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ABSTRACT
applications in the fields of materials for actuators and sen-

Anisotropic composite hydrogels have wide

sors. Herein, we report an anisotropic composite hydrogel
prepared by a mechanical-strain-induced method. Polymer
networks including poly(N-isopropylacrylamide) (PNIPAM)
and sodium alginate (SA), as well as carbon nanotubes (CNTs)
are found to align simultaneously by stretching, and then fixed
by physical crosslinking through non-covalent bonds. Com-
posite hydrogels with doubly aligned polymer networks
showed anisotropic optical and mechanical properties. The
actuation performance of the anisotropic composite hydrogels
as compared with the isotropic ones was found to be enhanced,
which showed the capability of lifting 100 times its weight with
20% contraction strain. Besides, a bilayer hydrogel was de-
signed to bend with a maximum of 390° to mimic the tendril
behavior of plants.

Keywords: anisotropic, PNIPAM-based hydrogels, inter-

penetrating polymer network, actuation

INTRODUCTION

Hydrogels with ordered anisotropic structures [1,2], si-
milar to biological tissues [3-6], have promising appli-
cations in the fields of actuators and sensors [7-9]. To
build the anisotropic structure in hydrogels, self-assembly
through intermolecular interactions was used [10], and
external field effects, such as electrical field [11], magnetic
field [12-17], mechanical-strain-induced (stretch) [18-

28], shear-force-induced [29,30] and directional freezing
[31], have been employed. Currently, hydrogels prepared
by the above mentioned methods achieve anisotropic
properties [7-9], such as anisotropic optical properties
[14,22,32], mechanical performances [18], actuating
abilities [14,33] and electrical conductivity [11].
Poly(N-isopropylacrylamide) (PNIPAM) is the most
typical stimuli-responsive polymer and can be extensively
used as a building block of hydrogels. PNIPAM could
provide the thermal-actuated functionality, as it exhibits a
reversible volume phase transition at a lower critical so-
lution temperature (LCST~32°C) [34-38]. As for the
PNIPAM-based hydrogel actuators, the influence of
nanofillers’ anisotropic structures on the actuating per-
formances has been widely reported [7,9,14-16,39-41].
For example, Miyamoto et al. [30] reported a PNIPAM-
based hydrogel synthesized by using the shear-force-in-
duced anisotropy of clay nanosheets and subsequent in
situ polymerization of PNIPAM, where clay nanosheets
were oriented along the applied shear force. Upon heating
from 10 to 40°C, the resultant hydrogel shrank more
strongly in the direction perpendicular to the orientation
of the clay nanosheets (ca. 60% shrinkage) than in the
parallel direction (ca. 35% shrinkage) [30]. Hydrogels
with an anisotropic structure were also prepared by
straightforward orientation of the chains of a polymer
network, which were commonly obtained through me-
chanical compression or stretching, and directional ion
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diffusion methods. Inspired by biomaterials, anisotropic
hydrogels with oriented polymer networks have poten-
tials to be applied in actuators [7-9]. However, improving
the actuating capability by the PNIPAM aligned polymer
networks remains a challenge.

Herein, we report an anisotropic composite hydrogel
prepared by the mechanical-strain-induced method. A
semi-interpenetrating polymer network (semi-IPN) hy-
drogel of PNIPAM, sodium alginate and carbon nano-
tubes (PNIPAM/SA/CNTs) was prepared. Then, the
sample was physically crosslinked into full-IPN by load-
ing Ca’* under stretching condition. Since double poly-
mer networks and CNTs in hydrogels were aligned by
stretching, the resultant hydrogels showed anisotropic
structures and related behaviors. The tensile strength of
the anisotropic composite hydrogels along the stretched
direction was four times higher than that of the isotropic
composite hydrogels. Microscopic anisotropic structures
also endowed the composite hydrogel with macroscopic
thermo-responsive anisotropic deformation properties.
When the temperature reached above the LCST, the an-
isotropic composite hydrogel showed 50% contraction
strain along the stretched direction, while only 25% in the
perpendicular direction. The hydrogel showed cap-
abilities to lift 100 times its weight with 20% contraction
strain along the stretched direction, which showed com-
parable actuation behavior to human skeletal muscles
(~20%) [42-47]. Based on these performances, a bilayer
hydrogel was designed to bend and twine with maximum
of 390°, which is capable of mimicking the tendril beha-
vior of plants.

RESULTS AND DISCUSSION

Construction of anisotropic composite hydrogels via
mechanical-strain-induced method
The anisotropic composite hydrogels were prepared
through two steps, as shown in Fig. 1, and the operating
procedure is shown in Fig. Sla. At first, the semi-IPN
composite hydrogels were prepared, where NIPAM
monomer and N,N'-methylenebisacrylamide (BIS) were
initiated by potassium persulfate (KPS) to copolymerize
at a specific ratio and then crosslinked in the presence of
sodium alginate (SA) and CNTs (Fig. 1a). In the second
step, the semi-IPN hydrogels were stretched to a given
strain and then soaked in a solution of Ca’* (0.3 mol L ™").
When the semi-IPN hydrogels were transformed into
full-IPN hydrogels, the samples were immersed in deio-
nized water to remove excess Ca’".

The semi-IPN composite hydrogels are composed of a
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PNIPAM polymer network, and BIS plays a crosslinking
role in the copolymerization, where a low crosslinking
degree of PNIPAM polymer network is necessary to be
controlled by the content of BIS (Table S1). The semi-IPN
composite hydrogels contain the alginate polymer chains.
Alginate, a natural polysaccharide derived from brown
sea-weeds, is a polyanionic linear copolymer composed of
mannuronic acid (M unit) and guluronic acid (G unit). In
an aqueous solution, the G blocks of guluronic acid in the
dissolved alginate polymer chains form the ionic cross-
links through divalent cations (for example, Ca“, calcium
alginate (CA)), resulting in a crosslinked polymer net-
work [48-51]. As the semi-IPN composite hydrogel is
composed of a PNIPAM polymer network with low
crosslinking degree and alginate polymer chains, it is
possible to stretch the sample and maintain it at a large
deformation. Under these circumstances, G blocks were
drawn closer under stretching and preferentially chelated
with Ca’" to fix the strain of double polymer networks. It
demonstrated the retention rate of strain (Fig. Sla, b)
decreased rapidly when the given strain reached above
200%, as CA crosslinking polymer networks were in-
efficient to fix the double polymer networks owing to the
elasticity of polymer chains under high strain. Therefore,
the given strain of the anisotropic composite hydrogel
was set to 200%. The formation of a secondary physical
crosslinking network could serve as an energy dissipation
source, which improved the overall mechanical perfor-
mances of the hydrogels [27,48,52-55]. The addition of
CNTs into the hydrogels not only improved their per-
formances in terms of mechanical properties but also
endowed them with the ability of near-infrared (NIR)
actuation [52,56-58]. Based on these, the anisotropic
composite hydrogels (CNTs-PNIPAM/CA (A)) contain-
ing CNTs were prepared, along with the isotropic com-
posite hydrogels (CNTs-PNIPAM/CA (I)) containing
CNTs, anisotropic composite hydrogels (PNIPAM/CA
(A)) without CNTs, and the isotropic composite hydro-
gels (PNIPAM/CA (I)) without CNTs which were used as
control.

Morphological characterization

The microscopic morphologies of the isotropic and ani-
sotropic composite hydrogels were characterized by field
emission scanning electron microscopy (FESEM) and
polarized optical microscopy (POM). As shown in
Fig. 1b(i), c(i) and Fig. S2a(i), b(i), the FESEM images
obtained from the cross-sections of the hydrogels indicate
that the isotropic hydrogels exhibit random and uniform
porous structures. In contrast, the anisotropic composite
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Figure 1 (a) Schematic description of the anisotropic hydrogel. NIPAM, SA, CNTs, covalent crosslinkers (BIS) for NIPAM, and ionic crosslinkers

(I) hydrogel; (c) (i) FESEM image of the fractured PNIPAM/CA (A) hydrogels; (i, iii) polarized microscope images of the PNIPAM/CA (A) hydrogel;
(d) 2D SAXS images of CNTs-PNIPAM/CA (I) and CNTs-PNIPAM/CA (A) hydrogels.

hydrogels consist of oriented hole-like aisles in size of
microns.

This change of structures demonstrated that the inner
structures of hydrogels were altered significantly through
the treatment by the mechanical-strain-induced method.
As confirmed by POM observation, the anisotropic
composite hydrogels showed an anisotropic structure
along the stretched direction (Fig. 1c(ii, iii), Figs S2b(ii,
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iii) and S3b)). Under crossed nicol, a complete extinction
was observed when the azimuthal angle between the
polarized direction of incident light and stretched direc-
tion was 0°, while the maximum brightness was observed
at 45° [22,59]. Therefore, changes in dark and bright
(birefringence behavior) images were observed by rotat-
ing the anisotropic composite hydrogels at an interval of
45°. On the other hand, the POM image of the isotropic
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composite hydrogels showed unirefringence behavior
(dark) (Fig. 1b(ii, iii), Figs S2a(ii, iii) and S3a). These
results demonstrated that the oriented polymer networks
were built by the mechanical-strain-induced method.

To better understand the orientation of CNTs in the
hydrogels, small-angle X-ray scattering (SAXS) mea-
surements were carried out [22]. The schematic illustra-
tion (Fig. 1d) shows the hydrogel is exposed to an X-ray
beam from the orthogonal to the stretching direction. The
resultant 2D patterns of the SAXS measurements on the
hydrogels with different strains are given in Fig. 1d and
Fig. S2c. In the SAXS patterns of CNTs-PNIPAM/CA (I)
and CNTs-PNIPAM/CA (A) hydrogels, an anisotropic
scattering parallel to the equator emerged in the CNTs-
PNIPAM/CA (A) hydrogel. The scattering patterns did
not change in the PNIPAM/CA (I) and PNIPAM/CA (A)
hydrogels, as shown in Fig. S2c. These results demon-
strate that the anisotropic scattering of CNTs-PNIPAM/
CA (A) originates from the orientation of CNTs. Also,
they indicate that CNTs orient in parallel to the direction
by the mechanical-strain-induced method.

Studies on mechanical properties

In the mechanical-strain-induced method, a high tensile
fracture strain of hydrogel polymer network is required to
induce strain further [18,22]. Unfortunately, traditional
PNIPAM hydrogels with single network cannot meet
such demand owing to their weak and fragile nature. In
recent studies, semi-IPN PNIPAM-based hydrogels have
shown a possible way to overcome this problem. Alginate
was chosen to form the second polymer network, and the
addition of SA could improve the mechanical properties
of the PNIPAM-based hydrogel [36,60]. The ratios of
components (PNIPAM/SA) were explored to meet the
requirement of the mechanical-strain-induced method,
and the results displayed that the alginate polymer net-
work had a significant impact on the tensile strain of
semi-IPN PNIPAM/SA hydrogels. When the weight ratio
of PNIPAM (16.95 wt.%) and SA (1.695 wt.%) reached
10:1 (Tables S1 and S2), the sample presented the highest
tensile strain of 750%, which was three times higher than
that of PNIPAM hydrogels with a single polymer network
(Fig. S4a, b).

It is noteworthy to mention that the mechanical
properties of PNIPAM/CA full-IPN hydrogels are dif-
ferent from their parents, CA and PNIPAM hydrogels,
respectively. As shown in Fig. S4a, the tensile strengths of
PNIPAM, CA and PNIPAM/CA are 1, 383 and 120 kPa,
respectively. This reveals that the overall mechanical
performance of PNIPAM/CA could be largely attributed
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to the addition of CA as the second crosslinked polymer
network, which could dissipate energy under large de-
formation [48,61,62].

To verify the anisotropic mechanical properties of
PNIPAM/CA (A) hydrogels, the tensile stresses of the as-
prepared hydrogels in parallel and perpendicular to the
stretched directions were measured. Also, the tensile
stress of the isotropic hydrogels was measured, and the
obtained data are given in Fig. S4f. It could be noted that
the anisotropic composite hydrogels in parallel to the
stretched direction displayed much higher tensile stress
compared with others. The tensile strength of the iso-
tropic and anisotropic composite hydrogels in perpendi-
cular to the stretched direction were 0.08 and 0.12 MPa,
respectively, while the tensile strength along the stretched
direction of the anisotropic composite hydrogel reached
0.27 MPa. The tensile stress-strain curve of the isotropic
composite hydrogels increased rapidly and then suffered
from an apparent yield phenomenon. However, the ten-
sile stress-strain curve of the anisotropic composite hy-
drogels increased with the tensile strain rapidly, and a
slighter yield was found. These results indicated that the
CA in the composite hydrogels improved their mechan-
ical properties, and the aligned CA polymer networks led
to anisotropic mechanical performances.

The addition of CNTs showed enormous improvement
to the tensile stress of the anisotropic composite hydro-
gels in parallel to the stretched direction, and the tensile
stress increased linearly with an increase in the amount of
CNTs (Fig. 2a-c). The tensile strength of the CNTs-
PNIPAM/CA (A) hydrogels parallel to the stretched di-
rection reaches 0.9 MPa at the highest CNTs concentra-
tion, which is about three times higher than PNIPAM/CA
(A) hydrogels (Fig. 2c and Fig. S4e). Interestingly, the
addition of CNTs showed an insignificant effect on the
tensile stress of the isotropic composite hydrogels, as well
as that of the anisotropic composite hydrogels in per-
pendicular to the stretched direction. As shown in Fig. 2b,
the tensile strength of the CNTs-PNIPAM/CA (A) hy-
drogels is four times higher than that of CNTs-PNIPAM/
CA (I) hydrogels. This could be due to that the ultrapure
CNTs used in this work were dispersed with the addition
of nonionic surfactants, whose hydrophobic ends were
benzene rings, and hydrophilic ends were hydroxyl
groups. The hydrophobic benzene rings of the nonionic
surfactants can form a n-n conjugate with the CNT's [52].
The hydroxyl groups not only assist CNTs to disperse in
the aqueous solution, but also facilitate the formation of
hydrogen bonds with hydroxyl or carboxyl groups of the
polymer network in hydrogels [56,63]. Due to the hy-
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Figure 2 The mechanical properties of the hydrogels. (a) Schematic representation for the mechanical tests of the samples; (b) tensile strain-stress
curves of CNTs-PNIPAM/CA (I) hydrogel (yellow line) and CNTs-PNIPAM/CA (A) hydrogel (red line for the parallel direction, blue line for the
perpendicular direction); (c) the tensile strengths of hydrogels with different concentrations of CNTs.

drogen bonding of polymer networks with CNTs, the
ordered arrangement of CNTs further enhanced the
mechanical properties significantly in the stretched di-
rection [32].

Contraction analysis upon LCST

It is well known that the phase transition of the PNIPAM-
based hydrogels will induce contraction of volume
change, but the contraction speed is rather slow
[37,64,65]. In our experiments, the contraction of the
samples also occurred above the LCST and showed ani-
sotropic behavior with a rapid thermal response. To in-
vestigate the thermal contraction of the anisotropic and
isotropic composite hydrogels, bulk-like hydrogel sam-
ples with width x length x thickness of 10 mmx10 mmx
1 mm were prepared, as shown in Fig. 3a(i), b(i) and
Fig. S5a, b. When the samples were heated to 45°C, the
isotropic composite hydrogels showed isotropic volume
changes (Fig. 3a(i) and Fig. S5a), while the anisotropic
composite hydrogels contracted unevenly from square to
a rectangle (Fig. 3b(i) and Fig. S5b). The thermal response

could be seen that the CNTs-PNIPAM/CA (A) hydrogels
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contracted 50% along the stretched direction and 25% in
the perpendicular direction under 45°C in 60 s, while the
CNTs-PNIPAM/CA (I) hydrogels only showed 20% iso-
tropic contraction strain. These results indicated that the
PNIPAM polymer networks provided thermo-responsive
deformation, and the orientation of the polymer networks
caused anisotropic deformation.

The results of weight loss experiments, as shown in
Fig. 3c, indicated that the CNTs-PNIPAM/CA (A) hy-
drogels lost about 75% of the total weight at 45°C in 60 s,
while the CNTs-PNIPAM/CA (I) hydrogels only lost
50%. The remaining weight of both samples gradually
changed to the solid content of these hydrogels. These
results suggested that by applying PNIPAM-based hy-
drogels with anisotropic structures, the thermal response
properties enhanced significantly. This phenomenon
could be explained by studying the inner structure of
hydrogels as well as the orientation of the double polymer
chains. The inner structures of anisotropic composite
hydrogels changed from random and uniform porous
structures into oriented hole-like aisles in micron (Fig. 1b,
c and Fig. S5a, b). This structure facilitated the discharge
of water along the direction of oriented aisles during

May 2020 | Vol.63 No.5
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Figure 3 Thermo-responsive behavior of the hydrogels. (a) (i) Schematic representation and pictures of CNTs-PNIPAM/CA (I) hydrogel (CNTs,
0.12 wt.%); (ii-v) pictures of CNTs-PNIPAM/CA (I) hydrogel and plots showing the changes in the relative length (L/L, (%)). (b) (i) Schematic
representation and pictures of CNTs-PNIPAM/CA (A) hydrogel; (ii-v) pictures of CNTs-PNIPAM/CA (A) hydrogel and plots showing the changes
in the relative length (L/L, (%)). (c) Plots showing changes in the relative weight of hydrogels (Aw/w, (%)) vs. time. (d) Reversibility of CNTs-
PNIPAM/CA (A) hydrogel. L, is the original length of hydrogels, L, is the length of the contracted hydrogels. Aw=wy-w,, w, is the original weight of

hydrogels, and w, is the weight of the contracted hydrogels.

volume change above the LCST and accelerated weight
loss.

Furthermore, the reversible deformation of the CNTs-
PNIPAM/CA (A) hydrogel was characterized. When
cooled below the LCST, the hydrogel absorbed water
again and recovered to its original size. Since swelling
process is a relatively slow step [64], the CNTs-PNIPAM/
CA (A) hydrogel with 75% of the weight loss required
more than 30 min to recover when cooling was carried
out in a water bath (20°C). This process was repeated five
times, and no significant changes were ascertained
(Fig. 3d), representing good reversibility of thermo-re-
sponsive anisotropic deformation.

May 2020 | Vol.63 No.5
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Actuators by thermal-stimulus

By taking advantage of samples with rapid thermal shape
change, high contraction strain, as well as high mechan-
ical performance, a hydrogel actuator that was driven by
warm water or NIR was designed (Fig. S5¢, d, Fig. 4a, b
and Movies S1-S7). In the case of actuating with warm
water, the loading of the samples with different weights
was considered in warm water (45°C) to test the actuating
ability. As shown in Fig. S5¢, the CNTs-PNIPAM/CA (A)
hydrogel lifted a load ten times its weight, and the ac-
tuation of the samples along the stretched direction could
reach above 45% of the contraction strain in 60 s (Movie
S1). Moreover, because of the enhanced mechanical
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properties of CNTs-PNIPAM/CA (A) hydrogels, the
length of the sample had no distinct elongation when a
load of 100 times its weight was added. When the sample
was immersed in warm water (45°C) and the loading was
100 times its weight, it showed comparable contraction to
human skeletal muscles with 20% strain along the ac-
tuated direction (Movie S2 and Fig. S5d) [42-47].

Since CNTs have a high absorption of NIR light and
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high efficiency of thermal transformation [53,57,58], the
anisotropic composite hydrogels also showed excellent
actuation performances. As shown in Fig. S6a and b, with
an increase in the concentration of CNTs, the tempera-
ture increased by NIR and thus the sample could be
quickly heated above the LCST. Therefore, the heat that
CNTs converted by NIR could induce the phase transi-
tion of anisotropic composite hydrogels instantaneously.

May 2020 | Vol.63 No.5
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As shown in Movies S3, S4 and Fig. 4a, b, NIR light-
driven tests showed the same deformation performance
as in warm water, but the former had a shorter driving
time than the latter. This could be due to that CNT's acted
as a “molecular heater” to raise the local temperature of
the composite hydrogel via high photo-thermal conver-
sion [58], resulting in high heating rates than warm water.

The thermo-responsive anisotropic deformation prop-
erties of CNTs-PNIPAM/CA (A) hydrogels were used to
design an actuator, which had a bilayer of two structural
hydrogel components with different contraction abilities.
One layer was CNTs-PNIPAM/CA (A) hydrogel, which
contracted 50% along the stretched direction; another
layer was PNIPAM hydrogel, which contracted 30% in
both directions (Table S3). As shown in Fig. S7a, the
resulting samples were cut at different angles to provide
samples parallelled to the stretched direction (Bi-0°), and
45° to the stretched direction (Bi-45°). When the sample
Bi-0° was immersed in water at 80°C, the sample showed
rolling along the stretched direction with the random
PNIPAM layer forming outside of the rolls due to its
differential contraction strain (Fig. S7b). Fig. 4c shows the
images of the Bi-0° hydrogel in water at 80°C, and the
rolling angle of Bi-0° sample changed from 0° to 390°
rapidly in the first 20 s under heating (Fig. S7b and Movie
S5). These changes in rolling angle showed an enhanced
actuation capability of this material. It is known that
tendril climber plants can extend and twine around the
surrounding support using their helical tendrils. A similar
phenomenon was found by heating the Bi-45° composite
hydrogel in water at 80°C, where precisely the planar
sheet transformed into a helix that mimicked plant ten-
drils, as shown in Fig. 4d and Movie S6. It is due to that
the asymmetric internal stress in the composite sheet was
built by different contraction strain of layers [66].

CONCLUSIONS

In summary, with the combination of IPN and mechan-
ical-strain-induced method, anisotropic composite hy-
drogels with a high actuating performance enhanced by
the alignment of double polymer networks were suc-
cessfully prepared. The CNTs-PNIPAM/CA (A) hydrogel
achieved a mechanical strength of 0.9 MPa along the
stretched direction, and the thermal-response contraction
strain of the anisotropic hydrogel reached 50% along the
stretched direction. This study demonstrated the en-
hanced actuating abilities of anisotropic composite hy-
drogels, which could lift 100 times of their own weight in
less than 20 s. Moreover, a bilayer hydrogel (PNIPAM/
CNTs-PNIPAM/CA (A)) can bend and twine around the

May 2020 | Vol.63 No.5

rachis of the surrounding support by tailoring at a specific
angle. These advantages endowed the anisotropic hy-
drogel composite with a wide range of applications, in-
cluding artificial muscles and soft tissues. This study
provides new insight into improving the actuating abil-
ities of hydrogels with aligned polymer networks.
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