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ABSTRACT

White matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can
shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has
been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated
with WM plasticity measured by DTI. We combined DTI, immunohistochemistry and mRNA expression analysis
and examined the effects of somatosensory experience in adult rats. First, we observed experience-induced DTI
differences in WM and in grey matter structure. C-Fos mRNA expression, a marker of cortical activity, in the
barrel cortex correlated with the MRI WM metrics, indicating that molecular correlates of cortical activity relate
to macroscale measures of WM structure. Analysis of myelin-related genes revealed higher myelin basic protein
(MBP) mRNA expression. Higher MBP protein expression was also found via immunohistochemistry in WM.
Finally, unbiased RNA sequencing analysis identified 134 differentially expressed genes encoding proteins in-
volved in functions related to cell proliferation and differentiation, regulation of myelination and neuronal
activity modulation. In conclusion, macroscale measures of WM plasticity are supported by both molecular and
cellular evidence and confirm that myelination is one of the underlying mechanisms.

1. Introduction

increases in fractional anisotropy (FA) in WM tracts in individuals with
normal vision (Debowska et al., 2016). FA is a DTI-derived metric that

There is accumulating evidence that structural changes in white
matter (WM) occur in response to changes in experience, even during
adulthood (Sampaio-Baptista and Johansen-Berg, 2017). Neuroimaging
studies have reported experience-induced structural WM plasticity in
humans (Hofstetter et al., 2013; Scholz et al., 2009). For example,
motor skill learning, such as juggling (Scholz et al., 2009) and whole-
body balancing tasks (Taubert et al., 2010), have been widely reported
to induce changes in diffusion tensor imaging (DTI) metrics. Ad-
ditionally, somatosensory tasks, like Braille reading training, results in
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is modulated by an array of WM features including fibre organization,
axon diameter, myelin thickness or length, and changes in astrocyte
morphology, among others. Given that MRI measures are nonspecific,
cellular and molecular interpretation of the underlying mechanisms is
challenging (Sampaio-Baptista and Johansen-Berg, 2017; Zatorre et al.,
2012). Recent rodent studies have combined both imaging and im-
munohistochemistry, to attempt to investigate the underlying cellular
mechanisms of macroscale WM plasticity. In response to both cognitive
and motor training, higher intensity immunostaining for myelin basic
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protein (MBP) has been found to colocalize with higher FA
(Blumenfeld-Katzir et al., 2011; Sampaio-Baptista et al., 2013), im-
plicating myelination as one of the mechanisms that underlies changes
detected by DTI. However, the underlying molecular mechanisms of
experience-dependent WM plasticity during adulthood are still unclear,
and how they relate to macroscale changes detected by neuroimaging is
not fully understood.

Here, we tested whether somatosensory experience in adult rats
induces WM plasticity at the macro and the molecular scale by com-
bining neuroimaging and mRNA expression analysis. We trained adult
rats to use theirs whiskers to distinguish between surfaces in a texture
detection task (TDT) (von Heimendahl et al., 2007). Structural changes
in barrel cortex, such as synapse and spine formation (Trachtenberg
et al., 2002) have been extensively reported in response to whisker
stimulation (Knott et al., 2002), deprivation (Holtmaat et al., 2006) and
somatosensory learning (Kuhlman et al., 2014), along with corre-
sponding changes in expression levels of genes, such as BDNF
(Rocamora et al., 1996) and synaptophysin (Ishibashi, 2002). More
recently, increases in oligodendrocyte numbers and integration in
barrel cortex in response to somatosensory enrichment in middle-aged
rats have also been detected (Hughes et al., 2018). WM structure was
assessed with DTI and immunohistochemistry. Additionally, we ana-
lysed mRNA expression of myelin-related genes to support the struc-
tural findings and performed unbiased RNA sequencing analysis to
further identify putative molecular mechanisms underlying experience-
dependent WM plasticity.

2. Results

Three-month old rats (n = 28) were trained on a texture detection
task (TDT) (von Heimendahl et al., 2007) that required a texture
identity (rough or smooth) to be associated with a reward side (e.g.,
turn left on rough, right on smooth). After the initial shaping period, it
took the trained animals between 5 and 17 days to reach criterion
performance of 2 sessions with > 80 % accuracy (Fig. 1A, B).

3. Neuroimaging analysis results

3.1. DTI multi-metric analysis revealed WM structural differences between
groups and correlations with performance in the texture detection task

To assess effects of experience on WM microstructure we jointly
analyzed structural measures calculated from post-mortem DTI scans of
left hemispheres from TDT (n = 28) and passive control (PC, n = 20)
animals. The PC group was handled daily for a few minutes, without
any exposure to the testing setup. We performed a non-parametric
combination (NPC) for joint inference analysis, as implemented in
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diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD)),
using the Fisher’s combining function. We tested for a concordant di-
rection of effects across all measures, while allowing the assessment of
the significance maps for each measure separately (reported in the
partial tests), and as such, inference on which measures would drive a
significant joint result, with correction for the multiplicity of tests
(Winkler et al., 2016) (see Methods for more details).

We first tested for between-group differences across all voxels in the
WM skeleton. A significant cluster was found with the NPC joint in-
ference analysis (p < 0.05, fully corrected across all voxels, Fig. 2A)
covering a large area of WM under prefrontal and sensorimotor regions
(Fig. 2A). These are relevant WM regions for the texture detection task
in the light of the barrel cortex’s role in somatosensory information
processing (for review see (Feldmeyer et al., 2013)).

Additionally, the NPC partial tests showed that, compared to con-
trols, the TDT group had significantly higher FA (p < 0.05, fully cor-
rected across all voxels and the 4 measures) (Fig. 2B), lower MD (p <
0.05, fully corrected across all voxels and the 4 measures) (Fig. 2C), and
lower RD (p < 0.05, fully corrected across all voxels and the 4 mea-
sures) (Fig. 2D) across similar areas of WM. AD was not significantly
different between groups (p = 0.842, fully corrected across all voxels
and the 4 measures).

Secondly, to assess the relationship between task performance and
the neuroimaging structural measures, we again used a NPC Fisher’s
joint inference analysis to test for voxel-wise correlations between 4
DTI measures and performance rate (slope of the individual curves)
across individual animals (n = 28). We did not find a significant cor-
relation between performance rate and the joint 4 DTI measures.
However, there was a significant correlation between performance rate
and FA (p < 0.05, fully corrected across all voxels and the 4 measures,
Fig. 2E) and a trend for RD (p = 0.09, fully corrected across all voxels
and the 4 measures, Supplementary Fig. 2) in a similar area of WM (90
% overlap) to that showing group differences (depicted in Fig. 2A).
Animals with higher FA (and lower RD) tended to show steeper slopes
(i.e. they reached criterion performance with fewer exposure days),
suggesting that WM microstructure is related to TDT performance. This
correlation could either reflect experience-dependent changes that oc-
curred with task performance, or pre-existing structural differences that
relate to performance variation, or a combination of both.

3.2. Grey matter MD is lower in the TDT group

To assess effects of experience on grey matter (GM) microstructure
we tested for MD differences, as this measure reflects water restriction
regardless of the structure orientation and can potentially indicate
changes in tissue density and/or water content. This analysis revealed
clusters with significantly lower MD (p < 0.05, corrected) in the TDT

PALM, over the 4 DTI measures (fractional anisotropy (FA), mean group (n = 28) compared to the PC group (n = 20) (Fig. 3). The
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Fig. 2. DTI analysis of WM structure. A NPC
Fisher’s test for joint inference over the 4 DTI
measures (FA, MD, RD and AD) (cluster in
yellow) was found to be significant p < 0.05
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rected). D RD (in dark blue) was significantly
lower in the TDT group (p < 0.05, fully cor-
rected). E Performance rate correlated with FA
(cluster in red) (p < 0.05, fully corrected).
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significant clusters included both frontal and sensory cortex, hippo-
campus, and subcortical structures such as striatum and thalamic nu-
clei.

3.3. Learning versus experience

Our main analysis above compared the TDT group to a passive
control group in order to identify general experience-dependent effects.
To test for specific effects of associative learning versus experience in
WM microstructure, we compared a subgroup of TDT rats (TDTsg, n =
12) to an active control group (AC) (n = 12). The AC group was
matched for number of training days to a subgroup of TDT rats and
were exposed to the same texture discrimination apparatus but were
provided with rewards that were not contingent on their response. This
allowed the AC group to experience the same textures and similar levels

of rewards but without the requirement to differentiate between rough
and smooth textures in order to gain the rewards. Rats in TDTsg and AC
groups spent the exact same time in the task (for both groups, mean =
8.83 days, S.D. = 3.97).

We used the same statistical approach as above and performed a
NPC Fisher’s joint inference analysis as implemented by PALM, over the
4 DTI measures across all voxels in the WM skeleton, using the Fisher’s
combining function (Winkler et al., 2016). We tested for differences
between the TDTsg (n = 12), AC (n = 12) and PC (n = 20) groups.

The NPC joint inference test did not reveal significant differences
between these groups when considering all measures together.
However, the partial tests revealed several trends for FA. A trend was
seen for higher FA in the AC group compared to the PC group in a
cluster underlying barrel cortex (p = 0.1, fully corrected, Fig. 4A, C)
and in a very similar cluster for the TDTsg group compared to the PC
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group (p = 0.09, fully corrected, Fig. 4B, C). There were no significant
differences nor trends towards differences between the TDTsg and AC
groups (p = 0.71, fully corrected). These results suggest that learning
to distinguish between smooth versus rough textures is not necessary
for the detected structural differences and that exposure to the task
apparatus, whisker stimulation, and rewards, is sufficient to elicit si-
milar structural changes in both active groups compared to a caged
group. This indicates that the requirement to differentiate between
rough and smooth textures is not necessary to elicit structural WM
changes. We cannot exclude that AC rats might have distinguished
between contacted textures, even if reward was not contingent on the
discrimination.

4. Candidate gene analysis and immunohistochemistry results

4.1. Somatosensory experience results in higher synaptic c-Fos mRNA
expression in the barrel cortex

We assessed synaptic c-Fos expression as an indirect marker of cell
activity in the barrel cortex to confirm activation of this area in re-
sponse to the task. As expected, c-Fos mRNA expression was sig-
nificantly different between groups (One-way ANCOVA; F33 =
12.754; p = 0.000079) (Fig. 5A). Planned comparisons showed a sig-
nificant difference between TDT and PC (p = 0.000052) and AC and PC
(p = 0.000083). No significant differences were found for the com-
parisons between TDT and AC (p = 0.999). Qualitative analysis of c-Fos
in situ hybridization images confirmed the above mRNA expression
results (see Supplementary Results, Supplementary Methods, and Sup-
plementary Fig. 3).
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Fig. 3. Grey Matter analysis. MD (in blue)
was significantly lower in the TDT group (p <
0.05, fully corrected). Significant clusters are
superimposed on the mean FA template. Bar
graph of MD estimated marginal means (ad-
justed for the number of exposure days) of the
significant cluster is shown to illustrate the
direction of differences and not for inference.
Error bars represent standard error. TDT-
Texture detection task group and PC - Passive
control.

4.2. Synaptic c-Fos mRNA expression in the barrel cortex correlates with
DTI measures of WM microstructure

We further tested for correlations between c-Fos mRNA and the
mean FA, MD and RD values of the significant cluster identified in
Fig. 2A. We used Bonferroni correction accepting a p-value smaller than
0.0083 as significant.

There were significant negative correlations (Fig. 5B, C, D) across
both groups (TDT and PC) between c-Fos mRNA expression and the
mean RD (Pearson r = —0.52, p = 0.006, 2-tail), and mean MD
(Pearsonr = —0.51, p = 0.0078, 2-tail) but not with the mean FA after
Bonferroni correction (although a trend for a positive correlation was
observed, Pearson r = 0.44, p = 0.024, 2-tail).

Significant negative correlations within the TDT group only were
also significant between c-Fos mRNA expression and mean RD (Pearson
r = —0.66, p = 0.005, 2-tail), and mean MD (Pearsonr = —0.69, p =
0.003, 2-tail) (represented in black in Fig. 5B, C, D).

4.3. Myelin basic protein mRNA expression is higher in the WM Co-
localised with the barrel cortex of the TDT group

To assess effects of experience on mRNA expression in the WM, the
WM underlying the barrel cortex was dissected from a subset of right-
brain hemispheres (n = 24; 15 from the TDT group and 9 from the
control group) and gPCR was performed on this tissue. Expression of 12
candidate genes known to be centrally involved in myelination was
analysed with non-parametric permutation testing as implemented by
PALM (Winkler et al., 2016). Of the 12 candidate genes analysed only
MBP survived multiple comparisons correction. MBP mRNA expression
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Fig. 4. Effects of learning and experience in WM A NPC partial tests revealed a trend for higher FA (yellow cluster) in the AC group compared to the PC group (p =
0.1, fully corrected). B NPC partial tests revealed a trend for higher FA (green cluster) in the TDTsg group compared to the PC (p = 0.09, fully corrected). No
differences or trends were found between the TDTsg group and the AC. C Bar graph of FA estimated marginal means (adjusted for the number of exposure days) of the
overlapping cluster areas illustrated in A and B. This is shown to illustrate the direction of differences and not for inference. Error bars represent standard error. TDT-
Texture detection task group, AC- Active control, PC — Passive control.
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Fig. 5. Candidate genes mRNA analysis and immunohistochemistry. A C-Fos mRNA expression levels of the barrel cortex (estimated marginal means, adjusted
for the number of exposure days). B Plot of the significant correlation between c-Fos mRNA expression and mean RD of the significant cluster identified in Fig. 2A. C
Plot of the significant correlation between c-Fos mRNA expression and mean MD of the significant cluster identified in Fig. 2A. D Plot of the correlation trend between
c-Fos mRNA expression and mean FA of the significant cluster identified in Fig. 2A. E MRNA expression levels of myelin-related candidate genes in WM tissue
underlying S1. MBP mRNA expression is higher in the TDT group compared to the control group (estimated marginal means, adjusted for the number of exposure
days; * p < 0.05, corrected for multiple comparisons; p = 0.016, uncorrected). F Inmunohistochemistry revealed significantly higher MBP optical density in the
TDT and AC groups (estimated marginal means, adjusted for the number of exposure days). A.u. — Arbitrary Units.

was found to be significantly higher in the TDT group (p < 0.05, cor-
rected for multiple comparisons, Fig. 5E).

We tested for correlations between mRNA and the mean FA, MD and
RD values of the cluster found to be significant in Fig. 2A with Pearson
correlation coefficient. No significant correlations were found between
the mRNA expression of the candidate list and the DTI measures.

4.4. MBP protein expression is higher after somatosensory experience

As MBP mRNA was found to be increased in the TDT group versus
the PC group, we processed a subgroup of brains after DTI scanning for
MBP immunohistochemistry. Optical density was found to be sig-
nificantly different between the three groups (TDT, AC and PC) (One-
way ANCOVA; Fp 31y = 4.956; p = 0.014) (Fig. 5F). Planned com-
parisons showed a significant difference between TDT and PC (p =
0.021) and between AC and PC (p = 0.005). No significant differences
were found for the comparison between TDT and AC (p = 0.091).

5. RNA sequencing results

To gain further insight into the molecular mechanisms underlying
the observed structural WM and candidate gene expression differences,
we performed an unbiased genome-wide analysis of mRNA expression
in WM underlying the barrel cortex, by means of RNA-sequencing in a
subgroup of samples (n = 19; including 5 PC, 8 TDT animals and 6 AC).

The TDT versus PC comparison led to the identification of 134
differentially expressed genes (likelihood ratio test, p < 5E-6, FC cut-
off |1.25|, RPKM cut-off 6) (Fig. 6A, Supplementary Table 1), of which
65 were up and 69 downregulated. From this list of 134 DE genes, 124
genes were also differentially expressed between PC and AC, in the
same direction (up or down) and at the same cut-off as in the PC versus
TDT comparison. The TDT versus AC comparison lead to the identifi-
cation of only 6 DE genes (Notch3, Tnsl, Zbtb16, Nxn, Yap1l, Cfap43),
all of them downregulated (Supplementary Table 1).

5.1. Gene ontology and ingenuity pathway analysis

In order to interpret the biological significance of the differentially
expressed genes, gene ontology (GO) analysis and Ingenuity Pathways

Analysis (IPA) were performed. The list of 6 differentially expressed
genes (TDT versus AC comparison) led to no findings at the designated
thresholds. In contrast, the list of 134 differentially expressed genes
(TDT versus PC comparison) yielded several findings that are reported
in detail below.

5.2. GO analysis: MAPK signalling pathway and transcription regulator
activity were enriched

GO analysis identified two significantly enriched terms (corrected p-
value < 0.01; Benjamini correction; and at least 5 genes represented in
the GO term were considered to be enriched): ‘MAPK signalling
pathway’ (with 11 differentially expressed genes) and transcription
regulator activity (20 differentially expressed genes) (Supplementary
Table 2). MAPK signalling pathway has been implicated in cell pro-
liferation, differentiation and development, and in myelin sheath reg-
ulation (Ishii et al., 2012; Zhang and Liu, 2002).

5.3. IPA analysis: upstream regulators and networks

To identify molecules upstream of the genes that potentially explain
the observed 134 differentially expressed genes, an IPA ‘Upstream
Regulators’ analysis was performed (Supplementary Table 3). In simple
terms, this analysis uses the IPA database to identify upstream reg-
ulators that match the direction of regulation of the downstream dif-
ferentially expressed molecules from the RNA sequencing dataset
(Fig. 6A).

This revealed five predicted upstream regulators showing a high
degree of concordance between predicted (by the IPA database) and
actual direction of regulation (CREB1, CREM, GnRH-A, dalfampridine
and bicuculline) (relationships illustrated in Fig. 6B), all of them with a
predicted activated state, an activation z-score > 2.5 and a p-value <
5E-15, with at least 12 target molecules of the differentially expressed
list dataset.

CREB1 and CREM had overlapping target molecules (29 target
molecules for CREB1, of which 16 were also CREM targets), and had a
high degree of overlap with GnRH-A targets (12 targets, of which 9
overlapping with CREB1/CREM targets) (Fig. 6B bottom). CREB and
CREM are transcription factors activated by phosphorylation in
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response to cAMP and other signals (for review see (Mayr and transcriptional control of MBP (Meffre et al., 2015), also found to be
Montminy, 2001)). Both CREB and CREM are involved in regulating the differentially expressed in our study.

transcription of several genes (c-Fos, BDNF, etc) and have been im- Additionally, two drugs, dalfampridine and bicuculline, shared the
plicated in neuronal plasticity and memory (Benito and Barco, 2010; same 16 target molecules (Fig. 6B top). Dalfampridine is a broad-

Lonze and Ginty, 2002). More recently, CREB has been linked to the spectrum voltage-gated potassium channel blocker that broadens the
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Fig. 6. Genome-wide RNA sequencing results. A Heat map of 134 significantly differentially-expressed genes identified in the TDT versus PC animals comparison.
124 genes of this list were also significantly differentially expressed between PC and AC. Warm colours indicate significantly upregulated (65 genes) and cold colours
indicate significantly downregulated (69 genes). B Upstream regulators networks obtained with Ingenuity Pathway Analysis (IPA). Dalfampridine and bicuculline
upstream regulator network (top). CREB1, CREM, GnRH-A upstream regulator network (bottom). Relationships between putative upstream regulators and down-
stream differentially expressed molecules from the RNA sequencing dataset are shown by lines, with solid lines indicating direct relationships, and dashed lines
indirect relationships. Colour coding of the lines indicates degree of concordance between predicted and actual direction of regulation. Orange lines indicate
predicted activation from the upstream molecules matching observed upregulation of corresponding downstream molecules (red nodes); blue lines indicate predicted
inhibition from the upstream molecule matching observed downregulation of the corresponding downstream molecule (green nodes); yellow lines indicate an
inconsistent relation of the upstream regulator with the state of the downstream molecule; grey lines represent relationships not predicted by the model. Overall,
there is a high concordance (few yellow lines and one grey line) between the predicted and actual direction of regulation of the target molecules by these 5 upstream

regulators.
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action potential. It shows beneficial effects in multiple sclerosis pa-
tients, probably through restoration of axonal conduction (Dunn and
Blight, 2011) and has been shown to promote remyelination after acute
nerve injury (Tseng et al., 2016). Bicuculline blocks GABA-mediated
inhibition, thereby increasing neuronal activity. This indicates that
genes involved in neuronal activity modulation are differentially ex-
pressed in our sample, possibly indicating increases or functional
changes in axonal activity.

Next we sought to identify functionally related networks of genes
and important regulatory hubs (Fig. 7; Supplementary Table 3). There
were two networks with a score >30 containing at least 17 molecules
of the differentially expressed dataset. In Network 1, two main ‘hub’
molecules (i.e. where most relationships converge to), Akt and Creb
(Fig. 7A), were identified, while in Network 2 the main ‘hub’ molecules
were Erkl/2 (Fig. 7B). Erk1l/Erk2, members of the mitogen-activated
protein kinase (MAPK) pathway, and Akt/mTOR, are important reg-
ulators of cell survival, proliferation and cell death and are involved in
a wide range of disorders including cancer, vascular diseases, Alzhei-
mer’s disease among others (Altomare and Testa, 2005; Mebratu and
Tesfaigzi, 2009; Roberts and Der, 2007).

6. Discussion

Learning results in macro-level changes in WM that can be detected
by DTI measures in both animals (Blumenfeld-Katzir et al., 2011;
Sampaio-Baptista et al., 2013) and humans (Hofstetter et al., 2013;
Scholz et al., 2009; Taubert et al., 2010). Molecular approaches have
identified a number of genomic and proteomic correlates of myelin (de
Monasterio-Schrader et al., 2012; Michel et al., 2015; Taylor et al.,

2004). The present paper provides insight into how the molecular
correlates of myelination relate to macro-changes in WM detected with
MRI following behavioural experience. In particular, we have demon-
strated that somatosensory experience results in structural white matter
plasticity and higher myelination as measured by im-
munohistochemistry, and we have identified molecular correlates that
provide candidate mechanisms underlying these findings, such as
myelin formation and/or remodelling.

In addition, our experiments compared the effects of mere exposure
to somatosensory stimuli with effects of learning a detection task with
those stimuli. Our results suggest that learning the associative task is
not necessary for the detected plastic changes and that mere exposure
to somatosensory stimulation is sufficient since structural or genome-
wide mRNA expression differences between the TDT group and an ac-
tive control group were not identified.

The WM structural diffusion metrics were found to correlate with
barrel cortex synaptic c-Fos expression, suggesting that molecular cor-
relates of cortical activity relate to macroscale measures of WM struc-
tural plasticity. Synaptoneurosomes are enriched in synaptic terminals
(pre and post) and might also include other cellular (for instance as-
trocytic) components. Although c-Fos is often regarded as an immediate
early gene with exclusive expression in neurons, its expression has also
been shown in astrocytes under certain conditions, so we cannot com-
pletely exclude non-neuronal contribution to the synaptic c-Fos ex-
pression (Herrera and Robertson, 1996).

There is increasing evidence from in vitro (Demerens et al., 1996)
and in vivo (Dutta et al., 2018; Etxeberria et al., 2016; Mensch et al.,
2015; Piscopo et al., 2018) studies that neuronal activity modulates
myelination, even in adulthood (Gibson et al., 2014). Accordingly, the
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candidate gene analysis revealed higher MBP mRNA expression, which
encodes an essential protein involved in the formation of myelin
sheaths, in response to somatosensory experience. This was further
supported by immunohistochemistry analysis of MBP. No significant
differences were found in the remaining myelin-related genes but
PDGFRA mRNA was found to be reduced in the TDT group when using
uncorrected statistics. One potential interpretation is that we are mostly
detecting formation of myelin at these late stages of learning and task
exposure. Current evidence suggests that oligodendrocyte precursor
cells (OPCs) differentiation is rapidly triggered by experience. For in-
stance, wheel running triggers OPCs differentiation within just a few
hours, peaking at 24 h after wheel exposure (Xiao et al., 2016). A re-
duction in PDFRA was found after two days of running, indicating OPCs
differentiation, and while differentiation is still detected at 8 days post
exposure, it is substantially reduced (Xiao et al., 2016). As such, we
would expect to detect stronger differences in markers indicating pro-
liferation and differentiation of OPCs at earlier timepoints of task ex-
posure but not at later stages. Given that we wanted to maximize the
chances of detecting structural changes with neuroimaging we opted for
later timepoints.

The DTI analysis revealed higher FA and lower RD in the TDT group
indicating that water diffusion is more hindered across WM tracts after
somatosensory experience. Additionally, lower MD was found diffusion
in both WM and GM, indicating higher overall restriction of water
which could potentially be related to greater tissue density in these
areas. While definitive biological interpretation of DTI changes is
challenging (Sampaio-Baptista and Johansen-Berg, 2017), this pattern
of DTI differences in WM is consistent with cellular mechanisms such as
higher myelin thickness or internode length (Etxeberria et al., 2016).
Accordingly, we found higher MBP mRNA expression and MBP protein
staining intensity suggesting that myelination has been triggered by
somatosensory experience. Increases in myelin are consistent with the
higher FA and decreased RD found in the current study. These findings
are congruent with previous neuroimaging studies that have found
higher FA, along with higher MBP immunostaining intensity in re-
sponse to complex motor and cognitive learning (Blumenfeld-Katzir
et al., 2011; Sampaio-Baptista et al., 2013). However, additional me-
chanisms may also contribute to these findings. For example, changes in
axon diameter (Sinclair et al., 2017), nodes of Ranvier length
(Arancibia-Carcamo et al., 2017) or axon packing density can poten-
tially also be reflected in these DTI measures. Given the large number of
astrocytes present in WM, alterations in this cell population can also
potentially modulate DTI measurements (Sampaio-Baptista and
Johansen-Berg, 2017). For instance, MD decreases and astrocyte mor-
phological changes have been described in GM in learning paradigms
(Blumenfeld-Katzir et al., 2011; Johansen-Berg et al., 2012; Sagi et al.,
2012), but there is currently very little understanding of structural
contributions of astrocytes to the diffusion signal in the context of long-
term experience in WM. Evaluation of the volume, shape and size of
astrocytes using immunohistochemistry or other techniques after ex-
perience or learning paradigms along with DTI measures would help to
clarify in which direction to formulate predictions. The current study
used post-mortem DTI of fixed tissue. Tissue fixation can change mi-
crostructure properties, and reduces overall diffusivity but anisotropy is
preserved (D’Arceuil et al.,, 2007; Guilfoyle et al., 2003; Sun et al.,
2003). Future studies using in vivo MRI would be useful to confirm that
these changes are present in vivo and to relate microstructural change to
physiological measures.

The genome-wide mRNA analysis identified 134 differentially ex-
pressed genes that are associated with functions related to neuronal
plasticity (CREB1, CREM), memory (CREB1, CREM), neuronal activity
modulation (16 target molecules of voltage-gated potassium channels
and GABA,-mediated inhibition blockers), cell proliferation control,
differentiation and protein synthesis (CREB1, CREM, Akt and Erkl/
Erk2), and myelin-sheath thickness regulation (Erk1/Erk2). This group
of differentially expressed genes indicate that WM has undergone
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functional and structural plasticity in response to somatosensory ex-
perience. In particular, Erk1/Erk2, together with Akt/mTOR, have been
proposed as two main signalling pathways for the control of prolifera-
tion and differentiation in OPCs and in myelin sheath regulation in
adult oligodendrocytes (Bibollet-Bahena and Almazan, 2009; Cui and
Almazan, 2007; Dai et al., 2014; Guardiola-Diaz et al., 2012; Snaidero
et al., 2014). The Akt and mTOR signalling pathway plays a central role
in promoting myelination (reviewed in (Norrmen and Suter, 2013)) and
forced activation of the Akt pathway in adult oligodendrocytes results
in growth of myelin sheaths (Snaidero et al., 2014). Erkl/Erk2, from
the mitogen-activated protein kinase (MAPK) pathway (also sig-
nificantly enriched in our analysis), is also an important regulator of
myelin-sheath thickness in the CNS (Ishii et al., 2012; Jeffries et al.,
2016). Conditional upregulation of Erkl/Erk2 results in global in-
creases in myelin thickness by preexisting oligodendrocytes of adult
mice, faster nerve conduction velocity and behavioural changes
(Jeffries et al., 2016). Furthermore, Erk2 has been described to have an
important role in oligodendrocytes in the translational control of MBP
(Michel et al., 2015), which is also in line with our findings. As Erkl/
Erk2, Akt, MAPK fulfil a variety of general functions in cell survival and
protein synthesis, the detected changes could reflect other processes
than oligodendrocyte and myelin regulation. Still, the MBP mRNA and
MBP immunohistochemistry findings lend further support to the in-
volvement of myelin formation as one component. Overall our findings
are compatible with both de novo myelin formation by newly formed
oligodendrocytes and potential increases in thickness of myelin sheaths
by pre-existing oligodendrocytes. Histological assessment of OPCs and
mature oligodendrocytes could provide clues on population dynamics,
but would not definitively characterize new sheath formation and
compaction. Myelin thickness can only be accurately quantified with
electron microscopy (EM). Recently, Mitew and colleagues demon-
strated with EM that active neurons have thicker myelin. Using im-
munohistochemistry they also found that active neurons had more in-
ternodes created by newly formed oligodendrocytes (Mitew et al.,
2018). This study suggests that myelin thickness alterations are asso-
ciated primarily with new oligodendrocytes but cannot definitively
exclude remodeling by pre-existing oligodendrocytes (Mitew et al.,
2018). To specifically quantify if myelin thickness alterations in re-
sponse to experience are associated with newly differentiated oligo-
dendrocytes or with myelin remodeling by preexisting oligodendrocytes
is technically challenging and has so far not been assessed in mammals.

In conclusion, somatosensory experience resulted in macroscale
structural changes detected with DTI that are consistent with higher
myelination. This is supported by MBP immunohistochemistry and
molecular evidence of higher MBP mRNA expression, and the expres-
sion of genes involved in the regulation of myelin sheath formation and,
of proliferation and differentiation of OPCs. Additionally, WM structure
correlated with cortical activity as measured by c-Fos mRNA expres-
sion, consistent with the idea that cortical experience-dependent me-
chanisms could trigger WM plasticity. Taken together our results de-
monstrate that myelination occurs in response to somatosensory
experience and that this experience-dependent myelin plasticity is re-
flected in DTI metrics in WM.

This work paves the way for future studies to examine the specific
effects of the identified genes on MRI measures by combining genetic
(Jeffries et al., 2016; McKenzie et al., 2014) or pharmacological ma-
nipulation in rodents with imaging read-outs. This would allow to
precisely identify the molecular and cellular mechanisms which un-
derlie changes in MRI measures of plasticity and could offer important
clues to the biological changes underlying imaging signals recorded in
humans.
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7. Material and methods
7.1. Animals

All behavioural experiments were conducted at Radboud University
Nijmegen (The Netherlands). The experiments were approved by the
Animal Ethics Committee of the Radboud University Nijmegen (The
Netherlands), according to Dutch legislation and all procedures were
performed according to the project and personal licenses held by the
experimenters.

60 animals (3 months old, male Long Evans rats (250-450 g)
(Harlan, Bicester, UK)) were housed in standard laboratory conditions
under a 12-h light/12-h dark cycle at 20 °C temperature and 40-70 %
humidity. The animals were housed individually for more precise
control of their general welfare and because group housing may inter-
fere with the task experience. All animals were given appropriate time
to acclimate after delivery (1 week minimum) and had ad libitum ac-
cess to food and water. After this period, they were handled daily for
one week before the start of the task. Before the task, animals were
exposed to the testing arena for 10 min each day for 1-2 days under dim
visible light.

The animals were given no access to water for a period of 24 h
before the first session. From here on, they received water during the
task (0.1 ml of water per correct trial) and water was also made
available ad libitum for 30 min after the session. The delay between the
end of the task and the time period when water was freely available
varied between 30 min to 2 h in order to prevent the animals from
learning that water would be available after the testing period.

7.2. Texture detection task

The texture detection task (TDT) is based on a previously described
task (von Heimendahl et al., 2007). Rats were trained to use their
whiskers to distinguish between a smooth and a textured surface using
operant conditioning as described below. Training was performed in
the dark to avoid the influence of visual cues on performance. Potential
olfactory cues were removed from textures by washing them at least
once every individual animal session, and by using different sets of
identical textures that were interchanged randomly between animals
and sessions.

Rats were tested individually. During testing, the animal was placed
on a 30 cm elevated platform with two water dispensers on each side.
Under this platform was a small bridge where the animal could place its
front paws for a short period of time in order to reach the stimulus
presented in front of the platform. The stimulus consisted of a series of
rectangle shapes with patterns that could be varied depending on the
animal’s performance in the task.

During the shaping period the animal was placed on the apparatus,
and every appropriate response was rewarded. First, water was ran-
domly delivered in order for the animal to learn where the water was
placed. After the animal had learned this, it was rewarded for leaning
on the edge of the platform and reaching the stimulus. Finally, water
was delivered when the animal touched the texture with its whiskers.

During the training phase of the TDT, the stimulus was either a
smooth texture (reference texture) or a positive copy of sandpaper on a
resin material. Each animal was trained with a fixed association (e.g.,
turn left on rough, right on smooth). Only if it approached the correct
drinking spout, the animal was given a water reward (0.1 ml per re-
ward); for an incorrect choice, it received no water. The next trial
started with a delay of 5 s. Between trials, the texture's stand was turned
about its vertical axis by a computer-controlled stepping motor, which
allowed for quick, randomized, and automated switching between
textures. Each session lasted for about 30 min, during which the animal
performed between 60-100 trials.
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7.3. Experimental design

Animals were randomly assigned to the TDT and control groups,
balancing for weight to obtain equal weight averages between the
groups.

7.3.1. Texture detection task (TDT) group

For the TDT, animals (total n = 28) were trained to distinguish
between the reference texture (smooth) and a P100 texture (162 um
average particle diameter). Rats were trained 5 days a week. Individual
rats were sacrificed the day after they reached criterion (2 sessions at >
80 % accuracy) on the P100 texture, in order to have comparable
performance levels between animals. This resulted in a variation in the
number of task exposure days which was then controlled for in sub-
sequent analyses as described below.

A subgroup of rats (n = 8) were further trained to detect increas-
ingly more fine-grained textures after reaching performance criterion in
the P100 texture in a stepwise manner: P150 (100 um average particle
diameter), P220 (68 um), P280 (52.2 um), P360 (40.5 um), P400 (35
um), P500 (30.2 um) and P600 (25.8 um). When the animals performed
above criterion (> 80 % accuracy) for a given texture, the rough tex-
ture was changed to a finer one on the following training day. Rats were
sacrificed the day after they reached > 80 % accuracy on the P600
texture. After the rats had associated the correct reward side with the
first texture, increasing the difficulty of the texture discrimination did
not alter their accuracy (Supplementary Fig. 1). Negative control ex-
periments were performed in this subgroup of rats to demonstrate that
the animals distinguished smooth vs rough textures and not other
sensory attributes of the task (e.g. noises or odours). To do that, animals
were presented with the same texture (P400 versus P400) and their
performance was assessed. When rats were presented with the same
texture their performance accuracy dropped to chance levels
(Supplementary Fig. 1).

7.3.2. Active control (AC) group

12 rats were matched to an individual in the TDT group. Rats were
water restricted and exposed to the TDT task for the same period of time
as the matched animal. However, these animals were rewarded ran-
domly, and not in relation to texture-response contingencies. They re-
ceived a similar number of rewards as the matched animal throughout
the entire training period and were sacrificed after the same number of
training sessions as the matched animal in the TDT group.

7.3.3. Passive control (PC) group
Caged controls (n = 20) were handled and weighed daily; their
body weight served as a reference body weight with respect to the other

group.
7.4. Brain preparation

TDT rats were sacrificed by rapid decapitation without anaesthesia
on the day after they reached criterion. The AC group were sacrificed
after the same number of training sessions as the matched animal in the
TDT group. On the day of sacrifice, animals were trained on their re-
spective task for 15 min, then placed back in their home cage for 15
min, after which they were sacrificed and the brains were removed. The
PC group was handled for 15 min then placed back in their home cage
for 15 min prior to the sacrifice. The right hemisphere was frozen on
dry ice and kept at —80 °C for molecular analysis and the left hemi-
sphere was immersed in 4 % PFA for DTI acquisition.

For DTI acquisition, all left brain hemispheres (n = 60) were placed
into falcon tubes (50 ml) in pairs (one from each group), one hemi-
sphere above the other, and embedded in 2 % agarose gel (Sigma-
Aldrich) (Sampaio-Baptista et al., 2013). The hemispheres were aligned
to each other along the posterior — anterior axis.
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7.5. MRI acquisition

All 60 ex-vivo left brain hemispheres were scanned in pairs over-
night with a 4.7 T MRI scanner (Agilent Technology Inc., USA) at
Radiobiology Research Institute, Churchill Hospital, Oxford. DTI scan-
ning parameters were as follows: Spin-Echo Multi-Slice Diffusion
Weighted (SEMSDW) sequence, b = 2000s/mm?, 30 diffusion direc-
tions, 4 averages plus 8 images with no diffusion weighting, 40 slices,
slice thickness 0.5 mm, field of view 25 X 50 mm, matrix size 96 X 192
(resolution 0.26 X 0.26 X 0.5 mm).

7.6. MRI statistical analysis

The data were pre-processed according to standard procedures in
FSL (Smith et al., 2004). Tract Based Spatial Statistics (TBSS) (Smith
et al., 2006) was applied to the pre-processed data. Images were then
analysed as described elsewhere (Sampaio-Baptista et al., 2013).
Briefly, all FA maps were aligned with linear and non-linear transfor-
mations to the study specific template and averaged to generate the
mean FA image, from which the WM skeleton was extracted. The ske-
leton was thresholded at an FA value of 0.36 to contain only the major
tracts (Sampaio-Baptista et al., 2013). Finally, the FA values of the tract
centres were projected onto the skeleton for each rat brain and fed into
statistical analysis. MD, RD and AD skeleton maps were created with
the same method, using the FA registrations and skeleton projections as
implemented in TBSS for non-FA images (Smith et al., 2006).

We used Permutation Analysis of Linear Models (PALM) (Winkler
et al., 2016) for multi-measures analysis. PALM is a tool that allows
inference over multiple modalities, including non-imaging data, using
non-parametric permutation methods, similarly to the randomise tool in
FSL (Winkler et al., 2014), although offering a number of features not
available in other analysis software, such as the ability for joint in-
ference over multiple modalities, or multiple contrasts, or both to-
gether, while correcting FWER or FDR across modalities and contrasts
(Winkler et al., 2016).

We used PALM to assess the joint and individual contribution of the
4 DTI measures while simultaneously correcting across the tests. Non-
Parametric Combination (NPC), as implemented in PALM, was used for
joint inference over the 4 DTI measures (FA, MD, RD and AD). NPC
works by combining test statistics or p-values of separate (even if not
independent) analyses into a single, joint statistic, the significance of
which is assessed through synchronized permutations for each of the
separate tests. The synchronized permutations for the separate tests
accommodate, implicitly, any eventual lack of independence among
them. Such a joint analysis can be interpreted as a more powerful,
permutation-based version of the classical multivariate analysis of
covariance (MANCOVA); differently than MANCOVA, however, NPC
allows investigation of the direction of joint effects.

Here we used NPC with Fisher’s combining function, testing for
effects with concordant directions across the 4 DTI measures. A cluster-
forming threshold of t > 1.7 and 5000 permutations were used to de-
termine p-values FWER-corrected for multiple comparisons (across all
voxels and the 4 DTI measures). The chosen cluster-forming t threshold
was based on the degrees of freedom of the sample. Clusters with a
corrected significance of p < 0.05 were deemed significant.

We performed two statistical tests in the WM analysis. First we
tested for differences between groups and included the total number of
exposure days per animal as a covariate. Second, we tested for corre-
lations between performance rate and the 4 DTI measures. This was
calculated by fitting a logarithmic model and extracting the slope of the
percentage of correct trials curve for each individual animal (curves are
illustrated in Fig. 1A).

Further, we tested for GM differences using MD only as this measure
can indicate changes in tissue density regardless of the structure or-
ientation. We tested for group differences and included the total
number of exposure days per animal as a covariate. We performed non-
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parametric permutation testing with the randomise tool as im-
plemented in FSL (Smith et al., 2004), with a cluster-forming threshold
of t > 1.7 and 5000 permutations were used to determine corrected p-
values. The chosen cluster-forming t threshold was based on the degrees
of freedom of the sample. Clusters with a corrected significance of p <
0.05 were deemed significant.

7.7. Tissue dissection

A subset of right brain hemispheres was dissected for qPCR and
RNA-SEQ. The experimenter was blind to the group for all the following
procedures. All procedures were performed under RNase-free condi-
tions. The brain hemispheres were sliced into 300 pm coronal sections
using a cryotome (Leica GmbH, Germany) at —15 °C and mounted on
glass slides. Cytochrome oxidase-stained reference sections were used
as a template to locate the barrel cortex, following stereotactic co-
ordinates (Paxinos and Watson, 1998). Punches of the barrel cortex (n
= 37; 16 from the TDT group, 10 from the PC group and 11 from the
AC group) and in WM (n = 30; 15 from the TDT group, 6 from the AC,
9 from the PC group) directly underneath it of the right hemisphere
were taken using a 1.20-mm micropunch (Harris Inc., UK) and stored at
-80 °C before RNA isolation took place.

7.8. RNA isolation

The experimenter was blind to the group in all the following pro-
cedures and the groups were randomly distributed to ensure equal
distribution of groups to avoid any technical bias. Samples were
homogenized with a TissueLyser (Retsch GmbH, Germany) in TRIzol®
Reagent (Invitrogen Co., USA). RNA was isolated with TRIzol® Reagent
(Invitrogen), according to the manufacturers’ protocol. The procedure
was modified for small amounts of tissue by using 800 pl of TRIzol®
Reagent and adding 1 pl of glycogen (Fermentas Inc., USA). RNA con-
centration and quality was determined with a NanodropTM ND-1000
spectrophotometer (Thermo Fisher Scientific Inc., USA) and 1 %
agarose gel electrophoresis, respectively. The samples were kept at -80
°C until further analysis.

7.9. Synaptoneurosome preparation

Synaptoneurosomes were prepared by the method described by
(Williams et al., 2009), with some modifications. Brain tissue punches
were homogenized with a Teflon-homogenizer (12-14 strokes at 1000
rpm) in 4 mL of homogenization buffer, containing 0.35 M sucrose pH
7.4, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 1 mM ethylenediaminetetraacetic acid (EDTA), 0.25 mM di-
thiothreitol, 8 U/ml RNAse inhibitor and a protease inhibitor cocktail
(Roche). Cell debris and nuclei were removed by centrifugation at
1000g for 10 min at 4 °C yielding pellet P1 and supernatant S1. The S1
fraction was passed sequentially through a series of filters with de-
creasing pore sizes of 80, 40 and 10 um (Millipore). The final filtrate
was centrifuged at 2000g for 15 min at 4 °C yielding pellet P2 and
supernatant S2. Pellet P2 containing synaptoneurosomes was re-
suspended in 200 pL of homogenization buffer. Enrichment of synaptic
components in the synaptoneurosomal fraction was assessed by western
blot in control experiments. To assess c-Fos expression in synapto-
neurosomes, RNA was isolated using the Trizol method, followed by
downstream qPCR.

7.10. Quantitative PCR (qPCR)

Prior to cDNA-synthesis, 0.5 pg of each RNA sample was treated
with 2 U DNase (Fermentas Inc., USA), in the presence of RiboLockTM
RNase Inhibitor (20 U/pl) (Fermentas Inc., USA). For cDNA synthesis,
through random priming, the RevertAidTM H Minus First Strand cDNA
Synthesis kit (Fermentas Inc., USA) was used, following the
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manufacturer’s guidelines. Prior to analysis, each cDNA sample was
diluted 1/15 with MilliQ water. qPCR reactions were performed with
the Rotor-Gene 6000 Series (Corbett Life Science Pty. Ltd., Australia).
For each reaction, 2.5 pL of each diluted sample of cDNA was added to a
mix containing 6.25 L. 2X MaximaTM SYBR Green qPCR Master Mix
(Fermentas Inc., USA), 1 pL of each primer (5 uM) and 1.75 pL MilliQ
water. Primers were designed using NCBI Primer-Blast (www.ncbi.nlm.
nih.gov/tools/primer-blast/) and synthesized at Sigma-Aldrich (UK).
Cycling conditions were 10 min 95 °C followed by 40 cycles of 15 s at
95 °C, 30 s at 60 °C and 30 s at 72 °C. After cycling, a melting protocol
was performed, from 72 °C to 95 °C, measuring fluorescence every 1 °C,
to control for product specificity.

For the candidate gene analysis of the WM, the following genes were
selected for their role in myelin and WM plasticity (PLP1, OLIG1,
NOGO-A, MBP, MOG, MAG, PDGFRA, NKX2.2, NKX2.6, SOX10, MOBP,
ARC). The c-Fos gene expression in synaptoneurosomes was selected to
confirm Barrel Cortex neuronal activation in response to the TDT task.
Relative expression of the selected genes of interest in WM and GM was
calculated using the two most stably expressed housekeeping genes
from a set of three tested candidate genes (ACTB, YWHAZ and CYCA)
previously reported to be stably expressed in the brain (Bonefeld et al.,
2008) to calculate a normalization factor for each sample. The selected
housekeeping genes were found to be highly expressed and stable
across samples and treatments. The normalization factor was then used
to obtain the relative differences between the samples for each primer
pair.

7.11. MBP immunohistochemistry

After DTI acquisition, a subset of hemispheres (n = 35; 15 from the
TDT group, 9 from the PC group and 11 from the AC group) was se-
lected for immunohistochemistry and the brains were placed in 4 %
PFA until being processed for immunostaining. Before sectioning, brain
tissue was cryoprotected with 30 % sucrose in PBS to avoid freezing
artifacts. The brain hemispheres were sliced into 40 um coronal sections
using a sliding microtome (Microm HM440E; Thermo Fisher Scientific)
and preserved in antifreeze solution (30 % ethyleneglycol, 20 % gly-
cerol in sodium phosphate buffer, pH 7.3) at —20 °C until further
analysis. Immunohistochemistry was performed with free-floating sec-
tions (one every sixth section used). Briefly, sections were washed in
PBS, followed by an antigen retrieval treatment in 10 mM citric acid
buffer pH 8.5 for 30 min at 80 °C. After two brief washes in PBS, sec-
tions were placed into 1 % H202 in PBS for 30 min, washed in PBS
containing 0.05 % Tween 20 (PBS-T), and incubated in blocking buffer
(5 % NGS/NDS/NHS, 1 % BSA, 1 % glycine, 0.1 % lysine, 0.4 % Triton
X-100 in PBS) for 1 h. Incubation with the first antibody (anti-MBP,
SMI-99, Millipore, diluted 1:500 in blocking buffer) was done overnight
at 4 °C. The sections were subsequently washed in PBS-T and incubated
with donkey anti-mouse biotinylated antibody (Jackson Laboratories)
diluted 1:1000 in blocking buffer for 2-3 h at RT, and washed again in
PBS-T. The sections were then transferred to a solution containing
avidin-biotin-HRP complex (Vectastain Elite ABC Kit, Vector
Laboratories) for 1 h, washed in PBS-T, and stained for 10 min in 0.6
mg/ml diaminobenzidine (Sigma-Aldrich) in PBS containing 0.01 %
H202 and 0.03 % CoCl2. Special care was taken that all the sections to
be compared were stained in parallel for the same amount of time. The
sections were then mounted onto microscopic slides in PBS, air dried O/
N, dehydrated in graded series of ethanol, cleared in xylene, and cov-
erslipped in Entellan (Sigma-Aldrich). The sections were examined
under a Leica DM Fluorescence Microscope and digitized images were
obtained with a Leica DFC340 FX CCD camera using Leica IM500
imaging software (Leica Microsystems, Germany). The obtained images
were analysed using FIJI version 1.49v, obtaining optical density (OD)
measurements in the same ROI (white matter underlying barrel cortex)
used for tissue dissection.
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7.12. Statistical analysis of gPCR mRNA expression

Statistical analysis of WM qPCR data was also performed with PALM
(Winkler et al., 2016). We tested for group differences (TDT vs PC) with
non-parametric permutation testing with a between groups contrast
with total number of exposure days as covariate. A p-value of < 0.05
was deemed significant, corrected for multiple comparisons across the
12 genes of interest.

For the qPCR analysis of the c-Fos gene expression in synapto-
neurosomes of the Barrel cortex, a one-way analysis of covariance
(ANCOVA) was used to test for differences between groups (TDT, PC,
AC), with total number of exposure days as covariate with SPSS. A p-
value of < 0.05 was deemed significant and pairwise comparisons were
corrected with Sidak.

Statistical analysis of MBP immunohistochemistry was performed
with a one-way analysis of covariance (ANCOVA) to test for differences
between groups (TDT, PC, AC), with total number of exposure days as
covariate with SPSS. A p-value of < 0.05 was deemed significant and
pairwise comparisons were corrected with Sidak.

7.13. RNA sequencing (RNA-Seq)

A subgroup of samples (n = 13; 5 PC, 8 TDT animals and 6 AC) was
used for RNA-Seq, five pools of total RNA (with equal input from each
individual sample) were made after Trizol extraction, and were further
purified and DNase-treated using Qiagen colums (RNeasy Plus Microkit,
Quiagen). The yield of the purified RNA ranged between 1.5 and 2 ug
total RNA per pool. The five pools were as follows: (1) passive control
(PC) (n = 5 individual samples in pool), (2) TDT Long-exposure (LE) (n
= 2 individual samples in pool), (3) TDT Mid-exposure (ME) (n = 3
individual samples in pool), (4) TDT Short-exposure (SE) (n = 3 in-
dividual samples in pool) and (5) active control (AC) (n = 6 individual
samples in pool). The division of the TDT group into 3 pools of samples
was made on basis of the number of days that the animals needed to
reach criterion in the behavioural experiment: LE: 9-10 days, ME: 6-7
days, SE: 5 days.

The purified RNA pools were sent for further quality control and
RNA-Seq analysis to the Genomic Services Lab of the HudsonAlpha
Institute for Biotechnology (AL, USA; http://gsl.hudsonalpha.org/).
RNA-Seq with ribosomal RNA (rRNA) reduction was used using stan-
dard protocols (depth >45 M pair-end reads per sample), and the re-
sulted raw data were received. Data analyses (alignment and statistical
analysis) were performed with GeneSifter (Geospiza, PerkinElmer Inc).
We compared the PC group with all three TDT groups pools (LS, LM,
LF). For each comparison a p-value (likelihood ratio test) and fold
change (FC) was obtained and the following cut-offs were applied: p-
value <5E-6 in all 3 (PC vs LS, LM, LF) comparisons, FC>|1.25| in at
least 2 out of 3 comparisons (with a minimum FC>|1.2|), and ex-
pression levels (reads per kilobase million, RPKM) > 6 in at least 1 out
of the 4 groups compared. Additionally, to test for specific effects of
associative learning versus experience the AC group was also compared
to the TDT groups pools and the same cut-offs described above were
applied. For validation with qPCR, 19 differentially expressed genes
were selected to represent a wide range of expression levels (RPKM
ranging from to 8.5-393.2), fold change (from 1.22 to 6.36), and di-
rection of regulation (13 up and 6 downregulated genes). We used in-
dependent-sample t-tests (2-tail) to test differences between groups
(TDT vs PC). Group differences were found in 16 genes (Supplementary
Fig. 4), suggesting that the 134 DE genes carries high validity.

7.14. Gene ontology (GO) enrichment analysis and ingenuity pathways
analysis (IPA)

Gene Ontology (GO) enrichment analysis of the differentially ex-
pressed genes was performed using the web-based gene ontology tool
from the Database for Annotation, Visualization and Integrated
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Discovery (DAVID) 6.7 (http://david.ncifcrf.gov) (Dennis et al., 2003;
Huang da et al., 2009a, b). For the enrichment analysis (Functional
Annotation Chart tool), default software settings were used, and GO
terms with a corrected p-value < 0.01 (Benjamini correction) and at
least 5 genes represented in the GO term were considered to be over-
represented (enriched).

Ingenuity Pathways Analysis (IPA) (Ingenuity Systems Inc., USA),
was used to perform pathway, network and upstream regulator analyses
to explore relationships between genes on the basis of curated in-
formation present in the IPA database. For pathway and interaction
network analyses, a score was obtained (calculated as the —log of the
associated Fisher’s exact test p-value). This score indicates the like-
lihood that the assembly of a set of focus genes in a network could be
explained by random chance alone; networks with scores of 2 or higher
have at least a 99 % confidence of not being generated by random
chance alone. Upstream regulator analysis generated a list of putative
upstream regulators of the differentially expressed genes, and indicate,
for each putative upstream regulator, a predicted activation state, ac-
tivation z-score, p-value of overlap and list of putative target genes of
the differentially expressed dataset.
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