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Abstract 

Background:  Dengue is a mosquito-borne viral disease caused by one of four serotypes (DENV1-4). Infection pro-
vides long-term homologous immunity against reinfection with the same serotype. Plaque reduction neutralization 
test (PRNT) is the gold standard to assess serotype-specific antibody levels. We analysed serotype-specific antibody 
levels obtained by PRNT in two serological surveys conducted in Singapore in 2009 and 2013 using cluster analysis, a 
machine learning technique that was used to identify the most common histories of DENV exposure.

Methods:  We explored the use of five distinct clustering methods (i.e. agglomerative hierarchical, divisive hierarchi-
cal, K-means, K-medoids and model-based clustering) with varying number (from 4 to 10) of clusters for each method. 
Weighted rank aggregation, an evaluating technique for a set of internal validity metrics, was adopted to determine 
the optimal algorithm, comprising the optimal clustering method and the optimal number of clusters.

Results:  The K-means algorithm with six clusters was selected as the algorithm with the highest weighted rank 
aggregation. The six clusters were characterised by (i) dominant DENV2 PRNT titres; (ii) co-dominant DENV1 and 
DENV2 titres with average DENV2 titre > average DENV1 titre; (iii) co-dominant DENV1 and DENV2 titres with average 
DENV1 titre > average DENV2 titre; (iv) low PRNT titres against DENV1-4; (v) intermediate PRNT titres against DENV1-4; 
and (vi) dominant DENV1-3 titres. Analyses of the relative size and age-stratification of the clusters by year of sample 
collection and the application of cluster analysis to the 2009 and 2013 datasets considered separately revealed the 
epidemic circulation of DENV2 and DENV3 between 2009 and 2013.

Conclusion:  Cluster analysis is an unsupervised machine learning technique that can be applied to analyse PRNT 
antibody titres (without pre-established cut-off thresholds to indicate protection) to explore common patterns of 
DENV infection and infer the likely history of dengue exposure in a population.
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Background
Dengue is a mosquito-borne viral disease that poses a 
high burden on public health worldwide. In a study in 
2016, dengue infection was estimated to cost 8.9 billion 
US dollars per year and 12 disability-adjusted life years 

(DALYs) per 100,000 people [1]. A recent study estimated 
that more than half of the world’s population is at risk of 
dengue infection annually [2]. Of those, 390 million peo-
ple are infected and 21,000 people die from dengue each 
year.

Dengue virus (DENV) has four serotypes (DENV-1 to 
DENV-4) and humans acquire dengue disease through 
infected mosquito bites. Most dengue infected indi-
viduals are asymptomatic and dengue disease is often 
self-limiting. However, some individuals infected with 
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DENV can develop severe and life-threatening condi-
tions [2, 3]. Following a dengue infection, short-term 
heterologous immunity against all serotypes and long-
term homologous immunity against the infecting sero-
type are mounted [4]. Epidemiological evidence suggests 
that secondary infections are more frequently associated 
with severe disease, with the leading hypothesis for this 
phenomenon being antibody-dependent enhancement 
(ADE), whereby antibodies elicited against the primary-
infecting strain enhance infection by a secondary het-
erologous strain [5, 6]. According to the World Health 
Organization recommendations [3, 7], the plaque reduc-
tion neutralisation test (PRNT) is the gold standard assay 
for detecting serotype-specific antibody levels. In the 
test, sample sera are mixed with progeny virus and ani-
mal cells before being  overlaid with semi-solid media. 
The areas of viral infected cells (plaques) are counted and 
compared with a control sample (without antibodies) 
to determine the percent reduction [8, 9]. The effective 
dose of antisera reducing the number of viral plaques of a 
control sample by 50% is reported as PRNT50, which is a 
measure of the levels of neutralising antibodies.

Neutralising serotype-specific antibody levels could 
reflect the history of dengue exposure. Recent studies 
have demonstrated that primary and post-primary den-
gue infections show different neutralising antibody level 
patterns which change dynamically in time [10–12]. 
During the convalescent phase (1 week post-symptom 
onset) after primary infection, homologous and heter-
ologous antibodies are typically present at low detec-
tion levels. These levels then considerably increase over 
6–12  months and then both heterologous and homolo-
gous antibody levels keep increasing at the same rate 
during year one to year two after infection [10, 11]. In 
post-primary infections, both heterologous and homol-
ogous antibody levels rise at the same rate during the 
convalescent phase and then dramatically decrease over 
6  months after infection [10, 11]. Heterologous anti-
bodies have been demonstrated to decay faster than 
homologous antibodies. In addition, the PRNT titres of 
both homologous and heterologous antibodies in post-
primary infections are generally higher than the titres 
observed in primary infections over the first year after 
infection [10, 11]. Clapham et  al. [11] have shown that 
after the 6-month period post-infection, neutralising 
antibodies levels remain stable for 2–3 years, after which 
time the antibody levels typically decay.

Cluster analysis is an unsupervised machine learning 
technique used to classify objects into discrete groups, 
which have high similarity within the membership group 
and low similarity with other groups. This technique does 
not rely on any prior classification based, for instance, on 
cut-off thresholds. The (dis)similarity of different objects 

is evaluated using the concept of distance measurements 
among objects, where multiple measures have been pro-
posed depending on the nature of the problem analysed. 
Cluster analysis has been increasingly applied in health 
science research in recent years to investigate exposure 
risks, diagnosis and treatment [13].

Serological prevalence surveys for dengue (as well as 
other infectious diseases) have been conducted to assess 
the levels of immunity in a population, using pre-defined 
cut-off values to classify individual-level antibody levels 
into a positive or negative category to ultimately provide 
an aggregated estimate of the proportion of seropositive 
population. Here, we present an analysis of the individ-
ual-level PRNT data collected in two serological surveys 
conducted in Singapore to identify the most common 
patterns of dengue antibody levels and infer the most 
likely histories of dengue infection. Cluster analysis was 
used to classify dengue seropositive subjects into groups 
(or clusters) according to their individual-level PRNT50 
data collected in two seroprevalence surveys conducted 
in Singapore in 2009 and 2013. The results presented 
in this study provide nuanced estimates of population 
immunity, which can help public health policy mak-
ers evaluate outbreak risks, containment and control 
planning.

Methods
Data
We analysed the PRNT50 titres of 509 seropositive indi-
viduals obtained from two cross-sectional seroprevalence 
surveys conducted in Singapore in 2009 and 2013. A brief 
overview of the data collection process is provided below, 
with refined details available in [14]. Residual blood sam-
ples of healthy adults were drawn from blood donors by 
the Blood Service Group, Health Science Authority in 
2009 and 2013. Of approximately 12,000 blood samples 
collected in each survey, 3,995 were randomly sampled 
based on an estimate of dengue seroprevalence at 59% 
with 99% confidence and 2% precision. The samples 
were then screened for dengue IgM and IgG antibodies 
by Panbio Dengue IgM capture ELISA and IgG ELISA 
(Alere Inc., Waltham, MA, USA). Among those with 
positive results (defined as having > 11 Panbio units), 
30 samples were randomly selected in each age-group 
(16–20, 21–25, 26–30, 31–35, 36–40 and 56–60  years) 
for PRNT testing. The PRNT assay used two local viral 
strains for each dengue serotype as detailed in Additional 
file 1: Table S1.

Cluster analysis
We chose to retain the average of the PRNT50 titres of 
the two viral strains against the same serotype to avoid 
variable redundancy due to the high correlation of titres 
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between the same serotypes (Additional file  2: Figure 
S1). The PRNT50 titres that were coded as less than 10 
(“< 10”) and more than 1000 (“> 1000”) were replaced by 5 
and 2000, respectively. All PRNT50 titres were log-trans-
formed (base 10) to reflect the natural scale of the dilu-
tion assay and the assay’s variability [15].

We clustered the 509 seropositive PRNT50 profiles 
using two nested clustering methods (agglomerative hier-
archical and hierarchical divisive clustering), two par-
titioning clustering methods (K-means and K-medoids 
clustering) and one model-based clustering method. The 
agglomerative hierarchical clustering method initially 
assumes that each single data point forms a cluster and 
then iteratively nests the most similar clusters together. 
In contrast, the divisive hierarchical clustering method 
assumes that all data points are initially contained in a 
single cluster and then the most dissimilar data points are 
iteratively separated. In the K-means method the centres 
of the clusters were initially set guided by an agglom-
erative hierarchical algorithm, and the data points were 
assigned to the closest centres. Then iteratively, new 
centres were  computed by minimising the total sum of 
squared errors (SSE) of distances between each data point 
and the closest centroid. This process was  computed 
repeatedly until centroids were  stable. The K-medoids 
algorithm is similar to the K-means algorithm but it 
minimizes the sum of dissimilarities between each data 
point and the data points labelled as centroids. Model-
based clustering assumes that all variables are normally 
distributed and the dataset is a mixture of more than two 
component distributions. Each component (or cluster) 
is described by a probabilistic model through associated 
probability density functions. The model parameters 
were  estimated using the Expectation Maximization 
(EM) algorithm and each data point was assigned to the 
component with the highest probability.

We used the Euclidean distance as metric for all clus-
tering methods and tested each method on multiple 
numbers of clusters (from 4 to 10 clusters). Ward’s 
method was used within the  agglomerative hierarchical 
clustering procedure.

Cluster validation
In the absence of classification (e.g. the assignment of a 
dengue status according to the existing PRNT50 titres), 
we used three internal validation metrics (i.e. the Dunn 
index, silhouette width and adjusted connectivity) to 
identify the optimal clustering results. Dunn index is the 
ratio between the minimal distance between data points 
in different clusters. The values of this ratio ranges from 
zero to infinity, with higher values indicating better clus-
tering results, reflecting larger separation between clus-
ters and smaller separation between data points within 

the same cluster. Silhouette width is defined as the aver-
age silhouette values among all clusters, where the sil-
houette values are calculated as the mean distance within 
a cluster divided by the mean distance of the closest clus-
ter. The values of silhouette width range from − 1 to 1, 
with values approaching 1 indicating better clustering 
results as intra-cluster distances are considerably smaller 
than inter-cluster distances. Adjusted connectivity 
defines the degree of connectedness among data points 
within the same cluster. Connectivity values range from 0 
to infinity, with values close to 0 representing completely 
separated clusters.

We employed the R package optCluster (R version 
3.4.3) to determine the optimal clustering method and 
the optimal number of clusters [16]. We implemented the 
five clustering methods (agglomerative hierarchical, hier-
archical divisive, K-means, K-medoids and model-based 
clustering) with the number of clusters ranging between 
4–10 and evaluated the clustering results using the Dunn 
index, silhouette width and adjusted connectivity as vali-
dating metrics. For each number of clusters analysed, we 
used weighted rank aggregation to generate a rank list 
of the clustering methods. The first ranked clustering 
method within the particular number of clusters analysed 
was considered the optimal method.

Characterising immunity patterns
We statistically described the immunity patterns of the 
clusters obtained with the optimal clustering method 
using the average PRNT50 titres against the two strains of 
each dengue serotypes (Additional file  1: Table  S1). We 
presented the results in terms of median, interquartile 
and range of the log transformed PRNT50 titres. We also 
described the proportion of population in each cluster.

Sensitivity analysis
In a sensitivity analysis we explored the sensitivity of 
the results obtained on the aggregated data collected in 
2009 and 2013 from the results obtained by analysing 
the PRNT50 titres collected in 2009 and 2013 separately. 
Sensitivity analysis was also conducted to test the robust-
ness of the results obtained using the average PRNT50 
titres for each serotype with the results obtained using 
the original 8 PRNT50 titres (two PRNT50 titres for each 
serotype), as described in Additional file  1: Table  S1. 
Finally, we explored the effect that using the Gower dis-
tance (which is a distance measure defined for mixtures 
of continuous and categorical variables) in place of the 
Euclidean distance (which is only defined for continuous 
variables) had on the clustering results obtained on the 
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aggregated dataset having added the year of sample col-
lection (2009 or 2013) as a categorical variable.

Results
We applied the five clustering algorithms (agglomerative 
hierarchical, divisive hierarchical, K-means, K-medoids 
and model-based clustering) with 4 to 10 clusters for each 
method. The four variables (i.e. the average PRNT50 titres 
of the two viral strains against each serotype) were used 
in place of the eight PRNT50 titres originally available to 
remove collinearity and variable redundancy (Additional 
file 2: Figure S1). The clustering results were then evalu-
ated with the three internal validating metrics. We found 
that the K-means clustering algorithm with 6 clusters 
achieved the highest weighted rank aggregation and was 
thus considered the optimal clustering algorithm.

The six clusters obtained using K-means algorithm are 
shown in Fig.  1a, where the location of the data points 
(each point represents one subject) is interpreted in rela-
tion to the four average PRNT50 titres used as variables in 
our analysis, which are shown as vectors in Fig. 1b. The 
subjects assigned to the same cluster are located close 
to each other, with the colour shading representing the 
density of the points in each cluster (darker colours rep-
resent more populated regions close to the centre of each 

cluster). The top five ranked clustering scenarios and 
their internal validation metrics are presented in Addi-
tional file 1: Table S2.

Cluster-level statistics of the average PRNT50 anti-
body titres used as variables in the analysis are shown 
in Fig. 2. We found that 24% of the subjects enrolled in 
the 2009 and 2013 serological surveys were in cluster 
1, which was characterised by DENV2 dominant titre. 
Cluster 2, accounting for 15% and cluster 3 accounting 
for 23% of the subjects were characterised by co-domi-
nant titres against DENV1 and DENV2. However, the 
titre of DENV2 predominated in cluster 2 and the titre 
of DENV1 predominated in cluster 3. Low PRNT50 titres 
against all serotypes were observed in cluster 4, which 
accounted for 16% of the subjects in the seroprevalence 
studies. The remaining clusters, accounting for 9% (clus-
ter 5) and 13% (cluster 6) of the subjects, displayed mul-
titypic PRNT50 patterns with dominant titres against 
DENV3 and DENV1, respectively.

The age distribution of the samples in each cluster is 
presented in Fig.  3. The highest proportion of 16–20 
years-old was observed in cluster 1 (25% of the subjects 
in the cluster are below 20 years of age). On the other 
hand, clusters 4 to 6 showed an older age distribution 
(35%, 48% and 37% of the subjects are above 46 years of 

Fig. 1  a The six clusters of 509 seropositive individuals obtained with the K-means algorithm. The x- and y-axes represent the two principle 
components from principle components analysis and account for 48% and 30% of the variance in the data, respectively. Colour shading represents 
the density of the data. b The four PRNT50 vectors used in the main analysis plotted in the two-dimensional principle component plane
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age, respectively). Approximately two thirds (63% and 
55%) of the subjects in clusters 2 and 3 were between 26 
and 50 years of age. The age distribution of the samples 
in each cluster by year of sample collection is provided in 
Additional file 2: Figure S2.

Figure 4 shows a stratification of the PRNT50 titre pro-
files in each cluster by year of sample collection (2009 or 
2013). Apart from clusters 1 and 6, where the number 
of individuals respectively increased and decreased by 
approximately 5% in 2013, we found that all other clus-
ters comprised a stable (i.e. less than an interquartile 
range of percentage changes among the 6 clusters) and 
approximately equal number of subjects enrolled in 2009 
and in 2013.

In Fig. 5 we show a comparison of the clusters obtained 
in our analysis (clusters 1–6) with the groups that would 
have been obtained using a cut-off threshold of PRNT50 
titre at 30. Using the ‘threshold method’, which is gen-
erally adopted in the analysis of seroprevalence studies, 
samples were classified as seronegative (all PRNT50 titres 
against DENV1-4 < 30), monotypic (a single PRTN50 
titre ≥ 30) and multitypic (more than one PRNT50 
titre ≥ 30). Figure  5 shows that all monotypic patterns 
obtained using the ‘threshold method’ were assigned to 
clusters 1, 3 and 4; all multitypic patterns were assigned 

to clusters 2, 5 and 6; and all seronegative subjects were 
assigned to cluster 4.

In a sensitivity analysis, we explored the robustness 
of the results obtained using the aggregated (2009 and 
2013) seroprevalence data with the data collected in 2009 
and 2013 separately. The 2009 and 2013 seroprevalence 
studies respectively included 262 and 247 seropositive 
individuals with established PRNT50 titres. In the analy-
ses on the data separated by year, we found that the 
agglomerative hierarchical method with 5 clusters and 6 
clusters obtained the highest weighted rank aggregation 
of the three internal validating metrics for the 2009 and 
2013 datasets,  respectively. The top-five ranked cluster-
ing scenarios in each year and their internal validation 
metrics are presented in Additional file  1: Tables S3, 
S4. Additional file  2: Figure S3 shows the five clusters 
obtained from the analysis of the 2009 seropositive sam-
ples. Over three-fourths of the individuals in 2009 were 
in clusters characterised by DENV-2 dominant titres. In 
contrast, approximately half of individuals in 2013 were 
in clusters with DENV-1 dominant titres. These results 
are consistent with the dominance of DENV2 circulation 
in 2007–2009 and DENV1 circulation in 2013 [17]. All 
clusters obtained from the analysis of the 2013 PRNT50 
data (Additional file 2: Figure S4) also show a remarkable 
similarity with the clusters obtained in the main analysis 

Fig. 2  Median (bold line), interquantiles (box), range (vertical line) and outliers (points) of the log10 PRNT50 titres against DENV1-4 characterising 
the six clusters obtained with the K-means algorithm. The colours blue, grey, green and blown represent DENV1, DENV2, DENV3 and DENV4, 
respectively
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(Fig. 1). Using the Gower distance, the K-means method 
and the silhouette width to cluster the aggregated (2009 
and 2013) PRNT50 data including the year of sampling as 
a covariate along with the PRNT50 variables, we obtained 
two single clusters that were entirely determined by the 
year of sample collection.

Discussion
We found that the 509 dengue seropositive individuals 
from the seroprevalence surveys conducted in Singapore 
in 2009 and 2013 could be clustered into six groups on 
the basis of serotype-specific antibody levels. The six 
serotype-specific antibody profile patterns likely indicate 
similar histories of exposure to DENVs and similar risks 
of subsequent dengue infections.

The PRNT50 antibody titres of the vast majority of the 
individuals tested in the surveys were characterised by 
dominant or co-dominant DENV1 and/or DENV2 anti-
body levels, except for one small cluster (cluster 5 in 
Fig.  2) which displayed co-dominant DENV1, DENV2 
and DENV3 titres. The dominant presence of antibod-
ies against DENV1 and DENV2 indicates that these 

serotypes were the main circulating dengue serotypes in 
Singapore prior to 2009 and 2013, which is consistent 
with analyses of the surveillance data collected between 
2003 and 2016 presented in Rajarethinam et al. [17].

Beyond providing information on the circulating 
serotypes, cluster analysis could be used in exploratory 
analyses to gain insight into the likely history of den-
gue exposure in the population. Following the studies of 
PRNT50 titre kinetics among children in Thailand, we 
refer to recent infections as infections that occurred less 
than a year before sampling and post-primary infection 
as secondary to quaternary infections [10, 11, 15]. We 
found that cluster 1, which is characterised by a single 
dominant PRNT50 titre against DENV2 (Fig. 2), identifies 
primary dengue infections according to the definitions 
proposed by Endy et al. [18] (PRNT50 titres ≥ 10 against 
more than one serotypes and ≥ 80 for the dominant sero-
type). The interpretation of cluster 1 as comprising pri-
mary dengue infections is supported by the young-age 
distribution of the subjects in this cluster compared to 
the other clusters (Fig. 3). Cluster 2 and 3 were charac-
terised by co-dominant (2–3 log10) titres against DENV1 

Fig. 3  Age distribution of the samples collected in the 2009 and 2013 serosurveys by cluster. Age was classified as belonging to one of the 
following age-groups: 16–20; 21–25; 26–30; 31–35; 36–40; 41–45; 46–50; 51–55; 56–60 years
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and DENV2, suggesting post-primary infections by 
DENV2 and DENV1, respectively. Inferring the order 
of the infecting serotypes is challenging as higher titres 
could be a result of boosting caused by infection with a 
heterologous serotype. The PRNT50 titres of clusters 
5 and 6 are consistent with the observed titres of post-
primary infections and the definition of multitypic infec-
tions (with DENV3 and DENV1 dominance, respectively) 
using the classical threshold method (Fig.  5). The rela-
tively high PRNT50 titres against all serotypes observed 
in cluster 6 suggest that infections in this cluster 
occurred less than a year before sample collection [10, 11, 
15]. Previous analyses of PRNT50 titres from clinical trial 
data [19] suggest that in post-primary infections DENV4 
titres are on average half log10 lower than DENV1-3. The 
higher (more than 1 log10) difference in PRNT50 titres 
observed between DENV4 and DENV1-3 in cluster 6, 
along with the epidemiological evidence of DENV1-3 
circulation in Singapore, suggests the heterologous and 
potentially cross-reactive nature of the antibody response 
against DENV4. This observation, together with the older 
age distribution observed in cluster 6 (relative to the 
age distribution of the other clusters) is consistent with 
the interpretation of this cluster as recent post-primary 

infections, which necessarily occur at an older age com-
pared to the age of primary infections. The PRNT50 titre 
pattern of cluster 4 is in line with the one observed in 
recent primary infections where no dominance and rela-
tively low antibody levels against all serotypes have been 
observed [10, 11, 15]. Dengue transmission in Singapore 
typically occurs from May to July. Sample collection 
occurred from December to February, hence infections 
occurred in May–July were between 6 and 10 months 
post-infection at sample collection, in line with our inter-
pretation. Overall, 16% of the surveyed population was in 
cluster 4 (18% in 2009 and 11% in 2013) compared to 24% 
in cluster 1 (27% in 2009 and 30% in 2013), indicating the 
short-lived nature of heterologous cross-immunity.

The exploratory investigation of PRNT50 titres using 
cluster analysis also gives insight into the size of the 
population at potential risk of secondary, and hence 
severe, dengue infection. While individuals in clusters 
2, 3, 5 and 6 showed post-primary-like PRNT50 titres 
and can thus be considered at a low risk of sympto-
matic infection, individuals in cluster 1, who showed a 
single dominant PRNT50 titre, might be vulnerable to 
antibody dependence enhancement (ADE). The rela-
tive proportions of samples collected in 2009 and 2013 

Fig. 4  The percentage of subjects in cluster 1 to 6 by year of sample collection. Blue and grey colours represent samples collected in 2009 and 
2013, respectively
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forming clusters 6 and 1, respectively (with 5% higher 
proportion of subjects sampled in 2009 in cluster 6 and 
5% higher proportion of subjects sampled in 2013 in 
cluster 1) suggest that DENV2 was the dominant sero-
type between 2009 and 2013. In clusters 1 and 4 (which 
were suggested as DENV-1 infections), the propor-
tions of subjects between 36 and 55 years of age were 
relatively low in 2009 compared with the proportions 
observed in 2013. The considerable increase in the 
relative proportion of 36–55  years-old with DENV1 
antibody titres from 2009 to 2013 is consistent and 
indicative of the occurrence of a DENV1 epidemic in 
2013 [17]. The fact that DENV1 seroprevalence is high 
among older age-classes in 2013 is line with the rela-
tively low force of infection of DENV1 in Singapore 
compared to other transmission settings and with the 
declining transmission intensity observed over the 
years and with population aging [20]. Similarly, the 10% 
increase in the proportion of the youngest age groups 
in cluster 1 between 2009 and 2013 (from 23 to 26.5%) 
is also indicative of the occurrence of a DENV2 epi-
demic between 2009 and 2013. In addition, in the anal-
ysis of the samples collected in 2013, the presence of 

cluster 5, which is characterised by multitypic patterns 
with DENV3 dominant titres, suggests that there was 
an increasing circulation of DENV3 between 2009 and 
2013 in Singapore. These interpretations are consistent 
with the virus surveillance data presented in Rajarethi-
nam et al. [17].

In this study, we presented an exploratory application 
of cluster analysis to classify seropositive individuals into 
groups with similar PRNT50 antibody patterns against 
specific dengue serotypes circulating in the Singaporean 
population in 2009–2013. The use of cluster analysis does 
not depend on pre-defined cut-off thresholds to define 
dengue exposure (which typically show substantial vari-
ations between laboratories) nor relies on a dichotomous 
classification of the PRNT50 titres into positive or nega-
tive results. While cluster analysis can provide qualitative 
information on the intensity of dengue transmission and 
detect the circulation of new serotypes, this framework 
does not allow to pin down how antibody titres change 
in time and the exact proportion of infections occur-
ring in the clusters between seroprevalence surveys. In 
addition, the results of cluster analysis are sensitive to 
small changes in the data and to the specific clustering 

Fig. 5  Comparison of the classification obtained using the threshold method to define exposure and the new classification obtained from cluster 
analysis. Seronegative subjects are characterised by all PRNT50 titres against DENV1-4 < 30; monotypic subjects display a single PRTN50 titre ≥ 30; 
multitypic subject is are defined as profiles with more than one PRNT50 titre ≥ 30
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algorithm adopted for classification. In this analysis we 
used weighted rank aggregation using multiple internal 
validation metrics to ensure optimal clustering results. 
By study design, PRNT was performed on IgG seroposi-
tive samples and therefore the sampled population does 
not include the most recent primary infections that 
occurred around the sampling date (e.g. less than three 
weeks before the blood sample was taken) [21]. Moreo-
ver, because the samples tested by PRNT were randomly 
selected in an equal number within each age group, the 
age distribution of the samples used in this study is not 
representative of the actual seroprevalence in the Singa-
porean population.

In future work, the application of cluster analysis to 
PRNT50 titres with known infection outcome (e.g. from 
sero-epidemiological cohort studies) would allow to vali-
date the clustering results and promote cluster analysis 
to classify the population into groups with different risks 
of developing dengue illness. Further analyses of sero-
epidemiological data can provide useful information on 
the population-level risks of dengue epidemics and thus 
inform the development of public health policies, inter-
vention strategies and outbreak response planning.

Conclusions
We analysed the dengue serotype-specific PRNT tires 
of IgG seropositive participants enrolled in two sero-
logical surveys conducted in Singapore in 2009 and 2013 
using cluster analysis. Cluster analysis is an unsupervised 
machine learning technique that was used to identify, 
within the sampled population, similar dengue antibody 
patterns which likely reflect similar infection histories. 
This exploratory technique, which does not depend on 
the use of cut off thresholds to define the serostatus, is a 
flexible tool to explore the immunity patterns of a popu-
lation. We demonstrate that cluster analysis can provide 
new insights into the likely population-level histories of 
dengue exposure, existing levels of immunity and cir-
culating serotypes which can help public health policy 
makers evaluate the risk of future epidemics and inform 
response planning.
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