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Few-mode models are a cornerstone of the theoretical work in quantum optics, with the famous single-
mode Jaynes-Cummingsmodel being only themost prominent example. In thiswork,we develop an ab initio
few-mode theory, a framework connecting few-mode system-bath models to ab initio methods. We first
present a method to derive exact few-mode Hamiltonians for noninteracting quantum potential scattering
problems and demonstrate how to rigorously reconstruct the scattering matrix from such few-mode
Hamiltonians. We show that, upon inclusion of a background scattering contribution, an ab initio version of
thewell-known input-output formalism is equivalent to standard scattering theory. On the basis of these exact
results for noninteracting systems, we construct an effective few-mode expansion scheme for interacting
theories, which allows us to extract the relevant degrees of freedom from a continuum in an open quantum
system. As awhole, our results demonstrate that few-mode as well as input-output models can be extended to
a general class of problems and open up the associated toolbox to be applied to various platforms and extreme
regimes. We outline differences of the ab initio results to standard model assumptions, which may lead to
qualitatively different effects in certain regimes. The formalism is exemplified in various simple physical
scenarios. In the process, we provide a proof of concept of the method, demonstrate important properties of
the expansion scheme, and exemplify new features in extreme regimes.
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I. INTRODUCTION

Scattering theory is a major tool in a variety of platforms.
However, particularly for quantum dynamical systems,
solving the scattering problem is often difficult, not least
due to the infinitely many degrees of freedom (d.o.f.)
provided by the scattering continuum. Consequently, it is a
crucial task to reduce the complexity of the theoretical
description by extracting the relevant d.o.f. of the system.
In practice, these often turn out to be only few, especially
when the system features resonances or long-lived
decaying states [1,2], as is the case in various platforms
of quantum dynamics. To name a few examples, electronic
transport in mesoscopic physics [3–5] and resonances in
atomic [6,7] as well as nuclear [8,9] physics can often be
interpreted as particles scattering on a Schrödinger poten-
tial, while light scattering in cavity QED [10–12], photon-
ics [5,13], and many other optical platforms is governed by
Maxwell’s equations.

In quantum optics, this idea of few relevant modes has
been implemented in a famous model known as the input-
output formalism [14–16]. It is based on a system-bath
Hamiltonian where a few modes characterizing the sys-
tem’s dynamics are coupled to an external continuum. The
few-mode character of this model enables a variety of
approximations, and, as a result, system-bath methods form
the cornerstone for a large bulk of theoretical work [17,18],
and an impressive toolbox has been developed to apply the
input-output formalism to various problems and physical
situations, including cavity QED [17,19], quantum net-
works [20,21], and photon transport [22–24]. It further
allows one to connect the scattering properties of such
systems to well-studied few-mode models for light-matter
interaction, such as the single-mode Jaynes-Cummings
model [25] and its generalizations, including the Rabi
model [26–28], the Dicke model [29–31], and many more.
However, despite their success, there are several open

questions related to input-output models. In many cases,
the input-output formalism is applied phenomenologically
[17]; that is, the structure of its Hamiltonian is assumed and
its parameters are fitted to data. For good cavities or more
generally isolated resonances, this approach is natural,
since one would not expect a weakly leaky system to
differ grossly from a completely closed system. However,
the applicability of input-output theory has been debated in
the bad-cavity and overlapping modes regimes [32–34] and
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for systems with absorption [35], as well as more recently
in extreme coupling strength regimes [36,37]. Besides these
fundamental concerns, due to the unknown origin of the
Hamiltonian, there is often no systematic way to calculate
the phenomenological coupling and decay rates, which
inhibits design possibilities. Additionally, it is unclear
under what circumstances the method is appropriate,
hindering applications in more general scattering theory
settings beyond quantum optics [38,39], which have been
sparse so far.
A number of ab initio methods have been developed to

address these issues, and much progress has been made
pursuing multiple avenues, such as macroscopic QED
[35,40–44], modes-of-the-Universe [45–48], and local den-
sity of states [49,50] as well as pseudomode [51,52]
approaches for quantum optics. For general wave mechanics
and scattering theory, alternative ways to rigorously extract
the relevant dynamics have been investigated, including
different types of quasimodes [33,53–62], the related con-
stant flux states [46,50,63,64], temporal coupled-mode
theory [65,66], and various methods from the theory of
chaotic scattering [9,67–69], all ofwhich have foundmultiple
applications. While these approaches do not raise the con-
cerns of few-mode Hamiltonians, they only rarely connect to
the large toolbox available in few-mode input-output theory
and are consequently often limited in other ways.
From a general viewpoint, the practical applicability of

each method and which regimes they are useful in depends
on the combination of two aspects. On the one hand, the
various methods employ different fundamental models or
theoretical approaches to describe a given problem. On the
other hand, this choice of the model decides with which
solution methods the approach can be interfaced. As a
result, each method has individual strengths and limitations
in either of the two aspects. In the case of few-mode and
input-output theory, the limitations mainly result from the
above-mentioned open questions connected to the theo-
retical formulation, restricting generalizations and applica-
tions beyond standard regimes. On the solution method
side, however, a whole toolbox is available, making few-
mode and input-output theory particularly popular in
quantum optics.
A major step forward has been the ab initio derivation

of a system-bath Hamiltonian with an infinite number
of system modes for Maxwell’s equations by Viviescas
and Hackenbroich [70], which motivates the question
whether such a connection to ab initio methods could
also be established for few-mode theory and how to
rigorously reconstruct the scattering information from
such Hamiltonians using input-output methods.
Here, we develop an ab initio few-mode theory, providing

a rigorous foundation for established models and extending
the reach of associated methods to extreme regimes.
As a first and founding set of results, we derive an exact

link between the standard scattering theory, few-mode

Hamiltonians, and the input-output formalism for quantum
potential scattering systems without interactions. The result
is based on and extends methods from system-bath theory
in quantum optics [70], scattering theory in quantum
chemistry [71], and quantum field theory [47], with the
goal to make input-output methods a general and rigorous
tool for second quantized scattering problems. We find
crucial differences between the ab initio approach and
common model assumptions, such as frequency-dependent
couplings and cross-mode decay terms, as well as a
background scattering contribution, all of which are sig-
nificant particularly in the overlapping modes regime and
may cause qualitatively new effects. We emphasize that,
despite these differences, our ab initio version of the input-
output formalism does not increase the theoretical com-
plexity of the problem compared to phenomenological
models; only the coupling constants have to initially be
calculated from the scattering geometry to obtain the
Hamiltonian. The latter further offers design opportunities.
In a second step and based on the exact results for

noninteracting systems, we develop an effective few-mode
expansion scheme for interacting quantum potential scat-
tering problems, where the concept of extracting a few
relevant d.o.f. becomes a powerful tool. In this context, the
ab initio few-mode theory extends and provides a number
of advantages to phenomenological few-mode theory,
including famous field-matter interaction models such as
the Jaynes-Cummings model [25] and others mentioned
above. First, the noninteracting system is now always
treated exactly, such that the advantages of the exact results
in the noninteracting part of the paper are inherited.
Second, a systematic few-mode expansion scheme for
the interacting dynamics can now be constructed, which
disentangles various approximations. Third, our method
directly connects to the toolbox of phenomenological few-
mode theory, such that frequently used techniques do not
have to be abandoned. Last, our formalism extends the
reach of few-mode theory in general, making models such
as the open Jaynes-Cummings model applicable in more
extreme regimes and for different physical systems. Each of
the advantages is demonstrated using representative exam-
ples from the field of light-matter interactions.
In combination, our work connects phenomenological

models in cavity QED to ab initio quantization and shows
that the input-output formalism can be applied in highly
open systems such as the overlapping modes regime
[67,72–75], non-Hermitian photonics [76–78] or other
platforms featuring significant leakage [79,80], and regimes
of extreme light-matter coupling, such as the ultrastrong
[37,81,82] or multimode strong coupling regime [50,83].
From the general viewpoint taken earlier, the achievement
of our theory can be seen as a removal of the problems on
the fundamental formulation side of few-mode and input-
output theory, which also opens new options on the solution
method side. Our approach, therefore, acts as an enabling
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technique extending the reach of few-mode and input-
output theory to new regimes, complementing solution
methods for the open quantum dynamics of a broad range
of systems. In this context, we note that, while we explicitly
show that our method retains the connection to well-
established solution methods for interacting systems, the
latter often still feature approximations. As a result, a full
solution of the interacting open system dynamics, as has
been obtained for particular systems using alternative
methods (see, e.g., Refs. [50,64,84] for recent results), in
general remains challenging.
Beyond cavity QED, our results show the equivalence

between the input-output formalism and standard scattering
theory, paving the way for the application of simple system-
bath models to more general quantum scattering problems.
The latter promotes existing methods from wave scattering
theory as they are used, for example, in chaotic scattering
[85], nuclear physics [9], mesoscopic physics [3,5], and
non-Hermitian systems [67,68,86] to the second quantized
level [73]. From this perspective, our method may advance
the exchange of methods and concepts [5] between
currently separated fields.
Figure 1 provides an overview of the first set of results on

noninteracting systems presented in this paper and explains
its structure. The left-hand side represents established
ab initio methods, for example, based on the canonical

quantization of a wave equation. In this paper, we consider
the Schrödinger equation and a special case of Maxwell’s
equation for a dielectric medium as particular examples of
quantum scattering problems. Figure 1 depicts the more
general principle illustrated by a model potential (blue)
with a schematic normal mode (orange). The normal-mode
basis is convenient, since it diagonalizes the Hamiltonian,
which is obtained from the canonical quantization pro-
cedure. In Sec. II A, this approach is reviewed for the
Schrödinger equation. The normal modes then obtain
associated operators ĉ (Sec. II B). The equations of motion
for these operators can be solved using standard scat-
tering theory, to obtain the scattering matrix (Sec. III).
Throughout the paper, we denote this approach as the
normal-mode approach (NMA). On the right-hand side,
the few-mode approach (FMA) is depicted, on which we
focus here. It is usually employed in the form of
phenomenological models, featuring a small number
of discrete system modes coupled to an external bath
with coupling constant W and complex energy shift or
loss rate Γ. The input-output formalism is then used to
calculate the scattering between the bath modes via the
system modes.
Figure 2 provides an overview of the results on interact-

ing systems and, in particular, illustrates the concept of
effective few-mode expansions. In this part, we use a

FIG. 1. Schematic of the theoretical connections on noninteracting theories presented in this paper. The left-hand side represents the
NMA to quantum potential scattering, where one can rigorously obtain a Hamiltonian from canonical quantization. The latter is
conveniently expressed in terms of normal-mode operators ĉ (top left picture). The right-hand side represents the FMA, usually
employed in terms of phenomenological models. There, a discrete set of system modes is coupled to a continuum of bath modes (top
right picture), corresponding to operators â and b̂, respectively, with coupling constantW and loss rate Γ. We show that the Hamiltonians
on each side can be connected by a basis transformation. A common method to calculate scattering observables in the FMA,
known as the input-output formalism, can further be connected to standard scattering theory by the inclusion of a background
scattering contribution. Having shown that the Hamiltonians as well as the methods for calculating scattering observables can be
rigorously connected allows the normal-mode and the few-mode approach to quantized potential scattering theory to be regarded as
equivalent.
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paradigmatic system from the theory of light-matter inter-
actions, namely, a two-level atom inside a cavity, as an
example.
The paper is organized as follows. As our first result, we

project the full problem into a system-bath representation in
Sec. II C and use it to derive an ab initio few-mode
Hamiltonian for the Schrödinger field in Sec. II. As our
main result for noninteracting systems, in Sec. IV, we
rigorously reconstruct the full scattering matrix from the
ab initio few-mode Hamiltonian obtained in Sec. II using a
suitable input-output formalism. We, in particular, show in
Sec. IV B that the equivalence to the full scattering solution
obtained from the NMA can be established only if a so-
called background scattering term is included, which
translates the bath modes scattering on the system into
the asymptotically free modes. Our results thus connect not
only the Hamiltonians on each side, which govern the
dynamical equations of the system, but also the methods for

computing scattering observables. This promotes the FMA
and the input-output formalism to a rigorous theory and
allows the two pictures to be used as equivalent approaches,
which each have their advantages in practical situations. In
Sec. V, we present corresponding results for the dielectric
Maxwell equations, which form the basis for major fields of
application of input-output models such as cavity QED.
These results are brought into a practical context in Sec. VI
by comparing to what is usually done in corresponding
phenomenological approaches. For illustration and proof-
of-concept purposes, Sec. VII discusses a Fabry-Perot
cavity with variable mirror quality and a double-barrier
tunneling potential as example systems to illustrate the
results on noninteracting systems. Finally, in Sec. VIII, the
formalism for interacting quantum systems is developed.
We first describe how the ab initio few-mode theory allows
us to construct a systematic effective few-mode expansion
to approximate the interacting system. We then outline the
advantages of the method, which are inherited from the
exact description of the noninteracting system. We dem-
onstrate each advantage individually by explicit calcula-
tions for example systems. In Sec. IX, we discuss possible
applications and generalizations of the formalism in detail,
before we conclude in Sec. X. The Appendixes give details
on the formalism.

II. AB INITIO FEW-MODE HAMILTONIANS

In order to link the FMA to the NMA, we begin by
establishing a direct connection between the typical
Hamiltonians in the two fields (see Sec. II labels in
Fig. 1). On the NMA side, this is a diagonal normal-mode
Hamiltonian which can be obtained from the canonical
quantization of a wave equation [87,88]. On the FMA side,
a system and a bath appear as coupled d.o.f. [17] (see
Fig. 1). Via a suitable basis transformation [70,71], we
show that the two descriptions are equivalent for an
arbitrary number of system modes. Based on this equiv-
alence, we promote the few-mode input-output model to an
ab initio theory in Sec. IV.
Our technique can be applied to a general class of wave

equations. In this section, we demonstrate its working
principle on the Schrödinger equation

Hψðr; tÞ ¼ i
∂
∂tψðr; tÞ; ð1Þ

where ψðr; tÞ is the wave function, H ¼ H0 þ VðrÞ is the
first quantized Hamiltonian, VðrÞ is a real-valued poten-
tial that vanishes at large jrj, and H0 ¼ K ¼ − 1

2
ð∂2=∂r2Þ

is the free kinetic energy operator. For simplicity, we
work with ℏ ¼ m ¼ 1 and restrict ourselves to one
dimension; the technique is, however, not limited to this
setting.

FIG. 2. Schematic illustrating the part of the paper on interact-
ing systems, in particular, the few-mode approximation and
constructive approach to choosing few-mode bases for an ab initio
effective few-mode expansion. After introducing system modes
and bath modes (see also Fig. 1), the few-mode approximation
consists of neglecting the interaction of the interacting subsystem
(e.g., a two-level atom located inside the cavity with transition
frequency ωa) with the bath modes. In the figure, an example of a
two-mode basis is shown as the states inside the magenta shaded
box. Ideally, the set of system modes is chosen exploiting
physical insight into the system under study, to facilitate the
modeling of the system with as few modes as possible. In the
absence of any prior knowledge, a constructive approach can be
used to determine a few-mode basis. For this approach, a locally
complete basis (states inside the black box) is found as solutions
to the Dirichlet boundary value problem in the potential region,
which, in general, contains infinitely many modes. A few-mode
basis is then given by a subset of the locally complete basis.
Varying the number of modes in the few-mode basis and
performing the few-mode approximation in each case yields a
systematic expansion scheme.
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A. Canonical quantization

Second quantization (see Appendix A for details) of
Eq. (1) yields the Hamiltonian

Ĥ ¼
Z

drψ̂†ðr; tÞHψ̂ðr; tÞ; ð2Þ

where ψ̂ðr; tÞ and ψ̂†ðr; tÞ are now operators with bosonic
commutation relations

½ψ̂ðr; tÞ; ψ̂†ðr0; tÞ� ¼ δðr − r0Þ: ð3Þ

B. Normal-mode basis and Fock space

It is useful to write the second quantized Hamiltonian in
terms of normal-mode creation and annihilation operators.
To this end, the field operator can be expanded in a normal-
mode basis

ψ̂ðr; tÞ ¼
X
m

Z
dEðkÞϕmðr; kÞĉmðk; tÞ: ð4Þ

Here, the normal mode ϕmðr; kÞ is defined as an eigenstate
of the time-independent Schrödinger equation

Hϕmðr; kÞ ¼ EðkÞϕmðr; kÞ ð5Þ

with energy EðkÞ and further quantum numbers denoted by
the index m.
With appropriate mode normalization (see Appendix B),

the second quantized Hamiltonian is

Ĥ ¼
X
m

Z
dEðkÞEðkÞĉ†mðk; tÞĉmðk; tÞ: ð6Þ

The normal-mode operators ĉmðk; tÞ satisfy the canonical
ladder operator commutation relations, e.g.,

½ĉmðk; tÞ; ĉ†m0 ðk0; tÞ� ¼ δmm0δ½EðkÞ − Eðk0Þ�: ð7Þ

We note that, in the normal-mode basis, the Hamiltonian is
diagonal. The normal modes generally form a continuum,
since they include scattering states, and are also known as
modes of the Universe in the context of electromagnetic
radiation [45].

C. System-and-bath representation

To obtain a system-bath representation of the
Hamiltonian [70], we would like to split the normal-mode
operators into a discrete set of system operators âλ and a
continuum of bath operators b̂mðkÞ via a basis trans-
formation of the form

ĉmðkÞ ¼
X
λ∈ΛQ

α�λmðkÞâλ

þ
X
m0

Z
dEðk0Þβ�mm0 ðk; k0Þb̂m0 ðk0Þ; ð8Þ

where α�λmðkÞ and β�mm0 ðk; k0Þ are expansion coefficients.
This separation of the Hilbert space into two parts gives
a Hamiltonian with couplings between the system and
the bath modes and, thus, a nondiagonal Hamiltonian.
A similar basis transformation with an infinite number of
system modes is obtained by Viviescas and Hackenbroich
[70]. Our method extends their approach, such that the
discrete set of system modes denoted by ΛQ can be chosen
to contain only few or even a single mode and does not
need to span a region in position space as a basis. This
way, effective few-mode theories capturing the relevant
resonant dynamics can be formulated (see Sec. VIII for
details).
However, constructing such a few-mode basis is non-

trivial. For Eq. (8) to be a consistent basis transformation,
the system and bath together have to span the original
Hilbert space. To connect to quantum noise theory [17], we
would also like âλ and b̂mðkÞ to be bosonic operators,
which places a restriction on their commutation relations,
and the Hamiltonian to be of so-called Gardiner-Collett
form [16,17]. In the following, we show that all of these
conditions can be ensured by using Feshbach projections
[71,89] to select a certain set of system states corresponding
to the second quantized system operators âλ.

1. Feshbach projection for states

The idea of the Feshbach projection formalism [89] is to
reformulate the Schrödinger equation (1), which describes
the wave propagation in the full Hilbert space, in terms of
wave equations in two subspaces, which are then coupled
to each other. In this spirit, we follow Domcke [71] to first
express the eigenstates of the Schrödinger equation in terms
of the subspace eigenstates.
We start by defining projection operators Q and P such

that

P2 ¼ P; Q2 ¼ Q; PþQ ¼ 1: ð9Þ

Q corresponds to the system subspace and P to the bath
subspace, which together span the full Hilbert space.
However, we note that, in the few-mode case, Q and P
themselves generally do not correspond to disjunct regions
in position space. Specifically, the Q-space projector is
defined by choosing a set of system modes ΛQ ¼ fjχλig,
which are discrete normalized states that span the Q space
such that

Q ¼
X
λ∈ΛQ

jχλihχλj: ð10Þ
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We further require1 that these states be eigenstates of the
projected Q-space Hamiltonian HQQ ¼ QHQ, that is,

HQQjχλi ¼ Eλjχλi: ð11Þ

Analogously, we can define the bath modes jψ̃mðkÞi as
eigenstates of the P-space Hamiltonian

HPPjψ̃mðkÞi ¼ EðkÞjψ̃mðkÞi: ð12Þ

These states form a continuum and can be determined
uniquely only after choosing appropriate boundary con-
ditions [71,90], which become relevant in the context of
scattering in Sec. III.
We note that the Hermiticity of the subspace

Hamiltonians implies certain orthogonality conditions
for their eigenstates (see Appendix B for details),
which become relevant in the context of quantization in
Sec. II C 2.
We can now write the eigenstates in full space as an

expansion over the subspace eigenstates:

jϕmðkÞi ¼ QjϕmðkÞi þ PjϕmðkÞi ð13Þ

¼
X
λ∈ΛQ

αλmðkÞjχλi

þ
X
m0

Z
dEðk0Þβmm0 ðk; k0Þjψ̃m0 ðk0Þi; ð14Þ

which can be interpreted as a system-bath expansion of the
normal-mode states. Importantly, the coefficients

αλmðkÞ ¼ hχλjϕmðkÞi; ð15aÞ

βmm0 ðk; k0Þ ¼ hψ̃m0 ðk0ÞjϕmðkÞi ð15bÞ

can be calculated without direct knowledge of the normal-
mode functions ϕmðr; kÞ by so-called separable expansions
(see Appendix C for details), which can have computa-
tional advantages [71].

2. Feshbach projection for operators

The separation of the dynamics into two coupled
subspaces can alternatively be formulated in Fock space
by introducing operators âλ and b̂mðkÞ corresponding to the
system modes jχλi and bath modes jψ̃mðkÞi, respectively. It
can be shown (see Appendix D) that, analogously to
Eq. (14), the normal-mode operators relate to these sys-
tem-bath operators via

ĉmðkÞ ¼
X
λ∈ΛQ

α�λmðkÞâλ

þ
X
m0

Z
dEðk0Þβ�mm0 ðk; k0Þb̂m0 ðk0Þ; ð16Þ

which is the operator system-bath expansion Eq. (8), with
the coefficients now given by Eqs. (15). In addition, the
operators âλ and b̂mðkÞ fulfill the desired commutation
relations [70] (see Appendix D for details); that is, they are
each bosonic d.o.f., and the system commutes with the
bath. It has previously been unclear whether the latter holds
in the bad-cavity regime, and alternative models have been
suggested [34]. Now, the condition can be ensured con-
structively using the Feshbach projection method, even in
the few-mode case.

D. Ab initio few-mode Hamiltonian

Applying the system-bath expansion Eq. (16) to the
second quantized Hamiltonian Eq. (6) and using
Appendixes D and E, we obtain

Ĥ ¼
X
λ∈ΛQ

Eλâ
†
λ âλ þ

X
m

Z
dEðkÞEðkÞb̂†mðkÞb̂mðkÞ

þ
X
λ∈ΛQ

X
m

Z
dEðkÞ½WλmðkÞâ†λ b̂mðkÞ þ H:c:�; ð17Þ

with the coupling constants

WλmðkÞ ≔ hχλjHjψ̃ ð
mkÞi: ð18Þ

We have thus derived an ab initio few-mode Hamiltonian of
Gardiner-Collett form for the Schrödinger equation. We
note that the few-mode Hamiltonian exactly captures the
system’s dynamics, equivalently to the Hamiltonian in its
normal-mode representation Eq. (6), even though the
system modes are discrete and their number is finite.
This feature opens new theoretical possibilities when
interactions such as atoms are present inside the cavity,
as we investigate in detail in Sec. VIII.
We note that Eq. (17) generalizes the Hamiltonian

derived by Viviescas and Hackenbroich [70] from an
infinite to an arbitrary number of system modes and to a
general class of wave equations. More importantly, as we
show in the following sections, an ab initio input-output
formalism can now be used to reconstruct the scattering
information, which for Viviescas and Hackenbroich’s
Hamiltonian [70] is hindered by the appearance of diver-
gent series in the infinite mode case (see Appendix F).
Because of the nontrivial behavior of this limit, which is
already noted in Ref. [71], the few-mode Hamiltonians
proposed here are better suited to achieve this task.
For completeness, we further note that the inverse

of the presented basis transformation constitutes a Fano

1This requirement is imposed to obtain a Hamiltonian in the
second quantized case, where the system states do not couple to
each other directly. It does not restrict the generality, since Q and
HQQ commute.
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diagonalization [91] of the system-bath Hamiltonian.
A similar basis transformation is investigated in Ref. [92]
in relation to the pseudomodes theory [51,52] and in an
early paper [32] considering an approximate treatment.

III. QUANTUM POTENTIAL SCATTERING

In practice, system-bath Hamiltonians are most com-
monly used as phenomenological models for quantum
mechanical systems [17,19]. Their great value arises since
scattering observables can be calculated using the famous
input-output formalism [17,19], which is a standard tool in
quantum optics. Despite its success, the input-output for-
malism addresses the scattering problem only from the
perspective of amodelHamiltonian, which the inventors call
a “simplified representation of reality” [17]. In the previous
section, we show how to rigorously derive few-mode
system-bath Hamiltonians from canonical quantization
and, thereby, eliminate the need for the ad hoc assumption
of a model Hamiltonian. With this ab initio version of the
Hamiltonian at hand, we now have the tools to connect the
input-output formalism to scattering theory.
To set a foundation for comparison, in this section, we

first derive scattering theory results in the first and second
quantized setting as a reference (see also Sec. III labels
in Fig. 1).

A. First quantized potential scattering theory

1. Standard scattering theory

For a wave equation such as the time-dependent
Schrödinger equation (1), the scattering problem is given
by the question of how an incoming wave packet defined in
the infinite past evolves into an outgoing wave packet in the
infinite future [90]. For elastic scattering, this information
can be encoded in the on-shell scattering matrix Smm0 ðkÞ,
which is defined by the linear relation between states

jϕðþÞ
m ðkÞi and jϕð−Þ

m ðkÞi [90]:

jϕðþÞ
m ðkÞi ¼

X
m0

jϕð−Þ
m0 ðkÞiSm0mðkÞ: ð19Þ

The states jϕð�Þ
m ðkÞi are the normal modes defined in

Eq. (5) as eigenstates of the Hamiltonian. The (�)
corresponds to a choice of boundary conditions. As usual
in scattering theory, (þ) is the state with a controlled
incoming free state, and (−) is the state with a controlled
outgoing free state [90].
Another useful scattering quantity is the transition

operator T defined by

jϕðþÞ
m ðkÞi ¼ jkmi þGðþÞ

0 Tjkmi; ð20Þ

where GðþÞ
0 is the free propagator given via the free

Hamiltonian H0 as

GðþÞ
0 ¼ ½EðkÞ −H0 þ iη�−1 ð21Þ

and jkmi is an eigenstate of H0 with H0jkmi ¼ EðkÞjkmi.
The operator T thus quantifies transitions between a full
eigenstate and a free eigenstate. It is linked to the on-shell
scattering matrix defined above via [90]

Smm0 ðkÞ ¼ δmm0 − 2πiTmm0 ðkÞ ð22Þ

with Tmm0 ðkÞ ¼ hkmjTjkm0 i.
The scattering properties can thus be obtained by solving

the eigenproblem for the full Hamiltonian and computing
their transition probabilities to freely propagating states.

2. Potential scattering via projection operators

Domcke shows [71] that, instead of using the eigenstates
in full space, the scattering matrix can also be calculated
from the system-and-bath states that we use in Sec. II.
Details on the calculation are summarized in Appendix G.
Here, we focus on the definitions and interpretation of the
results relevant to our work. The relation between the
different states and scattering matrices used below is
illustrated in the left part in Fig. 3.
We first define a transition operator Tres by considering

the bath modes as “free” states. Analogously to Eq. (20),
omitting matrix subscripts for brevity, we can write

PjϕðþÞðkÞi ¼ jψ̃ ðþÞðkÞi þ G̃ðþÞTresjψ̃ ðþÞðkÞi; ð23Þ

FIG. 3. Schematic of the different d.o.f. and scattering con-
nections in the Feshbach projection formalism for potential
scattering problems. The full scattering matrix S can be used
to relate asymptotically free states or operators to each other. The
background scattering Sbg arises from a basis transformation of
the free states into the bath states. The bath states scatter via Sres
on the system states, which span part of the region where the
scattering potential VðrÞ is nonzero. Similarly on the operator
level, the scattering between bath operators that are coupled to the
system is given by the input-output scattering matrix Sio. To
obtain the full scattering matrix, a background scattering con-
tribution S̃bg has to be applied.
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where G̃ðþÞ is the Green function for P-space propagation

G̃ðþÞ ¼ ½EðkÞ −HPP þ iϵ�−1: ð24Þ
We can then quantify the scattering between bath states by a
scattering matrix

SresðkÞ≡ I − 2πiTresðkÞ; ð25Þ

where TresðkÞ is the matrix element of Tres on the basis of
retarded bath states.
However, the bath states are not necessarily free states.

Therefore, there is a residual scattering contained in the
asymptotic structure of the bath states, which can be
described by a transition operator for transitions from a
bath state to a free state:

jψ̃ ðþÞðkÞi ¼ jki þ GðþÞ
0 Tbgjki: ð26Þ

The background scattering matrix Sbg is again defined as
the corresponding on-shell scattering matrix

SbgðkÞ≡ I − 2πiTbgðkÞ; ð27Þ

where TbgðkÞ is the matrix element of Tbg on the basis of
free states. The effect of SbgðkÞ can thus be interpreted as an
asymptotic basis transformation between bath states and
free states.
The full scattering matrix S is then decomposed into the

resonant scattering matrix Sres and the background scatter-
ing matrix Sbg via [71]

SðkÞ ¼ SbgðkÞSresðkÞ: ð28Þ
In terms of the system-and-bath states, these matrices read
(see Appendix G)

SresðkÞ ¼ I − 2πihψ̃ ðþÞðkÞjHPQGQQHQPjψ̃ ðþÞðkÞi; ð29Þ

SbgðkÞ ¼ I − 2πihkjðHPP − KÞjψ̃ ðþÞðkÞi: ð30Þ

We note that, unlike in the quasimode approach
[55,59,60,62], the “resonant” part in the Feshbach projec-
tion formalism does not necessarily correspond to the
resonances of the wave equation, that is, the poles of the
scattering matrix. However, by choosing the system states
appropriately, certain resonances can be selected, such that
their poles appear in Sres and the remaining poles appear in
Sbg. This behavior is investigated partially in Ref. [71], and
we demonstrate its significance for extracting few-mode
dynamics in Sec. VII. In the context of interacting theories,
the concept further becomes a powerful tool to construct
effective few-mode expansions, which we show in
Sec. VIII.
We further note that, from the viewpoint of the entire

scattering problem, both Sres and Sbg are unphysical on their

own, since their properties depend on the arbitrary choice
of the system states. However, they individually may
provide accurate approximations of the full scattering
matrix in the vicinity of their corresponding resonances
(see also Sec. VII), such that the choice of system states
becomes a resource allowing the extraction of relevant
properties of the whole system.

B. Second quantized potential scattering theory

In the second quantized setting, one investigates the
dynamics of operators defined by the Hamiltonian and its
corresponding Heisenberg equations of motion. That is, the
quantization procedure promotes the wave equation to a
nonrelativistic quantum field theory, such that correlation
functions can be computed and interactions can be
considered.
For potential scattering, we can define asymptotically

free operators by expanding the quantum field in a free
mode basis instead of in its normal-mode basis. If

ϕðfreeÞ
m ðr; kÞ ¼ hrjkmi are the field distribution of the free

eigenstates, then the free-state expansion of the field
operator reads

ψ̂ðr; tÞ ¼
X
m

Z
dEðkÞϕðfreeÞ

m ðr; kÞd̂mðk; tÞ; ð31Þ

where d̂mðk; tÞ are the free bosonic operators satisfying
canonical commutation relations.
One can solve the Heisenberg equations of motion for

these operators (see Appendix H for details) to obtain a
scattering relation

d̂ðoutÞm ðkÞ ¼
X
m0

Smm0 ðkÞd̂ðinÞm0 ðkÞ; ð32Þ

where the asymptotically free in [out] operators are
interaction picture operators in the infinite past [future]
that are defined via adiabatically switching on [off] of the
potential in the corresponding time limits (see Appendix H
for details).
In the case of potential scattering, the operator scattering

matrix can be shown to be exactly the first quantized
scattering matrix Eq. (19) [47]. This correspondence
between the solution to the wave equation and its second
quantized analog is also required for consistency, since on
average the result from the wave equation should be
obtained, that is, hd̂outðkÞi ¼ Shd̂inðkÞi.
For clarity, we emphasize that the scattering matrices

employed here relate different asymptotic operators. The
relation of this formulation to scattering between initial and
final states of the quantum field is, e.g., noted in
Refs. [22,93,94] in the context of few-photon transport.
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IV. FEW-MODE SCATTERING

We now show how to rigorously reconstruct the full
scattering information from the ab initio few-mode
Hamiltonian derived in Sec. II using the input-output
formalism. We further show the equivalence of the
input-output formalism result to that of standard scat-
tering theory (see Sec. IV labels in Fig. 1). The
applicability of the input-output formalism is thus not
limited to the good-cavity regime but applies to a
general class of quantum scattering problems and in
extreme regimes.

A. Ab initio input-output formalism

We now apply the input-output formalism [16,17,70] to
our ab initio few-mode Hamiltonian Eq. (17). This appli-
cation constitutes solving the Heisenberg equations of
motion for the Hamiltonian Eq. (17), which are

d
dt

âλðtÞ ¼ −iEλâλðtÞ

− i
X
m

Z
dEðkÞWλmðkÞb̂mðk; tÞ; ð33Þ

d
dt

b̂mðk; tÞ ¼ −iEðkÞb̂mðk; tÞ − i
X
λ∈ΛQ

W�
λmðkÞâλðtÞ: ð34Þ

We can solve Eq. (34) formally in terms of the initial time t0
and final time t1 as

b̂mðk; tÞ ¼ e−iEðkÞðt−t0Þb̂mðk; t0Þ

− i
X
λ∈ΛQ

W�
λmðkÞ

Z
t

t0

dt0e−iEðkÞðt−t0Þâλðt0Þ ð35Þ

and

b̂mðk; tÞ ¼ e−iEðkÞðt−t1Þb̂mðk; t1Þ

þ i
X
λ∈ΛQ

W�
λmðkÞ

Z
t1

t
dt0e−iEðkÞðt−t0Þâλðt0Þ; ð36Þ

respectively. As usual in quantum noise theory [16,70] and
in analogy with the quantum field theory definition (see
Sec. III B), we define the in and out operators

b̂ðinÞm ðkÞ ¼ eiEðkÞt0 b̂mðk; t0Þ; ð37aÞ

b̂ðoutÞm ðkÞ ¼ eiEðkÞt1 b̂mðk; t1Þ; ð37bÞ

respectively. Taking initial [final] times to negative [pos-
itive] infinity gives the input-output relation

b̂ðoutÞm ðkÞ − b̂ðinÞm ðkÞ ¼ −i
X
λ∈ΛQ

W�
λmðkÞâλðkÞ; ð38Þ

where the Fourier transform of âλðtÞ is defined by

âλðkÞ ¼
Z

∞

−∞
dt0eiEðkÞt0 âλðt0Þ: ð39Þ

Substituting the formal solution Eq. (35) into Eq. (33) and
inverting the resulting matrix equation gives

âλðkÞ ¼ 2π
X
λ0∈ΛQ

X
m

D−1
λλ0 ðkÞWλ0mðkÞb̂ðinÞm ðkÞ; ð40Þ

where we define D−1 as the inverse of the matrix

Dλλ0 ðkÞ ¼ ½EðkÞ − Eλ�δλλ0 þ Γλλ0 ðkÞ: ð41Þ

The decay matrix (see also Fig. 1) is given by

Γλλ0 ðkÞ ¼ −
X
m

Z
dEðk0Þ Wλmðk0ÞW�

λ0mðk0Þ
EðkÞ − Eðk0Þ þ iϵ

ð42Þ

≕−Δλλ0 ðkÞ þ iγλλ0 ðkÞ; ð43Þ

where we define the real and imaginary parts of Γλλ0 ðkÞ as
Δλλ0 ðkÞ and γλλ0 ðkÞ, respectively. In the latter equation, the
limit ϵ → 0þ is implied. For λ ≠ λ0, the complex decay
matrix Γλλ0 ðkÞ describes couplings between the system
modes, whereas the diagonal parts correspond to frequency
shifts Δλλ and loss rates γλλ.
We note that, to obtain this expression, the Fourier

transform integrals are regularized (see Appendix I for
details), analogously to what is usually done in time-
independent scattering theory [90]. We further note that
a Markov approximation is not necessary in this deriva-
tion [70].
Upon substitution of Eq. (40) into Eq. (38), we can read

off the scattering matrix

SioðkÞ ¼ δmm0 − 2πi
X
λ;λ0

W�
λmðkÞD−1

λλ0 ðkÞWλ0m0 ðkÞ; ð44Þ

such that

b̂ðoutÞðkÞ ¼ SioðkÞb̂ðinÞðkÞ: ð45Þ

The subscript “io” stands for “input-output” to indicate that
this scattering matrix is obtained by solving the quantum
statistical operator equations of motion of the ab initio few-
mode Hamiltonian using the input-output formalism of
quantum noise theory [16,17].
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B. Equivalence to standard scattering theory

We now show that the above calculation is equivalent to
the full quantum scattering calculation, only expressed in a
different basis. The relation is best understood by analogy
to the state case (see Fig. 3).
First, we recognize that, using the definition of the

coupling constants Eq. (18) as well as the completeness
relations of the subspace eigenstates and Eq. (11), the decay
matrix Eq. (42) can be written as

Γλλ0 ðkÞ ¼ −hχλjHQPG̃
ðþÞHPQjχλ0 i: ð46Þ

We now choose the bath states fulfilling retarded boundary
conditions jψ̃ ðþÞðkÞi [71,90], since by writing Eq. (40) in
terms of the incoming operator, we decide to solve an initial
value scattering problem.
From Eq. (41), the D matrix therefore consists of the

matrix elements

Dλλ0 ðkÞ ¼ hχλjEðkÞ −HQQ −HQPG̃
ðþÞHPQjχλ0 i: ð47Þ

Noting that the effective Q-space Hamiltonian is

Heff ¼ HQQ þHQPG̃
ðþÞHPQ; ð48Þ

we see that the inverse of the D matrix coincides with the
matrix elements

D−1
λλ0 ðkÞ ¼ hχλjGQQjχλ0 i ð49Þ

of the Q-space propagator GQQ ¼ ½EðkÞ −Heff �−1.
Substituting into Eq. (44), again using the definition of

the coupling constants Eq. (18) and the completeness
relations of the subspace eigenstates, we find that

SioðkÞ ¼ I − 2πihψ̃ ðþÞðkÞjHPQGQQHQPjψ̃ ðþÞðkÞi
¼ SresðkÞ: ð50Þ

Thus, the expression for the input-output scattering matrix
SioðkÞ coincides with the scattering matrix SresðkÞ in
Eq. (29) obtained from potential scattering theory using
the Feshbach projection formalism [71].
From our interpretation of the resonant scattering matrix

in Sec. III A 2, it is to be expected that SioðkÞ is not the full
scattering matrix. The ab initio few-mode Hamiltonian
Eq. (17) contains only information about the dynamics of
the system-and-bath modes, which interact via the coupling
terms. Despite capturing these dynamics exactly, it does not
contain information about the structure of the bath modes.
In addition, the bath operators are not asymptotically free.
Therefore, analogously to the first quantized potential
scattering case in Sec. III A 2, an asymptotic basis trans-
formation is needed to translate from the bath operators in
Eq. (45) to the asymptotically free operators in Eq. (32), as

schematically shown in Fig. 3. We further know from
Eq. (28) that this transformation can be expressed as the
background scattering matrix SbgðkÞ. Therefore, the full
scattering matrix can be calculated from the input-output
result by

SðkÞ ¼ SbgðkÞSioðkÞ: ð51Þ
In summary, the background scattering contribution trans-
lates the bath mode scattering from the input-output
formalism into free-state scattering as usually observed
in spectroscopic experiments.
We thus clarify the relation of our ab initio FMA to the

NMA and conventional quantum scattering theory. The two
approaches are equivalent if care is taken to compute the
scattering between asymptotically free operators in both
cases. Figures 1 and 3 illustrate the equivalence and the
relation between the different operators.

V. APPLICATION TO MAXWELL’S EQUATIONS

While so far we have presented the construction of
ab initio few-mode Hamiltonians on the example of the
Schrödinger equation, our technique is, in fact, quite
general. The essential requirements are that the Hilbert
space of the quantum system can be separated into two
orthogonal subspaces and that each subspace is spanned by
a set of orthonormal modes. In the Schrödinger case, these
conditions are ensured by the Hermiticity of the corre-
sponding operators. One can thus envision an application of
the formalism to a variety of quantized scattering problems.
One such problem with practical relevance in quantum
optics and cavity QED is the scattering of light from
dielectric materials, described by Maxwell’s equations.
Since this field is a main application of system-bath theory
and the input-output formalism as a phenomenological
model, the question arises if our ab initio FMA can be
applied to this setting as well.
In the following, we analyze this question for the

simplest possible case of a linear, isotropic, nonabsorbing
dielectric medium in one dimension, with only a single
polarization considered. We show that, within the rotating
wave approximation (RWA), the correspondence between
the input-output formalism and the potential scattering
approach can be established.
Our assumptions allow us to write the wave equation for

a component Aðr; tÞ of the vector potential as [95]

∂2

∂r2 Aðr; tÞ ¼ εðrÞ ∂
2

∂t2 Aðr; tÞ; ð52Þ

where εðrÞ is the dielectric function and again c ¼ 1. The
applicability of this scalar Helmholtz equation to physical
scenarios is discussed in Ref. [5]. This problem is closely
related to our treatment of the Schrödinger equation, since
the corresponding time-independent equation for the nor-
mal modes fmðr; kÞ [70],
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∂2

∂r2 fmðr;ωÞ þ εðrÞω2fmðr;ωÞ ¼ 0; ð53Þ

can be written as a Schrödinger equation with an energy-
dependent potential [5,55]

Ṽðr;ωÞ ¼ 1 − εðrÞ
2

ω2: ð54Þ

The normal modes of this wave equation are still orthogo-
nal, but under a modified inner product [5,70]

hxjyi ¼
Z

drεðrÞx�ðrÞyðrÞ: ð55Þ

The Maxwell wave equation can be quantized canoni-
cally [47] (see Appendix J 1 for details), similarly to the
Schrödinger case in Sec. II A. However, due to the double
time derivative, the Hamiltonian now contains coordinate
operators q̂ and momentum operators p̂ [47,70], such that
the corresponding commutation relations differ [47,70].
The separation into system and bath operators via a

Feshbach projection can also be performed analogously to
the Schrödinger case (see Appendix J 2 for details). The
resulting few-mode Hamiltonian is of the form [70]

Ĥ ¼
X
λ∈ΛQ

ωλâ
†
λ âλ þ

X
m

Z
dωωb̂†mðωÞb̂mðωÞ

þ
X
λ;m

Z
dω½WλmðωÞâ†λ b̂mðωÞ

þ VλmðωÞâλb̂mðωÞ þ H:c:�: ð56Þ

We note the appearance of counterrotating terms in the
system-bath coupling [70], which are also a result of the
second time derivative in the Maxwell wave equation.

A. Scattering in the rotating wave approximation

We proceed with the analysis by applying the rotating
wave approximation, which simplifies the Hamiltonian
Eq. (56) to

Ĥrot ¼
X
λ∈ΛQ

ωλâ
†
λ âλ þ

X
m

Z
dωωb̂†mðωÞb̂mðωÞ

þ
X
λ;m

Z
dω½WλmðωÞâ†λ b̂mðωÞ þ H:c:�: ð57Þ

One can solve the equations of motion for this Hamiltonian
analogously to Sec. IVA. The resulting scattering matrix is

SðrotÞio ðωÞ ¼ δmm0 − 2πi
X
λ;λ0

W�
λmðωÞD−1

λλ0 ðωÞWλ0m0 ðωÞ; ð58Þ

with

Dλλ0 ðωÞ ¼ ðω − ωλÞδλλ0 þ Γ0
λλ0 ðωÞ ð59Þ

and

Γ0
λλ0 ðωÞ ¼ −

X
m

Z
dω0 Wλmðω0ÞW�

λ0mðω0Þ
ω − ω0 þ iϵ

: ð60Þ

In order to compare to scattering theory, we substitute the
definition of the coupling constants W and translate to the
Schrödinger normalization and energy labeling by (see
Appendix J 1)

WλmðωÞ ¼
1

2
ffiffiffiffiffiffiffiffiffi
ωλω

p W̃λmðωÞ ¼
1ffiffiffiffiffiffiffiffi
2Eλ

4
p WλmðkÞ; ð61Þ

where WλmðkÞ are the coupling constants corresponding to
the scattering normalization. The scattering matrix then
reads

SðrotÞio ðkÞ¼ δmm0 −2πi
X
λ;λ0

W�
λmðkÞ½D−1

rotðkÞ�λλ0Wλ0m0 ðkÞ; ð62Þ

with

½DrotðkÞ�λλ0 ¼ 2
ffiffiffiffiffi
Eλ

p
½

ffiffiffiffiffiffiffiffiffiffi
EðkÞ

p
−

ffiffiffiffiffi
Eλ

p
�δλλ0 þ ΓðrotÞ

λλ0 ðkÞ

and

ΓðrotÞ
λλ0 ðkÞ¼−

X
m

Z
dEðk0Þ
2

ffiffiffiffiffiffiffiffiffiffiffi
Eðk0Þp Wλmðk0ÞW�

λ0mðk0Þffiffiffiffiffiffiffiffiffiffi
EðkÞp

−
ffiffiffiffiffiffiffiffiffiffiffi
Eðk0Þp þ iϵ

: ð63Þ

We now see that these integrals are different from the ones
encountered in scattering theory, due to the square-rooted
energy dependence. However, since these expressions are
derived under the assumption that the rotating wave
approximation holds, we should also approximate 2

ffiffiffiffiffi
Eλ

p
≈ffiffiffiffiffi

Eλ
p þ ffiffiffiffiffiffiffiffiffiffi

EðkÞp
and 2

ffiffiffiffiffiffiffiffiffiffiffi
Eðk0Þp

≈
ffiffiffiffiffiffiffiffiffiffi
EðkÞp þ ffiffiffiffiffiffiffiffiffiffiffi

Eðk0Þp
in the

relevant energy ranges of the above expressions.
Substitution of these approximations shows that

DrotðkÞ ≈DðkÞ; ð64Þ

such that from comparing Eq. (62) with Eq. (44) we get

SðrotÞio ðkÞ ≈ SresðkÞ: ð65Þ

This result means that, if the rotating wave approximation
applies and is carried through consistently, the correspon-
dence between the input-output operator scattering and the
resonant state scattering matrix still holds. We note that it is,
in fact, crucial to perform the above second step within the
rotating wave approximation, in order to obtain the correct
pole structure of the system propagator yielding a
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converging multimode expansion (see also Sec. VIII and
Appendix M).
We further note that a similar correspondence can be

established within the slowly varying envelope approxi-
mation as outlined in Appendix K, an approximation which
modifies only the time dependence of the system and still
yields the exact steady-state response.
As a result, we find that, within these approximations,

our formalism can be applied straightforwardly to the scalar
Helmholtz wave equation in the same way as for the
Schrödinger equation, if a modified inner product and an
energy-dependent potential are considered.

B. Scattering beyond the rotating wave approximation

Going beyond these approximations, we note that the
input-output formalism does not require neglecting the
counterrotating terms [96]. Without the RWA, an additional
linear equation for the conjugated operators has to be
considered, which couples to the original equations via the
counterrotating terms. The input-output calculation can
thus, in principle, be performed analogously.
From the discussion in Sec. III and Fig. 3, it is clear that

this calculation yields an input-output scattering matrix
describing scattering between bath operators, which has to
be multiplied by a background term to obtain the full
scattering between asymptotically free operators. The key
difficulty now is to relate the contour integrals appearing in
the operator scattering calculation [such as Eq. (63)] to the
matrix elements in the state scattering calculation [such as
Eq. (29)]. In the case of the Schrödinger equation, a
correspondence between the state scattering and the oper-
ator scattering is shown in Sec. IV B, using the relation of
the contour integrals to the bath Green function. In the
Maxwell case, this correspondence is obscured due to the
rooted energy dependence in the contour integrals. The
origin of this difference can be understood since, for
Maxwell’s equations, the field satisfying the wave equation
has mixed operator contributions Aðr; tÞ ∼ b̂ ψ̃ þb̂†ψ̃�,
while for the Schrödinger equation ψðr; tÞ ∼ b̂ ψ̃ . We note
that conceptually the lack of such a correspondence makes
no difference and the input-output scattering matrix can still
be calculated if the contour integrals are evaluated cor-
rectly. Only now it is not clear if SioðkÞ ¼ SresðkÞ can be
invoked to simplify the calculation.
As a result, we conclude that even beyond the rotating

wave approximation our formalism can be applied to
calculate ab initio input-output scattering matrices; how-
ever, the precise form of the corresponding background
scattering matrix on the operator scattering level remains to
be determined (see also Fig. 3).

VI. PRACTICAL ASPECTS

Before turning to an example calculation, we conclude
our analysis with practical remarks, in particular, focusing

on applications in cavity QED. Applying the ab initio FMA
discussed here in essence entails two parts. The first part is
the calculation of the quantum optical parameters and
coupling constants entering the Hamiltonian and the
input-output relations. The second part is the solution of
the equations of motion resulting from the Hamiltonian.
Regarding the second part, it is important to note that the
Hamiltonian and the input-output relations obtained from
our FMA are quite similar in structure to that of the well-
established phenomenological models. This similarity is of
great advantage, since it means that the solution methods
established for phenomenological models can also be
applied to our approach, once the coupling constants are
evaluated.
Nevertheless, there are certain differences to standard

phenomenological models, which we discuss in the follow-
ing. The model input-output relation is usually written in
the form [17]

b̂ðoutÞðtÞ − b̂ðinÞðtÞ ¼ −i
X
λ

ffiffiffiffi
κλ

p
âλðtÞ ð66Þ

or, alternatively, in terms of the corresponding Fourier
transforms

b̂ðoutÞðωÞ − b̂ðinÞðωÞ ¼ −i
X
λ

ffiffiffiffi
κλ

p
âλðωÞ; ð67Þ

from which a spectrum can be computed. Here, κλ is the
coupling constant between the cavity mode λ and the
external bath mode considered.
The corresponding input-output relation derived within

our approach reads [compare Eq. (38)]

b̂ðoutÞm ðωÞ − b̂ðinÞm ðωÞ ¼ −i
X
λ

W�
λmðωÞâλðωÞ: ð68Þ

This expression is similar in structure to Eq. (67), only now
the cavity-bath coupling is frequency dependent. It is
important to note that this frequency dependence also
includes the possibility that the couplings change consid-
erably within the spectral width of a single resonance,
which cannot be captured by fitting a phenomenological
Lorentzian mode to the response of the system. An example
for this possibility is shown in Sec. VII.
Next, we turn to the equations of motion for the cavity

modes. Including a loss constant γ, a typical equation of
motion within a phenomenological model reads

d
dt

âλðtÞ ¼ −iωλâλðtÞ − i
ffiffiffiffi
κλ

p
b̂ðinÞðtÞ − γλâλðtÞ: ð69Þ

This equation can again be expressed in Fourier space as

−iωâλðωÞ ¼ −iωλâλðωÞ − i
ffiffiffiffi
κλ

p
b̂ðinÞðωÞ − γλâλðωÞ; ð70Þ
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so that spectroscopic quantities such as reflection or
transmission spectra can be obtained by substituting
Eq. (70) into Eq. (67). When atoms or other quantum
systems are present inside the cavity, additional terms are
added to describe cavity-atom interactions (see also
Sec. VIII).
The corresponding Langevin equation in our ab initio

few-mode theory reads [compare Eqs. (40) and (60)]

−iωâλðωÞ ¼ −iωλâλðωÞ − 2πi
X
m

WλmðωÞb̂ðinÞm ðωÞ

−
X
λ0
½γλλ0 ðωÞ þ iΔλλ0 ðωÞ�âλ0 ðωÞ: ð71Þ

Comparing this equation with Eq. (70), we again find
frequency-dependent decay and coupling constants.
Additionally, next to the loss rates γλλ, an imaginary
contribution Δλλ appears, which induces a frequency shift.
Furthermore, both the loss and the frequency shift param-
eters are now matrices, such that cross-mode coupling
terms with λ ≠ λ0 are present. Such cross-mode terms bear
the potential for qualitatively different phenomena, for
example, spontaneously generated coherences [97–99].
Also, the frequency dependence of the coupling con-

stants may lead to qualitative differences to phenomeno-
logical models, since in the time domain, it implies
non-Markovian dynamics. For example, the input-output
relation in the time domain can be obtained by Fourier
transforming Eq. (68) and reads [70]

b̂ðoutÞm ðtÞ − b̂ðinÞm ðtÞ ¼ −i
X
λ

W�
λmðtÞ � âλðtÞ; ð72Þ

where W�
λmðtÞ ¼

R ðdω=2πÞe−iωtW�
λmðωÞ and � denotes a

convolution. The output field thus depends on the history of
the cavity mode operators. A similar connection is obtained
when writing the Langevin equation in the time domain.
We note that such non-Markovian input-output relations are
studied in detail in Refs. [20,100].
We therefore see that our ab initio few-mode theory can

be employed as a tool to calculate cavity spectra analo-
gously to the phenomenological approach, and the com-
putational simplicity of the phenomenological models is
not destroyed by the ab initio method. In particular, for
spectral observables, including frequency-dependent cou-
plings does not incur significant additional complexity. The
main task to apply the formalism thus lies in calculating the
frequency-dependent coupling and decay constants from
the cavity geometry by employing the projection operator
equations in Sec. II. After this calculation, the complete
tool box of the input-output formalism and system-bath
theory can be applied, and the various approximation
schemes that are available for few-mode systems can be
employed. For details on how these statements generalize
in the presence of interactions, refer to Sec. VIII.

VII. EXAMPLE: DOUBLE-BARRIER POTENTIAL

To illustrate our formalism for noninteracting theories
and as a proof of concept, we perform explicit calculations
for the example of a one-dimensional potential featuring
two barriers; see Fig. 4. Because our derivation in the
Maxwell case works analogously to the Schrödinger case, it
is tempting to assume that the two wave equations give
similar results. Below, we show that this assumption is not
the case, because they lead to different potentials in the
respective Hamiltonians and, thus, to different scattering
properties. In each case, we demonstrate how our few-
mode formalism enables the extraction of relevant resonant
dynamics.

A. Maxwell case: Fabry-Perot cavity

In the Maxwell case, the two-barrier potential is realized
using a spatially varying index-of-refraction distribution
and corresponds to a two-sided Fabry-Perot cavity with a
semitransparent mirror at each end. For simplicity, we
consider the thin-mirror limit d → 0with n0 → ∞ such that
η ¼ n20d remains finite, which is known as the Ley-Loudon
model [95,101]. This model is one of the simplest cavity
geometries with tunable sharp resonances. The mirror
quality can be characterized by η ¼ n20d, which relates to
the energy-dependent mirror reflectivity via rðωÞ ¼
iωη=ð2 − iωηÞ [95,101]. Within this model, the potential
in the Maxwell case thus becomes

Ṽðr;ωÞ ¼ −½η1δðr − L=2Þ þ η2δðrþ L=2Þ�ω2=2: ð73Þ

For this system, a natural choice of cavity modes are the
“perfect-cavity modes,” that is, eigenstates in the cavity
region with Dirichlet boundary conditions at the mirrors
given by

FIG. 4. Model potential with two barriers. In the Maxwell case,
this model corresponds to the Ley-Loudon model for a two-sided
Fabry-Perot cavity [101], and the solid blue curve shows the
spatial refractive index distribution. For simplicity, in the calcu-
lation, the thin-mirror limit d → 0 is considered, with n0 → ∞
such that η ¼ n20d remains finite [95,101]. In the cavity, the first
two perfect-cavity modes χ1 and χ2 are shown as magenta
curves. For the Schrödinger case, the solid blue curve indicates
the potential energy, which defines a tunneling problem.
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χλðrÞ ¼
ffiffiffiffi
2

L

r
sinðωλrÞ; 0 ≤ r ≤ L: ð74Þ

The eigenfrequencies are ωλ ¼ λπ=L, and L is the cavity
length.
Based on these states, we numerically evaluate the input-

output scattering matrix Sio and the corresponding back-
ground scattering matrix Sbg in the rotating wave approxi-
mation. Because of the cavity being open on both sides, it
poses a two-channel problem featuring transmission as well
as reflection. Each part in the relation S ¼ SbgSio thus is a
2 × 2 matrix.
In Fig. 5, we show transmission spectra for the cavity as

a function of the mirror quality and compare it to the
individual resonant input-output (Sio) and background (Sbg)
contributions. In all cases, the full transmissivity coincides
with the product of the resonant and the background
contributions, as shown in Sec. IV B. The upper row
illustrates the case in which the system space comprises
a single mode with λ ¼ 8. The lower row shows corre-
sponding results with four resonant modes as the system
part (λ ∈ f7; 8; 9; 10g). As expected, for a good cavity with
high η, well-resolved transmission resonances are obtained,
which naturally split into the resonant and the background
contributions. Each mode that is included in the few-mode
Hamiltonian removes a resonance peak from the back-
ground and adds it to the input-output scattering matrix,
which means that, in the vicinity of the included reso-
nances, one can expect that the input-output result alone
gives a good representation of the scattering behavior. But
toward the bad-cavity limit (η → 0), the modes start to

overlap, and the separation into resonant and background
part becomes nontrivial. As a result, the background part is
crucial, and more modes are required for the input-output
matrix to capture the resonance behavior in the same
frequency range. Also, the position of the mode resonance
systematically shifts with the quality factor η, which is a
consequence of the imaginary contribution δ found in the
ab initio equations. Furthermore, the resonant modes
become asymmetric with respect to their central frequen-
cies and are no longer of Lorentzian shape. This asymmetry
can be understood, since the width of the resonances
decreases for this cavity with increasing energy. As a
result, there is more overlap of any particular resonance
with its lower-energy neighbor than with its higher-energy
neighbor, which also leads to the formation of two distinct
pairs of modes in the case of multiple system modes in the
lower row in Fig. 5.
Next, we study the quantum optical parameters extracted

from our ab initio approach. Figure 6 shows the trans-
mission coupling strength κðTÞ entering the input-output
relation, the mode frequency shiftΔ, and the decay rate γ as
a function of the frequency and mirror quality η. All plots
correspond to the upper panel in Fig. 5, with a single mode
as the system subspace. In the upper panels in Fig. 6, the
solid purple curve indicates the spectral width of the mode
as a function of η. The lower panels show three cuts through
the plots in the upper panel, for different values of η. In
these lower panels, the magneta shaded area indicates the
spectral width of the mode, which grows toward lower η. As
expected, for a high-quality cavity, the system parameters
calculated using the ab initio method are approximately

FIG. 5. Transmission spectra for a Fabry-Perot cavity as a function of the mirror quality η. The top row shows the case in which the
system comprises the single mode λ ¼ 8. The bottom row shows corresponding results with the system consisting of the modes
λ ∈ f7; 8; 9; 10g. In both cases, the left column illustrates the full transmissivity of the system. The middle and right columns show the
input-output (Sio) and the background (Sbg) contributions, respectively. The full result can be obtained either from standard methods
such as a transfer matrix formalism also known as Parratt’s formalism [102,103] or as a product of the input-output and background
scattering matrices.
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constant over the spectral width of the resonance. Thus, we
again find that a phenomenological approach with constant
parameters is well suited to model the cavity dynamics.
However, toward the bad-cavity limit, the system param-
eters significantly change within the spectral width of the
mode, rendering a modeling using fixed phenomenological
rates difficult. Finally, the vertical lines in the lower panel
indicate the difference of the actual mode frequency from
the “bare” mode frequency, that is, the effect of the
imaginary part Δ.
From these results, we conclude that our formalism can

indeed be used to extract the resonant dynamics of the
system, by choosing the relevant modes that participate in
the dynamics. We further conclude that the input-output
formalism is not limited to the good-cavity regime but,
however, has to be applied with care when the cavity
features overlapping modes, since background scattering
and frequency dependence of the quantum parameters
become sizable and cannot be neglected.

B. Schrödinger case: Tunneling problem

In the Schrödinger case, the double-barrier potential
structure shown in Fig. 4 defines a tunneling problem and
can be written as

VðrÞ ¼ ξ1δðr − L=2Þ þ ξ2δðrþ L=2Þ: ð75Þ

We note that this potential has prefactors independent of the
energy, while the corresponding potential Eq. (73) for the
Maxwell case is proportional to ω2 and, thus, energy

dependent. This feature gives rise to crucial differences
between the Schrödinger and the Maxwell wave equation,
which we discuss below.
Figure 7 compares the transmissivity in the Schrödinger

case and the Maxwell case, for the parameters ξ1 ¼ ξ2 ¼
10L−1 and η1 ¼ η2 ¼ 0.5L. The three rows correspond to a
system space containing one mode (top row, λ ¼ 1), two
modes (middle row, λ ∈ f1; 2g), or the many-mode limit
(bottom row, λ ∈ f1;…; 100g).
The Schrödinger transmissivity features sharp resonan-

ces at low energies, which can be understood by noting that
at low energies it is less likely for a particle to tunnel
through or overcome the confining barriers (see Fig. 4).
With increasing energy, these resonances become broader
and start to overlap. Furthermore, the baseline of the
transmissivity resonances rises with increasing energy.
In the Maxwell case, the transmissivity spectrum at low

energies is entirely different. This difference is due to the
prefactor ω2 in the potential, which vanishes at low
energies. As a consequence, the modes become broader
and the baseline of the transmissivity resonances rises
toward lower energies. In contrast, toward higher energies,
the potential ∼ω2 is highly confining and features sharp
resonances. On a qualitative level, the frequency depend-
ence of the Maxwell resonances thus appears reversed as
compared to the Schrödinger case.
Next, we investigate the behavior of the few-mode input-

output results further in both cases, by comparing the input-
output and background transmissivity separately for differ-
ent system mode numbers (see Fig. 7). As expected, we

FIG. 6. Quantum optical parameters calculated via the ab initio few-mode theory. The upper row shows the transmission coupling
strength κðTÞ ¼ 2πjWj2, the mode frequency shift Δ, and the resonance width γ as a function of the frequency and mirror quality η. The
parameters are as in the upper row in Fig. 5, with the system comprising the single mode λ ¼ 8. The magenta curves indicate the width of
the resonance as a function of η. The lower row shows cuts through the upper panels at fixed η ¼ 0.01, 0.1, 0.19 (left to right,
corresponding to the transition from a bad to a good cavity) indicated as dotted lines in the upper panel. The respective widths of the
modes are indicated as shaded magenta regions, defined as twice the value of γ. The vertical dashed lines indicate the bare center
frequency of the mode (black) as well as the actual center frequency (magenta).
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observe that, for each additional system mode, a resonance
peak gets transferred from the background to the input-
output spectrum. For the case where a single mode with
λ ¼ 1 is included, the Schrödinger and Maxwell equations
show very different behavior. In the Schrödinger case, the
corresponding resonance is sharp and isolated, such that the
input-output transmissivity reproduces the full result in the
energy range of the resonance peak, even without having to
include the background contribution. In the Maxwell case,
however, these modes are broad and overlap, such that the
background contribution is crucial. It is important to note
that this difference is a consequence of the ω2 dependence
of the Maxwell potential and not of the single-mode
approximation, which can be seen from the top panel in
Fig. 5, where the single mode λ ¼ 8 is well represented by

the input-output part alone for the Maxwell case. As a result
of the ω2 dependence, the “perfect” system modes Eq. (74)
for barriers of infinite height do not represent the λ ¼ 1 case
of shallow potential barriers well.
We further note that the transmissivity maxima in the

Maxwell case in Fig. 7 lie between the ones for the
Schrödinger equation, despite the identical geometry. On
the level of wave equations, this feature can also be
explained by the energy dependence of the potential
causing the complex poles of the scattering matrix to shift.
In the quantized few-mode Hamiltonian approach, the shift
can alternatively be understood as radiative corrections to
the bare system states, which we choose to be the perfect-
cavity states Eq. (74). These corrections arise from the
system-bath coupling and are expressed as the complex
decay matrix. The shifting effect can thus also be seen in
Fig. 6, where the mode frequency shift Δ remains larger
than the mode width for large η.

VIII. INTERACTING QUANTUM SYSTEMS

In the previous sections, we have shown how to derive
ab initio few-mode Hamiltonians for quantum potential
scattering problems and how the full scattering information
can be reconstructed from such Hamiltonians using the
input-output formalism. We have further demonstrated that,
by choosing certain states in the few-mode basis, the
corresponding spectral resonance peaks can be extracted.
This idea of extracting important d.o.f. is at the heart of

the few-mode theory. The concept also naturally leads to a
crucial approximation when considering interacting sys-
tems, such as atoms coupling to the quantized field, which
are often theoretically intractable in their full complexity.
The few-mode approximation allows one to boil down the
field continuum to a few relevant d.o.f. that dominate the
interacting dynamics, by neglecting the interaction with
other irrelevant modes (see Fig. 2). Our ab initio few-mode
theory now enables this approximation to be performed
rigorously, provides new insight on its range of validity, and
gives practical advantages for its application. The main step
behind this progress is the possibility of choosing the
system states at will while still treating the free system
exactly, such that one can focus on approximating the
interaction.
We note that the few-mode approximation is already

employed extensively in the study of cavity QED [10–12]
and related subjects by using phenomenological few-mode
Hamiltonians. Importantly, a large bulk of theoretical tools
has been developed to solve and understand the resulting
dynamical equations [17,104,105], which find applications
in a broad quantum optics context, also beyond cavity
QED. However, these approaches inherit the limitations of
phenomenological few-mode approaches discussed in the
previous sections.
In this section, we show how our ab initio few-mode

theory can be applied to interacting quantum systems,

FIG. 7. Transmission spectra for a Schrödinger (left column)
and a Maxwell (right column) Fabry-Perot cavity, with different
sets of system modes (top, λ ¼ 1; middle, λ ∈ f1; 2g; bottom,
λ ∈ f1; 2;…; 100g). In each case, the full (solid blue curve),
input-output (dashed red curve), and background (dotted orange
curve) transmissivity are shown. For both wave equations, each
added system mode transfers a resonance peak from the back-
ground to the input-output contribution, such that, in the many-
mode case featuring 100 modes, the input-output result alone
agrees with the full transmissivity (bottom panels). For sharp
resonance peaks, the input-output result captures the behavior in
the relevant energy range, if the corresponding modes are
included (top and middle left panels). For overlapping resonan-
ces, the background contribution is crucial even in the vicinity of
the resonance peak (top and middle right panels).
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providing a number of advantages to phenomenological
few-mode theory. First, in the ab initio few-mode theory,
the empty cavity or potential is treated exactly no matter
which system modes are chosen such that the interacting
case inherits the advantages from the noninteracting one.
Second, a systematic effective few-mode expansion
scheme can now be constructed where only the interaction
is approximated. Third, an important aspect of our method
is that it connects to the toolbox of phenomenological
few-mode theory, such that frequently used techniques
do not have to be abandoned. Last, the method extends
the reach of few-mode theory to extreme parameter
regimes, such as highly open and multimode systems,
where previously mentioned aspects of the ab initio
few-mode theory, such as frequency-dependent couplings
and background scattering, can be crucial. As outlined in
the introduction, in this context our method acts as an
enabling technique, complementing solution methods for
open quantum dynamics and providing access to new
approximations.
In the following, we first outline the construction of the

ab initio few-mode theory for interacting systems. We then
discuss each of the advantages of the ab initio few-mode
theory mentioned above and demonstrate them using
representative examples.

A. Effective few-mode expansions

We outline the construction of the ab initio few-mode
theory using a paradigmatic model from the field of light-
matter interactions: a two-level atom in a cavity.
For clarity and consistency with previous sections, the

term “system” is reserved for the cavity in the following
and not used to describe the atom, which is referred to as
“atom” or “interaction.”

1. Interaction Hamiltonian

The Hamiltonian for a Maxwell field interacting with a
single two-level atom is [48]

Ĥ ¼ Ĥfield þ Ĥatom þ Ĥint: ð76Þ

Here, Ĥfield is given by the quantization of the dielectric
wave equation from Sec. V and can be expressed in the
usual normal-mode basis by Eq. (J13) or, equivalently,
in a few-mode system-bath basis by Eq. (56). For a
two-level system, the atomic Hamiltonian is given by
Ĥatom ¼ ðωa=2Þσ̂z, where ωa is the transition frequency
and σ̂x;y;z;þ;− are the Pauli operators. The interaction
Hamiltonian can be obtained by the minimal coupling
substitution [2,48] and in the dipole approximation can be
written as [2,48]

Ĥint ¼ −iωaðdσ̂þ − d�σ̂−ÞAðraÞ; ð77Þ

where d and ra are the transition dipole moment and the
position of the atom, respectively. Consistently with pre-
vious notation, we set ℏ ¼ me ¼ 1. We note that, following
the minimal coupling prescription, we use the p · A
interaction term here [48,87], since the canonical quanti-
zation scheme that we employ works in the Coulomb gauge
[47], and as a result our system-bath Hamiltonians are also
in this gauge. We further neglect the A2 term in the
interaction. This treatment is known to cause problems
in the ultrastrong or deep-strong coupling regimes [37,82],
whose resolution is discussed elsewhere (see, e.g.,
Refs. [84,106–111]). For our purposes, this approach
suffices, and we also perform the rotating wave approxi-
mation in the light-matter coupling. We note that polari-
zation is already absent, since we consider a scalar version
of the Maxwell wave equation in Sec. V. As before, we
employ these assumptions for simplicity, in order to
demonstrate the central ideas of ab initio effective few-
mode theories. We expect, however, that the method can be
extended to a broad class of Hamiltonians (see Sec. IX),
since it relies only on the few-mode concept and the
previously constructed basis transformation for the field,
which is exact.
The crucial advantage of the few-mode approach arises

when we express the field in terms of a mode expansion. In
the standard normal-mode basis, the expansion results in an
interaction Hamiltonian where the atom couples to a
continuum of modes [see Eq. (J14)]. In the few-mode
basis, the expansion Eq. (J20) gives an alternative repre-
sentation of the interaction Hamiltonian

Ĥint ¼ Ĥatom-cavity þ Ĥatom-bath; ð78Þ

with [50,70]

Ĥatom−cavity ¼
X
λ

gλσ̂þâλ þ H:c:; ð79aÞ

Ĥatom-bath ¼
X
m

Z
dωg̃mðωÞσ̂þb̂mðωÞ þ H:c:; ð79bÞ

where the atom-cavity and atom-bath coupling constants
are defined analogously to the normal-mode case, that is,

gλ ¼ −idωa

ffiffiffiffiffiffiffiffi
1

2ωλ

s
χλðraÞ; ð80aÞ

g̃mðωÞ ¼ −idωa

ffiffiffiffiffiffi
1

2ω

r
ψ̃mðra;ωÞ: ð80bÞ

As shown in the previous sections on noninteracting
problems, the ab initio few-mode approach allows one
to choose the system modes freely without having to
approximate the field Hamiltonian Ĥfield. This freedom
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enables a systematic few-mode approximation scheme for
the interacting theory, which we discuss in detail in the next
sections.

2. Few-mode expansion scheme

We see from Eq. (78) that, in the system-bath basis,
the atom couples to the discrete system (cavity) modes
as well as to a continuum of bath modes. While
this Hamiltonian is obtained from the normal-mode
Hamiltonian without further approximations, there is no
clear advantage to the normal-mode formulation yet,
because the Hamiltonian still involves a continuum part.
The few-mode approximation consists of only including
the atom-cavity interaction,

Ĥint ≈ Ĥatom-cavity; ð81Þ

such that the continuum part is neglected, where the cavity
part includes the chosen system modes. If applicable, this
approximation is tremendously useful, since it vastly
reduces the complexity of the coupling and the dimension
of the coupled system. Phenomenological few-mode
theory, encompassing famous models such as the Jaynes-
Cummings model [25], the Rabi model [26,27], and the
Dicke model [29,30], is based on this approximation.
Indeed, the above interaction Hamiltonian is exactly of
the form of a multimode Jaynes-Cummings model, empha-
sizing the close connection between phenomenological and
the ab initio few-mode theory. However, we have found in
the previous sections that the phenomenological few-mode
theory may lead to incorrect predictions already in the
noninteracting case, depending on the system and regime
under study.
The key advantage of our ab initio few-mode theory as

compared to phenomenological approaches is that the
noninteracting system is treated exactly. As a result, we
can choose any set of system modes to describe the cavity
alone, without affecting the noninteracting part, which
allows us to disentangle the few-mode approximation from
approximative treatments of the cavity openness.
The few-mode expansion scheme then comprises a

systematic variation of the number of system modes, such
that the predictions of the approximate interaction
Hamiltonian Eq. (81) converge to the exact results.

3. Choice of few-mode basis

From the previous section, it is clear that the choice of
the few-mode basis is important, and we find below that it,
in particular, affects the rate of convergence as a function of
the number of included system modes. Usually, prior
knowledge about the system under study can be used to
guide the choice of relevant system modes. In general, this
choice constitutes an optimization problem, where the task
is to find the minimal and optimal set of modes with respect
to an optimization criterion. What constitutes a good set of

relevant modes may also depend on what further approx-
imations one would like to make. For example, if one wants
to derive a Markovian master equation by tracing out the
bath modes, one should try to limit the frequency depend-
ence of the coupling coefficients (see also Sec. VIII C).
In the absence of any prior knowledge, a constructive

approach can be used that allows one to obtain a systematic
expansion in the number of included modes. These modes
may not be the optimally relevant few-mode basis, but they
still provide a nonperturbative series expansion for observ-
ables. The method relies on the insight that, for strongly
confining systems, the perfect-cavity eigenstates provide a
good few-mode basis. A natural approach, even for weakly
confining systems, is thus to solve the Dirichlet boundary
value problem in the region of the cavity potential, giving a
complete basis set in the region where the atom is located,
as illustrated in Fig. 2. The few-mode basis is obtained by
choosing a subset of these states, according to the energy
scales set by the atom inside the cavity. The number of
modes can then be varied systematically and in the limit of
infinitely many modes, where the few-mode basis becomes
complete in the interaction region, should converge to the
full solution of the problem (see Sec. VIII B 3 for a detailed
investigation of convergence).
For completeness, we note that the selection of a

confinement region with boundary conditions is reminis-
cent of the R-matrix theory [112–115], a first quantized
approach to describe atomic, molecular, and nuclear
scattering properties, as well as the related exterior complex
scaling method [116–118] in general resonance theory. In
relation to shifting environment d.o.f. of an open quantum
system to obtain Markovian master equations, we note a
recent and very general result [119], generalizing the
pseudomode approach [51,52,92,120] for the spin-
boson model.

4. Few-mode equations of motion

From the effective few-mode Hamiltonian Eq. (81), one
can derive Heisenberg-Langevin equations of motion,
analogously to what is done in Sec. IV for the free system.
The equations of motion for the atomic operators read

_̂σþðtÞ ¼ iωaσ̂
þðtÞ − iσ̂zðtÞ

X
λ

â†λðtÞg�λ ; ð82aÞ

_̂σ−ðtÞ ¼ −iωaσ̂
−ðtÞ þ iσ̂zðtÞ

X
λ

âλðtÞgλ; ð82bÞ

_̂σzðtÞ ¼ −2iσ̂þðtÞ
X
λ

âλðtÞgλ þ 2iσ̂−ðtÞ
X
λ

â†λðtÞg�λ : ð82cÞ

We note that we do not consider additional loss channels
here, such as absorption or other electronic processes in the
atom. We further note that, in dimensions higher than one,
it may be advantageous to trace out some of the bath modes
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and include them as a direct decay term in the Langevin
equations. This procedure can be useful in describing, for
example, radiative losses to the side of a Fabry-Perot cavity.
The input-output relation depends only on the system-

bath Hamiltonian and, hence, stays unmodified by the
coupling to the atom. Again performing the rotating wave
approximation also in the system-bath coupling, we obtain

b̂ðoutÞm ðωÞ − b̂ðinÞm ðωÞ ¼ −i
X
λ

W�
λmðωÞâλðωÞ: ð83Þ

For the cavity operators, the equations of motion are most
easily written in Fourier space analogously to Eq. (40) as

âλðωÞ ¼
X
λ0
D−1

λλ0 ðωÞ
�
2π

X
m

Wλ0mðωÞb̂ðinÞm ðωÞ þ g�λ0 σ̂
−ðωÞ

�
:

ð84Þ

We see that, by the use of the input-output formalism and
Heisenberg-Langevin equations, the bath dynamics are
completely described by the input-output relation and
the driving term in the cavity equation of motion.
Therefore, the coupled atom-continuum system is trans-
formed into a driven dissipative few-mode system.

B. Ab initio few-mode theory for interacting systems in
the linear regime

In the following, we demonstrate some specific advan-
tages of the ab initio few-mode theory mentioned above
using a variety of practically relevant examples. In par-
ticular, we study the systematic few-mode expansion
scheme for problems involving interactions that is offered
by the ab initio few-mode theory. To this end, we focus on
the linear limit of the interacting system, which allows us to
systematically investigate various features of the expansion
scheme. The nonlinear regime is discussed in Sec. VIII C.

1. Scattering in the linear regime

It is well known that, for linear systems, the input-output
relations can be solved analytically without further approx-
imations [121]. However, in obtaining the input-output
relation, a Markov approximation [121] or an approximate
extension of frequency integrals [70] is usually performed.
Non-Markovian input-output theory [20,100] has been
developed on the basis of phenomenological few-mode
Hamiltonians. In our approach, neither of these approx-
imations nor the assumption of a model Hamiltonian
[16,17] are necessary.
Consequently, the linear regime is an ideal candidate to

demonstrate the advantages of the ab initio few-mode
theory.
The example of a two-level atom considered above is

nonlinear, in general, but becomes linear in the weak
excitation limit, where σ̂zðtÞ ≈ −1, which physically

corresponds to a weak field driving the atomic ground
state, and is a frequently used approximation in quantum
optics [93,122]. An alternative way of performing the weak
excitation approximation is a Holstein-Primakoff trans-
formation [106,109].
In this limit, the above equations can be solved straight-

forwardly to give, switching from index to vector-matrix
notation,

b̂ðoutÞðωÞ ¼ S
io
ðωÞb̂ðinÞðωÞ; ð85Þ

with the operator scattering matrix

S
io
ðωÞ¼ I−2πiW†ðωÞ

�
DðωÞ− 1

ω−ωa
g�gT

�
−1
WðωÞ

¼SðfreeÞio ðωÞ−2πi
W†ðωÞD−1ðωÞg�gTD−1ðωÞWðωÞ

ω−ωa−gTD−1ðωÞg� :

ð86Þ

The second formula is particularly useful, since one can
read off the complex level shift gTD−1ðωÞg� and, thus,
extract the Purcell-enhanced linewidth of the atom

γS ¼ −Im½gTD−1ðωÞg��; ð87Þ

as well as its cavity-modified Lamb shift

δLS ¼ Re½gTD−1ðωÞg��: ð88Þ

These two quantities can thus be directly computed from
the cavity geometry using the ab initio few-mode theory.
We also see that the effective few-mode theory gives

an expansion of the scattering matrix as a sum over
the quantum optical coupling constants. As expected, the
input-output scattering matrix reduces to the free case
Eq. (58) in the limit g → 0, where the expression is exact up
to the rotating wave approximation in the system-bath
coupling. For the interacting case, one can systematically
include more cavity modes in the projector basis and
observe the series’ convergence in the many-modes limit,
where the few-mode basis, if chosen correctly, approaches
a complete set in the region of the atom (see Fig. 2). The
expansion is nonperturbative in the sense that it is not
limited to weak atom-mode coupling g; however, due to the
rotating wave approximation, the above expression does
not apply in the ultrastrong coupling regime. Inclusion of
the counterrotating terms, however, essentially results in
additional linearly coupled equations (see also Sec. V B),
which can be solved analogously in the linear regime, as is
shown in detail in Ref. [96].
To obtain the full scattering matrix between the observ-

able asymptotically free operators, we have to account for
the background scattering contribution again. Since it is
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responsible only for translating the bath operators into
asymptotically free operators, the background scattering is
independent of the matter coupling and can be computed as
in the free theory.

2. Transition from strong coupling to free space

In Fig. 8, we show linear transmission spectra for the
Fabry-Perot cavity that is also investigated in Fig. 5, but
now containing a single atom at its center, with a dipole
moment of d ¼ 0.01. The linear regime of this interacting
system is ideal to demonstrate the advantages of the
ab initio few-mode theory, since the resulting equations
of motion (82) can be solved without a Markov or semi-
classical approximation, as shown in Sec. VIII B 1. Thus,
the effect of frequency-dependent system parameters can be
investigated. Additionally, linear dispersion theory
[123,124] (see Appendix L) can be used as a benchmark
for comparison in the linear regime. We note that the results
in Fig. 8 are obtained using the constructive approach to
choosing a system basis (see Sec. VIII A 3), without
assuming any prior knowledge about the system.
The transmission spectra as a function of the mirror

quality η show a transition from the strong coupling regime
at high η, via the usual weak coupling regime at inter-
mediate η, to a regime where the resonances overlap
significantly until the situation approaches a weakly con-
fined regime at low η, essentially corresponding to free

space. The lower panels show slices of the two-dimensional
spectra in each of these regimes. To explore the potential of
the ab initio few-mode approach, we compare linear
dispersion theory as a reference (S) and the results obtained
neglecting the background contribution (Sio), as well as the
full ab initio few-mode result including the background
contribution (Sfew ¼ SbgSio).
We see that, in the strong and weak coupling regimes, all

three approaches agree very well. In both cases, we find a
single mode to be sufficient for good agreement, which is
also illustrated in more detail in Figs. 8(d) and 8(e).
However, in the overlapping modes regime and at weak
confinement, the situation is quite different. Figure 8(f)
clearly shows that excluding the background contribution
leads to qualitatively wrong predictions. For example,
while Sio without the background contribution predicts
an asymmetric Fano-like line shape, the full result includ-
ing the background contribution remains Lorentzian.
Consequently, phenomenological input-output theory fails
in this regime, since the background and resonant scattering
contributions are not distinguished in these models. Thus,
the novel aspects of the ab initio few-mode theory come
into play, and it is crucial that the empty cavity is treated
exactly due to the strong mode overlap and absence of
isolated resonances.
We further note that the ab initio few-mode approach

has advantages already in the usual strong and weak

(a) (b) (c)

(d) (e) (f)

FIG. 8. Linear transmission spectra of a coupled atom-cavity system. The cavity is chosen as in Fig. 5, and the transition frequency of
the atom with d ¼ 0.01 is chosen resonant with the ninth empty cavity mode at each mirror quality η. (a) shows the full transmissivity
calculated using the linear dispersion theory as a reference. (b) shows the input-output part without the background contribution which is
shown in (c), each calculated with three system modes (ΛQ ¼ fχ7; χ9; χ11g). (d)–(f) show slices at η ¼ 0.289, 0.124, and 0.011,
respectively. They correspond to a transition from strong coupling (d) via weak coupling (e) to a regime with negligible cavity
confinement (f). In the entire range, the ab initio few-mode result (Sfew ¼ SbgSio, red dash-dotted line) agrees well with the full result
from linear dispersion theory (S, blue solid line), with good convergence already found using a single mode χ9 for (d) and (e) and using
three modesΛQ for (f). In the weak and strong coupling regimes, the input-output term alone is sufficient to model the interacting system
(d),(e). But in the regime of strongly overlapping modes and weak confinement, background scattering plays a crucial role (c), such that
input-output scattering alone gives a vastly different line shape from the full result (f).
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coupling regimes, even though phenomenological input-
output theory is sufficient for a quantitative treatment
there. First, a rigorous foundation of the method
is given, which also has the practical consequence that
the quantum optical coupling constants can now be
calculated from the cavity geometry instead of being
obtained by a fitting procedure. The latter may lead to
theoretical design opportunities for quantum optical prop-
erties of complex structures. Second, it can already be
seen that the toolbox of interacting few-mode and input-
output theory can be applied straightforwardly without
additional complexity. After the ab initio Hamiltonian of
the noninteracting cavity is obtained, the calculation
follows standard methods with minor adjustments (see
Sec. VIII A 4).

3. Convergence of the few-mode expansion

As with any series expansion, an important requirement
for the effective few-mode expansion is that it should
converge as the number of system modes increases.
Demonstrating the convergence of the few-mode expansion
is particularly important, as multimode light-matter cou-
pling models are notorious for their divergent behavior
(see, e.g., Refs. [50,84,125,126]).
In Fig. 9, we numerically investigate the dependence of

few-mode scattering observables on the number of system
modes in the strong coupling and the multimode strong
coupling regimes. We again use the cavity geometry from
Fig. 8, with η ¼ 0.15 and d ¼ 0.03 (strong coupling) or
d ¼ 0.2 (multimode strong coupling), and ωa ¼ 28.71
resonant with the ninth cavity mode χ9. The atom is placed
at the center of the cavity, such that only odd Dirichlet
modes contribute to the interaction.
The few-mode basis is chosen as described in Sec. VIII

A 2 by solving the Dirichlet boundary value problem. The
single-mode model contains the dominant ninth mode. We
then label each few-mode basis in terms of a mode number
Nmodes as follows. We first add the odd modes in steps of
two in decreasing order of dominance. A mode number of
Nmodes ¼ 3 then corresponds to ΛQ ∈ fχ7; χ9; χ11g,
Nmodes ¼ 5 to ΛQ ∈ fχ5; χ7; χ9; χ11; χ13g, and so on.
Since there are no lower-lying modes than χ1, once it is
included, we add the remaining higher-lying odd modes in
steps of one, such that, for example, Nmodes ¼ 10 corre-
sponds to ΛQ ∈ fχ1; χ3;…χ15; χ17g.
Figures 9(a) and 9(c) demonstrate that a single mode is

already sufficient in the strong coupling regime of this
isolated resonance cavity, as is expected from the phenom-
enological few-mode theory. Figures 9(b) and 9(d) show
that, in the multimode strong coupling regime, the con-
vergence is much slower for the chosen generic mode
bases. While a single mode can already reproduce the
qualitative features of the spectrum, in order to reach
quantitative agreement, a relatively large number of modes
is required. It is further seen that, when including more

modes symmetrically around the dominant one (see the
labeling order described above), the spectral peak first
shifts away from its final position before it starts to
converge, a feature we explain below.
Figure 9(e) quantifies the deviation of the ab initio few-

mode theory from the benchmark provided by linear
dispersion theory as a function of the mode number
Nmodes. Note that the x axis shows Nmodes þ 1 to allow
for a logarithmic representation. The few-mode deviation is
defined by

(a)

(c)

(b)

(d)

(e)

FIG. 9. Convergence behavior of the few-mode expansion in
the strong coupling (a),(c) and multimode strong coupling (b),(d)
regimes. (a)–(d) show few-mode spectra at different numbers of
system modes (Nmodes ∈ f1; 3; 10; 255g; see the legend). The
solid blue line shows linear dispersion spectra as a benchmark
(SðTÞ). In the strong coupling case, the convergence is fast, with a
single mode being sufficient (c), as expected. At multimode
strong coupling, the qualitative behavior is already captured in a
single-mode description, but for quantitative agreement more
than 100 modes of the generic mode basis are necessary (d). The
convergence in the two cases can be quantified by the few-mode
(FM) deviation Eq. (89). (e) shows this quantity as a function of
the mode number (Nmodes þ 1). The strong coupling case (blue
dots) shows the expected behavior. In the multimode strong
coupling case (mmsc, orange crosses, green hatches), the con-
vergence is much slower, and, for low mode numbers, the
convergence depends on the order in which the modes are added
to the few-mode system space, as explained in the main text.
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Δfew ¼
P

ωjSðTÞfewðωÞ − SðTÞðωÞj2P
ωjSðTÞ0 ðωÞ − SðTÞðωÞj2

; ð89Þ

where the frequency axis is evaluated on a grid and the
superscript (T) indicates the transmission element of the

scattering matrix. SðTÞ0 ðωÞ is the zero-modes few-mode
theory coinciding with the transmission spectrum of the
empty cavity. This quantity represents a phase-sensitive χ2-
like deviation metric that is normalized to the zero system
modes case. The fast convergence in the strong coupling
regime is evident from the sharp deviation drop from zero
to a single mode. In the multimode strong coupling case, a
much slower decline is observed in the generic mode basis,
reaching reasonable convergence only at more than 100
modes with the few-mode deviation still decreasing.
Interestingly, a dip in Δfew is found at a single mode,

which is related to the above observation that the spectral
peak first shifts away from its final position with an
increasing mode number, before it converges in the reverse
direction to the correct result. This effect can be understood
from the fact that the modes χλ with λ < 9 cause a positive
spectral shift of the peak, whereas the modes with a higher
mode number induce an opposite frequency shift. To verify
this interpretation, we also study the convergence using an
alternative ordering where the modes are included starting
with χ1 and simply counting up. For example, Nmodes ¼ 2
corresponds to ΛQ ∈ fχ1; χ3g, Nmodes ¼ 3 corresponds to
ΛQ ∈ fχ1; χ3; χ5g, and so on. With this labeling order, a
monotonic convergence is found (green crosses), because
now the competition between opposite shifts of red-
detuned and blue-detuned modes is avoided. These results
demonstrate that, in particular, in the multimode strong
coupling regime, the convergence properties are affected by
the choice of the system basis.
Numerically, it is impossible to show whether the

expansion indeed converges in a mathematical sense. In
particular, for the multimode strong coupling results, one
may object that Fig. 9 does not exclude the possibility that
the deviation oscillates very slowly or even diverges in the
limit of infinitely many modes. In order to provide
justification that such is not the case, we explicitly evaluate
the relevant series terms of the few-mode expansion in
Appendix M and show that the final result is convergent as
for the free cavity. The calculation is restricted to a specific
geometry (see Appendix M for details) but applies at any
coupling strength within the validity range of the rotating
wave approximation. The series expansion is therefore
nonperturbative in the atom-cavity coupling strength, in the
sense that it does not require a small parameter.
We note that multimode convergence of light-matter

models is discussed extensively in the literature, for
example, in the context of the Rabi and related models
at ultrastrong coupling [84,106,125,126] as well as in
the context of time-dependent problems extending the

Wigner-Weisskopf theory of spontaneous emission [50,64].
Divergences can be handled by cutoffs (see, e.g., Ref. [50]
for an explicit account), and cutoff-free methods have been
developed only more recently by fully accounting for gauge
invariance [84]. We note that these discussions are mainly
concerned with the complete treatment of the light-matter
interaction, which is particularly important at ultrastrong
coupling. The ab initio few-mode theory is based on a
complete treatment of the cavity-bath interaction in the
few-mode theory. In our present analysis, we avoid issues
arising at ultrastrong coupling by applying the rotating
wave approximation. It will therefore be interesting to see if
the ab initio few-mode theory can be married with the
ultrastrong coupling theory, where phenomenological few-
mode models are also a valuable tool (see, e.g.,
Refs. [31,37,82]). An outlook in this direction is given
in Sec. IX.

4. Quantum optical properties in overlapping
mode cavities

One remaining advantage of the ab initiomethod that we
have not demonstrated yet is the effect of frequency-
dependent quantum optical couplings in the interacting
few-mode theory. To this end, we consider the double
Fabry-Perot cavity depicted in Fig. 10, with a varying
refractive index nmid of the central mirror. Unlike before,
we choose a finite mirror thickness t ¼ 0.01 and outer
mirror refractive index n0 ¼ 4.0 in order to demonstrate
that our approach is not limited to Ley-Loudon-type [101]
potentials with their unrealistic infinitely thin mirrors.
Such a double-cavity geometry is ideal to investigate the

transition from an isolated resonance to an overlapping
mode regime that still features strong confinement. In this
case, the overlap results from the near degeneracy of modes
in each respective cavity, which couple via leakage through
the central mirror. Figure 11 shows linear transmission
spectra for this cavity as a function of nmid, calculated using
the ab initio few-mode theory with a single system mode
χ9. Figure 11(a) shows the empty cavity spectrum, which

FIG. 10. One-dimensional double cavity potential. The
Q-space basis modes are chosen as solutions of the Dirichlet
problem in the left cavity (the figure shows mode χ9 in magenta
as an example). This choice of basis appears particularly suitable
for describing local light-matter interactions in the left cavity but
not in the right cavity. An atom is placed at the center of the left
cavity, chosen resonant with the ninth cavity mode.
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already displays interesting overlapping mode features,
including an avoided crossing at intermediate nmid as well
as a merging of spectral lines at high nmid.
The spectral structure can be understood as follows. At

nmid ≪ n0, the separating barrier is insignificant such that
the cavity behaves like the single Fabry-Perot case from
before with approximately twice the cavity length, showing
isolated resonances.
As the central barrier increases, a transition from a

single- to a double-cavity structure occurs. In the latter, a
more useful intuitive picture is to think of the system modes
in each cavity. Because of their interaction via leakage
through the central barrier, the avoided crossing occurs. In
this context, it is interesting to point out the connection of
the ab initio few-mode theory to non-Hermitian
Hamiltonian formulations [68,76,86] that are often used
to interpret such scenarios and have also been considered in
the context of potential scattering [127,128].
At higher nmid, the central barrier becomes very reflec-

tive such that, after the avoided crossing, two lines merge
together. We thus observe the transition from a single-
cavity behavior via a double-cavity structure with an
avoided crossing to a third regime with a strong separating
barrier.
The lower spectra include the effect of an atom at the

center of the first cavity with d ¼ 0.03 and ωa chosen

resonant with the cavity peak (magenta dots). We see that,
when adding the atomic interaction, vacuum Rabi splitting
of the spectral peak is observed, featuring modulations of
peak intensity in the regimes of overlapping modes. One of
the peaks even disappears completely at high nmid. An
interesting aspect is that Fig. 11(b) is computed using only
a single “single-cavity” mode (χ9 in the first cavity; see
Fig. 10). Nevertheless, this ab initio single-mode theory
correctly predicts the interacting spectrum across the whole
shown range of nmid, with multimode deviations from the
linear dispersion theory result of less than a few percent at
nmid=n0 < 1 and less than a few permille at nmid=n0 > 1. In
this case, the single-mode theory thus provides a good
description of the interacting system even in a seemingly
multimode regime, when the spectral peaks of the empty
cavity overlap significantly. In comparison, phenomeno-
logical few-mode theory could reproduce these results only
by including at least two modes, e.g., χ9 in each cavity.
To investigate the reason behind this unexpected quality

of the ab initio single-mode results in more detail, Fig. 12
shows the atom’s cavity-modifiedLamb shift δLS and Purcell-
enhanced decaywidth γS [59,129,130] [Figs. 12(b) and12(c),
respectively], along with slices at nmid ¼ 2.7, 7.0, and 15.0
[Figs. 12(d)–12(f), respectively]. These quantities are directly
computed from the cavity geometry (see Appendix VIII B 1
for details), and we observe a varying frequency dependence.
At low nmid ¼ 2.7 [Fig. 12(d)], we observe two isolated
resonance features, each having a frequency dependence
as expected from the Lorentzian single-mode contributions
in phenomenological few-mode models [121]. However,
beyond that, the modes overlap significantly at nmid ¼ 7.0
[Fig. 12(e)] and nmid ¼ 15.0 [Fig. 12(f)]. Still, our ab initio
approach is able to account for these nontrivial bath effects in
the overlapping mode case as shown in Figs. 12(e) and 12(f).
In the latter cases, the standard result from the single-mode
phenomenological few-mode theory breaks down, and the
advantage of the frequency-dependent couplings in the
ab initio few-mode theory can be seen. For this reason, we
conclude that the ab initio few-mode theory can extend the
validity range of a single-mode description to new regimes by
incorporating nontrivial bath effects beyond the isolated
resonance approximation into the frequency-dependent
couplings.

C. Nonlinear phenomena

In the previous sections, we have demonstrated that the
ab initio few-mode theory establishes a powerful expansion
scheme for problems involving interactions. But so far, we
have considered only the linear limit of the interacting
system, which has allowed us to systematically investigate
various features of the expansion scheme. In the following,
we show that the approach can also be applied in the
nonlinear regime.
As in the linear case, we again exploit that the ab initio

few-mode theory gives rise to Hamiltonians of a form

(a)

(b)

FIG. 11. Linear transmission spectra for the double Fabry-Perot
cavity in Fig. 10 as a function of the central mirror refractive
index, calculated using the ab initio few-mode theory with a
single system mode (χ9). (a) shows the empty cavity without an
atom. A transition between different regimes featuring an avoided
crossing is observed. In (b), results of the interacting system with
an atom at the center of the first cavity are shown. The atom’s
resonance frequency is chosen resonant with the empty cavity
spectral peak, indicated by the magenta dots. A splitting of the
resonant cavity mode is observed, with interesting features in the
transition regions. The shown few-mode results are found to
agree well with linear dispersion theory in both cases.
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similar to those used in phenomenological few-mode and
system-bath theory [17,105]. This central feature allows us
to make use of many existing methods to tackle nonlinear
open-system dynamics and to promote these methods to
new regimes, by basing them on an ab initio few-mode
Hamiltonian instead of on a phenomenological model.
As a concrete example, we extend the previous model of

a two-level atom in a cavity to stronger external driving
fields. We employ the semiclassical monochromatic drive
approximation, which is a textbook example that enables an
explicit analytical computation of scattering observables
and which is of significance, for example, in spectroscopy
[105,121]. This model serves to demonstrate the appli-
cability of the ab initio few-mode theory in a scattering
regime where the precise frequency dependence of the
coupling constants matters and that the resulting few-mode
equations can indeed be solved using appropriate methods.
In the process, we obtain analytic solutions for nonlinear
spectra of a two-level atom in an overlapping mode cavity
in the form of a few-mode expansion.

1. Few-mode equations of motion with a
semiclassical driving field

In order to show that the ab initio few-mode theory can
describe nonlinear phenomena beyond the isolated reso-
nance case, we employ the semiclassical assumption,

which is that the operator b̂ðinÞm ðωÞ can be treated as a

commuting classical variable bðinÞm ðωÞ ¼ bðinÞm 2πδðω − ωinÞ,
where ωin and bðinÞm are the driving frequency and ampli-
tude, respectively. In the time domain, one can alternatively

write bðinÞm ðtÞ ¼ bðinÞm e−iωint. Physically, this scenario corre-
sponds to the steady-state response of the atom-cavity
system for a monochromatic laser input when quantum
fluctuations are neglected. The approximation has become
a standard tool in quantum optics [2,18,48,121] and can
also be interpreted as the calculation of coherent state
scattering probabilities [93].
With this driving term, the solution of the few-mode

equations of motion is given by the cavity operators and
atomic operators all oscillating at a constant frequency:
âλðtÞ ¼ âλe−iωint, σ̂−ðtÞ ¼ σ̂−e−iωint, σ̂þðtÞ ¼ σ̂þeþiωint, and
σ̂zðtÞ ¼ σ̂z. Substituting into the equations of motion gives

0 ¼ iðωa − ωinÞσ̂þ − iσ̂z
X
λ

â†λg
�
λ ; ð90aÞ

0 ¼ iðωin − ωaÞσ̂− þ iσ̂z
X
λ

âλgλ; ð90bÞ

0 ¼ −iσ̂þ
X
λ

âλgλ þ iσ̂−
X
λ

â†λg
�
λ ; ð90cÞ

âλ ¼
X
λ0
D−1

λλ0 ðωinÞ
�
2π

X
m

Wλ0mðωinÞbðinÞm þ g�λ0 σ̂
−
�
: ð90dÞ

2. Steady-state nonlinear spectra

Eliminating the cavity mode operator in Eqs. (90), we
obtain closed equations for the atomic averages in terms of
the given semiclassical drive amplitude:

0 ¼ −iΔhσ̂þi − iΩ�hσ̂zi þ iδ�hσ̂þi; ð91aÞ

(a) (b) (c)

(d) (e) (f)

FIG. 12. Quantum optical quantities corresponding to the atom-cavity spectra in Fig. 11. The Purcell-enhanced linewidth γS of the

atom and its cavity-modified Lamb shift ΔLS as well as κ
ðTÞ
atom ¼ 2πj½W†ðωÞD−1ðωÞg�gTD−1ðωÞWðωÞ�1;0j are shown. These quantities

are the atomic line analogs of the empty cavity couplings shown in Fig. 6 and are computed using the ab initio few-mode theory with a
single system mode (χ9). (d)–(f) show slices at nmid ¼ 2.7, 7.0, and 15.0, respectively, demonstrating the transition between different
regimes and that even the single-mode theory is able to include effects beyond the isolated resonance approximation.
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0 ¼ iΔhσ̂−i þ iΩhσ̂zi − iδhσ̂−i; ð91bÞ

0 ¼ −iΩhσ̂þi þ iΩ�hσ̂−i þ Im½δ�ðhσ̂zi þ 1Þ; ð91cÞ

with the parameters

Δ ¼ ωin − ωa; ð92aÞ

Ω ¼ 2πgTD−1ðωinÞWðωinÞbin; ð92bÞ

δ ¼ gTD−1ðωinÞg�: ð92cÞ

The solution for the atomic operators is given by

hσ̂−i ¼ Ω

Δ − δþ 2jΩj2
Δ−δ�

; ð93aÞ

hσ̂zi ¼ −
Δ − δ

Δ − δþ 2jΩj2
Δ−δ�

; ð93bÞ

such that the expectation value of the output field

hb̂ðoutÞm ðωÞi ¼ hb̂ðoutÞm iδðω − ωinÞ is

hb̂ðoutÞi ¼ bðinÞ − iW†ðωinÞD−1ðωinÞ½2πWðωinÞbðinÞ
þ g�hσ̂−i�: ð94Þ

To illustrate the results that can be obtained with this
approach, Fig. 13 shows nonlinear transmission spectra as a
function of the driving strength for each of the slices that
are shown in Figs. 12(d)–12(f). That is, the central barrier
height is now held fixed at nmid ¼ 2.7, 7.0, and 15.0
corresponding to Figs. 12(a)–12(c), respectively, such that
nonlinear effects in each of the three regimes investigated
before can be seen. The atom resonance frequency is also
chosen as before and indicated in the figure for clarity.

At weak driving, that is, when bin ¼ 0, the spectra
coincide with the linear interaction spectra shown in
Fig. 11(b) for each of the depicted nmid. At large bin, on
the other hand, the corresponding empty cavity spectra in
Fig. 11(a) are approached, since the atom saturates at a high
driving strength in the steady state. The transition region
between these two extremes features rich behavior in the
three regimes, all of which are now captured by the ab initio
few-mode theory with a single system mode.
We thus demonstrate that the ab initio few-mode theory

interfaces with an existing method and, in particular, that
the aspects of the theory which are usually neglected in
its phenomenological counterpart, such as frequency-
dependent couplings and background scattering, can be
incorporated fully in the semiclassical monochromatic
drive approximation.

3. Other few-mode solution methods

As outlined in the introduction, our technique connects
to various solution methods, extending their reach to new
regimes. We demonstrate this connection explicitly in the
previous sections using two common examples from
quantum optics as a proof of principle. In general, to what
extent the novel aspects of the ab initio few-mode theory
can be incorporated into other existing methods depends
on the specific regime and appropriate approximations.
A common example is the derivation of a Markovian
master equation for the cavity-atom part of the system by
tracing out the bath modes. This method can easily be
combined with the ab initio few-mode theory in the regime
of isolated cavity resonances, where phenomenological
few-mode models are expected to apply as well (see
also Sec. VII A). However, in regimes where frequency-
dependent cavity-bath couplings cannot be eliminated by
an appropriate choice of system states, the Markov
approximation breaks down [17]. On the other hand,
non-Markovian master equations and alternative methods
to solve such systems are also studied extensively in the

(a) (b) (c)

FIG. 13. Nonlinear spectra as a function of the driving strength, corresponding to each of the regimes in Fig. 12. (a)–(c) show results

for nmid ¼ 2.7, 7.0, and 15.0, respectively. The cavity is driven from one side, such that bðinÞ ¼ binð 10 Þ, and the corresponding

transmission spectra are shown. At bin ¼ 0, the spectrum coincides with the linear interaction spectra shown in Fig. 11(b) at each nmid.
At large bin, the corresponding empty cavity spectra in Fig. 11(a) are approached due to saturation of the atom excitation. The atom
resonance frequency for each spectrum is chosen as before and is indicated by the magenta arrows.
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literature [17,18,104,131], and even a non-Markovian
input-output theory has been developed [20,100]. This
case demonstrates that, while the ab initio few-mode theory
provides a new foundation for existing few-mode methods
and allows the underlying Hamiltonian to be applied in
extreme regimes, the precise application of each method for
computing observables on this basis is regime dependent
and should be revisited separately.

IX. OUTLOOK AND GENERALIZATIONS

We have presented a number of advantages that the
ab initio few-mode theory provides, as well as interesting
regimes that it already applies to in its current form. The
concept of the ab initio few-mode theory, namely, extracting
dominant d.o.f. from a continuum, is very general. We
therefore envision a number of additional possible applica-
tions, some of which require extensions of the method.
A natural application of the ab initio few-mode theory

would be quantum plasmonics [79,132,133], which is a
promising experimental platform due to its unique and
extreme physical properties [134–136]. On the theoretical
side, there are still various challenges [79,80,137]. One of
them is the high openness of these systems, which casts
doubts on the applicability of input-output models for
quantum plasmonics [32,33,35,138]. Consequently, much
effort has been invested into developing alternative quan-
tum mechanical descriptions [137], for example, by quan-
tizing quasimodes, which have had much success in the
semiclassical domain [55,59,62]. While much progress has
been made [61,138], no direct alternative to the input-
output formalism or another solution to the quantum
scattering problem has been found yet. Such a formalism
is the exact feature that our method provides, as we show in
detail in this paper. The ab initio few-mode theory would
thus allow the input-output formalism and its associated
toolbox to be utilized in quantum plasmonics even at high
leakage. On the other hand, plasmonic cavities usually also
feature significant material absorption and losses [133], or
even quantum effects of the resonator material [132,137],
which we do not account for in this paper. In order
to include such effects in the formalism, the ab initio
few-mode theory could be applied to more complete
quantization schemes such as macroscopic QED [40,43]
or microscopic Hamiltonians [139], which may require a
generalized method to choose the relevant system modes
appropriately. Alternatively, the phenomenological inclu-
sion of absorptive baths, an approach frequently used for
random media [70,140], while treating scattering and
leakage via the ab initio few-mode theory may be sufficient
in certain scenarios [138,141], which is a straightforward
application of our formalism.
Another regime that has recently received much attention

is extreme light-matter coupling, including ultrastrong
[37,81,82] as well as multimode strong coupling [50,83],
where phenomenological few-mode models are also used

extensively. The ab initio few-mode theory would be useful
in these regimes, providing the advantages outlined in
Sec. VIII B. In the context of applying the phenomeno-
logical input-output formalism at ultrastrong coupling,
previous works [96,111] show how to modify the input-
output relation in the presence of light-matter hybridization
and counterrotating cavity-bath coupling terms. Both of
these approaches should combine straightforwardly with
the ab initio few-mode theory, up to the numerical
computation of a relevant contour integral as outlined in
Sec. V B. We note further work in this direction
[36,142,143] and alternative master equation methods to
tackle open quantum systems at ultrastrong coupling
[144,145], as reviewed in Refs. [37,82]. In the context
of multimode convergence at ultrastrong coupling, the
proper treatment of gauge invariance and counterrotating
terms is found to be crucial [84,106,125,126] (see also
Sec. VIII B 3). It would therefore be interesting to see if
ultrastrong coupling theory can be combined with the
ab initio few-mode theory to develop theoretical tools
for highly open systems at ultrastrong coupling, com-
plementing recent advances from circuit QED in this
direction [64,84].
A platform where the ab initio few-mode theory applies

almost directly and where it could serve as a useful tool is
non-Hermitian photonics [76–78,146], where loss and
other open system effects are exploited and engineered.
While many interesting phenomena of this kind are already
observed in classical systems (see, e.g., Refs. [76–78] for
recent reviews), extensions to the quantum domain are
imminent [78,147]. For example, spontaneous emission in
an environment featuring exceptional points is discussed in
Ref. [148], and interesting enhancement effects of the
Petermann factor [72] have been found. These quantum
effects are precisely due to overlapping modes and com-
plex bath structures. We therefore expect the ab initio
few-mode theory to be useful particularly for studying
quantum dynamical effects in the presence of such exotic
environments.
The above are three concrete examples where the

ab initio few-mode theory can be applied. Beyond a direct
application, it is also valuable that the connection of a few-
mode theory to other ab initio methods is now clear. To
name a few, examples include steady-state ab initio laser
theory [46,63,149] from laser theory, which employs
constant flux states, which, in turn, also find applications,
for example, in circuit QED [64], and quasimodes
[55,58,59,62], which are mostly used to describe complex
wave scattering phenomena [5] but have recently also
entered the quantum domain [61,138]. Beyond light scat-
tering, analogies to resonance and scattering theory in
atomic [6,7] and nuclear physics [8,9], mesoscopic systems
[4,5], electronic transport [3], and even relativistic scenar-
ios such as the Dirac equation [150,151] can be found. Our
formalism now allows the few-mode theory to be treated on
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an equal footing as these well-understood theories. This
result may advance the exchange of methods and concepts
[5] between currently separated fields.

X. SUMMARY AND CONCLUSION

In this work, we introduce the ab initio few-mode theory,
a method to describe quantum dynamics in open and
scattering systems. The method and results presented can
be understood from different perspectives.
From a general point of view, we presented an

approach to extract relevant d.o.f. from a quantum field
continuum. The concept exploits that, in many physical
systems and models, the quantum dynamics are often
dominated by resonances or other metastable states, such
that not the whole continuum participates in the dynam-
ics. For noninteracting theories, we have presented an
exact formalism that allows one to rewrite the continuum
in terms of a chosen set of relevant states. In the presence
of interactions, this formalism provides the option of
simplifying the dynamics by considering only the inter-
action with these states. We have presented a systematic
way to construct an effective few-mode expansion on
this basis.
More specifically, in the theory of light-matter inter-

actions, our method closes a gap in the current theoretical
description by linking a large existing toolbox based on
phenomenological few-mode and input-output models to
ab initio theory. This connection is provided by a set of
results. We have first presented a systematic approach to
derive ab initio few-mode Hamiltonians. As a main
result, we have demonstrated how to rigorously recon-
struct the entire scattering matrix from such Hamiltonians
using an input-output formalism and have shown its
equivalence to standard scattering theory. In the process,
we have found crucial differences to phenomenological
few-mode theory, such as a previously unknown back-
ground scattering contribution. In the presence of inter-
actions such as atoms coupling to the light field, a
systematic expansion scheme has been obtained provid-
ing a number of advantages, which are inherited from
the exact treatment of the noninteracting theory in the
ab initio approach. We have demonstrated each of the
advantages explicitly using the paradigmatic situation of
a two-level atom in a cavity as an example. In the
process, we have shown that the ab initio few-mode
theory applies in extreme regimes and can be used to
compute various observables for linear and nonlinear
systems.
In conclusion, we have shown that the ab initio few-

mode theory provides a useful tool for describing a number
of physical scenarios in quantum dynamics including
extreme regimes and that, due to the generality of its
concept, a broad class of systems, ranging from cavity QED
to even relativistic scenarios, may be accessible through
extensions of the method.
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APPENDIX A: CANONICAL QUANTIZATION OF
THE SCHRÖDINGER EQUATION

Equation (1) is an example of a wave equation that can
be quantized using the standard canonical quantization
procedure [88,152], which we recapitulate in the following.
The Lagrangian for the system reads

L ¼
Z

dr

�
iψ†ðr; tÞ _ψðr; tÞ − 1

2

∂
∂rψ

†ðr; tÞ ∂
∂rψðr; tÞ

− VðrÞψ†ðr; tÞψðr; tÞ
�
; ðA1Þ

such that the Euler-Lagrange equations yield Eq. (1). The
conjugate momentum of ψðr; tÞ is then obtained as

πðr; tÞ ¼ ∂
∂½ _ψðr; tÞ�L ¼ iψ†ðr; tÞ: ðA2Þ

For quantization, we promote ψðr; tÞ [πðr; tÞ] to operators
ψ̂ðr; tÞ [π̂ðr; tÞ] and impose the bosonic commutation
relations in Eq. (3).
The second quantized Hamiltonian is then obtained from

the Lagrangian as Eq. (2). Together with the commutation
relations, the Heisenberg equations of motion can be
verified to give Eq. (1).

APPENDIX B: MODE NORMALIZATION AND
ORTHOGONALITY

We choose the normalization of the normal modes such
that the orthogonality condition readsZ

drϕ�
m0 ðr; k0Þϕmðr; kÞ ¼ δmm0δ½EðkÞ − Eðk0Þ�: ðB1Þ

The normal modes form a complete set in the sense that

X
m

Z
dEðkÞϕ�

mðr0; kÞϕmðr; kÞ ¼ δðr − r0Þ: ðB2Þ

We note that k is simply a relabeling of the energy
eigenstates, which we find convenient to introduce.
A natural choice is EðkÞ ¼ k2=2, since k then has a physical
interpretation as the wave number.
Similarly, Hermiticity of the subspace Hamiltonians [71]

implies orthogonality of their corresponding eigenstates,
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the system-and-bath states. We choose their normalization
such that

hχλjχλ0 i ¼ δλλ0 ðB3Þ

and

hψ̃mðkÞjψ̃m0 ðk0Þi ¼ δmm0δ½EðkÞ − Eðk0Þ�: ðB4Þ

Analogously to Eq. (11), the bath modes diagonalize the
P-space projector via

P ¼
X
m

Z
dEðkÞjψ̃mðkÞihψ̃mðkÞj: ðB5Þ

Since P ¼ 1 −Q, the system modes can furthermore be
chosen orthogonal to the bath modes [71]:

hχλjψ̃mðkÞi ¼ 0: ðB6Þ

We note that these orthogonality conditions are crucial for
quantization.

APPENDIX C: SUBSPACE EXPANSION

Here, we summarize the calculation of the matrix
elements in the expansion of the full eigenstates
Eq. (14) as presented by Domcke [71].
We start by writing the Schrödinger equation (1) in Dirac

notation:

HjϕmðkÞi ¼ EðkÞjϕmðkÞi; ðC1Þ

which can be expressed as a pair of coupled equations in the
two subspaces [89]

HPPjϕmðkÞi þHPQjϕmðkÞi ¼ EðkÞPjϕmðkÞi; ðC2aÞ

HQPjϕmðkÞi þHQQjϕmðkÞi ¼ EðkÞQjϕmðkÞi: ðC2bÞ

The Lippmann-Schwinger equation for the P-space part
Eq. (C2a) reads

PjϕmðkÞi ¼ jψ̃ ðþÞ
m ðkÞi þ ½EðkÞ −HPP þ iη�−1HPQjϕmðkÞi;

ðC3Þ

where we choose the incoming solution for the homo-
geneous part. Substitution into Eq. (C2b) and solving for
QjϕmðkÞi gives

QjϕmðkÞi ¼ GQQHQPjψ̃ ðþÞ
m ðkÞi; ðC4Þ

where we define

GQQ ¼ ½EðkÞ −HQQ −HQPG̃
ðþÞHPQ�−1; ðC5aÞ

G̃ðþÞ ¼ ½EðkÞ −HPP þ iη�−1: ðC5bÞ

Substitution into Eq. (C3) gives Eq. (2.11) from [71]

PjϕmðkÞi ¼ jψ̃ ðþÞ
m ðkÞi þ G̃ðþÞHPQGQQHQPjψ̃ ðþÞ

m ðkÞi:
ðC6Þ

Adding Eqs. (C4) and (C6), we obtain an expansion for the
full eigenstates in terms of the subspace eigenstates:

jϕmðkÞi ¼ QjϕmðkÞi þ PjϕmðkÞi ðC7Þ

¼ GQQHQPjψ̃ ðþÞ
m ðkÞi þ ½1þ G̃ðþÞHPQGQQHQP�jψ̃ ðþÞ

m ðkÞi:
ðC8Þ

Note that this expansion constitutes a generalization of
results obtained in Ref. [70] to a finite number of system
modes and to the Schrödinger equation.
The expansion coefficients in Eq. (14) are, therefore,

hχλjϕmðkÞi ¼ hχλjGQQHQPjψ̃ ðþÞ
m ðkÞi ðC9Þ

and

hψ̃ ðþÞ
m0 ðk0ÞjϕmðkÞi

¼ hψ̃ ðþÞ
m0 ðk0Þj1þ G̃ðþÞHPQGQQHQPjψ̃ ðþÞ

m ðkÞi: ðC10Þ

These expressions can be conveniently evaluated for a
certain class of potentials using so-called separable expan-
sions, as shown in detail by Domcke [71].

APPENDIX D: SYSTEM-AND-BATH
OPERATORS

Here, we derive the system-bath expansion and show that
the operators associated with the subspace eigenstates
naturally fulfill the desired conditions for bosonic sys-
tem-and-bath operators as they are used in quantum noise
theory [16,17,70].
Equation (14) can be used to write the field operator

Eq. (4) as

ψ̂ðr; tÞ ¼
X
λ∈ΛQ

âλ χλðrÞ

þ
X
m0

Z
dEðk0Þb̂m0 ðk0Þψ̃m0 ðr; k0Þ; ðD1Þ

where we define [70]

âλ ¼
X
m

Z
dEðkÞĉmðk; tÞαλmðkÞ; ðD2aÞ
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b̂m0 ðk0Þ ¼
X
m

Z
dEðkÞĉmðk; tÞβmm0 ðk; k0Þ ðD2bÞ

as the system and bath operators, respectively. Inverting
Eqs. (D2) by using the coefficient identities in Appendix E
gives Eq. (16) [70].
Using Eqs. (D2) and the coefficient identities in

Appendix E, the commutation relations for the system-
bath operators are obtained as

½âλ; â†λ0 � ¼ δλλ0 ; ðD3aÞ

½b̂mðkÞ; b̂†m0 ðk0Þ� ¼ δmm0δ½EðkÞ − Eðk0Þ�; ðD3bÞ

½âλ; b̂†mðkÞ� ¼ 0; ðD3cÞ

½âλ; âλ0 � ¼ ½b̂mðkÞ; b̂m0 ðk0Þ� ¼ 0; ðD3dÞ

½â†λ ; â†λ0 � ¼ ½b̂†mðkÞ; b̂†m0 ðk0Þ� ¼ 0; ðD3eÞ

which are indeed the desired bosonic commutation rela-
tions [70].
We note that, due to the few-mode projection, the system

states do not necessarily form a complete set in the region
of the system modes. It is thus necessary to account for the
bath state contribution in Eq. (D1), even when r lies inside
this region. This feature is relevant when field-matter
interactions are included in the theory, which we discuss
in Sec. VIII.

APPENDIX E: EXPANSION COEFFICIENT
IDENTITIES

Using the completeness relation in full space

I ¼
X
m

Z
dEðkÞjϕmðkÞihϕmðkÞj ðE1Þ

and the orthogonality relations in the subspaces Eqs. (B3),
(B4), and (B6), we obtain the coefficient identitiesZ

dEðkÞ
X
m

αλmðkÞα�λ0mðkÞ ¼ hχλjχλ0 i ¼ δλλ0 ; ðE2aÞ

Z
dEðk0Þ

X
m0

αλm0 ðk0Þβ�m0mðk0; kÞ

¼ hχλjψ̃ ðþÞ
m ðkÞi ¼ 0; ðE2bÞ

Z
dEðk00Þ

X
m00

βm00mðk00; kÞβ�m00m0 ðk00; k0Þ

¼ hψ̃ ðþÞ
m ðkÞjψ̃ ðþÞ

m0 ðk0Þi
¼ δmm0δ½EðkÞ − Eðk0Þ�: ðE2cÞ

Similarly,Z
dEðkÞEðkÞ

X
m

αλmðkÞα�λ0mðkÞ ¼ Eλδλλ0 ; ðE3aÞ

Z
dEðk00Þ

X
m00

Eðk00Þβm00mðk00; kÞβ�m00m0 ðk00; k0Þ

¼ EðkÞδmm0δ½EðkÞ − Eðk0Þ�; ðE3bÞ
Z

dEðk0Þ
X
m0

Eðk0Þαλm0 ðk0Þβ�m0mðk0; kÞ

¼ hχλjHQPjψ̃ ðþÞ
m ðkÞi≕WλmðkÞ: ðE3cÞ

Note that these relations are analogous to expressions
obtained in Ref. [70] for the dielectric Maxwell equations
but refer to different modes, since our few-mode projection
scheme differs.

APPENDIX F: SCATTERING MATRIX IN
VIVIESCAS-HACKENBROICH QUANTIZATION

In this Appendix, we calculate the scattering matrix for
an example cavity using Viviescas and Hackenbroich’s
Feshbach projection scheme [70,95].
From Eq. (68) in Ref. [70], their scattering matrix reads

SðωÞ ¼ 1 − 2πi
X∞
λ;λ0¼1

W†
λðωÞ½D−1ðωÞ�λλ0Wλ0 ðωÞ: ðF1Þ

Here, the matrix D is defined by Eqs. (65) and (66) in
Ref. [70] as

½DðωÞ�λλ0 ¼ ðω − ωλÞδλλ0 þ Γλλ0 ðωÞ; ðF2Þ

with

Γλλ0 ðω̃Þ ¼ lim
ϵ→0þ

Z
dω0 Wλðω0ÞW�

λ0 ðω0Þ
ω0 − ω − iϵ

: ðF3Þ

These expressions are similar to our input-output scattering
matrix Eq. (58), except for the different projection scheme
and the infinite number of system modes.
In Ref. [95], the authors demonstrate their formalism on

the example of a one-dimensional cavity with a single
homogeneous dielectric layer of thickness d and refractive
index n terminated by a perfectly reflecting mirror. In the
following, we attempt a calculation of the corresponding
scattering matrix using the input-output result Eq. (F1)
from their method. The coupling coefficients for Neumann
basis states are given by Eq. (46) in Ref. [95] as

WλðωÞ ¼ ð−1Þλ
ffiffiffiffiffiffiffiffiffi
ωλ

πωd

r
; ðF4Þ
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where the cavity mode frequencies are

ωλ ¼
cπλ
nd

ðF5Þ

with λ ∈ f1; 2;…g. We can simply plug this result into
Eq. (F2) above to get

½DðωÞ�λλ0 ¼ ðω − ωλÞδλλ0
þ Γ̃ðωÞð−1Þλþλ0 ffiffiffiffiffiffiffiffiffiffiffi

ωλωλ0
p ðF6Þ

where

Γ̃ðωÞ ¼
Z

dω0 1
ω

1

ω0 − ω − iϵ
: ðF7Þ

The inverse of thisDmatrix can be calculated exactly using
the Sherman-Morrison formula [71,153]. Substitution into
Eq. (F1) yields, after a short calculation,

SðωÞ ¼ 1 −
2i
ωd

KðωÞ
1 − Γ̃ðωÞKðωÞ ; ðF8Þ

where

KðωÞ ¼
X∞
λ¼1

ωλ

ω − ωλ
: ðF9Þ

Substitution of the resonance frequencies in Eq. (F5) gives

KðωÞ ¼
X∞
λ¼1

λ
ωnd
cπ − λ

: ðF10Þ

This sum indeed diverges. There is also no well-defined
notion of taking a limit of λ to infinity, since the projection
is performed directly onto infinitely many modes. Similar
behavior is observed for other one-dimensional examples in
Ref. [95], including a one-sided Ley-Loudon cavity.
We conclude that in Viviescas and Hackenbroich’s

formalism [70], there is no straightforward way to calculate
scattering matrices from the input-output formalism due to
the convergence behavior of the infinitely many modes
included in their projection scheme. For the example cavity
investigated above, we further observe that truncation
approximations or cutoff schemes can be used to approxi-
mate the spectra around a single resonance for good
cavities. For multiple or overlapping modes, however, such
approximations fail. In these regimes, it is thus crucial to
understand how to precisely reconstruct the scattering
information in the system-bath theory. By using a different
projection scheme and few-mode Hamiltonians, the
approach presented in this work addresses this topic.

APPENDIX G: DOMCKE’S FESHBACH
PROJECTION FORMALISM FOR POTENTIAL

SCATTERING

In Sec. III A 2, we focus on defining and interpreting the
background and resonant scattering matrices. We further
show how the former corresponds to an asymptotic basis
transformation. In this Appendix, we extract the relevant
parts of Domcke’s [71] derivation of this separation based
on Lippmann-Schwinger equations and give his formulas
for the T matrices.
The goal is to expand the P-space projection of the full

eigenstate, which contains all the scattering information, in
terms of the various subspace eigenstates. During the
quantization procedure, we already derive Eq. (C6), in
which we now only have to expand the homogeneous part
in terms of free states.
We first write down the Lippmann-Schwinger equation

for the bath eigenstates:

jψ̃ ð�Þ
m ðkÞi ¼ jkmi þ Gð�Þ

0 HPPjψ̃ ð�Þ
m ðkÞi; ðG1Þ

where we define the free Green function in full space:

Gð�Þ
0 ¼ ½EðkÞ − K � iϵ�−1 ðG2Þ

and the free eigenstates

Kjkmi ¼ EðkÞjkmi: ðG3Þ

Upon substitution into Eq. (C6), we obtain [71]

PjϕmðkÞi ¼ jkmi þGð�Þ
0 ðHPP − KÞjψ̃ ð�Þ

m ðkÞi
þ G̃ðþÞHPQGQQHQPjψ̃ ðþÞ

m ðkÞi: ðG4Þ

From there, we obtain the separation of the T matrix [71]:

TðkÞ ¼ TbgðkÞ þ TðFÞ
res ðkÞ; ðG5Þ

where, omitting subscripts for brevity,

TbgðkÞ≡ hkjTbgjki
¼ hkjðHPP − KÞjψ̃ ðþÞðkÞi ðG6Þ

and

TðFÞ
res ðkÞ≡ hψ̃ ð−ÞðkÞjTresjψ̃ ðþÞðkÞi

¼ hψ̃ ð−ÞðkÞjHPQGQQHQPjψ̃ ðþÞðkÞi: ðG7Þ

The matrix element from the main text giving the resonant
scattering matrix is
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TresðkÞ≡ hψ̃ ðþÞðkÞjTresjψ̃ ðþÞðkÞi
¼ S−1bgT

ðFÞ
res : ðG8Þ

Consequently, one obtains [71]

SðkÞ ¼ I − 2πiTðkÞ ¼ SbgðkÞSresðkÞ ðG9Þ

as expected.

APPENDIX H: THE OPERATOR SCATTERING
MATRIX IN SECOND QUANTIZED POTENTIAL

SCATTERING

In this Appendix, we derive the result used in Sec. III B,
that the operator scattering matrix relating asymptotically
free in and out operators is the same as the conventional on-
shell scattering matrix for the corresponding states [90]. We
proceed by solving the operator equations of motions for
appropriately defined asymptotically free operators, fol-
lowing Glauber and Lewenstein’s method [47].
To define the asymptotically free operators, one has to

adiabatically turn off the interaction in the infinite past and
future, such that these operators are actually evolving freely
in the corresponding limits. To do so, we replace the
potential VðrÞ by a potential Vðr; tÞ slowly varying in time
such that

lim
t→�∞

Vðr; tÞ → 0 ðH1Þ

and

Vðr; 0Þ ¼ VðrÞ: ðH2Þ
Consequently, the normal modes also become time depen-
dent. In general, they fulfill an explicitly time-dependent
form of the wave equation; however, in the adiabatic limit,
they correspond to the time-independent normal modes at
each time slice, such that Eq. (5) becomes

�
−
1

2

∂2

∂r2þVðr; tÞ
�
ϕmðr;k;tÞ¼Eðk;tÞϕmðr;k;tÞ: ðH3Þ

The in [out] operators are then defined as the corre-
sponding free interaction picture operators in the infinite
past [future], that is,

d̂ðinÞm ðkÞ ¼ lim
t→−∞

eiEðkÞtd̂mðk; tÞ ðH4Þ

and

d̂ðoutÞm ðkÞ ¼ lim
t→þ∞

eiEðkÞtd̂mðk; tÞ: ðH5Þ

In Eqs. (4) and (31), two separate expansions of the
quantum field are introduced, one in terms for normal
modes and one in terms of free states:

ψ̂ðr; tÞ ¼
X
m

Z
dEðkÞϕmðr; kÞĉmðk; tÞ

¼
X
m

Z
dEðkÞϕðfreeÞ

m ðr; kÞd̂mðk; tÞ: ðH6Þ

Using the orthogonality properties of these states, one
obtains a linear relation between the two operator bases:

d̂mðk; tÞ ¼
X
m0

Z
dEðk0ÞhϕðfreeÞ

m ðkÞjϕm0 ðk0Þiĉm0 ðk0; tÞ:

ðH7Þ
The construction of the basis transformation between

asymptotically free in and out operators proceeds similarly
via comparing asymptotic expansions. Let us first asymp-
totically expand the field in the infinite past in terms of the
in operators using Eqs. (H6) and (H4) to get

ψ̂ðr; t → −∞Þ ¼
X
m

Z
dEðkÞϕðfreeÞ

m ðr; kÞd̂ðinÞm ðkÞe−iEðkÞt:

ðH8Þ

To obtain a second expansion to compare to, let us note that
the normal modes are not uniquely defined, since we do not
specify their boundary conditions. The choice that is
relevant in the infinite past is the states with a controlled

incoming state jϕðþÞ
m ðk; tÞi [90]. The corresponding expan-

sion reads

ψ̂ðr; tÞ ¼
X
m

Z
dEðkÞϕðþÞ

m ðr; k; tÞ ˆ̃cmðkÞe−iEðkÞt; ðH9Þ

where ˆ̃Omðk; tÞ ¼ Ômðk; tÞeiEðkÞt is the relevant interaction
picture operator [47], which is independent of t for the
normal-mode operators. These states by construction have
the property that

lim
t→−∞

jϕðþÞ
m ðk; tÞi ¼ jϕðfreeÞ

m ðkÞi: ðH10Þ

Comparing Eqs. (H8) and (H9), we thus find that

ˆ̃cmðkÞ ¼ d̂ðinÞm ðkÞ: ðH11Þ

Consequently, since Eq. (H9) applies at all times, there are
now two ways to express the field at the time slice t ¼ 0:

ψ̂ðr; t ¼ 0Þ ¼
X
m

Z
dEðkÞϕðþÞ

m ðr; k; t ¼ 0Þd̂ðinÞm ðkÞ

ðH12Þ

¼
X
m

Z
dEðkÞϕðfreeÞ

m ðr; kÞ ˆ̃dmðk; t ¼ 0Þ: ðH13Þ
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At t ¼ 0, our potential has the desired physical value such

that ϕðþÞ
m ðr; k; t ¼ 0Þ ¼ ϕðþÞ

m ðr; kÞ, where the latter solves
the original mode equation (5).
From Eqs. (H12) and (H13), we can obtain the trans-

formation between asymptotically free operators in the
infinite past and free operators at the time slice t ¼ 0 as

ˆ̃dmðk; t ¼ 0Þ ¼
X
m0

Z
dEðk0ÞhϕðfreeÞ

m ðkÞjϕðþÞ
m0 ðk0Þid̂ðinÞm0 ðk0Þ:

ðH14Þ

Analogously, by expanding in the jϕð−Þ
m ðk; tÞi basis and

performing an asymptotic expansion in the infinite future,
we obtain a second expansion:

ˆ̃dmðk; t ¼ 0Þ ¼
X
m0

Z
dEðk0ÞhϕðfreeÞ

m ðkÞjϕð−Þ
m0 ðk0Þid̂ðoutÞm0 ðk0Þ:

ðH15Þ

Upon combining Eqs. (H14) and (H15) and using that the
matrix elements vanish off the energy shell, we obtain the
operator scattering relation

d̂ðoutÞm ðkÞ ¼
X
m0

Z
dEðk0Þhϕð−Þ

m ðkÞjϕðþÞ
m0 ðk0Þid̂ðinÞm0 ðk0Þ:

ðH16Þ

Indeed, the matrix element in this expression is the
scattering matrix [90]

Smm0 ðk; k0Þ ¼ hϕð−Þ
m ðkÞjϕðþÞ

m0 ðk0Þi; ðH17Þ

which is related to the on-shell scattering matrix Smm0 ðkÞ
used in the main text by [90]

Smm0 ðk; k0Þ ¼ Smm0 ðkÞδ½EðkÞ − Eðk0Þ�: ðH18Þ

We thus obtain the result Eq. (32) as

d̂ðoutÞm ðkÞ ¼
X
m0

Smm0 ðkÞd̂ðinÞm0 ðkÞ: ðH19Þ

APPENDIX I: REGULARIZATION OF FOURIER
INTEGRALS IN THE INPUT-OUTPUT

FORMALISM

In this Appendix, we provide a derivation of Eq. (40). In
the process, we show how the Fourier integrals are
regularized in the input-output formalism and how this
regularization relates to time-independent scattering
theory [90].

We start by Fourier transforming Eq. (33) to get

0 ¼ i½Eðω̃Þ − Eλ�âλðω̃Þ

− i
X
m

Z
dEðkÞWλmðkÞ

Z
∞

−∞
dteiEðω̃Þtb̂mðk; tÞ: ðI1Þ

Substitution of Eq. (35) gives

0 ¼ i½Eðω̃Þ − Eλ�âλðω̃Þ

− i
X
m

Z
dEðkÞWλmðkÞ

Z
∞

−∞
dteiEðω̃Þt

× e−iEðkÞðt−t0Þb̂mðk; t0Þ

−
X
m

Z
dEðkÞWλmðkÞ

Z
∞

−∞
dteiEðω̃Þt

×
X
λ0∈ΛQ

W�
λ0mðkÞ

Z
t

t0

dt0e−iEðkÞðt−t0Þ

×
Z

∞

−∞
dEðω̃0Þ 1

2π
e−iEðω̃0Þt0 âλ0 ðω̃0Þ: ðI2Þ

We note that the integration over energies from negative to
positive infinity enters via the inverse Fourier transform of
Eq. (39), where the energy definition range has to be
suitably extended beyond the physical spectrum for the
inverse Fourier transform to be defined. This integration
does not constitute an approximation but rather a definition
of an energy dispersion beyond the physical spectrum, such
that inverse Fourier transforms can be used as a math-
ematical tool.
The first of the three terms in Eq. (I2) is simple enough

already; the second can be reduced using the definition of
the input operator and the Fourier identity

Z
∞

−∞
dtei½Eðω̃Þ−EðkÞ�t ¼ 2πδ½Eðω̃Þ − EðkÞ�: ðI3Þ

The third term can be simplified in the scattering limit
t0 → −∞. However, we notice that the integral is, in fact,
divergent in this limit. This divergence is a well-known
feature of time-independent scattering theory and can be
dealt with through regularization [90]. In our case, we
require a substitution

EðkÞ → EðkÞ − iϵ ðI4Þ

and taking the limit ϵ → 0þ at the end, which regularizes
the integral as t0 → −∞. Physically, this procedure corre-
sponds to solving an initial value problem [90].
Evaluation of the integrals in Eq. (I2) then yields

Eqs. (40)–(42).
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APPENDIX J: FEW-MODE HAMILTONIAN FOR
THE SCALAR MAXWELL WAVE EQUATION

In this Appendix, we provide details on the application
of our formalism to the dielectric Maxwell wave equa-
tion (52), which constitutes a combination of the system-
bath formalism by Viviescas and Hackenbroich [70], the
projection scheme by Domcke [71], and the relation of the
input-output formalism to the scattering theory presented in
the main text for the Schrödinger equation.

1. Canonical quantization

The quantization of the vectorial dielectric Maxwell
equation is presented by Glauber and Lewenstein [47].
Here, we follow their approach, simplifying the results to
the scalar wave equation (52). For simplicity, we work with
ℏ ¼ c ¼ 1. The Lagrangian for the system is [47]

L ¼ 1

2

Z
dr

�
εðrÞ _A2ðrÞ −

�∂AðrÞ
∂r

�
2
�
; ðJ1Þ

such that the resulting Euler-Lagrange equations can be
checked to give Eq. (52). The conjugate momentum of AðrÞ
can then be obtained as [47]

ΠðrÞ ¼ δL

δ _AðrÞ ¼ εðrÞ _AðrÞ: ðJ2Þ

Therefore, the Hamiltonian reads [47]

H½A;Π� ¼
Z

drΠðr; tÞ _Aðr; tÞ − L

¼ 1

2

Z
dr

�
Π2ðrÞ
εðrÞ þ

�∂AðrÞ
∂r

�
2
�
: ðJ3Þ

This Hamiltonian can now be expressed in its normal-mode
basis [47], as we do for the Schrödinger equation earlier. To
do so, we expand the A field as [47]

Aðr; tÞ ¼
X
m

Z
dωq̂mðω; tÞfmðr;ωÞ ðJ4Þ

and, similarly, the conjugate momentum via

Πðr; tÞ ¼
X
m

Z
dωεðrÞp̂mðω; tÞf�mðr;ωÞ: ðJ5Þ

Here, q̂mðω; tÞ are coordinate operators and p̂mðω; tÞ the
corresponding momentum operators [47], both associated
with the normal modes fmðr;ωÞ defined as eigenfunctions
of the Fourier-transformed equations of motion Eq. (53).

The electric field is given by

Eðr; tÞ ¼ −
Πðr; tÞ
εðrÞ ¼ −

X
m

Z
dωp̂mðω; tÞf�mðr;ωÞ: ðJ6Þ

We choose the mode normalization such thatZ
drϵðrÞf�m0 ðr;ω0Þfmðr;ωÞ ¼ δmm0δðω − ω0Þ: ðJ7Þ

We note that the normalization and energy labeling we
choose here differ from the choice for the Schrödinger
equation, in order to stay close to conventions usually
adopted in quantum optics. As a result, care has to be taken
to translate between the two cases. Specifically, to go from
a Maxwell mode fmðr;ωÞ to a Schrödinger mode ϕmðr; kÞ
requires not only the substitution of the energy-dependent
potential Ṽðr;ωÞ → VðrÞ, but also ω →

ffiffiffiffiffiffiffiffiffiffiffiffi
2EðkÞp

and
fmðr;ωÞ=

ffiffiffiffi
ω

p
→ ϕmðr; kÞ. Additionally, we note that,

unlike the Schrödinger equation, the kinetic term in the
scalar Maxwell equation does not have a factor of 1=2, such
that effectively H → 2H. The normalization of the system-
and-bath states as well as their associated operators is
modified correspondingly.
Applying the normal-mode expansions Eqs. (J4) and (J5)

to the Hamiltonian Eq. (J3) gives [47]

Ĥ ¼ 1

2

X
m

Z
dω½p̂†

mðω; tÞp̂mðω; tÞ

þ ω2q̂†mðω; tÞq̂mðω; tÞ�: ðJ8Þ
The operators fulfill the equal-time commutation relations
[47,70]

½q̂mðω; tÞ; q̂m0 ðω0; tÞ� ¼ ½q̂mðω; tÞ; q̂†m0 ðω0; tÞ� ¼ 0; ðJ9aÞ

½p̂mðω; tÞ; p̂m0 ðω0; tÞ� ¼ ½p̂mðω; tÞ; p̂†
m0 ðω0; tÞ� ¼ 0; ðJ9bÞ

½q̂mðω; tÞ; p̂m0 ðω0; tÞ� ¼ iδmnδðω − ω0Þ; ðJ9cÞ

½q̂mðω; tÞ; p̂†
m0 ðω0; tÞ� ¼ iM�

mm0 ðω;ω0Þ; ðJ9dÞ

where Mmnðω;ω0Þ is defined by

Mmm0 ðω;ω0Þ ¼ hf�mðωÞjfm0 ðω0Þi

¼
Z

drεðrÞfmðr;ωÞfm0 ðr;ω0Þ: ðJ10Þ

We see that the main difference to the single time
derivative case is that the Hamiltonian Eq. (J3) contains
momentum operators and, therefore, the coordinate oper-
ators have different commutation relations. One can intro-
duce bosonic normal-mode ladder operators ĉmðω; tÞ and
ĉ†mðω; tÞ via an operator rotation [47,70]:
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q̂mðωÞ ¼
ffiffiffiffiffiffi
1

2ω

r �
ĉmðωÞ þ

X
m0

Z
dω0M�

mm0 ðω;ω0Þĉ†m0 ðω0Þ
�
;

ðJ11Þ

p̂mðωÞ ¼ i

ffiffiffiffi
ω

2

r �
ĉ†mðωÞ −

X
m0

Z
dω0Mmm0 ðω;ω0Þĉm0 ðω0Þ

�
;

ðJ12Þ

where we omit each operator’s time dependence for brevity.
In this basis, the Hamiltonian Eq. (J8) can then be written as
[47,70]

Ĥ ¼
X
m

Z
dωωĉ†mðωÞĉmðωÞ þ const ðJ13Þ

and, thus, is again diagonal. We note, however, the differ-
ence in energy dependence to Eq. (K2), which is a result of
the double time derivative. In addition, the field expansions
Eqs. (J4)–(J6) now contain the coordinate operators instead
of the ladder operators. If expanded in terms of ladder
operators, the expansions then contain both raising and
lowering operators. For example, for the electric field we
have, dropping time dependences for brevity,

EðrÞ ¼ i
X
m

Z
dω

ffiffiffiffi
ω

2

r
½ĉmðωÞfmðr;ωÞ − ĉ†mðωÞf�mðr;ωÞ�;

ðJ14Þ

and for the A-field

AðrÞ ¼
X
m

Z
dω

ffiffiffiffiffiffi
1

2ω

r
½ĉmðωÞfmðr;ωÞ þ ĉ†mðωÞf�mðr;ωÞ�:

ðJ15Þ

We further note that this canonical quantization scheme
works explicitly in the Coulomb gauge [47], which is
relevant to obtain the correct coupling term in the presence
of light-matter interactions (see also Sec. VIII A).

2. Feshbach projection

Since the mode equation (53) features a wave operator
that is Hermitian under the modified inner product Eq. (55),
we can apply the projection operator formalism analo-
gously to the Schrödinger equation. In particular, we can
write similarly to Eq. (14), adapting the energy normali-
zation,

jfmðωÞi ¼
X
λ∈ΛQ

jχλiαλmðωÞ

þ
Z

dω0jψ̃m0 ðω0Þiβmm0 ðω;ω0Þ; ðJ16Þ

where the coefficients are now

αλmðωÞ ¼ hχλjfmðωÞi; ðJ17aÞ

βmm0 ðω;ω0Þ ¼ hψ̃m0 ðω0ÞjfmðωÞi: ðJ17bÞ

The system-and-bath states each fulfill eigenvalue equa-
tions with the energy-dependent potential.
To obtain a few-mode Hamiltonian, we now have to

apply the resulting operator basis transformation to a
different normal-mode Hamiltonian given by Eq. (J8). A
related expansion of this form has already been performed
by Viviescas and Hackenbroich [70]. There are two
differences to our case that have to be considered. First,
we have a finite number of system modes jχλi, while in
Ref. [70] an infinite set of modes is defined by imposing
boundary conditions on a spatial region. Second, we use the
energy-dependent potential form of the wave equation,
while Viviescas and Hackenbroich perform a variable
substitution to obtain a wave equation that is Hermitian
under the ordinary inner product. These modifications
result in the input-output scattering matrices being well
defined, convergent, and numerically calculable (see exam-
ple calculations in Secs. VII and VIII B 3 for convergence
considerations in the interacting case). The reason is that
the infinite mode limit has to be taken with care due to
certain coupling contributions that vanish in this limit but
still contribute to the scattering, as already noted by
Domcke [71].
Apart from these differences, the derivation (see

Appendix J 3 for details) of the Gardiner-Collett
Hamiltonian follows analogously to Ref. [70], yielding
the Hamiltonian Eq. (56), where

WλmðωÞ ¼
1

2
ffiffiffiffiffiffiffiffiffi
ωλω

p hχλjHQPjψ̃mðωÞi; ðJ18aÞ

VλmðωÞ ¼
1

2
ffiffiffiffiffiffiffiffiffi
ωλω

p hχ�λ jHQPjψ̃mðωÞi: ðJ18bÞ

The system-and-bath operators fulfill the equal-time com-
mutation relations

½â†λ ; âλ0 � ¼ δλλ0 ; ðJ19aÞ

½b̂†mðωÞ; b̂m0 ðω0Þ� ¼ δmm0δðω − ω0Þ; ðJ19bÞ

½â†λ ; b̂mðωÞ� ¼ 0: ðJ19cÞ

The electric field operator Eq. (J6) can be expanded in this
basis as
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Eðr; tÞ ¼ i
X
λ

ffiffiffiffiffi
ωλ

2

r
½âλðtÞχλðrÞ − â†λðtÞχ�λðrÞ�

þ i
X
m

Z
dω

ffiffiffiffi
ω

2

r

× ½b̂mðω; tÞψ̃mðω; rÞ − b̂†mðω; tÞψ̃�
mðω; rÞ�: ðJ20Þ

We note that, unlike in Viviescas and Hackenbroich’s
approach [70], the external modes contribute to the field
even inside the cavity, as already noted in Appendix D. This
feature is crucial when light-matter interactions are
included in the theory, which we discuss in Sec. VIII.

3. Details on the system-bath expansion of the Maxwell
Hamiltonian

We can apply the system-bath expansion for the normal
modes Eq. (J16) to the Maxwell fields given by Eqs. (J4)
and (J5) to get [70]

Aðr; tÞ ¼
X
λ

Q̂λ χλðrÞ

þ
X
m

Z
dωQ̂mðωÞψ̃mðr;ωÞ ðJ21Þ

and, similarly, the conjugate momentum [70]

Πðr; tÞ ¼
X
λ

εðrÞP̂λ χ
�
λðrÞ

þ
X
m

Z
dωεðrÞP̂mðωÞψ̃�

mðr;ωÞ: ðJ22Þ

Here, we define the position operators in system space

Q̂λ ¼
Z

dωq̂ðωÞαλðωÞ ðJ23Þ

and in bath space

Q̂mðkÞ ¼
X
m0

Z
dω0q̂m0 ðω0Þβmm0 ðω;ω0Þ; ðJ24Þ

as well as the momentum operators in system space

P̂λ ¼
X
m

Z
dωp̂mðωÞα†λmðωÞ ðJ25Þ

and in bath space

P̂mðkÞ ¼
X
m0

Z
dω0p̂m0 ðω0Þβ†mm0 ðω;ω0Þ: ðJ26Þ

These relations can again be inverted (cf. Sec. II C) to
give [70]

q̂mðωÞ ¼
X
λ∈Q

Q̂λα
�
λmðωÞ þ

X
m0

Z
dω0Q̂m0 ðω0Þβ�mm0 ðω;ω0Þ

ðJ27Þ

and

p̂mðωÞ ¼
X
λ∈Q

P̂λαλmðωÞ þ
X
m0

Z
dω0P̂m0 ðω0Þβmm0 ðω;ω0Þ;

ðJ28Þ

similarly to Eq. (16).
Applying these two expansions to the Maxwell normal-

mode Hamiltonian Eq. (J8) and using the coefficient
identities analogous to Appendix E gives the system-bath
Hamiltonian [70]

Ĥ ¼ 1

2

X
λ

½P̂†
λP̂λ þ EλQ̂

†
λQ̂λ�

þ 1

2

X
m

Z
dω½P̂†

mðωÞP̂mðωÞ þ ω2Q̂†
mðωÞQ̂mðωÞ�

þ 1

2

X
λ;m

Z
dω½W̃λmðωÞQ̂†

λQ̂mðωÞ þ H:c:�; ðJ29Þ

with the coupling coefficients in Maxwell normalization

W̃λmðωÞ ¼ hχλjHjψ̃mðωÞi: ðJ30Þ

As shown earlier, for the Schrödinger equation, this point
constitutes the final system-bath Hamiltonian and is of
Gardiner-Collett form. However, now the operators in the
Hamiltonian are not ladder operators; instead, the system
operators fulfill the commutation relations [70]

½Q̂λ; Q̂λ0 � ¼ ½Q̂λ; Q̂
†
λ0 � ¼ 0; ðJ31aÞ

½P̂λ; P̂λ0 � ¼ ½P̂λ; P̂
†
λ0 � ¼ 0; ðJ31bÞ

½Q̂λ; P̂λ0 � ¼ iδλλ0 ; ðJ31cÞ

½Q̂λ; P̂
†
λ0 � ¼ iN �

λλ0 ; ðJ31dÞ

and the bath operators fulfill

½Q̂mðωÞ; Q̂m0 ðω0Þ� ¼ ½Q̂mðωÞ; Q̂†
m0 ðω0Þ� ¼ 0; ðJ32aÞ

½P̂mðωÞ; P̂m0 ðω0Þ� ¼ ½P̂mðωÞ; P̂†
m0 ðω0Þ� ¼ 0; ðJ32bÞ

½Q̂mðωÞ; P̂m0 ðω0Þ� ¼ iδmm0δðω − ω0Þ; ðJ32cÞ

½Q̂mðωÞ; P̂†
m0 ðω0Þ� ¼ iN �

mm0 ðω;ω0Þ: ðJ32dÞ
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To obtain a Gardiner-Collett Hamiltonian in terms of ladder
operators, we have to perform an operator rotation on the
system operators

Q̂λ ¼
ffiffiffiffiffiffiffiffi
1

2ωλ

s �
âλ þ

X
λ0
N �

λλ0 â
†
λ0

�
; ðJ33Þ

P̂λ ¼ i

ffiffiffiffiffi
ωλ

2

r �
â†λ −

X
λ0
N λλ0 âλ0

�
ðJ34Þ

and on the bath operators

Q̂mðωÞ ¼
ffiffiffiffiffiffi
1

2ω

r �
b̂mðωÞ

þ
X
m0

Z
dω0N �

mm0 ðω;ω0Þb̂†m0 ðω0Þ
�
; ðJ35Þ

P̂mðωÞ ¼ i

ffiffiffiffi
ω

2

r �
b̂†mðωÞ

−
X
m0

Z
dω0Nmm0 ðω;ω0Þb̂m0 ðω0Þ

�
: ðJ36Þ

Here, we define the overlap matrices [47]

N λλ0 ¼ hχλjχλ0 i ¼
Z

drεðrÞχλðrÞχλ0 ðrÞ; ðJ37Þ

N mm0 ðω;ω0Þ ¼ hψ̃�
mðωÞjψ̃m0 ðω0Þi

¼
Z

drεðrÞψ̃mðr;ωÞψ̃m0 ðr;ω0Þ: ðJ38Þ

Substitution into the Hamiltonian Eq. (J29) gives the
Gardiner-Collett Hamiltonian Eq. (56) for Maxwell’s
equations. The associated ladder operator commutation
relations Eq. (J19) can be obtained from substitution of the
operator rotation into Eqs. (J31a) and (J32a).

APPENDIX K: MAXWELL SCATTERING
IN THE SLOWLY VARYING

ENVELOPE APPROXIMATION

The rotating wave approximation employed in Sec. VA
simplifies the second quantized Hamiltonian by omitting
counterrotating terms. Recognizing that these terms arise
due to a double time derivative in the wave equation, we
may consider a modified wave equation with a single time
derivative

−
1

2

∂2

∂r2 ψðr; tÞ ¼ iεðrÞ ∂∂tψðr; tÞ: ðK1Þ

This equation can be regarded as a variant of the slowly
varying envelope approximation of Eq. (52).

1. Canonical quantization

For this wave equation, the canonical quantization is
completely analogous to the Schrödinger case in Sec. II A.
We again get a Hamiltonian

Ĥ ¼
X
m

Z
dEðkÞEðkÞĉ†mðk; tÞĉmðk; tÞ; ðK2Þ

only now, the mode operators ĉmðk; tÞ are associated with
states ϕmðr; kÞ defined by the eigenvalue equation

−
1

2

∂2

∂r2 ϕmðr; kÞ ¼ εðrÞEðkÞϕmðr; kÞ: ðK3Þ

2. Feshbach projection

To reveal its similarity with the Schrödinger equation [5],
we rewrite Eq. (K3) in the form

�
−
1

2

∂2

∂r2 þ Ṽðr; kÞ
�
ϕmðr; kÞ ¼ EðkÞϕmðr; kÞ: ðK4Þ

It is thus convenient to use the normalization and energy
labeling that we use for the Schrödinger equation, such that
the energy-dependent potential is given by

Ṽðr;ωÞ ¼ ½1 − εðrÞ�EðkÞ: ðK5Þ

Again accounting for the modified inner product,
the system-bath separation via projection operators in
Sec. II C 2 can be performed identically to yield the same
ab initio Gardiner-Collett Hamiltonian as in Sec. II D,
namely,

Ĥ ¼
X
λ∈ΛQ

Eλâ
†
λ âλ þ

X
m

Z
dEðkÞEðkÞb̂†mðkÞb̂mðkÞ

þ
X
λ∈ΛQ

X
m

Z
dEðkÞ½WλmðkÞâ†λ b̂mðkÞ þ H:c:�; ðK6Þ

with

WλmðkÞ ≔ hχλjHjψ̃mðkÞi: ðK7Þ

The only differences are now the changed inner product in
the couplings definition and that the system-and-bath states
are defined by the eigenvalue equation (K4) with an energy
dependence of the potential.
Therefore, the equivalence between the input-output

formalism and scattering theory follows analogously to
Sec. IV B. This wave equation serves as a useful inter-
mediate between the Schrödinger and Maxwell cases, since
it already features the modified inner product while no
counterrotating terms appear.
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APPENDIX L: LINEAR DISPERSION THEORY

Linear dispersion theory is a method that allows one to
translate atoms whose transitions couple to the light field
into a linear refractive index. The main assumption is that
all of the transitions are weakly excited, such that a linear
effective medium description can be used.
Historically, this approach was developed in the early

days of quantum mechanics (see Ref. [154] for a review)
and can be employed for a variety of systems (see, e.g.,
Refs. [103,123,154]). Later, it was realized that even strong
coupling effects such as vacuum Rabi splitting can be
described [124] by it. For us, linear dispersion theory can
thus serve as an ideal practical benchmark, since it has been
extensively tested experimentally and its limitations are
well understood. In addition, due to the effective medium
description, the concept of a mode is not necessary; that is,
linear dispersion theory can be understood as a basis-free
method. This independence of a mode description makes
linear dispersion theory also a perfect conceptual bench-
mark for our few-mode theory.
For completeness, we provide a slightly unusual deri-

vation for the single transition case in the following. In
particular, it is shown that, apart from the weak excitation as
well as the dipole approximation, no further assumptions
are necessary.
The derivation is inspired by a similar account in

Ref. [108], which focuses on the consequences of the A2

term in cavity and circuit QED.
From Eq. (77), the atom-field interaction Hamiltonian

reads

Ĥint ¼ −iωaðdσ̂þ − d�σ̂−ÞAðraÞ þ cAA2ðraÞ: ðL1Þ

We now also include the A2 term, introducing an additional
constant cA, which depends on the physical realization of
the two-level system [108].
The Heisenberg equations of motion for the atomic

lowering operator then read, applying the weak excitation
approximation σ̂zðtÞ ≈ −1,

_̂σ−ðtÞ ¼ −iωaσ̂
−ðtÞ − ωadAðra; tÞ: ðL2Þ

The solution of this equation can be written as

σ̂−ðtÞ ¼
Z

∞

−∞

dω
2π

e−iωt
iωadAðra;ωÞ

ωa − ω
; ðL3Þ

where Aðra;ωÞ is the Fourier-transformed field operator.
Similarly, for the raising operator, one obtains

σ̂þðtÞ ¼
Z

∞

−∞

dω
2π

e−iωt
−iωad�Aðra;ωÞ

ωa þ ω
: ðL4Þ

The field equations of motion for the coupled system are

εðrÞ ∂
2

∂t2Aðr;tÞ¼
∂2

∂r2Aðr; tÞþcAAðr;tÞδðr−raÞ
þ iωa½dσ̂þðtÞ−d�σ̂−ðtÞ�δðr− raÞ: ðL5Þ

Substituting the solutions for the atomic operators and
moving to the frequency domain, we obtain an effective
Maxwell equation:

∂2

∂r2 Aðr;ωÞ ¼ −ω2εðrÞAðr;ωÞ þ cAδðr − raÞAðr;ωÞ

þ 2ω3
ajdj2

ω2 − ω2
a
δðr − raÞAðr;ωÞ: ðL6Þ

As a result, we can write an effective energy-dependent
permittivity for the two-level system as

ε0ðrÞ ¼ εðrÞ −
�
ω2
a

ω2

2ωajdj2
ω2 − ω2

a
þ cA
ω2

�
δðr − raÞ: ðL7Þ

We note that, for an atomic medium of number density ρ
sufficiently large compared to the wavelength, the more
standard expression

ε0ðrÞ ¼ εðrÞ − jdj2
ω − ωa

ρðrÞ ðL8Þ

can be obtained in the weak coupling regime, where the
rotating wave approximation ω2 − ω2

a ≈ 2ωaðω − ωaÞ as
well as ω2

a=ω2 ≈ 1 and cA ≈ 0 are assumed. Usually, a
decay rate γ is also included to account for additional decay
channels. In our case, this contribution does not appear,
since we consider only radiative losses which are already
accounted for by the dipole coupling.
We further note that, in one dimension and for layered

systems, the scattering solutions of these modified Maxwell
equations can be found efficiently using a transfer matrix
formalism [102,103], which we employ to perform the
calculations for the examples shown in the main text. For
simplicity, we also neglect the A2-term contribution by
setting cA ¼ 0. The formula Eq. (L7) nevertheless includes
the contribution from counterrotating terms, such that the
applicability of the rotating wave approximation in both the
cavity-bath and the atom-cavity coupling that are per-
formed for the linear scattering calculation in the ab initio
few-mode theory can be tested.

APPENDIX M: ANALYTICAL CONVERGENCE

In this Appendix, we show the convergence of the
effective few-mode expansion for an analytically solvable
example cavity. We choose the cavity geometry depicted in
Fig. 14 and the Dirichlet basis states for Q space with
ω2
λ ¼ λ2π2=L2 þ 2Ṽ0ðωÞ. This configuration is particularly

convenient, since the exact solution for the Schrödinger
potential analog of its free theory is given by Domcke [71].
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Adapting the expression from Ref. [71] to the Maxwell case
gives

WλðωÞ ¼
w

α cot α − s − iβ
λð−1Þλffiffiffiffiffi

ωλ
p ; ðM1Þ

where α, β, and w are constants in the sense that they
do not depend on the mode index or number of chosen
modes, but they may, for example, depend on the fre-
quency. s is the sum

s ¼
X
λ∈ΛQ

2λ2π2

α2 − λ2π2
; ðM2Þ

and it therefore does not explicitly depend on the mode
index; however, it does depend on which modes are
included in the few-mode basis. The latter is important
if we want to take the limit of infinitely many system modes
in the end, where the effective few-mode expansion should
converge and become exact. We note that s by itself does
not converge on its own in this limit; however, any
observable quantities will in the end. This nontrivial
convergence behavior is already pointed out by Domcke
[71] and is encountered again multiple times in the
following. Note that one consequence is that all system-
bath couplings approach zero in this limit. We note that this
consequence poses no problem for practical calculations,
since any relevant observables, such as the scattering
matrices, should converge. Furthermore, the couplings
are finite at any finite mode number, such that numerical
calculations can be performed and yield the correct
observables as shown in the main text.
For the free scattering matrix, this convergence is already

shown by Domcke [71] for the Schrödinger case. The same
derivation in essence also applies to the Maxwell case by
invoking the result from Sec. VA.
In the following, we show the convergence in the linear

interacting case to confirm the validity of the effective few-
mode expansion scheme.

From Eq. (59), the D matrix is

Dλλ0 ðωÞ ¼ ðω − ωλÞδλλ0 þ Γ0
λλ0 ðωÞ: ðM3Þ

For consistency with the rotating wave approximation, as
outlined in Sec. V, we employ

Dλλ0 ðωÞ ≈
ω2 − ω2

λ

2ωλ
δλλ0 þ

Γλλ0 ðωÞffiffiffiffiffiffiffiffiffiffiffi
ωλωλ0

p : ðM4Þ

This approximation is also convenient for the contour
integral in the level shift matrix to be computable via
Domcke’s separable expansion method [71], resulting in
the expression

Γλλ0 ðωÞffiffiffiffiffiffiffiffiffiffiffi
ωλωλ0

p ¼ γ̃

α cot α − s − iβ
λð−1Þλffiffiffiffiffi

ωλ
p λ0ð−1Þλ0ffiffiffiffiffiffi

ωλ0
p ; ðM5Þ

where γ̃ ¼ π2=L2 is a constant. We further note that it is
crucial to approximate the diagonal and level shift term
consistently within the rotating wave approximation in
order to obtain a converging series expansion in the rotating
wave approximation (see also Sec. V).
Inverting the D matrix via the Sherman-Morrison for-

mula [71,153] gives

D−1
λλ0 ðωÞ ¼

2ωλδλλ0

ω2 − ω2
λ

−
γ̃

α cot α − iβ − sþ γ̃b

×
2λð−1Þλ ffiffiffiffiffi

ωλ
p

ω2 − ω2
λ

2λ0ð−1Þλ0 ffiffiffiffiffiffi
ωλ0

p
ω2 − ω2

λ0
; ðM6Þ

where

b ¼ L
π

X
λ∈ΛQ

2π2λ2

α2 − π2λ2
¼ s

γ̃
: ðM7Þ

We then have

D−1
λλ0 ðωÞ ¼

2ωλδλλ0

ω2 − ω2
λ

−
γ̃

α cot α − iβ

×
2λð−1Þλ ffiffiffiffiffi

ωλ
p

ω2 − ω2
λ

2λ0ð−1Þλ0 ffiffiffiffiffiffi
ωλ0

p
ω2 − ω2

λ0
: ðM8Þ

The coupling constants in this basis are

gλ ¼ g̃
sin ðπλL raÞffiffiffiffiffi

ωλ
p ; ðM9Þ

where g̃ is a constant containing d and ωa. ra is the atom’s
position, which we take to be ra ¼ ðL=2Þ, such that the
atom is located at the cavity center. We are now in a
position to check the convergence of the interaction sums
appearing in Eq. (86). We can write

FIG. 14. A cavity geometry whose Schrödinger analog is
solved exactly by Domcke [71] using the Feshbach projection
formalism.
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gTD−1ðωÞg� ¼ G1 −
4jg̃j2L2

α cot α − iβ
ðG2Þ2; ðM10Þ

where the sums

G1 ¼ 2jg̃j2L2
X
λ∈Λodd

Q

1

α2 − π2λ2
ðM11Þ

and

G2 ¼
X
λ∈ΛQ

sin

�
πλ

2

�
ð−1Þλ πλ

α2 − π2λ2
: ðM12Þ

In the limit of an infinite number of system modes, that is,
ΛQ ¼ fχ1; χ2;…; χNg with N → ∞, one obtains

G1 → −
jg̃j2L2

2α
tan

α

2
; ðM13Þ

and G2 can be expressed in terms of beta, gamma, and
hypergeometric functions. Therefore, gTD−1ðωÞg� con-
verges individually in this limit, containing isolated poles
only at certain energies.
Similarly,

gTD−1ðωÞWðωÞ

¼ w=π
αcotα−s− iβ

�
2g̃L2G2−

2g̃L2

αcotα− iβ
G2s

�
; ðM14Þ

and

W†ðωÞD−1ðωÞg�

¼
�

w=π
αcotα−s−iβ

���
2g̃�L2G2−

2g̃�L2

αcotα−iβ
G2s

�
: ðM15Þ

These terms contain the s sum, which diverges in the limit
N → ∞. They can be understood by comparing to the
empty cavity term

W†ðωÞD−1ðωÞWðωÞ

¼
���� w
α cot α − s − iβ

����2
�
L
π
s −

L=π
α cot α − iβ

s2
�
; ðM16Þ

which, as already shown by Domcke [71], is convergent
and yields a well-defined resonant scattering matrix. The
nonconvergent s terms, furthermore, completely cancel
when the result is multiplied by the background scattering
matrix [71].
We thus show the convergence of the few-mode expan-

sion in the infinite mode limit for a special case. We note
that, in order to obtain this converging series, there are two
crucial factors. First, for gauge consistency, we require the

p · A interaction term, leading to a 1=
ffiffiffiffiffi
ωλ

p
dependence in

the couplings. Second, the rotating wave approximation in
the system-bath coupling has to be applied consistently (see
also Sec. V). The latter is already necessary in the non-
interacting case and, thus, a feature of the system-bath
interaction rather than of the light-matter coupling.
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