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Electrical impedance as an indicator 
of microalgal cell health
Jianye Sui1, Fatima Foflonker2, Debashish Bhattacharya   2* & Mehdi Javanmard1*

Separating specific cell phenotypes from a heterotypic mixture is a critical step in many research 
projects. Traditional methods usually require a large sample volume and a complex preparation process 
that may alter cell property during the sorting process. Here we present the use of electrical impedance 
as an indicator of cell health and for identifying specific microalgal phenotypes. We developed a 
microfluidic platform for measuring electrical impedance at different frequencies using the bacterium-
sized green alga Picochlorum SE3. The cells were cultured under different salinity conditions and 
sampled at four different time points. Our results demonstrate the utility of electrical impedance as 
an indicator of cell phenotype by providing results that are consistent with known changes in cell size 
and physiology. Outliers in the cell data distribution are particularly useful because they represent 
phenotypes that have the ability to maintain size and/or membrane ionic permeability under prolonged 
salt stress. This suggests that our device can be used to identify and sort desired (e.g., experimentally 
evolved, mutant) cell phenotypes based on their electrical impedance properties.

An important branch of functional genomics relies on the bioinformatic analysis of bulk transcriptomic data (e.g., 
RNA-seq reads from Illumina or Iso-Seq data from PacBio platforms) to identify pathways involved in processes 
such as the cell cycle, stress and disease response, and development1–3. Although well understood and relatively 
easy to apply, these methods are nonetheless expensive and provide average gene expression data based on the 
analysis of millions of cells per sample. To achieve single-cell resolution of gene expression patterns requires the 
more specialized tools of single cell transcriptomics that may be limited to smaller sample sizes due to the costs of 
generating individual libraries for 100 s or 1000 s of cells, followed by high-throughput sequencing4,5. Given these 
considerations, there is a need to develop tools with single cell resolution that provide meaningful insights into 
cell health and can be applied to millions of cells at low cost. If such an approach does not require existing refer-
ence genome data (preferable for RNA-seq approaches), then it can be applied to a variety of non-model systems 
(algal or microbial) that are of high importance in natural settings. Such a tool should be portable and its use not 
limited to laboratories or highly trained specialists. Here we describe a microfluidic platform for measuring cell 
health at the single cell level that addresses many of the shortcomings of conventional approaches.

Our approach builds on the growing interest in electrical analysis of biological cells. Particularly attractive 
is the ease of operation, rapid processing time, non-necessity of labeling, and the potential of miniaturization 
of these methods. For these reasons, electrical properties of cells have been investigated and utilized in a broad 
array of fields such as disease diagnosis6–9, environmental monitoring10,11, food safety12, and in applications such 
as cell identification and separation13–15. Specifically, electrical impedance spectroscopy has been used to analyze 
cell electrical properties16–20. Impedance measurement is based on the changes in conductivity and permittivity 
in a medium due to the presence of cells. Electrical impedance measured at different frequencies provides dif-
ferent types of information about cells, including cell size and membrane and cytoplasm electrical properties21. 
Impedance indicates cell size at lower frequencies around several hundred kilohertz, whereas it can be used to 
interpret membrane reactance and cytoplasm conductance at higher frequencies21,22. With the aid of microfluidic 
flow cytometry technology, impedance spectroscopy requires a smaller sample volume when compared to tradi-
tional methods, while maintaining high sensitivity23–25. Moreover, it simplifies the preparation process that may 
alter cell properties during the sorting step. Morgan’s group used microfluidic impedance cytometry to discrim-
inate T-lymphocytes, monocytes, and neutrophils in blood with high accuracy26. Based on the electrical imped-
ance, cells with particular properties can be sorted for downstream analysis. Haandbæk and co-authors reported a 
cytometer with the capability of wide frequency range measurement and characterized two different types of yeast 
cells based on dielectric properties at four frequencies27. There are some known connections between electrical 

1Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA. 2Department 
of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA. *email: d.bhattacharya@
rutgers.edu; mehdi.javanmard@rutgers.edu

OPEN

https://doi.org/10.1038/s41598-020-57541-6
http://orcid.org/0000-0003-0611-1273
mailto:d.bhattacharya@rutgers.edu
mailto:d.bhattacharya@rutgers.edu
mailto:mehdi.javanmard@rutgers.edu


2Scientific Reports |         (2020) 10:1251  | https://doi.org/10.1038/s41598-020-57541-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

properties of cells and their biological status, such as viability. Song et al. differentiated live and dead Dunaliella 
salina cells with a capacitive microfluidic sensor28. In spite of these promising results, the use of electrical imped-
ance for cell health screening is poorly developed.

Here, we present a novel method to study algal cell phenotype using electrical impedance cytometry at multi-
ple frequencies, providing an instantaneous snapshot of organism dielectric properties at the single cell level. We 
investigated the frequency-dependent impedance of bacterium-size (i.e., 2–3 µm cell diameter) green algal cells 
(Picochlorum SE3, Chlorophyta)29,30. The algae were cultured in three different salinity conditions and sampled at 
four different time points over a wide frequency range using a multi-frequency lock-in amplifier that was utilized 
in conjunction with a microfluidic channel. We demonstrate the utility of electrical impedance as a phenotype 
indicator that reflects the change in size and permeability of cells under different salt stresses.

Results
Microfluidic sensor design and electrical impedance analysis.  We built a microfluidic sensor to per-
form multi-frequency impedance cytometry to capture the impedance information of algal cells. As shown in 
Fig. 1, the instrument comprises two components, two pairs of coplanar golden electrodes deposited on a glass 
substrate and a polydimethylsiloxane (PDMS) microfluidic channel. To enhance sensitivity and prevent blockage, 
the channel dimension was 30 μm in width and 8 μm in height. The width of the two electrodes was 20 μm and 
the gap between them was 30 μm. In the experiments we describe below, only one pair of electrodes was used 
for measurement. When a cell flows through the sensing region, it occludes a portion of the ionic current con-
ducting between the two electrodes. Thus, the current decreases, and conversely the impedance increases. The 
closer the dimensions of the sensing region to the size of algal cells, the more current is obstructed and the larger 
the impedance change. However, blockage is more likely to happen when the channel size is reduced. A com-
mercial multi-frequency lock-in amplifier (Zurich Instruments HF2A, Zurich, Switzerland) was used to capture 
the impedance change simultaneously at eight different frequencies (ranging from 500 kHz to 30 MHz). Output 
voltage is proportional to impedance between the two electrodes (sensing region). As described above, when a 
cell flows through the sensing region, the current between two electrodes decreases, thus the output voltage of 
the lock-in amplifier decreases and a negative peak is observed. The larger the output voltage peak amplitude, the 
greater the cell impedance. The peak amplitude is calculated as the difference between the output voltage base-
line and the minimum value of the peak. The typical impedance change (output voltage) at different frequencies 
(5 MHz, 7.5 MHz and 10 MHz) when a cell passes by in a 2-second time window is shown in Fig. 2a. Traces were 

Figure 1.  Overview of strategy. (a) Image of the device whereby a soft-lithography made PDMS microfluidic 
channel is bound onto a glass wafer patterned with two pairs of sensing electrodes. (b) Microscope image of 
the channel and electrodes. (c) Diagram showing the experimental design of the cell impedance experiments 
in which Picochlorum SE3 cells were cultured under widely different salinity conditions (10 mM, 1.5 M NaCl) 
after being acclimated to 1 M NaCl, and sampled at 4 different time points (1 h, 5 h, 1 d, and 5 d). After culturing, 
all cells were washed three times in PBS buffer and injected into the electrical impedance analyzer to collect 
the data. (d) Schematic diagram of the electrical impedance measurement. Algal cells were introduced into 
the channel from the inlet well. When cells flowed through the sensing region, they blocked part of the ions 
conducting current between the two electrodes. As a result, the impedance changed in this region. This change 
was captured by a lock-in amplifier at eight different frequencies. The data were transferred to the attached 
computer for downstream analysis.
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normalized using the baseline to allow between-frequency comparison. Previous work from Sun et al.18 and 
Gawad et al.22 demonstrated that a cell can be modeled as a membrane resistance, in parallel with membrane 
capacitance, and then in series with the cytoplasm resistance, in parallel with cytoplasm capacitance (Fig. 2b). 
The Cdl and C’dl are the double layer capacitance that surrounds the electrodes and algal cells, respectively, and 
they will have less impact on impedance when the frequency exceeds several kilohertz. As the frequency increases 
above 5 MHz, the membrane capacitance gradually gets shorted and thereby creates a path for conducting the 
current. As a result, the cell becomes more permeable to the electric field generated by the electrodes, and has 
lower impedance. As the frequency increases, cell impedance depends more on properties of the cytoplasm. In 
contrast, under a low frequency range (<500 kHz), cell size dominates the impedance21. To minimize the effect 
of variation in cell size on impedance, we defined cell transparency as the ratio of voltage peak intensity (voltage 
peak amplitude) at higher frequency over peak intensity at 500 kHz, whereby the peak intensity corresponds to 
size. The cell transparency reflects cell properties independent of size and also denotes the extent of similarity 
between the cell and the background solution in the electric field.

Impedance analysis of algal cell viability.  Initially, we studied the impedance responses of live and dead 
Picochlorum SE3 cells. The algae were killed by treating them with heat for 1 h. Multi-frequency impedance flow 
cytometry was performed to measure the impedance of cells. Both live and dead cells were diluted in 50 μL of 
1X phosphate buffered saline (PBS) immediately before the measurement to allow higher sensitivity. The results 
of these analyses are shown in Fig. 3. As apparent in Fig. 3a, the mean cell transparency of live cells was greater 
than that of dead cells. The transparency was calculated using average peak intensity measured at 20 MHz over 
average peak intensity measured at 500 kHz. The peak intensity at 20 MHz reflected more the cytoplasmic perme-
ability, whereas the peak intensity at 500 kHz was affected primarily by cell diameter21. These results indicate that 
dead cells are more transparent to the surrounding electric field, because ions in the media can flow more freely 
through the membrane. The impedance scatter plot of live and dead cells is shown in Fig. 3b. Dead cells exhibit 
smaller peak intensity at 500 kHz, implying that they are smaller in size compared to live cells. The cytoplasmic 
permeability of dead cells was greater than that of live cells, as can be concluded from the smaller peak intensity of 
dead cells at 20 MHz. In addition, dead cells have a narrower distribution compared with live cells. In other words, 
dead cells exhibit more homogeneity in terms of size and permeability. With regard to the frequency response of 
live and dead cells (Fig. 3c), the peak intensity difference was small at 500 kHz but became larger as the frequency 
increased to 25 MHz. This difference became small again at 30 MHz. This pattern illustrates that the size differ-
ence between live and dead cells is smaller compared to the difference in cytoplasmic permeability, as depicted 

Figure 2.  Impedance response analysis. (a) Representative data for algal cells flowing through the sensing 
electrodes, measured at 5 MHz, 7.5 MHz and 10 MHz. The line colors denote the different frequencies used 
(see legend) and the three peaks denote three cells flowing through the sensing area in this 2-second window. 
(b) Impedance model of the cytometer system with the algal cell present. C’dl is the double layer capacitance of 
the cell. The impedance of cell is in parallel with the solution resistance and capacitance. Cdl is the double layer 
capacitance of the electrodes.
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in Fig. 3b. These results demonstrate the utility of electrical phenotype for studying not only the viability of algal 
cells, but also the health of a population.

Algal cell stress analysis using impedance flow cytometry.  Algal cells stressed at different salini-
ties.  We measured the impedance responses of Picochlorum SE3 cells cultured in media of different salinities 
(0 M, 0.1 M 0.3 M, 0.7 M, and 1.3 M NaCl) for 1 h using multi-frequency impedance flow cytometry. For this 
approach, 3 mL of algal cells were centrifuged, washed three times with 1X PBS and diluted in 50 μL PBS. For the 
control, we measured the impedance response of polystyrene (PS) beads that were incubated in PBS amended 
with different amounts of salt (0 M, 0.1 M 0.3 M, and 0.7 M NaCl) for one hour. The beads were handled in the 
same way as the algal cells with regard to centrifugation, the wash and dilution process prior to the experiments. 
Figure 4 shows impedance measurements of average cell transparency using PS beads and of algae incubated in 
media of different salinities. The transparency was calculated using peak intensity measured at 20 MHz over peak 
intensity measured at 500 kHz. The mean transparency of PS beads was similar across treatments, whereas the 
mean transparency values of algal cells under different salt conditions were highly differentiated. Cell transpar-
ency decreased as the salinity increased from 0 M to 0.3 M and then increased from 0.3 M to 1.3 M. The moderate 
salinity level did not impact the property of PS beads and hence bead transparency was unaltered. In contrast, 
algal cells need to regulate the flow of sodium ions in the different salinity environments to maintain ionic home-
ostasis31. As a result, in addition to changes in cell size, the algal cell membrane and cytoplasm were altered 
to accommodate the changing environment32. This series of responses changed several frequency-dependent 

Figure 3.  Impedance response of live and dead algal cells. (a) Average cell transparency calculated using peak 
intensity measured at 20 MHz over peak intensity measured at 500 kHz. (b) The impedance scatter of live and 
dead algal cells. The x-axis shows the peak intensity at 500 kHz, which indicates cell size. The y-axis shows the 
peak intensity at 20 MHz, which indicates algal cytoplasmic permeability. (c) Average impedance frequency 
response of live and dead algal cells. The impedance responses were measured at 500 kHz, 20 MHz, 25 MHz, and 
30 MHz.
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electrical properties of the membrane and the cytoplasm, such as surface conductance, dielectric permittivity, and 
the charging profile, which had an impact on electrical impedance and cell transparency, that changed accord-
ingly33. At a salinity of around 0.3 M NaCl, the algae were apparently able to maintain ionic homeostasis more 
effectively. Therefore, the membrane ionic permeability was high and resulted in low cell transparency. By com-
paring the results of PS and algal cells, we validated that our sensor had the ability to detect different levels of algal 
salt stress using electrical impedance.

Algal cells stressed for different times.  We investigated if culturing algal cells in different salinity conditions for 
different periods of time had an impact on the impedance response. Algal cells were cultured in three different 
salinity conditions (0.01 M, control: 1 M, and 1.5 M NaCl) and sampled at four different time points (1 h, 5 h, 1 
d, and 5 d). Cells cultured in 1 M salinity were used as the control31. All samples were washed 3X to remove the 
residual original medium. We measured the impedance of algal cells using impedance flow cytometry. The cell 
transparency was calculated as the ratio of peak amplitude at 20 MHz over peak amplitude at 500 kHz. As shown 
in the average cell transparency (Fig. 5), cell impedance response in terms of transparency was different at 1 h. 
The high and low salt groups were significantly less transparent than the control group. Cells in these two groups 
presumably were more highly stressed in the short-term and the membrane became less permeable with respect 
to ion transport. After 5 hours, and up to 1 day, cells adapted better to the environment and thus membrane per-
meability again normalized. Hence, cells were more transparent to the surrounding environment and the electric 
field generated by the electrodes. After 5 days, the high salt group could not recover from the long-term salinity 
stress and growth of these cells was greatly diminished31. Therefore, the cytoplasm of this group was less conduc-
tive and cells become less transparent when compared to the other two groups.

Figure 6 shows the impedance scatter plot of individual algal cells cultured in different salinity media for 1 h, 
5 h, 1 d, and 5 d. The solid line is the average cell transparency in terms of size. The impedance peak intensity of 
algal cell at 500 kHz illustrates cell size. The second x-axis on the top of the images shows the corresponding cell 
size, which was determined through light microscopy. The peak intensity at 5 MHz indicates ionic permeability of 
the cell membrane21. At 1 h, cells under low or high salt stress alter their membrane to be less permeable than cells 
in the control group while maintaining a similar size to withstand the shock. After 5 h and 1 d, all cells in different 
media had similar properties, except the low salt group, which had a slightly larger size. However, on day 5 cells 
under both high salt and low salt conditions were less well adapted and showed a similar, relatively high perme-
ability with low salt conditions cells having a larger cell size. The membrane of cells in both conditions was more 

Figure 4.  Impact of different culture salt conditions on polystyrene bead (PS) and algal cell impedance. Algal 
cells were cultured in 0 M, 0.1 M, 0.3 M, 0.7 M, and 1.3 M NaCl amended medium for 1 h. PS beads were used as 
control and immersed in PBS medium amended with 0 M, 0.1 M, 0.3 M, and 0.7 M NaCl. Both beads and cells 
were washed and resuspended in PBS before the impedance measurements were made. (a) Average PS bead 
transparency calculated using peak intensity measured at 20 MHz over peak intensity measured at 500 kHz. (b) 
Average cell transparency calculated using peak intensity measured at 20 MHz over peak intensity measured at 
500 kHz. These results show that the PS bead transparency changed very little in the different salt treatments, 
whereas algal cell transparency decreased significantly from 0 M to 0.3 M and then increased from 0.3 M to 
1.3 M.
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permeable than that of cells in the control medium. Outliers in the data scatter plot were of interest because they 
represent phenotypes such as algae that have the ability to maintain cell size and/or membrane ionic permeability 
under prolonged salt stress. For example, the outlier cells marked with black circles maintain relatively high per-
meability and large cell size under both low and high salt conditions after the 5-day exposure. With the addition 
of an integrated sorter, our device potentially could be used to isolate cells with specific impedance properties for 
downstream analysis.

Discussion
Picochlorum SE3 is a remarkably versatile coccoid green alga that can tolerate a wide salinity range34. Strategies for 
maintaining ionic homeostasis are critical for the survival of Picochlorum SE3 in its natural habitat of a brackish 
water coastal lagoon that is subject to large fluctuations in salinity through evaporation, precipitation, and tidal 
influx of seawater. The San Elijo Lagoon system in California where this strain was isolated has salinities that 
range from 108.3‰ in the dry season to freshwater levels (1.7‰) in the rainy winter season. Nutrients such as 
phosphate, nitrate, nitrite, and ammonium also show extreme variation. Picochlorum SE3 is present year-round 
in this fluctuating environment and therefore has evolved mechanisms to deal with this long-term stress. For 

Figure 5.  Impact of time on algal cell impedance. The plot shows the average cell transparency calculated using 
peak intensity measured at 20 MHz over peak intensity measured at 500 kHz.

Figure 6.  The impedance scatter of individual algal cells cultured in different salinity media for 1 h (a), 5 h (b), 
1 d (c), and 5 d (d). The x-axis shows the peak intensity at 500 kHz, which indicates cell size. The y-axis shows 
the peak intensity at 5 MHz, which indicates algal membrane properties, in particular, ionic permeability. The 
solid line shows the average cell transparency in terms of size. After 1 h, cell transparency of the low salt and 
high salt groups were above that of control. The cell transparency of all three groups became similar to each 
other. However, after 5 d, cells under both test conditions were less well adapted and showed a similar, relatively 
high membrane permeability with low salt conditions cells having a larger cell size. The cells marked with the 
black circles had relatively high membrane permeability and were larger in size under either low or high salt 
conditions after 5 d exposure.
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example, this alga encodes six copies of the AtNHX8/salt overly sensitive 1 (SOS1) gene (compared to one in the 
marine green alga Ostreococcus tauri) and contains several horizontally transferred bacterial genes that play roles 
in abiotic stress responses30,31. The overall “genetic toolkit” (e.g., transcriptomic response) that Picocholrum SE3 
deploys to survive salt stress is however shared by many other algae and plants and is well understood35–37.

Nonetheless, without analyzing impedance phenotypes associated with different gene knockouts, we have 
no direct way to connect cell impedance with genetic or transcriptomic data. Therefore, the inferences we make 
about how electrical impedance intersects with algal biology are speculative but broadly consistent with existing 
physiological and RNA-seq results from Picochlorum SE33,30,31. Specifically, the growth rate of this alga, when 
pre-conditioned to 1 M NaCl peaks at 100 mM NaCl and is reduced drastically as the culture salinity is increased 
above 1 M NaCl. Analysis of the cultures shows that the PSII quantum efficiency (proportional to Fv/Fm) is 
lessened in the short-term (2 h) at both lower and higher salt concentrations. The correlation of Fv/Fm and the 
growth rate, based on salt conditions after 24 h suggests that energy resources normally devoted to growth are 
instead used to maintain osmotic balance, with both low and high salinity having an impact31. Higher observed 
growth rates under low salt indicates that these conditions favor enhanced growth after an initial acclimation 
period, whereas high salt stress does not allow recovery of the growth rate over the longer-term (up to several 
days; for more details, see31). Finally, an intriguing finding in our study is the strict control of cell size apparent 
in control populations as well as in the different salt treatments that ranges from 4.5–4.8 μm (Fig. 6). Even after 5 
d when the low and high salt populations have differentiated in terms of cell size, they remain within the bounds 
formed by the control group (Fig. 6d). These results suggest that cell size is “hard-wired” in Picochlorum SE3 and 
that cells explore (and not escape) the range of possible sizes under different salt conditions.

In this work, we presented the use of electrical impedance as an indicator of cell health and for identifying 
specific microalgal phenotypes by implementing multi-frequency impedance flow cytometry. Multi-frequency 
impedance responses provide information about the size and membrane and cytoplasm ionic permeability of 
algal cells. These properties will change as cells undergo salt stress for different time periods. Large cell size 
exhibits a large impedance response at lower frequency (~500 kHz)21. High ionic permeability produces a small 
impedance response at higher frequency (>5 MHz). By investigating the impedance at different frequencies, we 
were able to resolve differences in cell size, infer membrane and cytoplasm ionic permeability, identify outliers 
in the cell population distribution, and estimate the overall level of cell stress. Our method provides a novel 
high-throughput approach to study algal (and potentially, any microbial) cell health. In addition, this approach 
can be used to identify and sort desired (e.g., experimentally evolved, mutant) cell phenotypes based on their 
electrical impedance.

Several optimization steps could be made to the device to further improve the accuracy of this method for 
identifying and sorting cell phenotypes. Implementing multi-electrodes for differential configuration can remove 
some of the interference and noise from the environment during measurement, such as the baseline shift and 
white noise, and thus can enhance the signal to noise ratio. Incorporating temperature sensors in the microflu-
idic channel can correct day-to-day variation due to temperature differences that can affect conductivity of the 
medium and hence cell impedance. These advances could also reduce the number of algal cells used for analysis 
and the testing time. In summary, our method captures impedance changes in the microfluidic channel and 
relies on a portable readout instrument, which can also be integrated on a chip to further minimize the size in 
future iterations. Impedance flow cytometry enables measuring hundreds of cells in minutes to save analysis time. 
Moreover, it requires small sample volumes and no complex sample preparation process. Given these advantages, 
our method provides an opportunity for the rapid in situ analysis of cell phenotype, and in the future, sorting of 
cells with desired properties.

Methods
Algal cell preparation.  Picochlorum SE3 was cultivated as previously described in artificial seawater30 based 
Guillard’s f/2 medium38 without silica (f/2 ASW–Si). The cells were grown at 25 °C under continuous light (100 μE 
m−2 s−1) on a rotary shaker at 100 rpm (Innova 43, New Brunswick Eppendorf).

Device fabrication and integration.  The device consists of two pairs of gold electrodes on a glass sub-
strate and a polydimethylsiloxane (PDMS) microfluidic channel fabricated using microfabrication technology. 
Electrodes were patterned on a 3-inch glass wafer using standard photolithography procedures. The process 
started with wafer cleaning using acetone, methanol and DI water. Thereafter, a thin layer of positive photoresist 
(AZ5214, MicroChemicals GmbH) was spin coated on the wafer. After pre-bake, mask and wafer alignment, 
UV exposure, development and post-bake, the desired pattern was transferred from the mask to the wafer. The 
metals, 5 nm chromium and 100 nm gold, were deposited sequentially using electron beam evaporation, whereby 
the chromium layer was used for enhancing the adhesion of gold film on glass. Unintended parts were lifted 
off by submerging the wafer in acetone. The resultant electrodes were 20 μm in width and the gap between two 
electrodes was 30 μm. The SU-8 (negative photoresist) silicon mold for microfluidic channel was fabricated using 
standard soft lithography procedures as described in the literature39–41. The size of the channel is 30 μm in width 
and 8 μm in height. The channel pattern was transferred from the mold to a PDMS slab using the following pro-
cess. Mixed 10:1 PDMS polymer and curing agent (Sylgard 184, Dow Corning) sufficiently. Then, poured the 
mixture onto the channel mold, degassed to remove bubble in the mixture and baked at 80 °C for 30 minutes to 
allow for curing. Afterwards, the PDMS channel was peeled off and two holes were punched through the PDMS 
to be used as inlet reservoir (5 mm in diameter) and outlet reservoir (1.2 mm in diameter). The microfluidic chan-
nel and the electrodes on glass substrate were covalently bonded by treating the two surfaces with oxygen plasma.
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Multi-frequency impedance flow cytometry.  Multi-frequency impedance flow cytometry was done 
to capture the impedance response of algal cells at 8 different frequencies, ranging from 500 kHz to 30 MHz. The 
algal cells were initially cultured in Guillard’s f/2 medium emended with different NaCl amounts (0 M, 0.01 M, 
0.1 M, 0.3 M, 0.7 M, 1 M, 1.3 M, and 1.5 M) for different time periods (1 hour, 5 hours, 1 day, and 5 days) and then 
analyzed. Cells in 3 mL of the original culture were sampled, spun down and the culture buffer was replaced with 
1x phosphate buffered saline (PBS). Samples were washed in PBS 3 times to remove the original culture buffer. 
Finally, samples were diluted in 50 μL PBS, which provided a continuous flow in the cytometry experiment for 
more than 15 min without using a noisy syringe pump. The impedance flow cytometry started with making the 
microfluidic channel hydrophilic by implementing an oxygen plasma treatment. The PBS was injected into the 
channel to preserve the hydrophilicity until the measurement started. Fluid was driven by capillary force, and 
the pressure gradient induced by the fluid height difference between inlet and outlet. PBS was withdrawn from 
the channel and algal cells were introduced from the inlet. The impedance across two electrodes was changed 
when a cell flowed through the sensing region, because the electrical field was blocked by the cell. The impedance 
changes at 8 different frequencies were captured by a commercial lock-in amplifier (Zurich Instruments HF2A, 
Zurich, Switzerland). A superposition of 8 different frequency AC signals generated by the same lock-in amplifier 
was used to excite the electrodes. The data were demodulated, then sent to a local computer and analyzed using 
MATLAB (MathWorks, Natick, MA, USA). To minimize the impact of noise and interference from the environ-
ment on impedance measurement, the device was placed in a metal box during the experiment.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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