. Malicious verifiers trying to compromise the privacy of
an elD holder. That is, a verifier that attempts to attack
any of the previously elaborated privacy properties of
an elD holder: anonymity, unlinkability and backward
unlinkability. We assume that such an attacker can either
actively participate in a verification process, passively
listen to a communication, or perform both. Hence, we
divide this adversary into different strength levels:

Aj Single malicious verifier: Verifiers trying to
deanonymize the verification process of a prover.
A Colluding verifier: Two or multiple verifiers that
cooperate and exchange verification data.

A3 Global adversary: An adversary that can passively
eavesdrop all eID verification processes.

A4 Global adversary colluding with all verifiers: All
verifiers cooperate with the global adversary.

Our proposed elID architecture and revocation scheme is
able to provable secure against these cases (see the proof in
Sects. 5.6.1 and 5.7).

3 Related work

In order to provide a privacy-preserving elD, numerous
related publications propose the use of group signature pro-
tocols [5,13,14,27]. A famous example for such a protocol
is Direct Anonymous Attestation (DAA) by Brickell et al.
[6], deployed in so-called Trusted Platform Modules (TPM)
for a privacy-preserving attestation of software, but lacks in
privacy-preserving revocation.
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For eID revocation, Lapon et al. [22] provide a good survey
of privacy-preserving revocation strategies. The simplest, but
impractical solution for large groups, is to generate new
keys and let valid members re-enroll when an eID revoca-
tion occurs.

A less complex mechanism is to only send revocation
information, such as a list of revocation tokens (revocation
list), to verifiers and let them perform the revocation check.
Boneh et al. [5] referred to this as verifier-local revocation
(VLR) and it was further enhanced by Nakanishi and Fun-
abiki [27,28], and others [23,33] with a property referred to as
backward unlinkability. However, due to the need to perform
complex operations on every item on the list, the scheme does
not scale well for large populations. To improve this, Raya
et al. [29] as well as Haas et al. [17] proposed the usage of
Bloom filters for a scalable search and storage in the certifi-
cate revocation list in vehicular ad hoc networks (VANET).

Dynamic accumulators [3,12] build the basis for a more
efficient revocation mechanism [11,32]. Identifiers of all
group members are accumulated into one single value, which
itself does not grow in size. Each prover has a so-called
witness that enables them to prove that their identifier is
in the accumulated value, and therefore, that it has a valid
anonymous elD. Similarly, the scheme by Baldimitsi et al.
[1] describes a variant that only has to be updated when an
entry is deleted from the accumulator. The downside of these
accumulator schemes is the requirement of witness updates
when an eID has been added or revoked. Hence, continuous
connectivity is required to receive these updates.

The scheme by Lueks et al. [24] constrains the usage of
revocation tokens to a specific time epoch and verifier. Revo-
cation checks are performed with epoch specific revocation
lists downloaded from a semi-trusted party. Consequently,
they require a trustworthy time source, which is problematic
for constrained devices (e.g., smart cards). Another down-
side is the requirement of short epochs to remain unlinkable
and the resulting high communication cost.

In the probabilistic revocation scheme by Kumar et al.
[21], each signer gets a list of alias codes from a semi-trusted
authority and includes one in each verification process.
Instead of a list, the manager distributes a revocation code, a
sample-by-sample addition of all revoked alias codes. During
verification, the verifier then uses cross-correlation in order
to probabilistically check if the alias code has been revoked.

Camenisch et al. [10] propose a revocation scheme
especially targeting elD systems using attribute-based cre-
dentials. The scheme can be executed on smart cards and
enables the prover to generate up to n different pseudonyms
within a certain time epoch. The pseudonyms are derived
from so-called revocation handles, received and maintained
by a semi-trusted revocation authority. While this approach
has good privacy properties, it comes with the drawback of

elD Issuer Revocation Manager

Revocation list +
Accumulator parameters

(Re-)Enrollment +
Prover updates Accumulator parameters
‘ + Revocation filter update

Secure
Element (( )))
Verification
over NFC
Prover Verifier

Fig.1 General architecture of our mobile eID system

high communication cost due to often changing revocation
lists.

4 Concept and architecture

The general architecture of our proposed system is shown
in Fig. 1 and consists of an eID issuer, a revocation man-
ager, a prover, and a verifier. Prover and verifier both use
mobile devices for the verification of the prover’s identity.
The data exchange between these two devices is done using
near field communication (NFC) or a similar wireless con-
nection. A special focus thereby lies on enabling mobility of
the users. This results in the additional requirement that ver-
ification should be possible when verifier and prover devices
are offline (e.g., no network connectivity or roaming).

In order to protect sensitive data of the eID, the prover
uses a secure element (SE) as credential storage. An SE is
a smart card variant which is usually shipped as an embed-
ded integrated circuit in mobile devices together with NFC
[30] and provides certain features: data protection against
unauthorized access and tampering, code execution of small
applications (applets) directly on the card (using the embed-
ded microprocessor) and hardware supported execution of
cryptographic operations (e.g., RSA, AES, SHA, etc.) for
encryption, decryption, and hashing of data. However, the
constrained execution performance and memory on the SE
have strong implications on the protocol and architecture
design of the eID (see evaluation in [19]).

An application running on the mobile device of the prover
acts as a proxy between the verifier and the SE as well as
between elD issuer and SE. We will refer to this as eID man-
agement application (e/D-MA). This application runs on the
application processor of the mobile device in a potentially
insecure environment and, therefore, cannot be trusted to
store eID credentials.

@ Springer
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In our scenario, the credentials on the SE consist of a
secret identity handle wge (known by issuer and SE) and a
counter value. These credentials must never leave the SE. In
other words, all computations that require these credentials
need to be performed in the environment of the SE. Our
proposed architecture acknowledges this requirement and we
present a scheme that can be executed within this secure but
constrained environment in reasonable time.

5 Privacy-preserving and practical elDs
5.1 Building blocks and preliminaries

We use QR to denote the set of quadratic residues mod-
ulo N. Furthermore, we assume a k-bit hash function
H: {0, 1}* — {0, 1}¥ and a method to establish a password-
authenticated secure channel between the management appli-
cation (eID-MA) on the prover’s mobile device and the eID
application on the SE (eID-SE). We refer to this method as
EstPA-SC and ensure with this function that verifications are
performed by the legitimate holder of the eID (e.g., usage of
EC-SRP with PIN/password entry as in [18]). Further nota-
tions of our scheme are listed in Table 1.

5.1.1 Probabilistic data structures

Our proposed revocation mechanism makes use of Bloom
filters [4] as one implementation of a probabilistic data
structure. Such a probabilistic data structure differs from
deterministic data structures in the way how data is stored. In
particular, the characteristic of a Bloom filter has the advan-
tage that significantly less memory is required and searching
as well as storing in a growing data set has constant cost.

A Bloom filter consists of a bit array with m bits ini-
tialized to O and the usage of j different hash functions.
A newly added element is hashed with these j hash func-
tions, where each result defines one array position i (= H/ (x)
mod m, 1 <i < j) thatis set to 1. To test if an element is a
member in the data set, we hash the element with the same
J hash functions and check if all resulting array positions
are set to 1. If any of the positions is set to 0, the element
is definitely not in the filter (i.e., false negative probability
p = 0). If all bits are set to 1, the element is probably in the
filter.

The advantages of using Bloom filters for the revocation
list are that they require less space and that the computa-
tional effort for searching and storing is always constant.
The downside of probabilistic data structures is the chance
of false positives when querying an item in the data set. This
is a result of potential collisions within other entries in the
set. Fortunately, false positives can be well-controlled. The
false positive probability p of a Bloom filter is computed
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with [25]

p=(1-%), M

where j is the number of hash functions used,  is the number
of entries in the filter and m is the length of the bit array.

We can also compute the required bit array size m of a
Bloom filter for a target false positive probability p and a
given maximum number of elements n as

n-lnp
=22 2
T T ) @

5.1.2 Dynamic accumulators

Cryptographic accumulators were first introduced by
Benaloh and de Mare [3] and are schemes where a set of
k elements is combined into a single short value. This accu-
mulated value and an additional fixed-size witness are used
to verify if an element is a member of that set.

An extension to that scheme is the RSA-based dynamic
accumulator by Camenisch et al. [12], which allows to
dynamically add and delete elements in the accumulator and
to efficiently update the witnesses (i.e., adding or deleting
is independent of the number of elements). To accumulate
aset X = {x1, x2, ..., xx}, the elements of this set have to
be relatively prime to ¢p(N) = (p — 1)(¢ — 1), where ¢ (-)
denotes the Euler totient function and N = p - ¢ the RSA
modulus. The accumulator for this set X is computed with

acc (X) = g™z mod N, 3)

where g €gp QR is the generator and initial value. Effi-
ciently deleting an element x; from the accumulator a =
acc(X) to get the updated value a’, can be performed with
the knowledge of the factorization of N = p - ¢ with

d = g™ mod ¢ () yod N 4)

A downside of this approach is that each holder of a valid
witness has to perform an update operation when the accu-
mulator changes (i.e., continuous connectivity required). In
this paper, we introduce an adaption to this scheme that is
not affected by this limitation.

5.2 elD operations
We consider four operations in the life cycle of an elD:
— During enrollment, the SE of the user u (i.e., the prover)
generates the SE identity handle wg as well as a random

start value for the counter value c,, and sends them to the
issuer. This communication is done in a secure channel
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Table 1 Notation used in this paper

Wse Secret identity handle; known by SE and issuer

Cse Current counter value of the SE

Cmax Maximum verification tokens a prover can generate within an offline phase

g Generator for the accumulators

G Elliptic curve generator for verification tokens

i Pseudorandom secret verification token; can be computed by an SE and issuer

Rt; SE specific public one-time verification token

dage Disposable dynamic accumulator of all current verification tokens for secure element se
L, F Revocation list £ and revocation filter F

Bloom (£) Bloom filter creation over all entries of list £

BChk (F, i) Check if bloom filter F contains i; yields 0|1

Sign (sk, m) Signature creation (e.g., ECDSA) over message m with private key sk; yields signature o
Ver (pk, m, o) Verification of signature o with public key pk over message m; yields 0|1

tunneled by the eID-MA on the prover’s mobile device
(e.g., using the GlobalPlatform secure channel protocol)
and involves further identity validation in an out-of-band
channel. This validation as well as a discussion on the
secure channel is out of scope.

— Verification is done using an NFC link between the veri-
fier mobile device, the SE and the prover management
application as proxy. The verification also involves a
revocation check by the verifier. Hence, each verifier
receives information from the revocation manager prior
to that operation.

— Re-enrollment involves the redistribution of new public
parameters (i.e., public keys, revocation lists) and hap-
pens on an irregular basis (e.g., once or twice a year).
While this phase is not mandatory for the functionality
of our scheme, the re-enrollment helps to reduce the size
of revocation lists and strengthen the security.

— Revocation can be initiated by the eID issuer, service
providers, or an eID holder, and is primarily performed
by the issuer by marking the identity handle wg. of an
elD holder as revoked (note that the issuer would proba-
bly request auxiliary verification information in order to
validate a legitimate revocation request by an eID holder).
Afterward, the revocation manager receives a revocation
list of all revoked eIDs and is then responsible for the
distribution to all verifiers. The SE is not aware of its
revoked status and still generates tokens and eID proofs
when requested. However, it will not get updates by the
elD issuer anymore or be able to participate in the re-
enrollment phase.

5.3 Proposed scheme

In general, our proposed privacy-preserving mobile eID
scheme with scalable revocation is based on using one-time

verification tokens which can be generated by the SE as well
as the issuer. When the prover is asked to provide identity
verification, the SE generates an elliptic curve public key as
a one-time verification token and a proof of validity. This
validity proof is done using a newly introduced variant of the
dynamic accumulator, the disposable dynamic accumulator
(DDA). The DDA is created by the eID issuer for each SE
and is used by the verifier to check the validity of the received
token (i.e., only the eID issuer can create valid DDA entries).
The invalidity check (i.e., revocation check) is performed
using Bloom filters previously retrieved from the revocation
manager.

Without the knowledge of the identity handle wge and the
counter value cg, the one-time verification tokens are prov-
ably unlinkable (see Sect. 5.7). Only an entity that knows
them can link these verification tokens.

In the upcoming section, we describe the four methods
for the management of these verification tokens (TokenGen,
DDAGen, Update, and Bind).

Security Assumptions Our proposed concept and scheme
builds upon the following security assumptions:

1. The verifier cannot be trusted from the perspective of
issuer/revocation manager and prover.

2. The eID-MA of the prover cannot be trusted to keep cre-
dentials safe. Hence, no operation requiring secret keys
shall be performed with it.

3. The SE and issuer are trustworthy and can keep creden-
tials safe.

5.3.1 Identification token generation (TokenGen)

Within an offline phase, the prover’s SE is able to generate
and prove up to cmax different one-time verification tokens

@ Springer
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Rt; using the previously stored identity handle wge as well as
the counter value cge.

This is done by computing a one-time secret token r#; and
then multiplying it with the elliptic curve generator point G:

rt; = H(wsel|gl|cse) ©)
Rty =rt; -G (6)

The counter is initialized to a random value during the
enrollment and is incremented as soon as one token Rt; was
generated.

It is important to note that each single verification token
should only be used once and therefore provides anonymity
in the population and unlinkability of verification processes.

5.3.2 Disposable dynamic accumulators (DDAGen)

While this generation of verification tokens is computa-
tionally very simple, it introduces a significant weakness:
A verifier cannot verify the valid generation of the token.
Hence, the verifier would need to trust the entity which gen-
erates the tokens. Therefore, we need a method that allows
to prove the validity of these tokens while at the same time
protecting the privacy of the prover.

A simple solution would be to let the issuer create sig-
natures over each single token and store them along with
the tokens on the smart card. The verifier could then check
the validity of the token using this signature and the issuer’s
public key. However, this is neither space nor communica-
tion efficient and therefore not reasonable for smart cards
with strict memory constraints.

We address this issue by proposing the disposable dynamic

accumulators, a variant of the dynamic accumulators which
can only be created by the issuer and modified by a dedicated
owner.
Construction Let N = p - g be an RSA modulus, where p, g
are strong primes, and g €g QR be a public generator of the
accumulator. The disposable dynamic accumulator function
computes an accumulated value of all modular inverses of
elements of the set X = {x{, x2, ..., xx} with

dacc(X) = g@iex) ™ mod ¢N) 104 . 7)

For efficiency, the modular inverse has to be computed only
once over the product of all elements. It is important to note
that the elements of the set X’ need to be pairwise distinct
prime values in order to be able to ensure collision-resistance
as proven by Baric and Pfitzmann in [2]. Benaloh and de Mare
in [3] also suggest that values to be accumulated should either
be hashed or encrypted before adding them to the accumu-
lator. Hence, we apply the function r(x) on every element in
the set X', which hashes the input and computes a prime rep-
resentative (e.g., using a method described in [16,31]) that is
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also co-prime to ¢ (N). We assume that the used hash func-
tion s collision-resistant and the probability of generating the
same prime twice is negligible. Also note that the probability
of a prime not being co-prime to ¢ (N) is negligible [15].

Consequently, the definition of the disposable dynamic
accumulator function has to be extended to

dace(X) = g(r<x1)...r(xk))*‘ mod ¢(N) oq N. (8)

Witness construction The main difference between this
scheme and a standard dynamic accumulator is the possi-
bility to dispose an element x; from the accumulated value
day = dacc(X) by computing day™ . This property proves
to be very useful for the protection of the privacy of the user
while still giving the verifier the certainty that an element has
been accumulated by the issuer of the accumulator. For that
purpose, the prover can compute a witness for each element
x; € X in day with the function

wit(day, X, x;) = day e\ ™) mod §. 9)

The witness is equal to a disposable dynamic accumulator
with only one element x;:

day, = wit(day, X, x;) (10)
— "0 M) g N (11)

Verify element The prover sends this witness day, together
with the value x; to the verifier, who can verify the validity
of the element x; by checking

g = da, ") mod N. (12)

Note that the verifier only requires the public global generator
g and modulus N and not the fully accumulated value day
itself in order to validate the element. The verifier can assert
that an element has been accumulated into the disposable
accumulator of the prover by the trusted eID issuer. However,
the verifier cannot associate the element x; and the witness
da,, with their corresponding disposable accumulator day .

5.3.3 Prover online phase (update)

During an online phase, the SE communicates with the issuer
in a secure channel, tunneled by the eID-MA on the prover’s
mobile device. The SE sends the number of used tokens Ac
since the last update. The previously stored counter value
associated with the prover wy. is then increased by this Ac.
The eID issuer also computes all possible future verification
tokens of that SE and accumulates them into one disposable
dynamic accumulator dag., where the size k of this accumu-
lator is a chosen number of offline verification tokens cpax.
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eID Issuer eID-SE eID-SE eID-MA
Look . (Ac) N — EstPA-SC  User inputs
ook up previous cse — C = Cse — Clp 7 PIN/password
Cse = Cse + Ac X =A{cw,...,cuw} emmmm -
X = {Csea oy Cse + Cmazx _1} T = {Tt'b : ’f‘ti :vH(wSEX
T = {rt; : t; = H(wse || g]| 22) lgll:), ¥ @: € X}
T; € X} Rse = {Rti : Rt; = rt; 'G, (ng da%,)
Ree = {Rt; : Rt; = rt; - G, Vort; €T} 22225 store(Rae, dase)
Y ort; € T}
dase = dacc(Rse) (Crmazs dase) Fig.3 Binding protocol of the management application (eID-MA) and
store(cse) ——— Clp = Cse the secure element (eID-SE). Dashed lines indicate communication

Cub = Cse + Cmax

store(c, Cup, dase)

Fig.2 Prover online phase

Figure 2 depicts all these actions that are performed when a
prover gets online and connects to the eID issuer.

In the return message, the SE receives this disposable
dynamic accumulator dage as well as the new maximum ver-
ification token count cyax. Then it computes the new lower
bound (cjp = cge) as well as upper bound (cyp = ¢se + Cmax)
counter values and stores them. In order to prevent the usage
of previous accumulators in case the SE has been compro-
mised, the SE replaces the old value with the new one. During
elD verification, the SE is able to increase its local counter
value cge up to the upper bound cyp, and prove its validity using
dage. When this upper bound is reached, the SE is no longer
able to create proofs for further unlinkable verification tokens
and the management application on the mobile device will
inform the user that online connectivity is required before
verification is possible again. Note that the maximum num-
ber of verification tokens cmax could be varied between users
and can be adapted to the usage behavior of each individual
user.

5.3.4 Binding prover devices (bind)

We assume that the prover consists of a mobile device appli-
cation and an SE. As previously stated, the SE is affected
by computational constraints and the construction of a wit-
ness in each eID verification process would therefore be
too time-consuming. To address these limitations, we define
an additional protocol step that allows to split computation
between the two devices to reduce verification time (i.e., the
time where the user is involved).

The steps of this protocol are shown in Fig. 3 and need to
be performed after a prover online phase:

1. The user enters a PIN/password in the eID-MA (start of
the application).

2. The eID-MA and the SE establish a secure channel using
the PIN/password of the user (EstPA-SC).

within the password-authenticated secure channel

3. If the channel was successfully established (i.e., legit-
imate holder of the eID operates the application), the
SE computes the list R of all future public verification
tokens Rt; and returns it together with the current dag, to
the eID-MA.

4. The management application stores the list R and dage
in the local application storage.

By entering the PIN/password on the device, the user
establishes a trust relationship between the management
application and the SE. Subsequent operations can be per-
formed in the background after the credentials have been
entered. The information that is thereby exposed by the SE
can potentially be misused by an adversary (e.g., phone
stolen, malicious software) to link multiple verifications of
the user. However, the security of the scheme is not compro-
mised (secret credentials never leave the SE).

The binding can be done on any mobile device trusted
by the user. Therefore, it is possible to use the same eID on
multiple different devices (e.g., SIM card-based SE which is
transferred to another device).

5.4 Verification protocol

The verification happens after the prover has been enrolled
to the system and has performed the prover online phase
(Sect. 5.3.1) at least once. Also the binding protocol of the
prover should have been performed once.

5.4.1 Validity and invalidity checks

The sequence of actions for the eID verification is shown
in Fig. 4 and consists of a proof generation and a valid-
ity/invalidity check. A verifier v initiates the process by
sending a random challenge ch to the prover.

Token and proof generation When requested, the manage-
ment application on the mobile device (eID-MA) forward
the challenge to the SE to generate the current secret ver-
ification token r#; and public verification token Rf;. In the
return message, the mobile application receives the public
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eID-SE eID-MA Verifier
Es(tPh/){—SC User inputs PIN/password
c h
rt; = H(idse || g cse) PR L choose random ch
Rt; = rt; - G
(Rt:)
Cse=Cse+1 ool > Readout Rse, dase
dar
verify g z damir(mi) e—(————t—Lz— dagy, = wit(dase, Rse, Rt;)
(O’) (0’, Rt;, dam1)

o = Sign(rt;, ch|| dare,)

- 4 Ver(Rt;, ch|| dary,, o)
g = dagy,* %) mod N

BChk(F, Rt;)

Fig.4 Identity verification scheme between verifier and the secure ele-
ment (eID-SE) as well as the management application on the mobile
device (eID-MA) of the prover. Dashed lines indicate communica-

token and reads the list of all tokens R and the current
disposable dynamic accumulator dage from its memory. The
application can now create the witness dag,, for that token
using the witness function of the disposable dynamic accu-
mulator and sends it to the SE. Finally, the SE verifies
the validity of this witness and creates a signature (e.g.,
ECDSA) over the tuple (ch, dag;,) using secret verification
token rt;. This signature is returned to the mobile applica-
tion and forwarded to the verifier together with the public
token Rt; and the witness dag,. In the different identity
validation use cases, the return message and the signature
would also include relevant data attributes. A detailed dis-
cussion on these attribute queries is beyond the scope of this

paper.

Validity check The check that is performed by the verifier
takes the verification token Rt;, the challenge, the dispos-
able dynamic accumulator dag;,, and the signature o of the
prover as inputs. The verifier first validates the signature over
the sent challenge and the received disposable dynamic accu-
mulator dag;, using the verification token Rt; as public key.
If this check succeeds, the verifier tests the validity of the
received public verification token with

g = dag,"®" mod N, (13)

where the tuple (g, N) are global parameters retrieved from
the revocation manager. If any of the checks fail, the verifier
aborts.

Invalidity check If the validity check was successful, the ver-
ifier tests if the verification token R#; has been revoked. For
that purpose, the verifier downloads the revocation filter F,
a Bloom filter containing the tokens of all revoked eIDs. This
filter is managed and generated by the revocation manager
(see revocation management in Sect. 5.5)
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tion done within the password-authenticated secure channel. The tuple
(g, N) are globally known parameters and only change during an accu-
mulator re-enrollment phase

5.4.2 False positive mitigation

Due to the usage of Bloom filters, our scheme is affected by
the possibility of false positives during revocation checks.
To mitigate the likelihood, the scheme provides the flex-
ibility for a verifier to request up to f,,, one-time ver-
ification tokens. Requests for more than f,,, verification
tokens within the same verification attempt will be denied
by the SE to protect against denial-of-service and brute-
force attacks. When the maximum number of verifica-
tion tokens has been reached, the SE will only generate
new tokens if the user triggers a new verification within
the mobile device application. Therefore, the equation for
computing the false positive probability is extended to:

_M)jfmax

po=phe = (1-e5 (14)

In case the eID has been revoked, all retrieved tokens will
indicate a positive result in the revocation check. That is,
there are no false negatives with Bloom filters. This has the
implication that a revoked eID will more quickly run out
of available verification tokens and will therefore invalidate
sooner (i.e., the counter reaches the maximum and the SE
cannot generate new proofs).

In the unlikely scenario of false positives with all gener-
ated verification tokens (i.e., prover is sure that the eID has
not been revoked), the verifier is forced to perform an online
check with the revocation manager. However, an evaluation
of this possibility is beyond the scope of this paper. Note
that this is assumed to happen very rarely (see evaluation in
Sect. 6.4).

5.5 Revocation management

The issuer is responsible for managing a global revocation
list £. Only the revocation manager can query that list and
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generate the revocation filter F or a differential filter update
F’ for verifiers.

Revocation This process can either be initiated by the user or
the eID issuer. When an SE of a user is revoked, the issuer
adds all possible verification tokens R#; of that SE to the
global revocation list £. The tokens can be computed with:

X ={cse...Ce + Cmax — 1} (15)
T = {rt; : rt; = H(wsellgl|xi), YV x; € X} (16)
Ree ={Rt; :Rt; =1t; -G,V rt; €T} (17)
L=LURg (18)

where A’ is a list of all valid integer values for the verification
token generation. The value cg is the last counter value that
was sent by the SE to the issuer during an online phase.
The resulting revocation list £ is then sorted and sent to the
revocation manager.

Filter retrieval When the verifier requests the current revo-
cation filter F, the revocation manager computes it using the
current revocation list £ from the issuer and sends the result
to the verifier (¥ = Bloom(£)). The revocation manager
acts as a proxy between issuer and verifier but does not have
the capability to link verification tokens of the same identity.

Differential filter updates A major benefit of our proposed
scheme is the possibility to retrieve differential revocation
filter updates. This stands in contrast to approaches where
the complete list changes after a certain time epoch [10,24].
Instead, the revocation manager can remember the last access
time of the verifier and generate a differential filter 7' of
verification tokens added since then. Due to the structure of
Bloom filters (i.e., many consecutive zeros), this differential
filter can be compressed efficiently before sending.

5.6 Security analysis
5.6.1 Formal proof

As defined in the adversary model of our scheme in Sect. 2,
we consider attackers that attempt to forge a valid proof of
an invalid identity (unforgeability), attackers that attempt to
circumvent the revocation check, and adversaries Ay — A4
that attempt to compromise the privacy of the eID holder. In
this subsection, we provide a proof that our proposed scheme
protect against forgery attacks and attacks on the revocation
check. Note that the proof presented here is only a sketch. A
full proof is beyond the scope of this paper.

To protect against forgeries, our proposed scheme relies
on the security of the disposable dynamic accumulator as
well as the SE. Attacks on the security of the used signature
scheme (e.g., ECDSA) or the server backend are out of the
scope of this paper.For any PPT adversary A, we say that

the proposed scheme is unforgeable if advantage Adv, is
negligible:

Adv, = Pr[(g, N) < Gen(1¥), (r{,da’) < A(g, N, G) :
g=da"® R =1 G]

Furthermore, we build upon the security assumption:

Definition 1 (Strong RSA assumption [2]) Let x be the secu-
rity parameter. Given a k-bit RSA modulus N and the value
z €g QRy, there is no probabilistic polynomial-time algo-
rithm P that outputs y and a prime x such that x > 1 and
y*¥ =z mod N, except with negligible probability.

Theorem 1 In the random oracle model, suppose an adver-
sary A, who can ask at most qu hash queries and break the
unforgeability of the proposed scheme in polynomial time
with advantage €, then there exists an adversary B that breaks
the strong RSA assumption with advantage €/qy.

Proof Suppose there exists an adversary A, who can break
the unforgeability of the proposed scheme, then we can con-
struct another adversary /3 who uses A as a black-box to break
the strong RSA assumption with non-negligible probability.
Setup: BB is given a hash function modeled as a random oracle,
the modulus N as the product of two large safe primes, and
a value z eg QRy. Furthermore, the adversary 53 defines an
elliptic curve generator G and invokes A with (z, N, G).
Queries A can query B about the following:

— r-Hash query For each query Rt;, I3 responds with a ran-
domly chosen prime number /2; € QR y with consistency.
— Accumulator query A requests an accumulator witness
da; of the verification token Rt;. In response to this query,
B picks arandom valuej € {1, ..., gy} as a guess which
query will correspond to the eventual forgery. We assume
that .4 always queries the r-Hash oracle for token i before
this query and the corresponding 4; is already stored in
an internal table. If i # j, B computes dag, = 7" !
mod N and returns dag;,. As we consider the result of
r(-) to be prime, it is easy to see that each distinct query
has a unique solution. If i = j, B declares failure and
aborts.

Output Finally, A outputs a forgery (17, da’) and wins if
the conditions z = da’ r(Re) mod N and RY = Rt j» where
R{ =rf - G, hold.

Adversary B can now use this adversary A to efficiently
break the strong RSA assumption. That is, the output (A" :=
r(R?), da") can be transformed into a solution (x := /', y =
da’) of the instance (z, N) of the strong RSA problem.

B wins the game if A successfully forges a witness da;

and queried the r-hash oracle for Rt; (R € Rt;), but never
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requests the accumulator oracle for Rt;. The value j is inde-
pendent of the views of A and hence B obtains a forgery with
atleaste/qpy. O

Corollary 1 The proposed scheme is secure against identity
theft by a malicious prover.

Besides forging new identities, an adversary can also attempt
to take over existing identities. The security of an identity
of an eID holder is based on the difficulty to find d for
given elliptic curve points D and G of order N such that
D = d - G mod N. This is referred to as the elliptic curve
discrete logarithm problem (ECDLP). In order to steal the
identity of an eID holder, an adversary .4 needs to eavesdrop
a message (o, Rt;, dag,;) and break the ECDLP problem in
order to get r#; and create a valid signature over a random
challenge ch. We also evaluate the possibility of breaking the
ECDLP problem in “Appendix A”.

Corollary 2 The proposed scheme is secure against malicious
provers attempting to circumvent the revocation check.

An adversary with a previously valid (and now revoked) eID,
might attempt to circumvent the revocation check. As this
check is performed by the verifier using a revocation filter on
its device, the attacker needs to send a valid public identity
token Rt; that is not on this revocation filter. For that purpose,
the adversary could either try to forge a new token or try to
reuse a previously created one. From Theorem 1, we know
that the former is not possible without breaking the strong
RSA assumption. The latter would only be possible if the
adversary has access to the identity handle wg, or the private
partof the previously created identity token r¢;. As we assume
that the SE is trustworthy and can keep credentials safe, we
can also assume that the adversary has no access to these
credentials and can therefore not compute previous token
proofs to circumvent the revocation check.

Corollary 3 The proposed identity scheme can protect against
forgery attacks even when the integrity of the SE is compro-
mised.

The security of our scheme relies on the usage of an SE
as a tamper-resistant storage for the credentials. This is a
state-of-the-art technology for protecting sensitive informa-
tion (e.g., SIM/bank cards) and protects the integrity of the
elD in cases where the mobile device gets stolen or mali-
cious software is able to exploit the operating system and
read the memory of the prover device. If the integrity of an
elD is still broken (e.g., attack on the integrity of the SE),
an adversary acquires the credentials wge and cge as well as
the current disposable dynamic accumulator dag.. Based on
Theorem 1, the adversary cannot use random tokens which
are not accumulated in dage. However, attackers could also
be able to use previous identity tokens (if they were able to
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observe the corresponding disposable accumulators or wit-
nesses). In such a scenario, the issuer would still be able to
revoke all tokens of this SE (since the last re-enrollment)
and reject further update requests. As we assume that these
scenarios only rarely happen, the effect of adding all iden-
tity tokens of an SE to the revocation list size would still be
negligible. Note that misuse of tokens of a compromised SE
could also be determined by a collaboration between issuer
and verifier and requires some computational effort by the
issuer (i.e., compute the verification tokens of all users).

5.6.2 Malicious elD issuer

Our adversary model assumes that the eID issuer is trust-
worthy and can keep credentials safe. In fact, a malicious
issuer could generate an arbitrary number of valid verifica-
tion tokens in our scheme. They could also create disposable
dynamic accumulators as well as validity proofs for a specific
identity handle wg. by generating the same one-time verifi-
cation tokens rt;, Rt;. As a result, they would be able to act
exactly as any SE within the eID system.

One possible approach to mitigate the risk of malicious
issuers is to slightly adapt the protocol and store the identity
handle wg. only on the SE. During a prover online phase, the
SE would then send the product of hashed public verification
tokens r(Rt;) instead of the number of used tokens Ac. Rather
than generating SE specific public verification tokens, the
elD issuer computes the modular inverse of this received
product and returns the disposable accumulator to the prover.
Consequently, a malicious eID issuer will only see the public
one-time verification token of an SE and cannot generate the
corresponding secret parts anymore.

The downside of this mitigation is the additional compu-
tational effort that has to be done by the SE. Hence, this is
another trade-off between security (as well as privacy) and
performance of the scheme. A more detailed evaluation of
this adapted version of our scheme is beyond the scope of
this paper.

5.7 Privacy analysis

In this section, we consider the adversaries A; — A4 from
Sect. 2 that attempt to compromise users’ privacy. The
strongest adversary is A4 (i.e., global adversary colluding
with all verifiers) and should thereby not be able to compro-
mise any of the previously established privacy properties of
any user (i.e., anonymity, linkability, backward unlinkabil-
ity). The game is to link the verification messages of a single
user (i.e., multiple Rt; and dag; values) and, hence, being
able to identify or trace the activities of an eID holder.

Anonymity and Unlinkability In the formal privacy anal-
ysis in “Appendix A”, we show that our proposed scheme
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protects against this strongest adversary under the random
oracle assumption. We further prove that it is infeasible to
determine the identity of the user without breaking the one-
way property of the hash function and the ECDLP.

Revocation list and differential filter updates The list update
that is sent to the revocation manager as well as the dif-
ferential filter update for each verifier in our scheme comes
with a drawback to the unlinkability property. If the subset of
revoked elDs in these updates is small, there is a chance for
an adversary to link verification tokens of the same revoked
prover. In the worst case, an update only consists of one
revoked elD. An adversary could use this differential to test
multiple verification tokens and, upon a positive result, they
can be certain that these tokens come from the same prover.
Hence, the issuer has to protect against these attacks by avoid-
ing small updates. For example, only provide updates with a
minimum number of revoked eIDs.

Note that this only affects linkability of future verifica-
tions after revocation occurred. That is, after a prover update,
previous verification tokens of a revoked eID are not in
the revocation list and therefore not linkable (i.e., backward
unlinkability is not affected).

6 System evaluation

We consider the following aspect of an eID scheme: (1)
administration effort, (2) performance in terms of computa-
tion and space requirements, and (3) scalability. We thereby
assume a 256-bit hash function, 128-byte identity handle wge
and 4-byte counters. Additionally, we also outline the used
techniques to implement the prototype on an SE.

6.1 Secure element implementation details

A major limiting factor to the performance of our scheme
is the usage of SEs. The specific implementation of the
software applet that performs the protocol steps therefore
plays a significant role in the overall computation and space
requirements. Hence, we briefly describe some details of the
implemented prototype:

For computing modular operations, we make use of the
techniques presented in [18]. That is, we exploit the RSA
encryption function to perform modular exponentiation and
operate on big numbers using byte arrays.

To get prime representatives for r(-), we use the function
nextProbablePrime () of the Java Biglnteger class in
our elD issuer side implementation. To also keep this efficient
on the SE, we include a byte array in the update message
of the issuer, indicating the offset between hash and prime
representative as a single byte for each verification token.

6.2 Administration effort

The proposed scheme shifts computational load to the server
backend of the issuer with the benefit of a more efficient
verification and revocation check on the prover and verifier
devices. We argue that it is more reasonable to increase the
performance of the server than the performance of all SEs
and verifier devices.

Since we assume regular re-enrollments of new dispos-
able dynamic accumulators to reduce the revocation filter
size and to ensure forward privacy, a transition phase of this
re-enrollment is an essential part of the implementation of the
scheme. One assumption is that the prover does not have con-
tinuous online connectivity, hence, does not immediately get
the new accumulator. Therefore, the verifier needs to possess
both, the previous and the current revocation filter as well as
accept tokens with previous and current accumulator param-
eters in this phase. Note that the effective size of the new
revocation filter is zero at the beginning of an accumulator
phase. Previously revoked eIDs will not receive new dispos-
able dynamic accumulators and can no longer create valid
proofs.

6.3 Performance analysis

As we depend on the usage of the computationally restricted
SE, we especially focus on the protocols involving this
device:

Token generation (TokenGen) For the token generation, the
SE has to increment an integer, compute one hash and per-
form an elliptic curve multiplication. We executed these
operations on a Yubikey NEO with JavaCard 3.0.1. For the
generator g, we used a 256 byte value and the 32 byte
hash of this value in the secret token generation. Including
transfer time, the average time over 100 measurements was
161.4ms £ 1.3 ms (standard deviation). The transfer time
of the interface used for sending and receiving data was
10.0ms =+ 0.1 ms. The performance of the verifier-side is
elaborated in the scalability analysis in Sect. 6.4.

Binding prover devices (bind) Binding the eID-SE and eID-
MA together is a step where all provable verification tokens
are generated on the SE and sent to the eID-MA. Hence, the
execution time of this step equals the time for the generation
of one token (as previously elaborated), multiplied with the
maximum number of allowed offline verification tokens cpax.
For example, with cpax = 100, the execution time on the
smart card is 100 - 161.4ms ~ 165.

Prover online phase (update) and DDAGen The online phase
of the prover involves the eID-SE of the prover and the issuer.
The eID-SE only needs to subtract and add one value. More
computational effort is required by the issuer, where all future
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verification tokens of an eID are accumulated into one dis-
posable dynamic accumulator.

We evaluated these steps performed by the issuer on a
Thinkpad T440s with an Intel 17-4600U @2.1GHz dual-core
CPU and depict the results in Table 2. The computation time
depends on the choice of ¢y, the maximum number of veri-
fication tokens within an offline phase. Generating the update
for cmax = 10 takes on average 81 ms and linearly increases
with ¢max.

Verification protocol The steps for the verification protocol
are split over eID-SE, eID-MA of the prover, and verifier
mobile device (see Fig. 4). The SE, for example, has to incre-
ment an integer, create a new verification token, verify the
disposable dynamic accumulator (one modular exponentia-
tion) and create an elliptic curve signature. For the validity
check (signature and disposable dynamic accumulator proof)
we used 256 bit ECDSA and 2048 bit RSA. For the invalidity
check (revocation check), we used an existing Bloom filter
implementation and performed f;,,, = 5 queries. We ran 100
measurements on the same smart card as previously elabo-
rated and used a OnePlus One with Android version 5.1.1
as eID-MA and verifier device. We assume that eID-MA has
precomputed the product of all prime representatives of R
during the binding protocol. Hence, computing the witness
for a token requires dividing this product by the token and
one modular exponentiation.

Table 2 lists the results of the evaluation of the verifica-
tion protocol steps for different maximum verification tokens
cmax (excl. transfer between the devices). While the compu-
tation times of the verifier and the eID-SE stays constant, the
execution time on the eID-MA linearly increases with cpax.
For a chosen cpax = 100, the total time of all three devices
is around 740 ms.

Storage In terms of data storage required by the SE, our
scheme only needs to store the accumulator g, the iden-
tity handle wge, the disposable dynamic accumulator dage
including the modulus N, a byte array indicating the hash
value/prime representative difference for each verification
token, as well as three integers cge, CIp, cyp- That is, the
scheme only requires 1008 bytes of additional space (assum-
ing a 128 byte identity handle, 2048 bit RSA and 4 byte
integers).

The storage required by eID-MA depends on the num-
ber of maximum verification tokens and grows linearly. For
example, with cmax = 100, a 256 bit elliptic curve and a
2048 bit accumulator, we require 6656 bytes of storage. The
required storage on the verifier’s device depends on the revo-
cation filter size and is evaluated in Sect. 6.4.

Data transfer The data transfer between prover and veri-
fier depends on the size of the used signature protocol and
dynamic accumulator. If we assume 256 bit elliptic curves
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(EC) and 2048 bit accumulators: we need to transmit a 33
byte verification token (compressed EC point), a 256 byte
accumulator and a 64 byte ECDSA signature from the prover
to the verifier. The verifier has to send a 32 byte challenge to
the prover.

Data transfer between prover and issuer in the online phase
shall be done within a secure channel and consists of: the
counter value (4 byte integer), a dynamic accumulator (256
bytes), and a byte array for the prime representative differ-
ences (cmax = 100 bytes).

The amount of data transferred between verifier and revo-
cation manager depends on the size of the revocation filter
or the size of the differential update.

6.4 Revocation scalability

The scalability of a revocation scheme usually depends on
the complexity of revocation checks and the size of the revo-
cation list. Our scheme has the benefit that the revocation
check neither depends on the number of issued eIDs nor on
the population size and can be performed in constant time.
This works due to the usage of Bloom filters where every
check only requires the computation of j hash and modulo
operations. Only the size of the revocation list as well as
the false positive probability play an important role in the
scalability of our scheme:

False positive probability The false positive probability p’ of
the revocation filter is computed with Eq. (14) and depends
on the size of the filter, the number z of revoked elDs as well
as the mitigation parameter f,,, . For this evaluation, we set
the mitigation parameter to a constant value of 5.

Figure 5 depicts this probability with increasing number
of revoked elDs and different filter sizes. For a filter size of
5 MB, the probability is far below 1073 if less than 100,000
elDs are revoked and rapidly grows up to 1 afterward. The
diagram also illustrates that the number of revoked elDs fit-
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Table2 Mean computation

times of the protocols that Cmax Verification protocol ' Prover update (ms)
depend on the number of offline eID-SE (ms) eID-MA (ms) Verifier (ms)
verification tokens ¢max. That is,
the verification and the prover 5264 13+£3 77£19 81£26
online phase (update) 50 526 £4 66 + 6 77+ 19 291 + 18
100 526 4 135+ 12 77+ 19 557 + 28
200 526 +£4 274 £ 12 77 £ 19 1081 £ 37
300 526 £ 4 424 + 13 77 £ 19 1643 £ 100

ting into the filter (i.e., probability below a certain threshold)
linearly increases with the filter size.

In our terms, a reasonable target probability p’ for an eID
architecture should be below 10~2. That is, one verification
process within one billion identity validations in the entire
system requires the user to authorize a second query. The
chance that a second query fails is then 10~!8. Due to our
false positive mitigation technique, there are f,,, possible
verification tokens within one such query. The false positive
probability p of a single verification token, given the tar-
get probability p’, is computed as p = /"“‘W (see Egs. 1
and 14). Consequently, with f,,,., = 5 we get a single false
positive probability p = 1.58 - 1072,

Filter size For the total filter size, we have to decide on a
number of maximum verification tokens cmax for each user.
This also defines the number of filter entries for a revoked
elD (n = cmax - 2). In the evaluation, we set this maximum
token count to cyax = 100.

With Eq. (2) we can now calculate the required filter size
m with a target probability of p = 1.58 - 1072 (p/ = 1 -
107%) and z revoked eIDs. The results are a required size
of 5.1 MB for 50,000 revocations or 10.3 MB for 100,000
revocations. Half a million revoked eIDs require 51 MB of
uncompressed storage by the verifier, and so on. Note that the
verifier can download differential updates of this filter. Due to
the characteristics of Bloom filters (many consecutive zeros),
these updates can also be efficiently compressed.

6.5 Comparison with related work

In order to make a comparable evaluation of our scheme, we
only consider related work in the field of privacy-preserving
elDs that also propose a revocation mechanism with the same
privacy properties as our scheme (anonymity, unlinkability,
backward unlinkability). As these related papers specialized
on revocation, we particularly investigated and evaluated
properties related to the revocation capability of an eID sys-
tem. That is, we compared the following properties with
related work in this field: scalability, efficiency, verifier-local
capability, as well as offline capability of the revocation
scheme. Furthermore, the scalability and efficiency proper-
ties are divided into the complexity to perform the revocation

check, the required sizes for tokens as well as the revocation
list, and the requirement of provers to receive updates when
arevocation occurs. We analyze these properties as time and
space complexity in the big O notation with respect to a
growing revocation list. To reduce the size of this compari-
son, we only investigated related work that already provides
the privacy properties (anonymity, unlinkability, backward
unlinkability).

The comparison result with related work by Boneh et al.
[5], Nakanishi et al. [26], Camenisch et al. [11], Kumar et al.
[21], and Lueks et al. [24] is shown in Table 3. In comparison
with other work, our scheme provides full offline capabilities
and has constant cost for the revocation check and the token
size. Only the revocation list grows linearly with the number
of revoked elDs z. For the revocation list size, there are other
approaches which provide better scalability through constant
sizes (see accumulators by Camenisch et al. [11]). However,
our scheme outperforms in other scalability properties: accu-
mulators require witness updates for all provers when elDs
are revoked, thus, keeping all provers updated in a large pop-
ulation becomes significantly more difficult. Due to this, it
also lacks the offline capability.

Another comparable approach is the probabilistic revo-
cation by Kumar et al. [21]. Similar to our scheme, it has
an increasing revocation list size and a constant time for
the revocation check. However, their scheme does not only
depend on the size of the revocation list, but also on the size
of the population. Hence, with an increasing population size
(and therefore an increasing number of revoked IDs), the size
of the alias codes needs to be expanded in order to keep the
same false positive probability and a sufficient number of
their so-called piecewise-orthogonal-codes.

Also comparable is the approach proposed by Lueks et
al. [24]. Their scheme provides almost the same scalability
properties as our design. However, their usage of a time-
bound generator for the revocation token would require a
smart card to connect to a trustworthy time source. Hence,
the offline capability can not be fulfilled for a smart card
scenario. Furthermore, the whole revocation list has to be
downloaded in each time epoch, which need to be very short
in order to provide unlinkability (i.e., large and frequent data
transfer between verifier and revocation manager required).
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Table 3 Comparison of privacy and scalability features of revocation schemes in different privacy-preserving eID systems

Boneh et al. [5] Nakanishi et al. [26] Camenisch et al. [11] Kumar et al. [21] Lueks et al. [24]

Complexity of revocation check O(z) 0(2)
Revocation token size o(l) o(l)
Revocation list size 0(2) 0(z)
Prover updates on revocation - -
Verifier-local v v
Diff. revocation list updates 4 v
Offline capable 4 X

Our scheme
o) o) o) o)
o) 0() o) o)
o) 0() 0(2) 0()
0(2) - - -
X v v v
- X X v
X v X v

O (1) stands for constant performance and O (z) for linear growth with the number of revoked eIDs. ‘-’ indicates not required properties of a scheme

7 Conclusion

In this paper, we proposed a privacy-preserving mobile
elD system that provides scalable identity revocation. Our
scheme is based on the usage of a new variant of dynamic
accumulators, the disposable dynamic accumulator, and a
pseudorandom function for the creation of identity tokens.
By using Bloom filters, we keep the revocation list small
and checks efficient. In the evaluation, we have shown
that the introduced methods for verification and revoca-
tion checks have low computational costs for prover as
well as verifier. Our scheme outperforms related work in
terms of scalability, efficiency and/or privacy in offline sce-
narios. Furthermore, the beneficial scalability and offline
capabilities allow for deployment to large populations. Our
scheme only requires irregular updates of the prover and
small revocation list updates due to the use of proba-
bilistic data structures. Moreover, it has constant verifica-
tion time, independent of revocation list and population
size.
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A Formal Proof

In this section, we formally analyze the security and privacy
of the proposed scheme, to demonstrate that the possibility
of breaking the user’s anonymity by an attacker is negligi-
ble. The hash function H, used by the participants and the
attacker, is thereby modeled as a random oracle. Let Hash
depict the random oracle and be simulated with a tuple (m, k)
table of binary strings. When the adversary executes a query
H (m), the random oracle returns k if m exists; otherwise,
it generates a uniformly random string k& and keeps the pair
(m, k) in the table.

We have four types of participants in our scheme: the
prover P;, the verifier V;, the revocation manager and the
issuer. Note that ]_[gl and HZ, are the instances of p and v of
P; and Vj, respectively. The formal security of the model is
based on a game involving a challenger C and a polynomial-
time adversary .4, which will be described below. During the
game, the attacker is allowed to make the following queries
to oracles that are responded to by a challenger C.

Execute (I—[I’Zi, ]—[ﬁl) Is performed by A in order to get
the messages transmitted among two truthful parties. This
is modeled as an eavesdropping attack.

Send < A I M) This query is appropriate for mod-
eling an active attack. A has the ability to modify the
transmitted message and send it to an instance of ]_[ZI or
]_[llj[ and wait to receive a response message.

TestAnon (M;, wo, wi) This oracle query is used to simu-
late the semantic security of the identity. After querying the
oracle, the transcript of Hﬁ; with identity wg or w; will be
returned according to arandom coin bit c. If ¢ = 1, the adver-
sary returns the transcript of ]_[Zl_ with identity w1 ; otherwise
the adversary generates the transcript of ]_[gi with identity wy.

In the random oracle model, the adversary .4 is challenged
in an experiment to distinguish between an instance’s real
identity and a random number. After carrying out the above
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queries, A produces its guess ¢’ of ¢ generated in the test-
query. We say A breaks the security of the scheme, if A can
correctly guess ¢’ and wins the game when ¢’ = c.

Let Succ®°" denote the event in which the adversary can
successfully guess ¢’ and win the game. The advantage of A
in breaking the anonymity of the protocol is defined to be

Advp" = [2 - Pr [Succa"o”] — 1] . (19)

We say that the proposed protocol provides anonymity if the
advantage Advp'™" < € is negligible.
Theorem 2 Under the assumption of a secure one-way hash
function, our scheme is provably secure against an adver-
sary A for deriving the identity handle ws, of a prover. The
probability of this by Adversary A is

2
2.
Advc;)non < % + |Tq|g +2 -Advl;")CDLP (1), (20)

where, qp, qs and |Hash|, define the number of Hash queries,
the number of send queries, the size of the hash function
space, and let |D| be the size of the uniformly distributed
dictionary, respectively.

Proof Assume, there is a probabilistic polynomial-time algo-
rithm U that can break a one-way hash function by coop-
erating with adversary A. We denote a sequence of games
GAME;, where i = [0, 4]. Suppose Succ; defines the event,
where the adversary succeeds in guessing the bit ¢ and wins
the game. The game will start from GAME), as a real attack
against the proposed scheme P and ends with the game
GAME}, which results in a negligible advantage of breaking
the anonymity and unlinkability properties of the proposed
scheme.

GAME This game represents a real attack by adversary A
against protocol P in the random oracle model. At the begin-
ning of this game, the bit c is chosen at random. By definition,
we have

AV = [2 - Pr{Succf"] —1]. (21)

GAME In this game, we simulate all oracles (Execute, Send
and TestAnon) for each query and keep three lists to store the
answers. The adversary has to make a decision whether the
output of TestAnon is the real identity or a random number.
From the simulation, we can see that the transcript distribu-
tion of the game GAME, and GAME are indistinguishable
from the real experiment. Therefore, message eavesdropping
cannot help to rise the winning possibility of A’s game. We
have,

Pr[Succi] = Pr[Succo] . (22)

GAME, This game simulates all oracles from GAME, except
that we halt all executions in which a collision occurs in the
transcript. The adversary transforms GAME/ into GAME,
by adding the simulation of both: the Send and Hash ora-
cles. GAME, creates an active attack where the adversary
tries to convince a participant to accept a forged message.
The adversary calls several Hash queries to find a hash col-
lision. Note that the exchanged messages Rt; = rt; - G and
dag; = gr(Rti) are associated with wge and counter value cqe,
which are secrets. Hence, even if the Send and Hash oracles
are queried by an adversary there will be no collision. Thus,
the games GAME; and GAME); are indistinguishable unless
collisions of group points and hash value happen. According
to the birthday paradox, this gives the following probability:

2

q;
Pr[S = Pr[S < — . 23
r[Succ ] r[Succy] < > Hash (23)

GAMEj5 In this game, we abort the scheme if A has been lucky
in guessing the values wg. and rt; without oracle queries.
The experiments GAME3 and GAME, are indistinguishable
unless the participants reject a valid authentication value.
Furthermore, for every transcript, there is only one wge Which
can be tested by the adversary. Hence,

qs (24)

Pr[Succy] — Pr[Succs] < DI

GAME, The last game is transformed from GAME3; and
modeled as an attack wherein A tries to obtain wg. from a ver-
ification token Rt; = rt; - G, where rt; = H(wge||gl|cse). The
adversary queries the Execute oracle and receives messages
My = (ch), My = (o, Rt;, dag;,). However, the identity Rt;
is computed as Rt; = rt; - G and computing r#; using one
of these available transcripts is computationally infeasible
to the adversary. The experiments GAME, and GAME3 are
indistinguishable unless the following event occurs:

— The adversary solves the ECDLP problem to compute r¢;
fora given Rt; = rt; - G.

Pr[Succs] — Pr(Succy] < AdvEPYP (1) . (25)

— In addition, whatever value the bit ¢ involved in the Tes-
tAnon queries, the answer is random, and independent
for all the sessions. Therefore,

1
Pr(Succ4] = 7 (26)
According to the equation in GAME(, we have

%Ad‘}o;’nan —

Pr[Succo] — %‘ . 27
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From all the games, we also have

1 q,% 4s ECDLP
Pr(S — < Ad . 28
rLSuccol 2‘ = 2Hash] T o] TAYP (28)
Thus, using the two equations above, we get
a; 2-qs ECDLP
Advpot < —1— + - +2-Ad 1). 29
"P = \Hash| " |D| VP 29

Therefore, the proposed protocol is secure when the range of
the hash function and the size of the dictionary are large. O

Corollary 4 The revocation scheme provides backward unlin-
kability against the strongest adversary.

According to Theorem 2, no polynomial adversary can
acquire the secret identity handle wg. if the underlying secure
hash function problem is hard. Therefore, we showed that
in the proposed scheme it is not feasible for any adversary
(A; —Ay) tolink previous and future verification tokens with
revoked tokens on the revocation list.
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