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Abstract The ability to efficiently analyze changing

data is a key requirement of many real-time analytics

applications. In prior work, we have proposed General

Dynamic Yannakakis (GDyn), a general framework for

dynamically processing acyclic conjunctive queries with

θ-joins in the presence of data updates. Whereas tradi-

tional approaches face a trade-off between materializa-

tion of subresults (to avoid inefficient recomputation)

and recomputation of subresults (to avoid the poten-

tially large space overhead of materialization), GDyn

is able to avoid this trade-off. It intelligently maintains

a succinct data structure that supports efficient main-

tenance under updates and from which the full query

result can quickly be enumerated. In this paper, we con-

solidate and extend the development of GDyn. First,

we give full formal proof of GDyn’s correctness and
complexity. Second, we present a novel algorithm for
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computing GDyn query plans. Finally, we instantiate

GDyn to the case where all θ-joins are inequalities, and

present extended experimental comparison against state

of the art engines. Our approach performs consistently

better than the competitor systems with multiple orders

of magnitude improvements in both time and memory

consumption.

1 Introduction

The ability to efficiently analyze changing data is a key

requirement in Stream Processing [39], Complex Event

Recognition [16], Business Intelligence [35], and Machine

Learning [44]. Generally, the analysis that needs to be

kept up-to-date, or at least their basic elements, are

specified in a query language. The main task is then to

efficiently update the query results under data updates.

In this context, we tackle the problem of dynamic

query evaluation, where a given query Q has to be eval-

uated against a database that is constantly changing.
Concretely, when database db is updated to database

db + u under update u, the objective is to efficiently com-

puteQ(db + u), taking into consideration thatQ(db) was

already evaluated and re-computations could be avoided.

Dynamic query evaluation is of utmost importance if

response time requirements for queries under concurrent

data updates have to be met or if data volumes are so

large that full re-evaluation is prohibitive.

In this paper, we focus on the problem of dynamic

evaluation for conjunctive queries that feature multi-way

θ-joins. The following example illustrates our setting.

Assume that we wish to detect potential credit card

fraud. Credit card transactions specify their timestamp

(ts), account number (acc), and amount (amnt). A typ-

ical fraud pattern is that, in a short period of time,
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Fig. 1 (a) Example query for detecting fraudulent credit card
activity. (b) Delta query of (a) to be executed upon insertion
of new high-amount transaction tuple t.

a criminal tests a stolen credit card with a few small

purchases to then make larger purchases (cf. [37]). As-

suming that the short period of time is 1 hour, this

pattern could be detected by dynamically evaluating

the query in Fig. 1(a). Queries like this may exhibit arbi-

trary local predicates and multi-way joins with equality

as well as inequality predicates.

Dynamic query evaluation has a rich history in data

management, and has been researched in the context

of Incremental View Maintenance (IVM) [22, 29, 30],

Stream Join Processing [4,20,34,43], and Complex Event

Recognition (CER, also known as Complex Event Pro-

cessing) [11,15,31,46,49]). All of the existing techniques

are based on recomputation of query (sub)results and/or

on their materialization. We next illustrate the issues

with recomputation and result materialization; a de-

tailed literature review is given in Section 2.

The most extreme form of recomputation is of course

full recomputation: simply re-evaluate Q on db + u when-

ever an update u arrives on db. Clearly, this incurs the

highest possible update processing cost, since it com-

pletely ignores the fact that Q(db) was already evaluated

and certain shared computation could be avoided. This

can be solved by introducing the simplest form of ma-

terialization: simply store the current result Q(db) and,

whenever an update u arrives, evaluate the delta query

∆Q associated to Q [22]. ∆Q takes as input db and u,

and computes the update that needs to be applied to

the materialized Q(db) to obtain Q(db + u). While this

exploits certain shared computation, it unfortunately

does so only to some extent.

Let us illustrate this by means of our example fraud

query in Fig. 1(a). Assume that u inserts a single new

high-amount transaction t. Then ∆Q(db, u) amounts to

computing the join shown in Fig. 1(b). While we can

expect that this is more efficient that full recomputation

of Q (since the join with T3 is replaced by the join

with a single tuple), observe that if we now get another

update u ′ that inserts another high-amount transaction

t′ then we are essentially fully recomputing the join of

Fig. 1(b), but now with t′ instead of t. Hence, by fully

recomputing ∆Q whenever a new update u ′ arrives, we

are ignoring the fact that certain computation—most

notably, the join between T1 and T2 common to t and

t′—is shared and in principle need not be redone.

This can be solved by introducing more materializa-

tion: in addition to storing Q(db) also materialize the

result of the join between T1 and T2 indicated in the

shaded area in Fig. 1(a), and use additional delta queries

to maintain this result as well as Q(db). In the IVM

literature this approach is known as Higher-Order IVM

(HIVM). This method is highly effective in practice, and

formally lowers the update processing complexity [29].

While more materialization hence means less recom-

putation, it has a serious drawback in terms of addi-

tional memory overhead: materialization of Q(db) re-

quires Ω(|Q(db)|) space, where |db| denotes the size of

db. Therefore, when Q(db) is large, which is often the

case in CER as well as in data preparation scenarios for

training statistical models, materializing Q(db) quickly

becomes impractical, especially for main-memory based

systems. Note that |Q(db)| can be polynomial in |db|.
HIVM is even more affected by this problem since it

not only materializes the result of Q but also the results

of partial joins, which can be larger than both db and

Q(db). For example, the shaded area of Fig. 1(a) builds

the the table of all pairs of small transactions that could

be part of a credit card fraud. If we assume that there

are N small transactions, all of the same account, this

materialization will take Θ(N2) space. This naturally

becomes impractical when N grows.

In summary, in traditional techniques for dynamic

query evaluation there is a trade-off between recompu-

tation and materialization: more materialization means

less recomputation and hence faster update processing,

but more memory consumption. In previous work [25,26],

we have shown that this trade-off can be avoided by

taking a different approach to dynamic query evaluation:

instead of materializing Q(db) we can build a succinct

data structure that (1) supports updates efficiently and

(2) represents Q(db) in the sense that from it we can

generate Q(db) as efficiently as if it were materialized.

In particular, the representation is equipped with index

structures so that we can enumerate Q(db) with bounded

delay [38]: one tuple at a time, while spending only a

small amount of work to produce each new tuple. This

makes the enumeration competitive with enumeration

from materialized query results.

In essence, we hence separate dynamic query process-

ing into two stages: (1) an update stage where we only

maintain under updates the (small) information that is
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necessary for result enumeration and (2) an enumeration

stage where the query result is efficiently enumerated.

The main insight of [25,26] is that a practical fam-

ily of algorithms for dynamic query evaluation based

on this idea can naturally be obtained by modifying

Yannakakis’ seminal algorithm for processing acyclic

joins in the static setting [47]. In particular, instead of

materializing Q(db) and its sub-joins (which can both

be large) it suffices to materialize semijoins (which are

of size linear in db), and build indexes on these semijoins

as well as the base relations. The most general form of

this modification, called General Dynamic Yannakakis

(GDyn), supports the class of acyclic Generalized Con-

junctive Queries (GCQs), which are acyclic conjunctive
queries with θ-joins, that are evaluated under multiset

semantics and support certain forms of aggregation. The

representation of query results that underlies GDyn has

several desirable properties:

– It allows to enumerate Q(db) with bounded delay.

– It requires only O(|db|) space and is hence indepen-

dent of the size of Q(db).

– It features efficient maintenance under updates. When
Q is a conjunctive query (with equijoins only), then

we can update the representation of Q(db) to a rep-

resentation of Q(db + u) in time O(|db| + |u|). In

contrast, existing techniques may require Ω(|u| +
|Q(db +u)|) time in the worst case. For the subclass

of q-hierarchical queries [8], our update time isO(|u|).
When Q consists of both equality and inequality joins

(<,≤) the update time increases. If Q has at most

one inequality per pair of relations, the update time

is O(M logM), where M = |db|+ |u|; otherwise it is

O(M2). In contrast, existing techniques may require

Ω(|db|k−1) time in the worst case, where k is the

number of relations to be joined.

In this paper, we consolidate and expand our develop-

ment of GDyn. Our contributions are as follows.

(1) We give an intuitive, concise, and stand-alone

description of GDyn, and explain the main components

behind its efficiency. In addition, we provide, for the

first time, full formal proof of GDyn’s correctness and

complexity (Section 4).

(2) Like most query evaluation algorithms, GDyn’s

operation is driven by the availability of a query plan. In

our previous work, we have always assumed query plans

to be explicitly given. In this paper, in contrast, we

present, for the first time, an algorithm for computing

GDyn query plans (Section 5).

(3) Finally, we our implementation of GDyn (Sec-

tion 6) and present extended experimental comparison

of GDyn to state of the art IVM and CER engines.

We explore the full design space of queries with up to

three joins. GDyn performs consistently better than the

competitor systems with multiple orders of magnitude

improvements in both time and memory consumption

(Section 7).

We introduce the required background in Section 3,

discuss related work in Section 2 and conclude in Sec-

tion 8. Because of space restrictions, certain supporting

material and proofs of auxiliary statements are given in

the Appendix, which is available in the online supple-

mentary material of this paper.

2 Related Work

IVM. The trade-off between materialization and re-

computation explained in the Introduction is at the core

of IVM [12,21,22,29,30]. IVM hence differs from GDyn

as already explained in the Introduction.

CER. There are two approaches to CER: relational and

automaton-based. Relational approaches (e.g., [31]) are

similar to IVM. In contrast to the relational approaches,

automaton approaches assume that event tuples are

endowed with a timestamp and that the arrival order

of event tuples corresponds to the timestamp order

(i.e., there are no out-of-order events). They build an

automaton to recognize the desired temporal patterns

in the input stream. Broadly speaking, there are two

automata-based recognition approaches. In the first ap-

proach, followed by [3,46], events are cached per state

and once a final state is reached a search through the

cached events is done to recognize the complex events.

While it is no longer necessary to check the tempo-

ral constraints (e.g., T1.ts < T2.ts) during the search,

the additional constraints (in our fraud query example

T1.acc = T2.acc = T3.acc) must still be verified. At

essence, this corresponds to fully re-computing a delta

query since each event triggering a transition to a final

state may cause re-evaluation of a sub-join on the cached

data. In the second approach, followed by [11,14,15,49],

partial runs are materialized according to the automa-

ton’s topology. For our example query, this means that,

just like HIVM, the join in the shaded area of Fig. 1(a)

is materialized and maintained so it is available when a

large amount transaction arrives. This approach hence

shares with HIVM its high memory overhead.

Stream Joins. The goal of stream join processing is

to produce join results incrementally as new tuples are

added to the input or old tuples retracted. To see how

GDyn differs from stream joins, we discern two classes

of stream join algorithms.

Algorithms in the first class are designed to produce

output tuples as soon as possible, without blocking for

more input to become available. They are based on
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the symmetric hash-join [45] and its variants [41, 43].

Algorithms in this class favor full recomputation of delta

queries, and hence ignore the opportunity to reduce

redundant recomputation by additional materialization.

Moreover, these algorithms are limited to processing

equijoins only.

Algorithms in the second class focus on window-

based stream joins [20, 27, 34, 40]. Like the automata-

based approaches in CER, they assume that each tuple is

endowed with a timestamp attribute, and are restricted

to the setting where tuples follow a FIFO paradigm: new

tuples arrive in increasing timestamp order and tuples

with the oldest timestamp are deleted first. This prop-

erty is crucial for the algorithm’s proposed optimizations

to work. GDyn, in contrast makes no FIFO assumption

and can deal with arbitrary updates, including out-of-

order updates. Furthermore, we note that window-based

joins are a strict subclass of the class of all inequality-

joins, since in a window-based join only a single temporal

attribute will be compared across all relations. As such,

queries like R1 onR1.amnt<R2.amnt R2 onR2.ts<R3.ts R3

that inequality-join across multiple unrelated attributes
are not considered by [20, 27, 34, 40]. GDyn, in con-

trast, processes such queries intelligently. Finally, we

note that, in contrast to GDyn, support for multi-way

stream joins is limited: [27, 34, 40] consider only binary

joins, while [20] does treat multi-way joins, but makes

the simplifying assumption that all comparisons are on
the same, single attribute.

Because of the increasing wide-spread use of dis-

tributed compute engines such as Flink, Spark, and

Storm in contemporary data analysis scenarios, there

has also been much research on how to support stream

joins in such engines (e.g., [44]). To the best of our knowl-

edge, this work builds upon the above-mentioned central-

ized stream join algorithms (while tackling additional

challenges such as distribution and fault-tolerance), and

hence similarly differ from GDyn as described above.

We leave the extension of GDyn to the parallel en dis-

tributed setting as an interesting avenue for future work.

Query evaluation with constant delay enumera-

tion has gained increasing attention in the last decade [6–

8, 10, 25, 32, 33, 33, 36, 38]. This setting, however, deals

with equijoins only.

Inequality joins. Also related, although restricted to

the static setting, is the practical evaluation of binary [17,

18,23] and multi-way [9, 48] inequality joins. Our work,

in contrast, considers dynamic processing of multi-way

θ-joins, with a specialization to inequality joins. Khayyat

et al. [28] proposed fast multi-way inequality join algo-

rithms based on sorted arrays and space efficient bit-

arrays. They focus on the case where there are exactly

two inequality conditions per pairwise join. While they

also present an incremental algorithm for pairwise joins,

their algorithm makes no effort to minimize the update

cost of multi-way joins. As a result, they either materi-

alize subresults (implying a space overhead that can be

more than linear), or recompute subresults.

3 Preliminaries

Query Language. Throughout the paper, let x, y, z, . . .

denote variables (also commonly called column names

or attributes). A hyperedge is a finite set of variables.

We use x, y, . . . to denote hyperedges. A Generalized

Conjunctive Query (GCQ) is an expression of the form

Q = πy
(
r1(x1) on · · · on rn(xn) |

m∧
i=1

θi(zi)
)
. (1)

Here r1, . . . , rn are relation symbols; x1, . . . , xn are hy-

peredges (of the same arity as r1, . . . , rn); θ1, . . . , θm
are predicates over z1, . . . , zm, respectively; and both y

and
⋃m
i=1 zi are subsets of

⋃n
i=1 xi. We treat predicates

abstractly: for our purpose, a predicate over x is a (not
necessarily finite) decidable set θ of tuples over x. For

example, θ(x, y) = x < y is the set of all tuples (a, b)

satisfying a < b. We indicate that θ is a predicate over

x by writing θ(x). Throughout the paper, we consider

only non-nullary predicates, i.e., predicates with x 6= ∅.

Example 1 The following query is hence a GCQ.

πx,y,z
(
r(x, y) on s(z, u) on t(v, w) | x < u, z < w

)
.

Since, as usual, the natural join between relations that

have a disjoint schema is simply their cartesian prod-

uct, this query asks to take the cartesian product of

r(x, y), s(z, u) and t(v, w), subsequently select those tu-

ples that satisfy x < u and z < w, and finally project

on x, y, z. Likewise, the GCQ

πy,z
(
r(x, y) on s(y, z) on t(z, v) | y < v

)
asks to take the natural join of r(x, y), s(y, z) and t(z, v)

(where r(x, y) and s(y, z) equijoin on y, and s(y, z) and

t(z, v) equijoin on z), subsequently select those tuples

that satisfy y < v, and project on y, z.

We call y the output variables of Q and denote it by

out(Q). If y = x1 ∪ · · · ∪ xn then Q is called a full query

and we may omit the symbol πy altogether for brevity.

We denote by full(Q) the full GCQ obtained from Q by

setting out(Q) to x1 ∪ · · · ∪ xn. The elements ri(xi) are

called atoms. at(Q) denotes the set of all atoms in Q,

and pred(Q) the set of all predicates in Q. A conjunctive

query (or CQ) is a GCQ where pred(Q) = ∅.
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Semantics. We evaluate GCQs over Generalized Mul-

tiset Relations (GMRs for short) [25,29,30]. Let dom(x)

denote the domain of variable x. As usual, a tuple over x

is a function t that assigns a value from dom(x) to every

x ∈ x. T[x] denotes the set of all tuples over x. A GMR

over x is a function R : T[x]→ Z mapping tuples over x

to integers such that R(t) 6= 0 for finitely many tuples

t. In contrast to classical multisets, the multiplicity of a

tuple in a GMR can hence be negative, allowing to treat

insertions and deletions uniformly. We write var(R) for

x; supp(R) for the finite set of all tuples with non-zero
multiplicity in R; t ∈ R to indicate t ∈ supp(R); and

|R| for |supp(R)|.
Fig. 2 illustrates the operations of GMR union (R +

S), minus (R−S), projection (πz R), natural join (R on
T ) and selection (σP (R)), which are defined similarly as

in relational algebra with multiset semantics. See [25,30]

for formal semantics. We stress that, as usual, if R and

T have disjoint schema then R on T is simply their

cartesian product.

A GMR R is positive if R(t) > 0 for all t ∈ supp(R).

A database over a set A of atoms is a function db that

maps every atom r(x) ∈ A to a positive GMR dbr(x)
over x. Given a database db over the atoms occurring

in query Q, the evaluation of Q over db, denoted Q(db),

is the GMR over y constructed in the expected way:

take the natural join of all GMRs in the database, do

a selection over the result w.r.t. each predicate, and

finally project on y. It is instructive to note that after

evaluation, each result tuple has an associated multi-

plicity that counts the number of derivations for the

tuple. In other words, the query language has built-in

support for COUNT aggregations. We note that, in their
full generality, GMRs can carry multiplicities that are

taken from an arbitrary algebraic semiring structure

(cf., [29]), which can be useful to describe the computa-

tion of more advanced aggregations over the result of

a GCQ [2]. To keep the notation and discussion simple
we fix the ring Z of integers throughout the paper, but

our results generalize to arbitrary semirings and their

associated aggregations.

Semijoins. IfΘ is a set of predicates then we write σΘR

for σ∧
θ∈Θ

R and R onΘ S for σΘ(R on S). If z ⊆ var(R)

or z ⊆ var(S) then πz(R onΘ S) is called a semijoin.

We write RnΘ S for the subGMR of R consisting of all

tuples that have a joining tuple in S:

RnΘ S ∈ T[var(R)]→ Z :

t 7→

{
R(t) if t ∈ πvar(R)(R onΘ S)

0 otherwise

Often, S will contain only a single tuple t with multi-

plicity 1. In that case we simply write RnΘ t.

R

x y z Z
1 2 2 2
2 4 6 3
1 2 3 3

S

u v Z
4 5 5
2 3 4
1 4 2

T

u v Z
4 5 −4
2 1 6

R on T

x y z u v Z
1 2 2 4 5 −8
1 2 2 2 1 12
2 4 6 4 5 −12
2 4 6 1 6 18
1 2 3 4 5 −12
1 2 3 2 1 18

πy(R)
y Z
2 5
4 3

S + T

u v Z
4 5 1
2 3 4
1 4 2
2 1 6

S − T
u v Z
4 5 9
2 3 4
1 4 5
2 1 −6

σy<u(R on S)
x y z u v Z
1 2 2 4 5 10
1 2 3 4 5 15

Fig. 2 Operations on GMRs

Updates. An update to a GMR R is simply a GMR

∆R over the same variables as R. Applying update

∆R to R yields the GMR R + ∆R. An update to a
database db is a collection u of (not necessarily positive)

GMRs, one GMR ur(x) for every atom r(x) of db, such

that dbr(x) + ur(x) is positive.1 We write db +u for the

database obtained by applying u atom-wise to db.

Computational Model. We focus on dynamic query

evaluation in main-memory. We assume a model of com-

putation where the space used by tuple values and inte-

gers, the time of arithmetic operations on integers, the

time of operations on tuples (such as projecting a tuple

on a subset of its variables, or taking the union of two

tuples) and the time of memory lookups are all O(1).

We further assume that hash tables have O(1) access

and update times while requiring linear space. While

it is well-known that real hash table access is O(1) ex-

pected time and updates are O(1) amortized, complexity

results that we establish for this simpler model can be

expected to translate to average (amortized) complexity

in real-life implementations [13].

A direct consequence of these assumptions is that,
using standard database implementation techniques,

every GMR R can be represented in our model by a data

structure that allows (1) enumeration of R with delay

O(1) (as defined in Section 4.1); (2) multiplicity lookups

R(t) in O(1) time given t; (3) single-tuple insertions
and deletions in O(1) time; while (4) having size that is

proportional to |R|. In addition we assume it possible to

sort GMRs by a given order on its tuples inO(|R| log |R|)
time, after which it allows enumeration in the given order

with O(1). Single-tuple insertions that keep the GMR

sorted become O(log |R|) in this case.

1 Note that, in this framework, value modifications inside
a tuple are modeled by deleting the tuple with the old value,
and then re-inserting the tuple, but now with the new value.
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4 General Dynamic Yannakakis

In this section we formulate GDyn, a dynamic version of

the Yannakakis algorithm [47], that focuses on the eval-

uation of GCQs. GDyn takes a non-standard approach

to dynamic query evaluation: instead of materializing

Q(db) and sub-joins of Q, GDyn builds a succinct, effi-

ciently updatable data structure that represents Q(db)

in the sense that from it we can enumerate Q(db). For-

mally, a data structure D supports enumeration of a set

E if there is a routine enum such that enum(D) out-

puts each element of E exactly once. Such enumeration

occurs with delay d if the time until the first element is

output; the time between any two consecutive elements;

and the time between the last element and the termi-

nation of enum(D), are all bounded by d. D supports

enumeration of a GMR R if it supports enumeration of

the set ER = {(t, R(t)) | t ∈ supp(R)}.
When evaluating a GCQ Q over a database db, we

will be interested in representing the elements of Q(db)

by means of a data structure Ddb, such that we can

enumerate Q(db) from Ddb. If, for every db, the delay to
enumerate Q(db) from Ddb is sublinear in |db| then we

say that the enumeration occurs with sublinear delay.

Similarly, if the delay is independent of |db| then we say

that the enumeration occurs with constant delay [38].

Note that this is sublinear/constant in data complex-

ity [42]: the delay may still depend on the size of the

query Q. This is reasonable since Q specifies the arity of

the query result, and a larger arity inherently implies a

longer delay between elements. Note that enumeration

with constant delay is what we typically obtain by mate-

rializing Q(db). For example, if we store the elements of

Q(db) in an array then enumerating Q(db) amounts to

scanning the array where each element access is O(1).

We start the development of GDyn by first giving

some intuition into Constant Delay Enumeration (hence-

forth: CDE) in Section 4.1. The algorithm itself is stated

in Section 4.2, while proofs of its correctness and anal-

ysis of its complexity is given in Section 4.3. Finally,
we specialize GDyn to the case where all θ-joins are

inequality joins in Section 4.4.

4.1 Intuition

In this section, we discuss how we can obtain CDE of

the result Q(db) of a GCQ Q. Of course, the simplest

way to obtain this, is simply to materialize Q(db). Unfor-

tunately, this requires memory proportional to |Q(db)|
which, depending on Q, can be of size polynomial in |db|.
We hence desire other data structures to represent Q(db)

using less space, while still allowing CDE. Let us build

some intuition on how this can be done by subsequently

considering three queries of increasing complexity:

Q1 = r(x, y) on s(y, z),

Q2 = s(y, z) on t(z, v) | v < y, and

Q3 = r(x, y) on s(y, z) on t(z, v) | v < y.

Throughout our discussion assume that the GMRs as-

signed to r(x, y), s(y, z), and t(z, v) by input database

db are R,S, and T , respectively.

It is instructive to start with the simple binary equi-

join query Q1 = r(x, y) on s(y, z) and analyze why

traditional join processing algorithms do not yield CDE.

Suppose that we evaluate Q1 using a simple in-memory

hash join with R as probe relation and S as build rela-

tion. Assume that the corresponding hash index of S
on y has already been computed. Concretely, this hash

index allows us to retrieve, for every y-tuple t, in O(1)

time a pointer to the GMR Sn t of all S-tuples that

join with t. Now observe that, when iterating over R
to probe the index, we may have to visit an unbounded

number of R-tuples that do not join with any S-tuple.

Consequently, the delay between consecutive outputs

may be as large as |R|. A similar analysis shows that

other join algorithms, such as the sort-merge join, do

not yield CDE.

How then can we obtain CDE for r(x, y) on s(y, z)?

Intuitively, if we can ensure to only iterate over those R-

tuples that have matching S-tuples, we trivially obtain

constant delay since then every probe will yield a new

output tuple. As such, the key is to first compute the

semijoin ρx,y = πx,y(R on S). We can then iterate over

the elements of ρx,y, probing S in each iteration to

generate the output with constant delay. Note that,
because ρx,y is a semijoin, the space needed to store

ρx,y is linear in |db|.
CDE for queries that feature θ-joins can be obtained

similarly. Consider Q2 = (s(y, z) on t(z, v) | y < v)

which is a combination of an equijoin on z and inequality

join on y < v. To obtain CDE for Q2, first compute

the semijoin ρy,z = πy,z(S(y, z) ony<v T (y, v)) which

consists of all tuples in S that have a matching tuple in

T . Assume for a moment that we have a more powerful

index structure I that allows, for any {y, z}-tuple s,

to enumerate T ny<v s with constant delay. We can

then obviously enumerate Q2(db) with constant delay

by iterating over s ∈ ρy,z, and for each such s, probe

I to produce the tuples t ∈ T ny<v s, outputting (s ∪
t, S(s) × T (t)) for each such s and t. Since T ny<v s

allows CDE and multiplicity lookups are O(1), the entire

procedure is CDE. The key question then, is how we can

build this more powerful index structure I. The solution

is to group T on z; subsequently sort each group in

descending order on v; and create a normal (hash-based)
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ρ{x,y}
x y #
2 3 36

ρ{y,z}
y z #
3 2 9
2 2 6
2 1 12

ρs = S
y↑z↑ #
3 2 3
2 2 2
3 1 8
2 1 4

ρt = T
z v↑ #
1 3 3
1 2 2
2 4 3
2 2 2

y < v

ρr = R
x y #
2 3 4
4 6 2
4 5 5

Iρ{y,z}
y
3
2

Iρt = J

y
1
2

= πx,y(ρ{y,z} on ρr)

= πy,z(ρs onz<v ρt)

Fig. 3 Illustration of query Q3.

index J then allows to find the group for each z value.

This now supports CDE of T ny<v s: first, use J to get

a pointer to the group with z-value s(z) in O(1) time,

and then enumerate this group with constant delay

and in decreasing order on v. Yield the current tuple t

that is being enumerated in this fashion, provided that

s(y) < t(v). As soon as s(y) ≥ t(v) we know that all

subsequent t will fail the inequality, and we can hence

terminate. The lower left of Fig. 3 illustrates S, T , ρy,z,

and J .

CDE for queries that join more than two relations

can be obtained similarly, but now by computing nested

semijoins. Fig. 3 illustrate how to obtain CDE for Q3.

Concretely, we first ensure CDE of the subquery Q2

of Q3 as already explained above: by computing the

semijoin ρy,z = πy,z(S(y, z) ony<v T (y, v)), and suitably

indexing T . Then CDE of Q3(db) is obtained by observ-

ing that Q3(db) ≡ R on Q2(db), where R on Q2(db) is

a binary equi-join, which can hence treated completely

analogous as Q1. Concretely, compute the nested semi-

join ρx,y = πx,y(R on ρy,z), and build a hash index of

ρy,z on y. (This index is depicted as Iρy,z in Fig. 3).

Enumeration of Q3(db) is done by iterating over the tu-

ples r ∈ ρx,y, and for each such tuple r, use Iρy,z to get

a pointer to ρy,z n r, which consists of all s ∈ ρy,z that

equi-join with r. Iterate over these s with constant delay,

and finally use the more advanced index on T to enu-

merate all tuples t ∈ T ny<v s. For each such r, s, and t,

we output (r ∪ s ∪ t, R(r)× S(s)× T (t)). By construc-

tion of ρx,y we are ensured that matching s will exists

for every r. Similarly, matching t exist for every s by

construction of ρy,z. Therefore, each tuple that we it-

erate over will produce a new output, and the entire

enumeration of Q(db) is CDE.

In conclusion. As the examples above illustrate, we

can obtain CDE for GCQs by computing (nested) semi-

joins, and suitably indexing both base relations and

semijoin results for enumeration. Because the only addi-

tional relations that we compute are obtained by semi-

joining existing relations, the size of all additional GMRs

that are stored is linear in the input db. Contrast this

to techniques that materialize subjoin results, whose

size may become polynomial in the database.

Updates. We finish this section by remarking that, in

the presence of updates, this approach is only valid if

we materialize and maintain all required semijoin re-

sults. To speed up the maintenance of semijoin results

under updates, it is sometimes beneficial to create ad-

ditional indexes that help in incremental computation
of the semijoins, as we illustrate next. Reconsider, Q3

as illustrated in Fig. 3. If we receive an update ∆T to

T then we need to correspondingly update ρy,z from

πy,z(S ony<v T ) to πy,z(S ony<v (T + ∆T )). To that

end, it suffices to compute ∆ρy,z = πy,z(S ony<v ∆T ),

and add this to ρy,z. Computing ∆ρy,z by means of a

nested loop join has Ω(|S| × |∆T |) complexity. We can

do better if we index S by sorting S lexicographically

on (z, y), in decreasing order. (This is actually how S

is depicted in Fig. 3.) ∆ρ′y,z can then be computed by

means of a hybrid form of sort-merge and index nested

loop join. First, group ∆T on z and, per group, sort

tuples in decreasing order on variable v. Create a hash

index on ∆T to be able to quickly find each group by a

given z value. Second, iterate over the tuples in S in the

given lexicographic order. For each z-group in S, find

the corresponding group in ∆T by passing the z-value

to the hash table. Let s be the first tuple in the S group.

Then iterate over the tuples of the ∆T group in decreas-

ing order on v, and sum up their multiplicities until s(y)

becomes larger than v. Add s to ∆ρy,z, with its original

multiplicity in S multiplied by the found sum (provided

that it is non-zero). Then consider the next tuple in the

S-group, and continue summing from the current tuple

in the ∆T group until s(y) becomes again larger than

v, and add the result tuple with the correct multiplicity.

Continue repeating this process for each tuple in the S
group, and for each group in S. Assuming that the index

on S already existed, then the total cost of computing

ρy,z in this way is O(|S|+ |∆T |+ |∆T | log |∆T |) since

we scan S and ∆T only once, need to sort ∆T , and

create a hash table for each group. This is much better

than the O(|S| × |∆T |) complexity of a nested loop.

4.2 The Algorithm

We now turn to the general formulation of the Dynamic

Yannakakis algorithm. As exemplified in Section 4.1,

GDyn obtains CDE by computing (nested) semijoins,

and indexing both these semijoins and base relations.
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{x, y}

(T1, N1)

{y, z}

s(y, z) t(z, v)

y < v

r(x, y)

{y, w}

(T2, N2)

{y, z, w}

r(x, y)

x < z

s(y, z, w)

{u}

t(u, v)

w < u

Fig. 4 Two example plans. The connex sets are indicated by
the shaded areas.

The order in which semijoins are computed, and how

they are indexed is recorded in a dynamic query plan,

which is introduced next.

Dynamic Query Plans. To simplify notation, we de-

note the set of all variables (resp. atoms, resp. predicates)

that occur in an object X (such as a query) by var(X)

(resp. at(X), resp. pred(X)). In particular, if X is itself

a set of variables, then var(X) = X. We extend this

notion uniformly to labeled trees. E.g., if n is a node

in tree T , then varT (n) denotes the set of variables oc-

curring in the label of n, and similarly for edges and

trees themselves. If T is clear from the context, we omit

subscripts from our notation.

Definition 1 A Dynamic Query Plan (or simply: plan)

is a tuple (T,N) where T is a binary generalized join

tree, and N is a sibling-closed connex subset of T . A

Generalized Join Tree (GJT) is a node-labeled and edge-

labeled directed tree T = (V,E) such that:

– Every leaf is labeled by an atom.

– Every interior node n is labeled by a hyperedge and
has at least one child c such that var(n) ⊆ var(c).
Such a child is called a guard of n.

– Whenever the same variable x occurs in the label of

two nodes m and n of T , then x occurs in the label

of each node on the unique path linking m and n.

This condition is called the connectedness condition.

– Every edge p → c from parent p to child c in T

is labeled by a set pred(p → c) of predicates. It is

required that for every predicate θ(z) ∈ pred(p→ c)

we have var(θ) = z ⊆ var(p) ∪ var(c).

T is binary if every node in T has at most two children.

A connex subset of T is a set N ⊆ V that includes the

root of T such that the subgraph of T induced by N is a

tree. N is sibling-closed if for every node n ∈ N with a

sibling m in T , m is also in N . The frontier of a connex

set N is the subset F ⊆ N consisting of those nodes in

N that are leaves in the subtree of T induced by N .

Fig. 4 shows two plans (T1, N1) and (T2, N2). The

set N1 contains all nodes of T1, and is therefore a sibling-

closed connex subset of T1. Its frontier is {r(x, y), s(y, z),

t(z, v)}. If we remove {y, z} from N1 the set is no longer

connex. If instead we remove r(x, y) the set is still

connex, but no longer sibling-closed. The set N2 is a

sibling-closed connex subset of T2, and its frontier is

{{y, z, w}, {u}}. Removing either {y, z, w} or {u} makes

N2 no longer sibling-closed.

Definition 2 Let T be a GJT and let N be a connex

subset of T . Assume that {|r1(x1), . . . , rn(xn)|} is the

multiset of atoms occurring as labels in the leaves of T .

Then the query associated to T is the full join

Q[T] = r1(x1) on · · · on rn(xn) |
∧

θ(z)∈pred(T )

θ(z),

and the query associated to (T,N) is the GCQQ[T,N] =

πvar(N)(Q[T]).

To illustrate, referring to Fig. 4, we haveQ[T1, N1] =

πx,y,z,v (r(x, y) on s(y, z) on t(z, v) | y < v), which is Q3

from Section 4.1.

The data structure. Following the intuition of Sec-

tion 4.1, the GJT T of a plan (T,N) specifies the semi-

join results that need be maintained and indexed, while

the connex set N drives the enumeration of query results.

We formalize this next. Because in this section we are

introducing GDyn for arbitrary GCQs (with arbitrary

join predicates θ), we first need to introduce general

notions of an index.

Definition 3 (Enumeration Index) LetR be a GMR,

θ a predicate, and y be a hyperedge. A datastructure I

that is of size linear in R and that allows, for any given
y-tuple t, enumeration of (Rnθ t) with delay O(f(|R|))
is called an enumeration index of R by (θ, y) with delay

f : N→ N.

For example, in Section 4.1 we have discussed how,

by means of grouping and sorting, we can obtain an

enumeration index of T (z, v) on (y < v, {y, z}) with

constant delay.

Definition 4 (Join Index) Let R be a GMR, θ be a

predicate, and y, z be hyperedges such that z ⊆ var(R)

or z ⊆ y. A datastructure I that is of size linear in R

and that allows, for any GMR S over y computation of

πz(R onθ S) in time O(g(|R|, |S|)) is called a join index

of R by (θ, y, z) with access time g : N2 → N.

For example, in Section 4.1 we have discussed how,

by means of grouping and sorting, we can obtain a join

index of R(y, z) by (y < v, {z, v}, {y, z}) whose access

time is O(|R|+ |S| log |S|).
For both enumeration and join indexes, the update

time is the time required to update the index to a

corresponding (enumeration, resp. join) index onR+∆R,

given update ∆R to R.
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Definition 5 Let (T,N) be a plan and let db be a

database over at(T ). The T -reduct (or semi-join reduc-

tion) of db is a collection ρ of GMRs, one GMR ρn for

each node n ∈ T , defined inductively as follows. Let

pred(n) denote the set of all predicates on the edges

from n to its children in T .

- if n = r(x) is an atom, then ρn = dbr(x)
- if n has a single child c, then ρn = πvar(n)σpred(n)ρc
- otherwise, n has two children c1 and c2. In this case

we have ρn = πvar(n)σpred(n) (ρc1 on ρc2). Note that,

because n has a guard child, this is actually a semijoin.
A T -reduct needs to be augmented by suitable index

structures to be used for both enumeration and mainte-

nance under updates. Concretely for each node n with

parent p in T , the following indexes are created:

- If n belongs to N , then we store an enumeration index

Pn on ρn by (pred(p→ n), var(p)).

- If n is a node with a sibling m, then we store a join

index Sn on ρn by (pred(p), var(m), var(p)).

The T -reduct ρ together with the collection of indexes

is called a (T,N)-representation for db, or (T,N)-rep

for short.

Reconsider the plan (T1, N1) from Fig. 4. Fig. 3

depicts an example (T1, N1)-representation ρ for the

database db composed of the GMRs shown at the leaves

of the tree. Iρy,z and Iρt illustrate the enumeration
indexes; the join indexes are not illustrated.

It is important to observe that, since a T -reduct

constructs only semijoins of database GMRs, and pro-

jections thereof, each |ρn| is linear in the size of db.

Consequently, the indexes are also of size linear in db

and hence the entire (T,N)-rep is linear in db.

Proposition 1 |ρn| ≤ maxr(x)∈at(T ) |dbr(x)|, for every

n ∈ T .

Given these definitions, the enumeration and main-

tenance algorithms that form GDyn are shown in Algo-

rithm 1. They operate as follows.

Enumeration. To enumerate from a (T,N)-rep we it-
erate over the reductions ρn with n ∈ N in a nested

fashion, starting at the root and proceeding top-down.

When n is the root, we iterate over all tuples in ρn. For

every such tuple t, we iterate only over the tuples in the

children c of n that are compatible with t (i.e., tuples

in ρc that join with t and satisfiy pred(n → c)). Note

that such tuples can be enumerated efficiently thanks

to the enumeration index Pc. This procedure continues

until we reach nodes in the frontier of N at which time

the output tuple can be constructed. The pseudocode

is given by the routine enum in Algorithm 1.

Update processing. To maintain a (T,N)-rep under

update u it suffices to traverse the nodes of T in a

Algorithm 1 GDyn: General Dynamic Yannakakis

1: function enumT,N (ρ)
2: for each t ∈ ρroot(T ) do enumT,N (root(T ), t, ρ)

3: function enumT,N (n, t, ρ)
4: if n is in the frontier of N then yield (t, ρn(t))
5: else if n has one child c then
6: for each s ∈ ρcnpred(n→c) t do enumT,N (c, s, ρ)
7: else n has two children c1 and c2
8: for each t1 ∈ ρc1 npred(n→c1) t do
9: for each t2 ∈ ρc2 npred(n→c2) t do

10: for each (s1, µ) ∈ enumT,N (c1, t1, ρ) do

11: for each (s2, ν) ∈ enumT,N (c2, t2, ρ) do
12: yield (s1 ∪ s2, µ× ν)

13: procedure updateT,N (ρ, u)
14: for each n ∈ leafs(T ) labeled by r(x) do

15: ∆n ← ur(x)

16: for each n ∈ nodes(T ) \ leafs(T ) do

17: ∆n ← empty GMR over var(n)

18: for each n ∈ nodes(T ), traversed bottom-up do

19: ρn+ = ∆n
20: if n has a parent p and a sibling m then
21: ∆p+ = πvar(p)

(
ρm onpred(p) ∆n

)
22: else if n has parent p then

23: ∆p+ = πvar(p) σpred(p)∆n

bottom-up fashion. At each node n we have to com-

pute the update ∆n to apply to ρn and its associated

indexes. For leaf nodes, this update is given by the up-

date u itself. For interior nodes, ∆n can be computed

from the update and the original reduct of its children.
update in Algorithm 1 gives the pseudocode. Here, line

21 is implemented by using the join index Sm on ρm
by (pred(p), var(n), var(p)). Line 23 can be implemented

by a straightforward hash-based aggregation. As a side

effect of modifying ρ the associated indexes are also

updated (not shown).

4.3 Correctness and Complexity

We next prove correctness of the enumeration and up-

date procedures, and bound their complexity. We start

with enumeration. Throughout this section, let (T,N)

be a plan, let db be a database over at(T ), and assume

that we have (T,N)-rep of db with T -reduct ρ. Given

a node n ∈ T we denote the subtree of T rooted at n

by Tn, and the subset of all nodes of N that are in Tn
by Nn. The following lemma relates the GMRs at each

node n of a T -reduct to the query induced by the sub-

tree of T at n. Here, we write Q[Tn, n] as a shorthand
for Q[Tn, {n}]. Recall from Definition 2 that this is the

query that joins all atoms in Tn (w.r.t. all predicates in

Tn), and subsequently projects on var(n).

Lemma 1 ρn = Q[Tn, n](db), for every node n ∈ T .
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The proof by induction is detailed in Appendix A.

To show correctness of enumeration, we need the fol-

lowing additional lemma regarding the subroutine of

Algorithm 1 (Line 3). The proof is again by induction

and detailed in Appendix A.

Lemma 2 For every node n ∈ N and every tuple t in

ρn, enumT,N (n, t, ρ) enumerates Q[Tn, Nn](db)n t.

Finally, we require the following insights, also proved

in Appendix A.

Lemma 3 1. Q(db) is a positive GMR, for any GCQ

Q and any database db.

2. If R is a positive GMR over x and y ⊆ x, then

t[y] ∈ πyR for every tuple t ∈ R.

We note that item (2) is not true for when R has

both positive and negative multiplicities, since multiplic-

ities of opposite sign could cancel each other out when

projecting, thereby removing t[y] from πy(R).

Proposition 2 If ρ is a T -reduct of db then enumT,N (ρ)

enumerates Q[T,N](db).

Proof. Let r be the root of T . By Lemma 1 we have ρr =

Q[Tr, r](db) = Q[T, r](db) = πvar(r)Q[T](db). Fur-

thermore, πvar(r)Q[T](db) = πvar(r)πvar(N)Q[T](db)

since var(r) ⊆ var(N) as r ∈ N . Therefore, ρr =

πvar(r)πvar(N)Q[T](db) = πvar(r)Q[T,N](db). We con-

clude that ρr is a projection of Q[T,N](db), and hence

by Lemma 3 that every tuple in Q[T,N](db) has a

compatible tuple in ρr. As such, Q[T,N](db) equals

the disjoint union
⋃

t∈ρr Q[T,N](db)n t. By Lemma 2,

this is exactly what enumT,N (ρ) enumerates.

We now analyze the complexity of enumT,N . First,

observe that by definition of T -reducts, it is the case that

for every node n and every t ∈ ρn there exists a tuple

in ρcnpred(n→c) t. Hence, every tuple that we iterate

over will eventually produce a new output tuple. This

ensures that we do not risk wasting time in iterating over
tuples that in the end yield no output. As such, the time

needed for enumT,N (ρ) to produce a single new output

is dominated by the time taken to iterate over the tuples

in ρnnpred(p→n) t, where p is the parent of n. Since we

can use the enumeration index Pn to do so efficiently,

the efficiency of the entire enumeration will depend on

the delay incurred by accessing the enumeration indexes.

The following proposition formalizes this insight.

Proposition 3 Assume that every enumeration index

has enumeration delay f , where f is a monotone func-

tion. Then, using these indexes, enumT,N (ρ) enumer-

ates Q[T,N](db) with delay O(|N |f(M)) where M =

maxr(x)∈at(T ) |dbr(x)|. Thus, the total time required to

execute enumT,N (ρ) is O(|Q[T,N](db)||N |f(M)).

Proof. enumT,N (ρ) correctly enumerates Q[T,N](db)

by Proposition 2. As such, it suffices to show that

that the delay satisfies the given bounds. To that end,

we show that for every n ∈ N and t ∈ ρn, the call

enumT,N (n, t, ρ) produces outputs with delayO(|Nn|f(M)).

We proceed by induction on |Nn|. If |Nn| = 1 then n

is in the frontier of N and the delay is clearly con-

stant as the algorithm will only yield (t, ρn(t)) (line 4).

Now assume that |Nn| > 1. Then n is not in the fron-

tier of N . If n has a single child c, then line 6 is exe-

cuted, and the enumeration index Pc allows us to it-
erate over ρcnpred(n) t with delay O(f(|ρc|)), which

is O(f(M)) by Proposition 1. For each element s of

this enumeration, the algorithm calls enumT,N (c, s, ρ),

which by induction hypothesis produces output ele-

ments with delay O(|Nc|f(M)). Hence, the maximum

delay between two outputs is O
(
f(|M |) + |Nc|f(M)

)
=

O
(
(|Nc| + 1)f(M)

)
= O

(
|Nn|f(M)

)
. For the case in

which n has two children c1 and c2, lines 7–12 are exe-

cuted. By similar reasoning it is easy to show that the

maximum delay between outputs is

O(f(|M |)) +O(|Nc1 |f(M))

+O(f(|M |)) +O(|Nc2 |f(M))

which is bounded by O((|Nc1 | + |Nc2 | + 2)f(M)) =

O(2|Nn|f(M)) = O(|Nn|f(M)).

In particular, if all enumeration indexes are with

constant delay (i.e., f(M) = O(1)), then GDyn enu-

merates Q[T,N](db) with delay O(|N |), which is also

constant in data complexity.

Update processing. We next turn our attention to

the update procedure update of Algorithm 1. Since

this is straightforward to prove correct, we focus on its

complexity. Since update uses the join indexes available

in the (T,N)-rep during its execution we will hence

bound the running time of update in terms of the join

index access and update times. We first require the

following insight, which bounds the running time under

the condition that the GMRs computed by update have

a certain bounded size. The proof is in Appendix A.

Proposition 4 Assume that all join indexes in the

(T,N)-rep have access time g, and that all indexes (join

and enumeration) have update time h, where g and h

are monotone functions. Further assume that, during

the entire execution of update, K and U bound the size

of ρn, resp. ∆n, for all n. Then, updateT,N (ρ, u) runs

in time O (|T | · (U + h(K,U) + g(K,U))).

We next bound the size of ρn and ∆n throughout

the execution of update.
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Proposition 5 During the entire execution of update

we have |ρn| ≤ M and |∆n| ≤ 4M for every n ∈ T ,

where M = maxr(x)∈at(T ) |dbr(x)|+ |ur(x)|.

Proof. We first establish the bound on |ρn| during exe-

cution. Before execution, ρ is a T -reduct of db. Hence,

by Proposition 1, |ρn| ≤ maxr(x) |dbr(x)| ≤ M before

execution starts. Now note that the only line that up-

dates ρn is line 19, executed while visiting node n in the

bottom-up traversal of T . This line is only applied once

for every node n. Hence, since at the end of execution

the collection of modified GMRs ρm for m ∈ N form a T -

reduct of db + u, we know that after executing line 19, ρn
contains exactly the content for the T -reduct of db + u.

Hence, by Proposition 1, |ρn| ≤ maxr(x) |(db + u)r(x)| ≤
maxr(x) |dbr(x)|+ |ur(x)| = M .

We are now ready to establish the bounds on |∆n|.
Clearly, |∆n| ≤M during the initialization of ∆n done

in lines 14–17. Now consider that we are executing the

bottom-up traversal of T in lines 18–23 and that n is

the currently visited node. We have already established

that both before and after applying the update ∆n to

ρn we have 19 |ρn| ≤M . This implies that |∆n| ≤ 2M :

in the worst case ∆n deletes all existing tuples in ρn
and adds M new ones. To see that |∆p| ≤ 4M after
executing line 21 we consider two cases. If n is vis-

ited before m in the bottom-up traversal of T , then

∆p is necessarily empty before executing line 21 and

hence |∆p| = |πvar(p)(ρm onpred(p) ∆n)|. Because, by def-

inition of GJTs, p has either m or n as a guard, it

follows that every tuple in πvar(p)(ρm onpred(p) ∆n) is

either a projected version of some tuple in ρm, or a

projected version of some tuple in ∆n. As such, |∆p| ≤
max (|ρm|, |∆n|) = 2M . If, on the other hand, m is

visited before n in the bottom-up traversal of T , then

∆p necessarily contains the result computed during ex-

ecuting line 21 while visiting m. By the reasoning of

the previous case, |∆p| ≤ 2M before executing line 21

while visiting n. Furthermore, by the same reasoning

we know that |πvar(p)(ρm onpred(p) ∆n)| ≤ 2M . Hence,

at most 2M new tuples can be added to ∆p. As such,

|∆p| ≤ 4M after executing line 21 when visiting n. To

see that also |∆p| ≤ 4M after executing line 23 when

visiting n, it suffices to observe that ∆p starts out empty,

and |∆n| ≤ 2M (as already established).

Combining Propositions 4 and 5 we obtain:

Theorem 1 Assume that all join indexes in the (T,N)-

rep have access time g, and that all indexes (join and

enumeration) have update time h, where g and h are

monotone functions. updateT,N (ρ, u) runs in time

O (|T | · (4M + h(M, 4M) + g(M, 4M))) .

where M = maxr(x)∈at(T ) |dbr(x)|+ |ur(x)|.

4.4 IEDyn

GDyn provides a general framework for dynamic query

processing in the presence of arbitrary θ-joins. In this sec-

tion we instantiate GDyn to the specific setting where

queries mention only inequality predicates (<,≤, >,≥).2

We refer to this instantiation as IEDyn. Concretely,

IEDyn uses the following data structures for its enu-

meration and join indexes. Let R be a GMR over x, θ

be a conjunction of inequalities, and y, z be hyperedges

such that z ⊆ x or z ⊆ y. The data structure underly-

ing the enumeration and join index of R by (θ, y) resp.

(θ, y, z) depends on the number of inequalities in θ.

(1) No inequality. In this case θ is hence equivalent

to true, and the enumeration and join index hence only

have to deal with equijoins. Concretely, the enumeration

index of R on (θ, y) is obtained by creating a normal

(hash-based) index of R on the variables that x and y

have in common. Then, for any y-tuple t, Rn t can be

enumerated with constant delay by first using the hash

index to find the corresponding (x ∩ y)-group of R, and

enumerating the elements of that group.

To obtain the join index by (θ, y, z) we discern two

cases. If z ⊆ y, then the same index as for enumeration

is re-used except that in addition, for each (x∩y)-group

of R, we cache the sum of all multiplicities in that

group. This allows to evaluate πz(R on S) in time O(|S|)
independently of |R|), as follows. Initialize an empty

GMR to hold the join result. Group S on the variables

in x ∩ y in O(|S|) time (using hashing). For each group

in S, use the index on R to locate the corresponding

group of R in O(1) time, and retrieve the cached sum-

of-multiplicities µ of that group. Then iterate over the

tuples s of the S-group one by one, and add S(s)×µ to

the multiplicity of s[z] in the result GMR. (If s[z] has

not been added to the result before, this multiplicity is

zero.) Repeat this process for all tuples in the S-group,

and for every group in S. Since we only scan |S| once,

the total time is O(|S|).
If z ⊆ x, no special data structure is required: we

can compute πz(R on S) in O(|R| + |S|) time by first

computing πx∩yS in O(|S|) time, and then repeating

the above process with the roles of R and S reversed.

We conclude that in this case the enumeration time is
O(1), the access time is O(|S|) if z ⊆ x and O(|R|+ |S|)
otherwise, and the update time is O(|∆R|).

(2) Single inequality. Assume that θ = x > y with

x ∈ x and y ∈ y (the other cases x < y, x ≤ y, x ≥ y

are similar). Then we build a hash-based index I of R

on x ∩ y, sorting each group in descending order on x.

2 Note that such queries may also contain equijoins by
sharing variables between atoms.
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In Section 4.1 we have illustrated, by means of example,

that this realizes an enumeration index by (θ, y) with

constant delay. At the end of the same section we have

also illustrated that, when z ⊆ x, this also realizes a

join index of R by (θ, y, z) with access time O(|R| +
|S|+ |S| log |S|) = O(|R|+ |S| log |S|).3 When z ⊆ x the

same procedure, but using S for the outer loop, and R

for the inner loop, can be used to realize a join index of

R by (θ, y, z) with access time O(|R|+ |S| log |S|).
Note that, because we need to keep data sorted the

update time of these indexes is O
(
|∆R| log(|R|+|∆R|)

)
.

We conclude that in this case the enumeration time

is O(1), the access time is O(|R|+ |S| log |S|), and the

update time O
(
|∆R| log(|R|+ |∆R|)

)
.

(3) Multiple inequalities. Assume that θ = x1 >

y1 ∧ x2 > y2 ∧ · · · ∧ xk > yk with x1, . . . , xk ∈ x and

y1, . . . , yk ∈ y. (The reasoning where some of the >

are replaced by < is completely analogous.) Then, as

with the case with single inequalities, we build a hash-

based index I of R on x ∩ y but now sort each group

lexicographically on (x1, . . . , xk) (each xi in descending

order). In addition, for each group and each i (1 ≤ i ≤ k)

we record the smallest xi-value present in the group.

The fact that we have multiple inequalities com-

plicates matters, in the sense that enumeration delay

becomes logarithmic instead of constant. We can see

this as follows. To enumerate Rnθ t given y-tuple t

we first use I to obtain a pointer to Rn t[x ∩ y] in

O(1) time. Initialize (m1, . . . ,mk) such that mi is the
smallest xi-value in the group. Then start enumerating

Rn t[x ∩ y] with constant delay and in decreasing lex-

icographic order. Yield the current pair (s, µ) that is

being enumerated, provided that s[xi] > t[yi] for all i.
In contrast to the case where there is a single inequality,

however, we cannot deduce that all subsequent s will
fail θ we find that s[xi] ≤ t[yi] for some i. The solution

then is to find the next tuple in the group that occurs

after s in sorted order, but is larger than t. Concretely,

let i be the smallest index such that s(xi) ≤ t(yi) yet

s(xj) > t(xj) for all j < i. Let s′ be the tuple obtained

from s by setting s(xj) := mj for all j ≥ i. Then, using

binary search, find the next tuple that lexicographically

larger or equal than s′, and re-continue enumeration

from there. This binary search takes O(log |R|) time,

which causes the logarithmic delay.

Having multiple inequalities also complicates the

update processing, since the sorted order no longer can

be exploited to speed up join computation. In this case,

therefore, we simply do a nested loop join per group,

3 Strictly speaking, we described in Section that R needs
to be sorted lexicographically, first on x ∩ y, and then on x.
The grouping + sorting of the enumeration index obtains the
same result.

which yields a total access time ofO(|R|×|S|). Designing

an join index with better access time is a interesting

avenue for future work.

We conclude that in this case the enumeration time

is O(log |R|), the access time is O(|R| × |S|), and the

update time is O
(
|∆R| log(|R|+ |∆R|)

)
.

Complexity of IEDyn. By plugging in the above-

mentioned delay into Proposition 3 and the above-

mentioned access time and update time into Corollary 1,

we obtain the following complexity of IEDyn.

Theorem 2 Assume that (T,N) is a plan in which

all predicates are inequalities and let all enumeration

and join indexes be as described above. Then enum

enumerates with delay O(|N | log(maxr(x) |dbr(x)|)) and

update processes updates in time O(|T |M2) where M =

maxr(x)∈at(T ) |dbr(x)| + |ur(x)|.4 If T is such that each

edge is labeled by at most one predicate, then the enumer-

ation delay is O(|N |) and update time is O(|T |M logM).

If T has no inequalities, the update time is O(|T |M).

A simple GJT is a GJT without predicates where

var(p) ⊆ var(n) for every node n with parent p. In a

simple GJT every child is hence a guard of its parent.

For simple GJTs, the update processing time is optimal,

in the following sense.

Theorem 3 If T is simple, then update processes up-

dates in time O(|T |maxr(x) |ur(x)|), which is indepen-

dent of |db|.

Proof. Using the fact that every node is a guard of its
parent, it is straightforward to prove by induction on

the height of a node n in T (defined as the length of

the shortest path from n to a leaf in T ) that |∆ρn| ≤
maxr(x) |ur(x)|, for each n. Since T does not contain

any predicates, all join indexes that are created are as
described in the paragraph “(1) No inequality” above.

In particular, since every node is guard of its parent, we

have that for every join index Sm by (pred(p), pred(n),

var(p)) that is created we have var(p) ⊆ pred(m). For

this particular case, the access time to execute the semi-

join πvar(p)(ρm on ∆n) is O(|∆|n) = O(maxr(x) |ur(x)|).
By now plugging in this access time and the linear index

update time into Proposition 4 the result follows.

In [8], Berkholz, Keppeler, and Schweikardt show

that, unless the Online Matrix-Vector Multiplication

conjecture [24] is false, the class of conjunctive queries

that allow both (1) constant-delay enumeration of query

4 In the conference version of this paper [26] there was an
incorrect claim: we stated that updates could be processed in
time O(M · log(M)) in the general case of multiple inequalities.
We then found a bug in our proof and we currently do not
know if this bound can be achieved.
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results (in data complexity) and (2) update processing

time that is linear in |u| (again in data complexity)

for every update u, is exactly the class of so-called q-

hierarchical queries. While we forego a formal definition

of this class, we show in [25] that a CQ Q is q-hierarchical

if, and only if, there exists a plan (T,N) for Q such that

T is simple. Since, by the results above, GDyn, has both

constant-delay enumeration and update time O(|u|) (in

data complexity) for exactly these queries, GDyn hence

meets the theoretical lower bound.

5 Computing Query Plans

We say that (T,N) is a plan for GCQ Q, or that Q has

plan (T,N), if Q and Q[T,N] are the same query, up
to reordering of atoms and predicates, i.e., if #at(Q) =

#at(T ), pred(Q) = pred(T ), and out(Q) = var(N). Here,

#at(X) denotes the multi-set of atoms occurring in
object X.

By the results of Section 4, it follows that we can

dynamically process a given GCQ Q by first computing

a plan for Q, and subsequently applying GDyn on that

plan. In this section we show how to compute a plan

for Q by describing two algorithms.

1. The first algorithm computes a GJT pair for Q. Here,

a GJT pair is a pair (T ′, N ′) defined exactly like a

query plan, except that T ′ need not be binary, and

N ′ need not be sibling-closed. A query plan is hence a

particular kind of GJT pair. We call (T ′, N ′) a GJT

pair for Q if #at(Q) = #at(T ′), pred(Q) = pred(T ′),

and out(Q) = var(N ′).

2. The second algorithm transforms this GJT pair into

an equivalent query plan. Here, two GJT pairs (T,N)

and (T ′, N ′) are equivalent if #at(T ) = #at(T ′),

pred(T ) = pred(T ′), and var(N) = var(N ′).

Clearly, the plan resulting from the composition of the

two algorithms must be a plan for Q.

Before describing these two algorithms, it is impor-

tant to emphasize that there are GCQs for which no GJT

pair exists (and, consequently, for which no query plans

exists). We give some examples in Example 2 below.

In particular, for full conjunctive queries (i.e., GCQs

without θ-joins and projections), the results of [25] im-

ply that a GJT pair exists for a full CQ Q if, and only

if, Q is acyclic, a well-studied class of queries [1, 47].

Similarly, the results imply that for conjunctive queries

(with projections, but still without θ-joins) a GJT pair

exists if an only if the query is free-connex acyclic, an-

other well-studied class [6]. The existing definitions of

acyclicity and free-connex acyclicity are given for CQs

only. Given the previous discussion, we extend these

notions to GCQs as follows.

Definition 6 A GCQ Q is free-connex acyclic if it has

a GJT pair. It is acyclic if full(Q) has a GJT pair. A

GCQ that is not acyclic is cyclic.

In particular, every full GCQ that is acylic is also

free-connex acyclic. Also note that, since out(full(Q)) =

var(Q), a GJT pair will exist for full(Q) if an only if there

exists a GJT T for Q, i.e., a GJT with #at(Q) = #at(T )

and pred(Q) = pred(T ). Indeed, if T is a GCQ for Q then

(T,N) with N the set of all nodes in T , is a GJT pair for

Q: clearly N is connex and var(N) = var(T ) = out(Q).

For this reason, free-connex acyclicity is a stronger

requirement than acyclicity: acyclicity only requires

that a GJT for Q exists while free-connex acyclicity

requires in addition that there exists a connex subset

with out(Q) = var(N).

Example 2 The trees T1 and T2 depicted in Fig. 4 are

GJTs for the full GCQs

Q1 =
(
r(x, y) on s(y, z) on t(z, v) | y < v

)
, and

Q2 =
(
r(x, y) on s(y, z, w) on t(u, v) | x < z ∧ w < u

)
,

respectively. These queries are hence acyclic. In contrast,

r(x, y) on s(y, z) on t(x, z) (also known as the triangle
query) is the prototypical cyclic join query.

Let Q′2 = πy,z,w,u(Q2). Q′2 is free-connex acyclic

since the pair (T2, N2) of Fig. 4 is a GJT pair for Q2. By

contrast, there is no GJT pair for Q′1 = πy,z(Q1) that

contains tree T1. Indeed, observe that any connex set of
T1 must include the root, which includes x 6∈ out(Q′1).

Finally, it can be verified that there is no GJT pair for

πx,v(Q1); this query is hence not free-connex acyclic.

Given that plans only exist for free-connex acyclic

queries, it is desirable to be able to check free-connex

acyclicity. In this respect, we develop an algorithm in

Section 5.1 that checks whether Q is acyclic and free-

connex acyclicity, and if so, computes a GJT pair for

Q. This algorithm hence realizes step (1) above. Subse-

quently, step (2) above is realized in Section 5.2 where

we discuss how to transform GJT pairs into equivalent

query plans.

5.1 Computing GJT pairs

The canonical algorithm for checking acyclicity of nor-

mal conjunctive queries is the GYO algorithm [1]. The

algorithm described in this section is a generalisation of

the GYO algorithm that checks free-connex acyclicity

in addition to normal acyclicity and deals with GCQs

featuring θ-join predicates instead of CQs that have

equality joins only. We first recall the classical GYO

algorithm and then formulate its extension.
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5.1.1 Classical GYO

The GYO algorithm operates on hypergraphs. A hyper-

graph H is a set of non-empty hyperedges. Recall from

Section 3 that a hyperedge is just a finite set of variables.

Every GCQ is associated to a hypergraph as follows.

Definition 7 Let Q be a GCQ. The hypergraph of Q,

denoted hyp(Q), is the hypergraph

hyp(Q) = {x | r(x) is an atom of Q with x 6= ∅}.

The GYO algorithm checks acyclicity of a normal

conjunctive query Q by constructing hyp(Q) and repeat-

edly removing ears from this hypergraph. If ears can

be removed until only the empty hypergraph remains,

then the query is acyclic; otherwise it is cyclic.

An ear in a hypergraph H is a hyperedge e for which

we can divide its variables into two groups: (1) those

that appear exclusively in e, and (2) those that are

contained in another hyperedge ` of H. A variable that
appears exclusively in a single hyperedge is also called

an isolated variable. Thus, ear removal corresponds to

executing the following two reduction operations.

– Remove isolated variables: select a hyperedge e in H

and remove isolated variables from it; if e becomes

empty, remove e it altogether from H.

– Subset elimination: remove hyperedge e from H if

there exists another hyperedge ` for which e ⊆ `.

The GYO reduction of a hypergraph is the hypergraph

that is obtained by executing these operations until no

further operation is applicable. The following result is

standard; see e.g., [1] for a proof.

Proposition 6 A CQ Q is acyclic if and only if the

GYO-reduction of hyp(Q) is the empty hypergraph.

5.1.2 GYO-reduction for GCQs

In order to extend the GYO-reduction to check free-

connex acyclicity (not simply acyclicity) of GCQs (not

simply standard CQs), we will: (1) Redefine the notion

of being an ear to take into account the predicates;

and (2) transform the GYO-reduction into a two-stage

procedure. The first stage allows to check that a connex

set with exactly out(Q) can exist while the first and

second stage combined check that the query is acyclic.

Our algorithm operates on hypergraph triplets in-
stead of hypergraphs, which are defined as follows.

Definition 8 A hypergraph triplet is a triple

H = (hyp(H), out(H), pred(H))

with hyp(H) a hypergraph, out(H) a hyperedge, and

pred(H) a set of predicates.

Intuitively, the variables in out(H) will correspond to

the output variables of a query and the set pred(H) will

contain predicates that need to be taken into account

when removing ears. Every GCQ is therefore naturally

associated to a hypergraph triplet as follows.

Definition 9 The hypergraph triplet of a GCQ Q, de-

noted H(Q), is the triplet (hyp(Q), out(Q), pred(Q)).

In order to extend the notion of an ear, we require

the following definitions. Let H be a hypergraph triplet.

Variables that occur in out(H) or in at least two hyper-

edges in hyp(H) are called equijoin variables of H. We

denote the set of all equijoin variables of H by jv(H) and

abbreviate jvH(e) = e∩ jv(H). A variable x is isolated in
H if it is not an equijoin variable and is not mentioned

in any predicate, i.e., if x 6∈ jv(H) and x 6∈ var(pred(H)).

We denote the set of isolated variables of H by isol(H)

and abbreviate isolH(e) = e ∩ isol(H). The extended

variables of hyperedge e in H, denoted extH(e) is the set
of all variables of predicates that mention some variable

in e, except the variables in e themselves:

extH(e) =
⋃
{var(θ) | θ ∈ pred(H), var(θ) ∩ e 6= ∅} \ e.

Finally, a hyperedge e is a conditional subset of hy-

peredge ` w.r.t. H, denoted evH `, if jvH(e) ⊆ ` and

extH(e \ `) ⊆ `. We omit subscripts from our notation if

the triplet is clear from the context.

Example 3 In Fig. 5 we depict several hypergraph triplets.

There, hyperedges in H are depicted by colored regions

and variables in out(H) are underlined. We use dashed

lines to connect variables that appear together in a

predicate. So, in H1, we have predicates θ1, θ2 with

var(θ1) = {t, v} and var(θ2) = {x, y}. Now consider

triplet H1 in particular. It is the hypergraph triplet

H(Q) for the following GCQ Q:

Q = πt,u,z,w(r1(s, t, u) on r2(t, u) on r3(u,w, x) on
r4(s, v) on r5(w, z, y) | t < v ∧ x < y).

Moreover, jv(H1) = {s, t, u, w, z} and isol(H1) = ∅. Fur-
thermore, extH1

({v}) = {t} since θ1 = t < v shares

variables with {v}. Finally jvH1
({s, v}) = {s} ⊆ {s, t, u}

and extH1({s, v}\{s, t, u}) = extH1({v}) = {t} ⊆ {s, t, u}.
Therefore, {s, v}vH1

{s, t, u}. Similarly, {t, u}vH1
{s, t, u}.

We define ears in our context as follows.

Definition 10 A hyperedge e is an ear in a hypergraph

triplet H if e ∈ hyp(H) and either

1. we can divide its variables into two: (a) those that

are isolated and (b) those that form a conditional

subset of another hyperedge ` ∈ hyp(H) \ {e}; or
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Fig. 5 Illustration of GYO-reduction for GCQs. Colored regions depict hyperedges. Variables in out are underlined. Variables
occurring in the same predicate are connected by dashed lines.

2. e consists only of non-join variables, i.e., jv(e) = ∅
and ext(e) = ∅.

Note that case (2) allows for θ ∈ pred(H) with

var(θ) ⊆ e. We call predicates that are covered by a

hyperedge in this sense filters because they correspond
to filtering a single GMR instead of θ-joining two GMRs.

If, in case (2), there is no filter θ with var(θ) ⊆ e, then

e = isolH(e). Similar to the classical GYO reduction, we

can view ear removal as a rewriting process on triplets,

where we consider the following reduction operations.

- (ISO) Remove isolated variables: select a hyperedge
e ∈ hyp(H) and remove a non-empty set X ⊆ isolH(e)

from it. If e becomes empty, remove it from hyp(H).

- (CSE) Conditional subset elimination: remove hyper-

edge e from hyp(H) if it is a conditional subset of

another hyperedge f in hyp(H). Also update pred(H)

by removing all predicates θ with var(θ) ∩ (e \ f) 6= ∅.
- (FLT) Filter elimination: select e ∈ hyp(H) and a

non-empty subset of predicates Θ ⊆ pred(H) with

var(Θ) ⊆ e. Remove all predicates in Θ from pred(H).

We write H I to denote that triplet I is obtained

from triplet H by applying a single such operation, and

H ∗ I to denote that I is obtained by a sequence of

zero or more of such operations.

Example 4 For the hypergraph triplets illustrated in

Fig. 5 we haveH1 H2 H3 H4 andH5 H6 H7

 H8 H9 H10 H11. For each reduction, it is il-

lustrated in the figure which set of isolated variables is

removed, or which conditional subset is removed.

We write H↓ to denote H is in normal form, i.e.,

that no operation is applicable on triplet H. Note that,

because each operation removes at least one variable,

hyperedge, or predicate, we will always reach a normal

form after a finite number of operations. Furthermore,

while multiple different reduction steps may be applica-

ble on a given triplet H, the order in which we apply

them does not matter:

Proposition 7 (Confluence) Whenever H ∗ I1 and

H ∗ I2, there exists J such that I1 ∗ J and I2 ∗ J .

Because the proof is technical but not overly en-

lightning, we defer it to Appendix B.1. A direct con-

sequence is that normal forms are unique: if H ∗ I1↓
and H ∗ I2↓ then I1 = I2.

Let H be a triplet. The residual of H, denoted H̃, is

the triplet (hyp(H), ∅, pred(H)), i.e., the triplet where

out(H) is set to ∅. A triplet is empty if it equals (∅, ∅, ∅).
Our main result in this section states that to check

whether a GCQ Q is free-connex acyclic it suffices to
start from H(Q) and do a two stage reduction: the first

from H(Q) until a normal form I↓ is reached, and the

second from the residual of I↓, until another normal

form J is reached.5

Theorem 4 Let Q be a GCQ. Assume H(Q) ∗ I ↓
and Ĩ ∗ J↓. Then the following hold.

1. Q is acyclic if, and only if, J is the empty triplet.

2. Q is free-connex acyclic if, and only if, J is the

empty triplet and var(hyp(I)) = out(Q).

3. For every GJT T of Q and every connex subset N

of T it holds that var(hyp(I)) ⊆ var(N).

We devote Section 5.1.3 to the proof.

Example 5 Fig. 5 illustrates the two-stage sequence of

reductions starting from H(Q) with Q the GCQ of

5 Note that because we set out(I) = ∅ on the residual, new
variables may become isolated and therefore more reductions
steps may be possible on the normal form of I.
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Example 3. Note that H(Q) = H1 and H5 is the residual

of H4. Because we end with the empty triplet, Q is

acyclic but not free-connex since out(Q) ( var(H4).

Theorem 4 gives us a decision procedure for checking

free-connex acyclicity of GCQ Q. From its proof in

Section 5.1.3, we can actually derive an algorithm for

constructing a GJT pair for Q. At its essence, this

algorithm starts with the set of atoms appearing in Q,

and subsequently uses the sequence of reduction steps

from Theorem 4 to construct a GJT from it, at the same

time checking free-connex acyclicity. Every reduction

step causes new nodes to be added to the partial GJT
constructed so far. We will refer to such partial GJTs

as Generalized Join Forests (GJF).

Definition 11 (GJF) A Generalized Join Forest is a

set F of pairwise disjoint GJTs s.t. for distinct trees

T1, T2 ∈ F we have var(T1)∩var(T2) = var(n1)∩var(n2)

where n1 and n2 are the roots of T1 and T2.

Every GJF encodes a hypergraph as follows.

Definition 12 The hypergraph hyp(F ) associated to

GJF F is the hypergraph that has one hyperedge for

every non-empty root node in F ,

hyp(F ) = {var(n) | n root node in F, var(n) 6= ∅}.

The GJT construction algorithm does not manipu-

late hypergraph triplets directly. Instead, it manipulates

GJF triplets. A GJF triplet is defined like a hypergraph

triplet, except that it has a GJF instead of a hypergraph.

Definition 13 A GJF triplet is a triple F = (forest(F),

out(F), ΘF) with forest(F) a GJF, out(F) a hyperedge,

and ΘF a set of predicates. Every GJF triplet F induces a

hypergraph triplet H(F) = (hyp(forest(F)), out(F), ΘF).

The algorithm for constructing a GJT pair for a

given GCQ Q is now shown in Algorithm 2. It starts

in line 2 by initializing the GJF triplet F to F =

(forest(Q), out(Q), pred(Q). Here, forest(Q) is the GJF

obtained by creating, for every atom r(x) that occurs

k > 0 times in Q, k corresponding leaf nodes labeled by

r(x). In Lines 3–4, Algorithm 2 then performs the first

phase of reduction steps of Theorem 4. To this end, it

checks whether a reduction operation is applicable to

H(F) and, if so, enacts this operation by modifying F
as follows.

- (ISO). If the reduction operation on the hypergraph

triplet H(F) were to remove a non-empty subset X

of isolated variables from hyperedge e, then F is mod-

ified as follows. Let n1, . . . , nk be all the root nodes

in forest(F) that are labeled by e. Merge the corre-

sponding trees into one tree by creating a new node n

Algorithm 2 Compute a GJT pair
1: Input: A GCQ Q.

2: F← (forest(Q), out(Q), pred(Q))
3: while a reduction step is applicable to H(F) do

4: enact the reduction on F
5: X ← set of all root nodes in F
6: set pred(F) := ∅
7: while a reduction step is applicable to H(F) do
8: enact the reduction on F
9: if H(F) is not the empty triplet then

10: error “Q is not acyclic”
11: else

12: T ← tree obtained by connecting all root nodes of F’s
forest to a new root, labeled by ∅

13: N ← all nodes in X and their ancestors in T

14: return (T,N)

with var(n) = e and attaching n1, . . . , nk as children

to it with pred(n → ni) = ∅ for 1 ≤ i ≤ k. Then,

enact the removal of X by creating a new node p with

var(p) = e \ X and attaching n as child to it with

pred(p→ n) = ∅.
- (CSE) If the reduction operation on H(F) were to

remove a hyperedge e because it is a conditional subset

of another hyperedge `, then F is modified as follows.
Let n1, . . . , nk (resp. m1, . . . ,ml) be all the root nodes

in forest(F) that are labeled by e (resp. `), and let

T1, . . . , Tk (resp. U1, . . . , Ul) be their corresponding

trees. Similar to the previous case, merge the Ti (resp.

Uj) into a single tree with new root n labeled by e

(resp. m labeled by `). Then enact the removal of e by

creating a new node p with var(p) = ` and attaching n

and m as children with pred(p→ n) = {θ ∈ pred(F) |
var(θ) ∩ (e \ `) 6= ∅} and pred(p→ m) = ∅.

- (FLT) If the reduction operation on H(F) were to

remove non-empty set of predicates Θ because there

exists a hyperedge e with var(Θ) ⊆ e, then F is mod-

ified as follows. Let n1, . . . , nk be all the root nodes

in forest(F) that are labeled by e. Merge the corre-

sponding trees into one tree by creating a new root

n labeled by e, and attaching n1, . . . , nk as children

with pred(n → ni) = Θ. Enact the removal of Θ by

removing all θ ∈ Θ from Θ(F).

It is straightforward to check that these modifications
of the forest triplet F faithfully enact the corresponding

operations on H(F), in the following sense.

Lemma 4 Let F be a forest triplet and assume H(F) I.

Let G be the result of enacting this reduction operation

on F. Then G is a valid forest triplet and H(G) = I.

We continue the explanation of Algorithm 2. In line

5, Algorithm 2 records the set of root nodes obtained

after the first stage of reductions. It then sets out(F) = ∅
in line 6 and continues with the second stage of reduc-

tions in lines 7–8. It then employs Theorem 4 to check
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F1, {θ1, θ2}

F2, {θ1, θ2}

F3, {θ1, θ2}

F4, {θ2}

F6, •

F7, •

F8, •

F9, •

F10, ∅

F11, ∅ {∅}

(T )

{w, x}

•

•

{w, y}

•

•

•

•

r5(w, y, z)

x < y

{w, x}

{u,w, x}

•

•

•

•

•

r3(u,w, x)

•

{u}

{t, u}

{s, t, u}

{s, t, u}

r1(s, t, u) r2(t, u)

•

r4(s, v)

t < v

Fig. 6 GJT Construction by GYO-reduction.

acyclicity of Q. If Q is not acyclic, it reports this in lines

9–10. If Q is acyclic, then we know by Theorem 4 that

H(F) has become the empty triplet. Note that H(F)

can be empty only if all the roots of F’s join forest are

labeled by the empty set of variables. As such, we can

transform this forest into a join tree T by linking all of

these roots to a new unique root, also labeled ∅. This is

done in line 12. In line 13, the set of nodes N is com-

puted, and consists of all nodes identified at the end of

the first stage (line 5) plus all of their parents in T .

We will prove in Section 5.1.3 that Algorithm 2 is

correct, in the following sense.

Theorem 5 Given a GCQ Q, Algorithm 2 reports an

error if Q is cyclic. Otherwise, it returns a GJT pair

(T,N) with T a GJT for Q. If Q is free-connex acyclic,

then (T,N) is GJT pair for Q. Otherwise, out(Q) (
var(N), but var(N) is minimal in the sense that for

every other GJT pair (T ′, N ′) with T ′ a GJT for Q we

have var(N) ⊆ var(N ′).

It is straightforward to check that this algorithm

runs in polynomial time in the size of Q.

Example 6 In Fig. 6, we show a GJT T and use this

GJT to illustrate a number of GJFs F1, . . . , F10 in the

following way: let level 1 be the leaf nodes, level 2 the

parents of the leaves, and so on. Then we take GJF Fi
to be the set of all trees rooted at nodes at level i, for

1 ≤ i ≤ 10, and with each level i, we mention the set

of remaining predicates θi for 1 ≤ i ≤ k where k is the

number of predicates in Q. Nodes (resp. predicates with

each Fi) labeled by “•” in Fig. 6 indicates that the node

(and hence tree, resp. predicates) was already present

in Fi−1 and did not change. These should hence not

be interpreted as new nodes (resp. predicates changed).

With this coding of forests, it is easy to see that for all

1 ≤ i ≤ 9, Fi = hyp(Hi) with Hi illustrated in Fig. 5

(note here that the hypergraph of residual ofH4 i.e.H5 is

the same as H4, hence we do not show the corresponding

F5). Furthermore, pred(Fi) = pred(Q)\pred(Hi) with Q

the GCQ from Example 3. As such, the tree illustrates

the sequence of GJF triplets that is obtained by enacting

the hypergraph reductions illustrated in Fig. 5. For

example, let F1 = (F1, out(Q), pred(Q). After enacting
the removal of hyperedge {t, u} fromH1 to obtainH2 we

obtain F2 = (F2, out(Q), pred(Q)). Here, F2 is obtained

by merging the single-node trees (i.e. labelled by the

atoms in Q) {s, t, u} and {t, u} in to a single tree with

root {s, t, u}. The shaded area illustrate the nodes in

the connex subset N computed by Algorithm 2.

We stress that Algorithm 2 is non-deterministic in
the sense that the pair (T,N) returned depends on the

order in which the reduction operations are performed.

5.1.3 Correctness

To prove theorems 4 and 5 we show some propositions.

Proposition 8 Let Q be a GCQ. Assume H(Q) ∗ I↓
and Ĩ ∗ J↓. If J is the empty triplet, then, when run

on Q, Algorithm 2 returns a pair (T,N) s.t. T is a GJT

for Q and var(N) = var(hyp(I)).

Proof. Assume that J is the empty triplet. Algorithm 2

starts in line 3 by initializing F = (forest(Q), out(Q),

pred(Q)). Clearly, H(F) = H(Q) at this point. Algo-

rithm 2 subsequently modifies F throughout its execu-

tion. Let H denote the initial version of F; let I denote the

version of F when executing line 5; let Ĩ denote the ver-

sion of F after executing line 6 and let J denote the ver-

sion of F when executing line 9. By repeated application

of Lemma 4 we know that H(Q) = H(H) ∗H(I). Fur-

thermore,H(I) is in normal form. Since alsoH(Q) ∗ I↓
and normal forms are unique, H(I) = I. Therefore,

H(̃I) = Ĩ. Again by repeated application of Lemma 4

we know that Ĩ = H(̃I) ∗H(J). Moreover, H(J) is

in normal form. Since also Ĩ ∗ J↓ and normal forms

are unique, H(J) = J . As J is empty, we will execute

lines 12–14. Since J is the empty hypergraph triplet,

every root of every tree in forest(J) must be labeled

by ∅. By definition of join forests, no two distinct trees

in forest(J) hence share variables. As such, the tree T

obtained in line 12 by linking all of these roots to a new

unique root, also labeled ∅, is a valid GJT.

We claim that T is a GJT for Q. Indeed, observe that

at(T ) = at(Q) and the number of times that an atom
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occurs inQ equals the number of times that it occurs as a

label in T . This is because initially forest(H) = forest(Q)

and by enacting reduction steps we never remove nor add

nodes labeled by atoms. Furthermore pred(T ) = pred(Q).

This is because initially pred(H) = pred(Q) yet ΘJ is

empty. This means that, for every θ ∈ pred(Q), there

was some reduction step that removed θ from the set

of predicates of the current GJF triplet F. However,

when enacting reduction steps we only remove predicates

after we have added them to forest(F). Therefore, every

predicate in pred(Q) must occur in T . Conversely, during
enactment of reduction steps we never add predicates

to forest(F) that are not in ΘF, so all predicates in T

are also in pred(Q). Thus, T is a GJT for Q.

It remains to show that N is a connex subset of T

and var(N) = var(hyp(I)). To this end, let X be the

set of all root nodes of forest(I), as computed in Line 5.

Since J is obtained from Ĩ by a sequence of reduction

enactments, and since such enactments only add new

nodes and never delete them, X is a subset of nodes

of forest(J) and therefore also of T . As computed in

Line 13, N consists of X and all ancestors of nodes of X

in T . Then N is a connex subset of T by definition. Fur-

thermore, sinceH(I) = I, hyp(forest(I)) = hyp(I). Thus,

var(X) = var(hyp(I)) = var(hyp(I)). Hence, to estab-

lish that var(N) = var(hyp(I)) it suffices to show that

var(X) = var(N). Since X ⊆ N the inclusion var(X) ⊆
var(N) is immediate. To also establish var(N) ⊆ var(X),

let n be an arbitrary but fixed node in N . If n ∈ X then

clearly var(n) ⊆ var(X). If n 6∈ X then n was created

during the sequence of reduction enactments in that

transform Ĩ into J. Now note that, whenever a new node

m is created during a reduction enactment on a GJF

G, there exists a root node of forest(G) that contains all
variables of m. From this observation and the fact that n

was created during a sequence of reduction enactments

that start from Ĩ, it follows that there there is some

root node r in Ĩ with var(n) ⊆ var(r). Then, because

X contains all root nodes of Ĩ, also var(n) ⊆ var(X).
Therefore, var(N) = var(X) = var(hyp(I)).

Corollary 1 (Soundness) Let Q be a GCQ and as-

sume that H(Q) ∗ I↓ and Ĩ ∗ J↓. Then:

1. If J is the empty triplet then Q is acyclic.

2. If J is the empty triplet and var(hyp(I)) = out(Q)

then Q is free-connex acyclic.

To also show completeness, we will interpret a GJT

T for a GCQ Q as a “parse tree” that specifies the

two-stage sequence of reduction steps that can be done

on H(Q) to reach the empty triplet. Not all GJTs will

allows us to do so easily, however, and we will therefore

restrict our attention to those GJTs that are canonical.

Definition 14 (Canonical) A GJT T is canonical if:

1. its root is labeled by ∅;
2. every leaf node n is the child of an internal node m

with var(n) = var(m);

3. for all internal nodes n and m with n 6= m we have

var(n) 6= var(m); and

4. for every edge m → n and all θ ∈ pred(m → n) we

have var(θ) ∩ (var(n) \ var(m)) 6= ∅.

A connex subset N of T is canonical if every node in it

is an interior node of T . A GJT pair (T,N) is canonical

if both T and N are canonical.

The following proposition, proven in Appendix B,

shows that we may restrict our attention to canonical

GJT pairs without loss of generality.

Proposition 9 For every GJT pair there exists an

equivalent canonical pair.

We also require the following auxiliary notions and

insights. First, if (T,N) is a GJT pair, then define the

hypergraph associated to (T,N), denoted hyp(T,N), to

be the hypergraph formed by node labels in N ,

hyp(T,N) = {varT (n) | n ∈ N, varT (n) 6= ∅}.

Further, define pred(T,N) to be the set of all predi-

cates occurring on edges between nodes in N . For a

hyperedge z, define the hypergraph triplet of (T,N)

w.r.t. z, denoted H(T,N, z) to be the hypergraph triplet

(hyp(T,N), z, pred(T,N)).

The following technical Lemma shows that we can
use canonical pairs as “parse” trees to derive a sequence
of reduction steps. Its proof can be found in Appendix B.

Lemma 5 Let (T,N1) and (T,N2) be canonical GJT

pairs with N2 ⊆ N1. Then H(T,N1, z) ∗H(T,N2, z)

for every z ⊆ var(N2).

We require the following additional lemma, proven

in Appendix B:

Lemma 6 Let H1 and H2 be two hypergraphs such that

for all e ∈ H2 there exists ` ∈ H1 such that e ⊆ `. Then
(H1 ∪H2, z, Θ) ∗(H1, z, Θ), for every hyperedge z and

set of predicates Θ.

We these tools in hand we can prove completeness.

Proposition 10 Let Q be a GCQ, let T be a GJT for Q

and let N be a connex subset of T with out(Q) ⊆ var(N).

Assume that H(Q) ∗ I↓ and Ĩ ∗ J↓. Then J is the

empty triplet and var(hyp(I)) ⊆ var(N).
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Proof. By Proposition 9 we may assume without loss of

generality that (T,N) is a canonical GJT pair. Let A be

the set of all of T ’s interior nodes. Clearly, A is a connex

subset of T and var(A) ⊆ var(Q). Furthermore, because

for every atom r(x) in Q there is a leaf node l in T

labeled by r(x) (as T is a GJT for Q), which has a parent

interior node nl labeled x (because T is canonical),

also var(Q) ⊆ var(A). Therefore, var(A) = var(Q). By

the same reasoning, hyp(Q) ⊆ hyp(T,A). Therefore,

hyp(T,A) = hyp(T,A) ∪ hyp(Q). Furthermore, because

every interior node in a GJT has a guard descendant,
and the leaves of T are all labeled by atoms in Q, we

know that for every node n ∈ A there exists some

hyperedge f ∈ hyp(Q) such that var(n) ⊆ var(f). In

addition, we claim that pred(T,A) = pred(Q). Indeed,

pred(T,A) ⊆ pred(Q) since T is a GJT for Q. The

converse inclusion follows from canonicality properties

(2) and (4): because leaf nodes in a canonical GJT have

a parent labeled by the same hyperedge, there can be

no predicates on edges to leaf nodes in T . Thus, all

predicates in T are on edges between interior nodes,

i.e., in pred(T,A). Then, because every predicate in Q

appears somewhere in T (since T is a GJT for Q), we

have pred(Q) ⊆ pred(T,A). From all of the observations

made so far and Lemma 6, we obtain:

H(T,A, out(Q))

= (hyp(T,A), out(Q), pred(T,A))

= (hyp(T,A) ∪ hyp(Q), out(Q), pred(T,A))
∗
 (hyp(Q), out(Q), pred(T,A))

= (hyp(Q), out(Q), pred(Q)) = H(Q)

Thus H(T,A, out(Q)) ∗H(Q) ∗ I. Furthermore, be-

cause (T,N) is also canonical with N ⊆ A and out(Q) ⊆
var(N) we have H(T,A, out(Q)) ∗H(T,N, out(Q)) by

Lemma 5. Then, because reduction is confluent (Propo-

sition 7) we obtain that H(T,N, out(Q)) and I can be

reduced to the same triplet. Because I is in normal form,

necessarily H(T,N, out(Q)) ∗ I. Since reduction steps

can only remove nodes and hyperedges (and never add

them), var(hyp(I)) ⊆ var(N).

It remains to show that J is the empty triplet.

Hereto, first verify the following. For any hypergraph

triplets U and V , if U ∗ V then also Ũ ∗ Ṽ . From this,

H(T,A, out(Q)) ∗ I, and the fact that H(T,A, ∅) is

the residual of H(T,A, out(Q)) we conclude H(T,A, ∅)
 ∗ Ĩ. Then, because Ĩ ∗ J , it follows that H(T,A, ∅)
 ∗ J . Let r be T ’s root node, which is labeled by ∅
since T in canonical. Then {r} is a connex subset of T .

By Lemma 5, H(T,A, ∅) ∗H(T, {r}, ∅). Now observe

that the hypergraph of H(T, {r}, ∅) is empty, and its

predicate set is also empty. Therefore, H(T, {r}, ∅) is the

empty hypergraph triplet. In particular, it is in normal

form. But, since J is also in normal form and normal

forms are unique, J must also be the empty triplet.

Corollary 2 (Completeness) Let Q be a GCQ. As-

sume that H(Q) ∗ I↓ and Ĩ ∗ J↓.

1. If Q is acyclic, then J is the empty triplet.

2. If Q is free-connex acyclic, then J is the empty

triplet and var(hyp(I)) = out(Q).

3. For every GJT T of Q and every connex subset N

of T it holds that var(hyp(I)) ⊆ var(N).

Proof. (1) Since Q is acyclic, there exists a GJT T for

Q. Let N be the set of all of T ’s nodes. Then N is a

connex subset of T and out(Q) ⊆ var(N) = var(Q). The

result then follows from Proposition 10.

(2) Since Q is free-connex acyclic, there exists a GJT

pair (T,N) compatible with Q. In particular, var(N) =

out(Q). By Proposition 10, J is the empty triplet, and

var(hyp(I)) ⊆ var(N) = out(Q). It remains to show

out(Q) ⊆ var(hyp(I)). First verify the following: A re-

duction step on a hypergraph triplet H never removes

any variable in out(H) from hyp(H), nor does it modify

out(H). Then, since out(H(Q)) = out(Q) ⊆ var(Q) ⊆
var(hyp(H(Q)))), and H(Q) ∗ I we obtain out(Q) ⊆
var(hyp(I)).

(3) Follows directly from Proposition 10.

Theorem 4 follows directly from Corollaries 1 and 2.

Theorem 5 follows from Theorem 4 and Proposition 8.

5.2 Transforming GJT pairs to query plans

Let us call a GJT pair (T,N) binary if T is binary,

and sibling-closed if N is sibling-closed. A query plan

is hence a binary and sibling-cloded GJT pair. In this
section, we prove the following result.

Proposition 11 Every GJT pair can be transformed

in polynomial time into an equivalent plan.

We prove Proposition 11 in two steps. First, we show

that any pair (T,N) can be transformed in polynomial

time into an equivalent sibling-closed pair. Next, we

show that any sibling-closed GJT pair (T,N) can be

converted in polynomial time into an equivalent plan.

Proposition 11 hence follows by composing these two

transformations. Throughout this section, let chT (n)

denote the set of children of n in T .

Sibling-closed transformation. We say that n ∈ T
is a violator node in a GJT pair (T,N) if n ∈ N and

some, but not all children of n are in N . A violator is

of type 1 if some node in chT (n) ∩N is a guard of n. It

is of type 2 otherwise. We now define two operations
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{y, z, w}

(T,N)

{y, z, w}

f(u, v)

w < u

h(y, z, w, t)

r(x, y) s(y, z,m)

m < w

{y, z, w}

(T ′, N ′)

{y, z, w}

f(u, v)

w < u

{y, z, w}

h(y, z, w, t) s(y, z,m)

m < w

r(x, y)

Fig. 7 Illustration of the sibling-closed transform: removal of
type-1 violator. The connex sets N and N ′ are indicated by
the shaded areas.

on (T,N) that remove violators of type 1 and type 2,

respectively. The sibling-closed transformation is then

obtained by repeatedly applying these operators until

all violators are removed.

The first operator is applicable when n is a type 1

violator. It returns the pair (T ′, N ′) obtained as follows:

– Since n is a type 1 violator, some g ∈ chT (n) ∩N is

a child guard of n (i.e., var(n) ⊆ var(g)).

– Because every node has a guard, there is some leaf

node l that is a descendant guard of g (i.e. var(g) ⊆
var(l)). Possibly, l is g itself.

– Now create a new node p between node l and its

parent with label var(p) = var(l). Since l is a descen-

dant guard of n and g, p becomes a descendant guard
of n and g as well. Detach all nodes in chT (n) \N
from n and attach them as children to p, preserving

their edge labels. This effectively moves all subtrees

rooted at nodes in chT (n) \N from n to p. Denote

by T ′ the final result.

– If l was not in N , then N ′ = N . Otherwise, N ′ =

N \ {l} ∪ {p}.

We write (T,N)
1,n−−→ (T ′, N ′) to indicate that (T ′, N ′)

can be obtained by applying the above-described opera-

tion on node n.

Example 7 Consider the GJT pair (T,N) from Fig. 7

where N is indicated by the nodes in the shaded area.

Let us denote the root node by n and its guard child

with label {y, z, w} by g. The node l = h(y, z, w, t) is a

descendant guard of g. Since s(y, z,m) is not in N , n

is violator of type 1. After applying the operation 1 for

the choice of guard node g and descendant guard node

l, (T ′, N ′) shows the resulting valid sibling-closed GJT.

Lemma 7 Let n be a violator of type 1 in (T,N) and

assume (T,N)
1,n−−→ (T ′, N ′). Then (T ′, N ′) is a GJT

pair and it is equivalent to (T,N). Moreover, the num-

ber of violators in (T ′, N ′) is strictly smaller than the

number of violators in (T,N).

{y, z, w}

(T,N)

h(y, z, w, t) r(x, y) s(y, z,m)

m < w

{y, z, w}

(T ′, N ′)

{y, z, w}

h(y, z, w, t) s(y, z,m)

m < w

r(x, y)

Fig. 8 Illustration of the sibling-closed transform: removal of
type-2 violator. The connex sets N and N ′ are indicated by
the shaded areas.

We prove this lemma in Appendix C. The second

operator is applicable when n is a type 2 violator. When

applied to n in (T,N) it returns the pair (T ′, N ′) ob-

tained as follows:

– Since n is a type 2 violator, no node in chT (n) ∩N
is a guard of n. Since every node has a guard, there

is some g ∈ chT (n) \N which is a guard of n.

– Create a new child p of n with label var(p) = var(n);
detach all nodes in chT (n) \ N (including g) from

N , and add them as children of p, preserving their

edge labels. This moves all subtrees rooted at nodes
in chT (n) \ N from n to p. Denote by T ′ the final

result.

– Set N ′ = N ∪ {p}.

We write (T,N)
2,n−−→ (T ′, N ′) to indicate that (T ′, N ′)

was obtained by applying this operation on n.

Example 8 Consider the GJT pair (T,N) in Fig. 8. Let

us denote the root node by n. Since its guard child

h(y, z, w, t) is not in N , n is violator of type 2. After

applying operation 2 on n, (T ′, N ′) shows the resulting

valid sibling-closed GJT.

Lemma 8 Let n be a violator of type 2 in (T,N) and

assume (T,N)
2,n−−→ (T ′, N ′). Then (T ′, N ′) is a GJT

pair and it is equivalent to (T,N). Moreover, the num-

ber of violators in (T ′, N ′) is strictly smaller than the

number of violators in (T,N).

The proof can be found in Appendix C.

Proposition 12 Every GJT pair can be transformed

in polynomial time into an equivalent sibling-closed pair.

Proof. The two operations introduced above remove

violators, one at a time. By repeatedly applying these

operations until no violator remains we obtain an equiva-

lent pair without violators, which must hence be sibling-
closed. Since each operator can clearly be executed in

polynomial time and the number of times that we must

apply an operator is bounded by the number of nodes in

the GJT pair, the removal takes polynomial time.
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Fig. 9 Binarizing a k-ary node n.

Binary transformation. Next, we show how to trans-
form a sibling-closed pair (T,N) into an equivalent bi-

nary and sibling-closed pair (T ′, N ′). The idea here is to

“binarize” each node n with k > 2 children as shown in

Fig. 9. There, we assume without loss of generality that

c1 is a guard child of n. The binarization introduces

k − 2 new intermediate nodes m1, . . . ,mk−2, all with

var(mi) = var(n). Note that, since c1 is a guard of n and

var(mi) = var(n), it is straightforward to see that c1 will

be a guard of m1, which will be a guard of m2, which

will be a guard of m3, and so on. Finally, mk−2 will be

a guard of n. The connex set N is updated as follows. If

none of n’s children are in N i.e. n is a frontier node, set

N ′ = N . Otherwise, since N is sibling-closed, all chil-

dren of n are in N , and we set N ′ = N∪{m1, . . . ,mk−2}.
Clearly, N ′ remains a sibling-closed connex subset of T ′

and var(N ′) = var(N). We may hence conclude:

Lemma 9 By binarizing a single node in a sibling-

closed GJT pair (T,N) as shown in Fig. 9, we obtain

an equivalent GJT pair (T ′, N ′) that has strictly fewer

non-binary nodes than (T,N).

Binarizing a single node is a polynomial-time opera-

tion. Then, by iteratively binarizing non-binary nodes

until all nodes have become binary we hence obtain:

Proposition 13 Every sibling-closed GJT pair can be

transformed in polynomial time into an equivalent plan.

6 Implementation

We have implemented IEDyn, the instantiation of GDyn

to setting where all θ-joins are inequality joins described

in Section 4.4, as a query compiler that generates exe-

cutable code in the Scala programming language. The

generated code instantiates a (T,N)-rep and defines

trigger functions that maintain the (T,N)-rep under

updates. Off-the-shelf Scala collection libraries are used

to implement the required indexes, and we take care to

share the data structures between the join and enumera-

tion indexes whenever possible. An important optimiza-

tion used by our implementation lies in observing that,

for the nodes in the connex set N that are not in the

frontier of N we never use the multiplicities stored in

ρn during enumeration. As such, we also do not need to

compute these multiplicities during update processing.

While our theoretical framework supports batch updates,

our implementation is currently limited to single-tuple

updates.

Our implementation supports two modes of oper-

ation: push-based and pull-based. In both modes, the

system maintains the T -rep under updates. In the push-

based mode the system generates, on its output stream,

the delta result ∆Q(db, u) after each single-tuple update

u. To do so, it uses a modified version of enumeration

(Algorithm 1) that we call delta enumeration. Similarly

to how Algorithm 1 enumerates Q(db), delta enumer-

ation enumerates ∆Q(db, u) with constant delay (if Q

has at most one inequality per pair of atoms) resp. log-

arithmic delay (otherwise). To do so, it uses both (1)

the T -reduct GMRs ρn and (2) the delta GMRs ∆ρn
that are computed by Algorithm 1 when processing u.

In this case, however, one also needs to index the ∆ρn
similarly to ρn. In the pull-based mode, in contrast, the

system only maintains the (T,N)-rep under updates but

does not generate any output stream. Nevertheless, at

any time a user can enum (Algorithm 1) to obtain the

current output.

We have described in Section 4 how IEDyn can pro-

cess free-connex acyclic GCQs under updates. It should

be noted that our implementation also supports the

processing of general acyclic GCQs that are not nec-

essarily free-connex. This is done using the following

simple strategy. Let Q be acyclic but not free-connex.

First, compute a free-connex acyclic approximation QF
of Q. QF can always be obtained from Q by extending

the set of output variables of Q. In the worst case, we

need to add all variables, and QF becomes the full join

underlying Q. Then, use IEDyn to maintain a (T,N)-

rep for QF . When operating in push-based mode, for

each update u, we use the (T,N)-rep to delta-enumerate

∆QF (db, u) and project each resulting tuple to materi-

alize ∆Q(db, u) in an array. Subsequently, we copy this

array to the output. Note that the materialization of

∆Q(db, u) here is necessary since the delta enumeration

can produce duplicate tuples after projection. When

operating in pull-based mode, we materialize Q(db) in

an array, and use delta enumeration of QF to maintain

the array under updates. Of course, under this strategy,

we require Ω(|Q(db)|) space in the worst case, just like

(H)IVM would, but we avoid the (partial) materializa-

tion of delta queries. Note the distinction between the

two modes: in push-based mode ∆Q(db, u) is material-

ized (and discarded once the output is generated), while

in pull-based mode Q(db) is materialized upon requests.
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# Query expression Features

< = π FC

Q1 R(a, b, c), S(d, e, f) | a < d X X
Q2 R(a, b, c, k), S(d, e, f, k) | a < d X X X
Q3 R(a, b, c), S(d, e, f), T (g, h, i) | a < d ∧ e < g X X
Q4 R(a, b, c), S(d, e, f), T (g, h, i) | a < d ∧ d < g X X
Q5 R(a, b, c, k), S(d, e, f, k), T (g, h, i) | a < d ∧ d < g X X X
Q6 R(a, b, c), S(d, e, f, k), T (g, h, i, k) | a < d ∧ d < g X X X
Q7 R(a, b, c, k), S(d, e, f, k), T (g, h, i, k) | a < d∧d < g X X X
Q8 πa,b,d,e,f,g,h(Q4) X X X
Q9 πa,d,e,f,g,h,k(Q5) X X X X
Q10 πd,e,f,g,h,k(Q6) X X X X
Q11 πa,b,d,e,g,h,k(Q7) X X X X
Q12 πb,c,e,f,h,i(Q4) X X
Q13 πb,c,e,f,h,i(Q5) X X X
Q14 πb,c,e,f,h,i(Q6) X X X
Q15 πb,c,e,f,h,i(Q7) X X X

Table 1 Benchmark queries. FC = Free-connex acyclic.

Our query compiler computes query plans using the

algorithm of Section 5. Whenever we have the choice

between enacting multiple reduction steps, we first enact

using (ISO), then using (FLT), and finally using (CSE).

This corresponds to the usual heuristics of pushing down

projections and selections. If multiple applications of

(CSE) are possible, we prefer those where the hyper-

edge to be eliminated has no extended variables. This
corresponds to pushing down equi-semijoins so that in-

equality semijoins are hopefully executed over GMRs of

reduced cardinality.

7 Experimental Evaluation

In this section, we experimentally compare IEDyn against

competing state-of-the art HIVM and CER systems.

Queries. Because the effectiveness of Dyn for equijoin

queries has already been documented [25], we focus on

inequality-join queries during our experimental analysis.

Since there is no industry-strength established bench-

mark suite for such queries, we perform a systematic and

in-depth exploration of the design space of inequality-

joins of up to three relations. Concretely, we evaluate

IEDyn on the queries listed in Table 1. Here, Q1–Q7

are full join queries (i.e., queries without projections).

Among these, Q1, Q3 and Q4 contain only inequality-

join predicates, while Q2, Q5–Q7 additionally contain

at least one equality-join. Queries Q1 and Q2 are binary

joins, while Q3–Q6 are multi-way join queries over three

relations. The inequality predicates in Q3 are unrelated

(a < d ∧ e < g) while they form a chain (a < d < g)

in Q4–Q7. Note that Q5–Q7 are variants of Q4 with

equijoins added. We have similarly experimented with

variants of Q3 with equijoins added, but the trends are

similar to what we obtain for Q4–Q7. Collectively, Q3–

Q7 (and the omitted variants) cover all possible ways

in which three relations can be inequality-joined in an

acyclic manner.

Queries Q8–Q15 project over the result of queries

Q4–Q7. Among these, Q8–Q11 are free-connex acyclic

while Q12–Q15 are acyclic but not free-connex.

Updates. We evaluate on streams of synthetic updates

where each update consists of a single tuple insertion.

We focus on the setting where updates are single tuple

insertions for the following reasons. First, single tuple

updates stress-test dynamic query processing since the

query results must be kept up-to-date after each and

every single tuple, in contrast to the setting for batch

updates, where results can be out-of-sync for the du-
ration of the batch. Second, since batch updates can

always be processed by executing all updates in the

batch individually (using the single-tuple update trig-

gers), performance measurements for single-tuple up-

dates yield an upper bound for the performance of batch

updates. Third, while it is true that, in principle, the

processing of batch updates can be done faster than

that of single tuple updates (e.g., by amortizing index

access and data structure updates over the entire batch

instead of per tuple), both our implementation and most

of the competing systems that we describe below do

not implement such optimization.6 As such, we restrict

attention to single-tuple updates. We focus on insertions

because this is supported by all of the systems that we

consider whereas explicit deletions are not. While we

have experimented with mixed (insert and delete) up-

date streams for IEDyn, performance is similar to that

for insert-only streams. This is expected, since IEDyn

treats insertions and deletions uniformly.

The database is always empty when we start pro-

cessing the update stream. We synthetically generate

two kinds of update streams: randomly-ordered and

temporally-ordered update streams. In randomly-ordered

update streams, insertions can occur in any order. In

contrast, temporally-ordered update streams guarantee
that any attribute that participates in an inequality in

the query has a larger value than the same attribute in

any of the previously inserted tuples. Randomly-ordered

update streams are useful for comparing against systems

that allow processing of out-of-order tuples; temporally-

ordered update streams are useful for comparison against

systems that assume events arrive always with increas-

ing timestamp values. Examples of systems that process

temporally-ordered streams are automaton-based CER

systems.

Competitors. We compare IEDyn with the following

state-of-the art HIVM and CER engines: DBToaster

6 In the sense that batch updates are only supported by
treating each update tuple in the batch individually.
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Mode Stream Unsupported queries

DBT Pull Random
E Push Random
SE Push Ordered Q3, Q5–Q15

T Push Ordered Q3

Z Push Ordered Q8–Q15

Table 2 Competing systems capabilities overview.

(DBT) [30], Esper (E) [19], SASE (SE) [3, 46, 49], Tesla

(T) [14,15], and ZStream (Z) [31]. The competing sys-

tems differ in their mode of operation (push-based vs

pull-based, cf. Section 6) and some of them only support

temporally-ordered streams. The capabilities of each

system is summarized in Table 2, and discussed in detail

in Appendix D.

Setup. Our experiments are run on an 8-core 3.07 GHz

machine running Ubuntu with GNU/Linux 3.13.0-57-

generic. To compile the different systems or generated

trigger programs, we have used GCC version 4.8.2, Java

1.8.0 101, and Scala version 2.12.4. Each query is evalu-

ated 10 times to measure update processing delay, and

two times to measure memory footprint. We present

the average over those runs. Each time a query is eval-
uated, 20 GB of main memory are freshly allocated

to the program. To measure the memory footprint for

Scala/Java based systems, we invoke the JVM system

calls every 10 updates and consider the maximum value.

For C/C++ based systems we use the GNU/Linux time

command to measure memory usage. Experiments that

measure memory footprint are always run separately of

the experiments that measure processing time.

7.1 Results

We will compare using total update processing time,

memory footprint, and enumeration delay as metrics.

Here, the total update processing time is the time re-

quired to process the entire update stream, where up-

dates are fed into the systems as fast as they can pro-

cess them. This hence measures the maximum system

performance. While measuring the update processing

time, we take care to compare fairly with the competing

systems by consistently running IEDyn in the same

operation mode as the one supported by the competi-

tor. Concretely, for push-based systems we report the

time required to process the entire update stream, while

generating the delta result ∆Q(db, u) after each update

(cf. Section 6). When comparing against a pull-based

system, the measured time includes only processing the

entire update stream. For these systems, we later sepa-

rately report the enumeration delay, i.e., the speed with

which the result can be generated from the underlying

representation of the output (a T -representation in the

case of IEDyn). SASE, ZStream, and Tesla only support

temporally-ordered streams and hence we only compare

with them on such streams. While DBToaster and Esper

support both random and temporally-ordered streams,

we only report comparisons using randomly-ordered

streams. We have also looked at temporally-ordered

streams for these systems, but their throughput is sim-

ilar (fluctuating between 3% and 12%) while that of

IEDyn significantly improves (fluctuating between 35%
and 50%) because insertions to sorted lists become con-

stant instead of logarithmic. We omit these experiments

due to lack of space.

Some executions of the competing systems failed

either because they required more than 20GB of main

memory or they took more than 1500 seconds. If an

execution requires more than 20GB, we report the pro-

cessing time elapsed until the exception was raised. If an
execution is still running after 1500 seconds, we stop it

and report its maximum memory usage while running.

Full join queries. We first analyze the performance

of the full join queries Q1–Q7 in the setting where the

join selectivity is relatively large. Here, the selectivity

of R on S is defined as |RonS|
|R|×|S| . High-selectivity joins are

common in CER scenarios. We refer to Table 3(Left)

for output sizes. Fig. 10 compares the update process-

ing time of IEDyn against the competing systems for

full join queries Q1–Q7, grouped per system capabil-

ity (push/pull, random/temporal). We observe that all

of the competing systems have large processing times

even for very small update stream sizes, indicating poor

scalability. In particular, DBT runs out of memory on

streams of sizes ≥18k for query Q5, and on streams of

size ≥15k for query Q6. Z runs out of memory for Q5

and Q6 on streams of size 21k. Similarly, T took more

than 1500 seconds for Q5 on streams of size ≥12k, for

Q6 on streams of size ≥18k, and for Q7 on streams of

size ≥ 9k and was aborted at that time. All of these

behaviors are due to the large selectivity of joins on

this dataset. Note that in all cases, IEDyn scales satis-

factorily with increasing stream sizes, and significantly

outperforms the competitors, often by orders of mag-

nitude. This is confirmed in Table. 3(Right) where we

show the processing time and memory footprint used

by IEDyn as a percentage of the corresponding usage

in the competing systems (for the largest stream size

of each query). Writing “(x, y) oom”: to indicate x or-

ders of magnitude improvement in processing time and

y orders in memory consumption, we see that IEDyn

improves up to (1, 2) oom w.r.t. Z; almost (3, 1) oom

w.r.t. T; almost (2, 2) oom w.r.t SE, and up to (4, 3)

oom w.r.t DBT. Moreover, for these queries, even in
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Fig. 10 Processing time in seconds on full join queries for various stream sizes. (*: DBT out of memory, +: Z out of memory, ′:
T was stopped after 1500 seconds).

Data size

Stream Output

Q1 12k 18, 017k
Q2 12k 3.8k
Q3 2.7k 178, 847k
Q4 2.7k 90, 425k
Q5 21k 411, 669k
Q6 21k 297, 873k
Q7 21k 64, 603k
Q8 2.7k 114, 561k
Q9 21k 411, 669k
Q10 21k 99, 043k
Q11 21k 43, 564k
Q12 2.7k 114, 561k
Q13 21k 294, 139k
Q14 21k 297, 873k
Q15 21k 50, 468k

Z T SE E DBT

Time Mem Time Mem Time Mem Time Mem Time Mem

Q1 45.33 3.40 12.06 96.15 2.74 25.23 29.33 24.51 0.43 2.74
Q2 19.34 87.10 0.52 168.75 97.80 1.00 22.62 16.67 52.10 0.20
Q3 11.30 0.87 N/A N/A N/A N/A 24.49 16.57 0.25 0.19
Q4 10.69 0.69 4.64 3.45 13.94 55.56 24.50 14.20 0.01 0.20
Q5 10.85 0.30 13.72 19.11 N/A N/A 25.50 23.44 0.04 0.15
Q6 10.58 0.31 14.61 11.03 N/A N/A 23.28 17.37 0.86 0.15
Q7 0.03 2.38 0.05 24.10 N/A N/A 19.18 67.14 0.32 1.18
Q8 N/A N/A 9.01 6.36 N/A N/A 24.91 10.24 0.02 0.35
Q9 N/A N/A 13.96 40.00 N/A N/A 34.16 94.34 0.07 0.25
Q10 N/A N/A 0.07 38.52 N/A N/A 17.49 23.38 24.22 61.84
Q11 N/A N/A 0.04 10.23 N/A N/A 4.95 25.43 0.01 0.45
Q12 N/A N/A 7.11 10.49 N/A N/A 21.42 14.17 71.19 54.07
Q13 N/A N/A 9.99 47.58 N/A N/A 29.59 109.26 10.14 68.29
Q14 N/A N/A 13.96 47.20 N/A N/A 34.68 28.92 91.75 77.90
Q15 N/A N/A 0.16 25.26 N/A N/A 95.80 70.00 0.17 15.02

Table 3 (Left) Maximum update stream and result sizes, k = 103. (Right) Relative performance of IEDyn, expressed as a
percentage of the corresponding resources used by competing systems. N/A = Not Applicable.

push-based mode IEDyn can support the enumeration

of query results from its data structures at any time

while competing push-based systems have no such sup-

port. Hence, IEDyn is not only more efficient but also

provides more functionality.

Drilling deeper into the specific queries, we see from

Fig. 10 that while existing systems already perform

poorly on the inequality-only binary join query Q2, this

is further aggravated when moving to the corresponding

three-way join query Q3 and Q4: note that the plot for

Q1 shows streams sizes up to 12k, whereas the plots for

Q3 and Q4 only go to 2.7k while having much larger

runtimes. Because Q2, and Q5–Q7 modify Q1, resp. Q4

by adding equality join predicates, they have a smaller

join selectivity. As a result, performance for these queries

is much better, across all systems. (To see this, note that,

for Q5–Q6 the first data point plotted has a significantly

lower processing time while processing a data stream

three times the size.) Similarly, we note that, while

not visually apparent from Fig. 10 the performance of

all systems on Q3 is 10% − 100% slower compared to

the same systems on Q4. This is due to the fact that
the two unrelated inequality predicates (a < d ∧ e <
g) of Q3 are linearly ordered in Q4 (a < d ∧ d < g),

which causes Q4 to have higher selectivity, improving

performance. From these observations we may conclude

that the performance of all systems increases as the

join selectivity decreases. Nevertheless, in contrast to
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existing systems, IEDyn continues to scale and perform

satisfactorily even with large selectivities.

To confirm this trend in the setting of very low

selectivities, were processing is hence less output-size

dependent, we have also generated datasets with proba-

bility distributions that are parametrized by a selectivity

s, such that the expected number of output tuples is

s percent of the cartesian product of all relations in

the query. The results in Fig. 11 show that IEDyn

consistently continues to perform better also on very

selective inequality joins. For super selective inequality

joins the measurements come similar to what we observe
for equality joins, which we investigated in detail in [25].

Projections. The trends observed for full join queries

are confirmed for the queries Q8–Q15 with projections,

as shown in Table 3(Right). In particular, IEDyn im-

proves up to almost (4, 1) oom w.r.t. T; up to almost

(1, 1) w.r.t. E., and up to (4, 3) oom w.r.t DBT. Again,

we observe that, while IEDyn consistently outperforms

the competitors, when the selectivity of the queries de-

creases, the performance gain of IEDyn increases. In

addition, we note that the performance gain of IEDyn
is bigger on queries that are free-connex acyclic (namely:

Q8–Q10) as opposed to those that are not (Q11–Q14).

This is to be expected since our implementation evalu-

ates non-free-connex queries by approximating them by

free-connex variants, requiring additional materializa-

tion (cf. Section 6).

Result enumeration. CDE is theoretical notion that

hides a constant factor which could decrease perfor-

mance in practice when compared to enumerating from

a fully materialized representation In Fig. 12, we show

the practical application of CDE in IEDyn and compare

against DBT which materializes the full query results.

We plot the time required to enumerate the result from

IEDyn’s T -rep as a fraction of the time required to

enumerate the result from DBT ’s materialized views.

As can be seen from the figure, both enumeration times

are comparable on average. Note that we do not com-

pare enumeration time for push-based systems, since for

these systems the time required for delta enumeration

is already included in the update processing time.

8 Conclusions

Traditional techniques for dynamic query evaluation

are based on a trade-off between materialization of

join subresults (to avoid recomputing these subresults)

and their recomputation (to avoid the space overhead

induced by materialization). We have shown that in-

stead of materializing full join subresults, it suffices to

maintain and index semijoin subresults. This method-

ology, called General Dynamic Yannakakis, allows us

to maintain a data structure that, like recomputation,

has low memory-overhead; and yet supports all opera-

tions one commonly expects from full materialization:

enumeration with bounded delay and efficient process-

ing of updates. In addition, the framework supports

bounded-delay delta-enumeration under single-tuple up-

date, hence allowing to operate in push-based mode
similar to streaming systems. Our experiments against

state-of-the art engines in the IVM and CER domains

show that Dynamic Yannakakis can improve perfor-

mance by orders of magnitude in both time and space.

The performance gap with existing systems is the largest

for output-dominated queries (i.e., queries where the

join result is large). While the gap decreases for more

selective joins, GDyn continues to consistently outper-

form existing systems. In addition, while GDyn’s the-

ory is developed only for free-connex acyclic GCQs, our

experiments show that GDyn’s adaptation to acyclic

GCQs that are not-free connex (by means of free-connex

approximation followed by post-processing) is equally

effective compared to existing systems.

From a theoretical viewpoint, it would be satisfying

to establish lower bounds on the complexity of pro-

cessing inequality-joins dynamically. For equijoins, such

lower bounds were recently established by Berkholz,

Keppeler, and Schweikardt [8]. Since GDyn meets these

lower bounds on queries with equijoins only [25], it would

be interesting to know whether it is similarly optimal

for inequality-joins.
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11. L. Brenna, A. J. Demers, J. Gehrke, M. Hong, J. Ossher,
B. Panda, M. Riedewald, M. Thatte, and W. M. White.
Cayuga: a high-performance event processing engine. In
Proc. of SIGMOD 2007, pages 1100–1102, 2007.

12. R. Chirkova and J. Yang. Materialized views. Foundations

and Trends in Databases, 4(4):295–405, 2012.

13. T. Cormen. Introduction to Algorithms, 3rd Edition:. MIT
Press, 2009.

14. G. Cugola and A. Margara. TESLA: a formally defined
event specification language. In Proc. of DEBS 2010, pages
50–61, 2010.

15. G. Cugola and A. Margara. Complex event processing
with T-REX. Journal of Systems and Software, 85(8):1709–
1728, 2012.

16. G. Cugola and A. Margara. Processing flows of infor-
mation: From data stream to complex event processing.
ACM CSUR, 44(3):15:1–15:62, 2012.

17. D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An
evaluation of non-equijoin algorithms. In VLDB 1991,
pages 443–452, 1991.

18. J. Enderle, M. Hampel, and T. Seidl. Joining interval
data in relational databases. In Proc. of SIGMOD 2004,
pages 683–694, 2004.

19. EsperTech. Esper complex event processing engine. http:

//www.espertech.com/.
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A Proofs of Section 4

Lemma 1 ρn = Q[Tn, n](db), for every node n ∈ T .

Proof. We proceed by induction on the number of descen-
dants of n. If n has no descendants then Tn is a single atom
r(x) with x = var(n) = out(Q[Tn, n]). Then Q[Tn, n](db) =
(πvar(n)r(x))(db) = r(x)(db) = dbr(x) = ρn, concluding the
basic case. Now, for the inductive case we distinguish whether
n has one or two children.

Assume n has a single child c. Then at(Tn) = at(Tc)
and pred(Tn) = pred(Tc) ∪ pred(n). Therefore, by definition
of Q[ · ], we have Q[Tn] ≡ σpred(n)Q[Tc], which implies that
Q[Tn, n] = πvar(n)Q[Tn] ≡ πvar(n)σpred(n)Q[Tc]. Further-
more, since pred(n) only mentions variables in var(c) ∪ var(n)
and var(n) ⊆ var(c), as c is a guard of n, this is equivalent to

πvar(n)σpred(n)Q[Tc] ≡ πvar(n)σpred(n)πvar(c)Q[Tc]

= πvar(n)σpred(n)Q[Tc, c].

By induction, πvar(n)σpred(n)Q[Tc, c](db) = πvar(n)σpred(n)ρc =
ρn, showing that Q[Tn, n](db) = ρn.

Assume now that n has two children c1 and c2. We as-
sume w.l.o.g. that c1 is a guard for n. Note that at(Tn) =
at(Tc1)∪ at(Tc2) and pred(Tn) = pred(Tc1)∪ pred(Tc2)∪ pred(n).
Therefore,

Q[Tn] ≡ σpred(n)σpred(Tc1 )σpred(Tc2 ) (at(Tc1) on at(Tc2)) .

Here, we abuse notation and write at(Ti) for the natural join
of all atoms in Tci . Since pred(Tci) only mentions variables of
atoms in Tci (for i ∈ {1, 2}), we can push the selections:

Q[Tn] ≡ σpred(n)
(
σpred(Tc1 ) at(Tc1) on σpred(Tc2 ) at(Tc2)

)
≡ σpred(n) (Q[Tc1] on Q[Tc2]) .

Therefore,

Q[Tn, n] = πvar(n)Q[Tn] ≡ πvar(n)σpred(n) (Q[Tc1] on Q[Tc2]) .

Since var(pred(n)) ⊆ var(c1) ∪ var(c2) ∪ var(n) and var(n) ⊆
var(c1) we have var(pred(n)) ⊆ var(c1) ∪ var(c2). This, com-
bined with the fact that, due to the connectedness property of
T we, have var(Q[Tc1]) ∩ var(Q[Tc2]) ⊆ var(ci) for i ∈ {1, 2},
we can add the following projections

Q[Tn, n] ≡ πvar(n)σpred(n)
(
πvar(c1)Q[Tc1] on πvar(c2)Q[Tc2]

)
≡ πvar(n)σpred(n) (Q[Tc1 , c1] on Q[Tc2 , c2]) .

Hence, by induction hypothesis we have

Q[Tn, n](db) = πvar(n)σpred(n) (ρc1 on ρc2) = ρn,

concluding our proof.

Lemma 3 1. Q(db) is a positive GMR, for any GCQ Q and

any database db.
2. If R is a positive GMR over x and y ⊆ x, then t[y] ∈ πyR

for every tuple t ∈ R.

Proof. (1) Follows by straightforward induction on Q, using
the fact that the GMRs in db are themselves positive by
definition. (2) Is a standard result in relational algebra, which
hence transfers to the case of positive GMRs.

Lemma 10 Let R be a positive GMR over x, S a positive GMR
over y and t a tuple over z. If z ⊆ y ⊆ x then Rn(Sn t) =
(RnS)n t.

Proof. This results well-know in standard relational algebra,
and its proof transfers to the case of positive GMRs.

Lemma 2 For every node n ∈ N and every tuple t in ρn,

enumT,N (n, t, ρ) enumerates Q[Tn, Nn](db)n t.

Proof. Let n ∈ N and t ∈ ρn. We need to show that execut-
ing enumT,N (n, t, ρ) outputs all (tuple, multiplicity) pairs of
Q[Tn, Nn](db)n t exactly once. We proceed by induction on
the number of nodes in Nn. If Nn = {n} then Q[Tn, Nn] =
Q[Tn, n]. Therefore, by Lemma 1, Q[Tn, Nn](db) = ρn. Since
t ∈ ρn, this implies that the only tuple in Q[Tn, Nn](db) that
is compatible with t is t itself. Furthermore, since Nn = {n},
n must be in the frontier of n. Therefore, enumT,N (n, t, ρ) will
output precisely {(t, ρn(t))} (Line 4), which concludes the
base case.

For the inductive step we need to consider two cases
depending on the number of children of n.

Case (1). If n has a single child c then necessarily c is
a guard of n, i.e., var(n) ⊆ var(c). In this case, Algorithm 1
will call enumT,N (c, s, ρ) for each tuple s ∈

(
ρcnpred(n) t

)
. By

induction hypothesis and Lemma 1, this will correctly enumer-
ate and output the elements of Q[Tc, Nc](db)n s, for every s
in Q[Tc, c](db)npred(n) t. Note that the sets Q[Tc, Nc](db)n s

are disjoint for different values of s. Thus, no element is output
twice. Hence, enumT,N (n, t, ρ) enumerates the GMR

Q[Tc, Nc](db)n(Q[Tc, c](db)n
pred(n)

t). (2)

Since var(pred(n)) ⊆ var(c) ∪ var(n) = var(c) = out(Q[Tc, c],
we can pull out the selection:

(2) = Q[Tc, Nc](db)nσpredn(Q[Tc, c](db)n t). (3)

Subsequently, because var(pred(n)) = var(c) ⊆ out(Q[Tc, Nc]),
we can pull out the selection again:

(3) = σpred(n) (Q[Tc, Nc](db)n(Q[Tc, c](db)n t)) . (4)

Because the variables in t are a subset of var(c), because
var(c) ⊆ var(Nc), and because Q[Tc, Nc](db) and Q[Tc, c](db)
are positive (Lemma 3(1)) we can apply Lemma 10:

(4) = σpred(n) ((Q[Tc, Nc](db)nQ[Tc, c](db))n t) . (5)

Next, observe that, since var(nc) ⊆ var(Nc) as c ∈ Nc we have

Q[Tc, nc] = πvar(c)Q[Tc]

≡ πvar(c)πvar(Nc)Q[Tc]
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≡ πvar(c)Q[Tc, Nc]

Then, because Q[Tc, Nc])(db) is positive we obtain from
Lemma 3(2) that

(5) = σpred(n)(Q[Tc, Nc](db)n t). (6)

Finally, because pred(n) ⊆ var(n) ⊆ var(Nc) we push the
selection again, and obtain

(6) = (σpred(n)Q[Tc, Nc](db))n t (7)

= (πvar(Nn)σpred(n)Q[Tc, Nc])(db)n t. (8)

Here, the last equality is due to the fact that var(Nn) =
var(n) ∪ var(Nc) = var(Nc), as var(n) ⊆ var(c) and c ∈ Nc,
which implies that projecting on var(Nn) does not modify
the result. The result then follows from the observation that
Q[Tn, Nn] ≡ πvar(Nn)σpred(n)Q[Tc, Nc].

Case (2). Otherwise, n has two children c1 and c2. We as-
sume w.l.o.g. that c1 is a guard of n, i.e var(n) ⊆ var(c1). Since
|Nn| > 1 and N is sibling closed we have {c1, c2} ⊂ N . In this
case, Algorithm 1 will first enumerate ti ∈ ρci npred(n→c1) t
for i ∈ {1, 2}. By Lemma 1 this is equivalent to enumerate
every ti in Q[Tci , ci](db)npred(n→c1) t. Then, for each such ti
the algorithm will enumerate every pair (si, µi) generated by
enumT,N (ci, ti, ρ), which by induction is the same as enumer-
ating every (si, µi) in Q[Tci , Nci](db)n ti. Note that the sets
Q[Tci , Nci](db)n ti are disjoint for distinct ti. Therefore, no
(si, µi) is generated twice. the algorithm is hence enumerating

Q[Tci , Nci](db)n
(
Q[Tci , ci](db)npred(n→ci) t

)
By the same reasoning as in Case (1), this is equivalent to enu-
merating every (si, µi) in (σpred(n→ci)Q[Tci](db))n t. From
the connectedness property of T , it follows that var(Q[Tc1])∩
var(Q[Tc2]) ⊆ var(n). Thus, var(Q[Tc1]) ∩ var(Q[Tc2]) is a
subset of the variables of t. Hence, every tuple s1 will be
compatible with every tuple s2, and therefore enumeration of
every pair (s1 ∪ s2, µ1 ×µ2) is the same as the enumeration of(

(σpred(n→c1)Q[Tc1 , Nc1](db))n t
)
on(

(σpred(n→c2)Q[Tc2 , Nc2](db))n t
)
. (9)

The semijoin with t factors out of the join:

(9) =
(
σpred(n→c1)Q[Tc1 , Nc1]

on σpred(n→c2)Q[Tc2 , Nc2]
)
(db)n t

(10)

We can now pull out the selections and obtain

(10) =

(
σpred(n→c1)σpred(n→c2)(Q[Tc1 , Nc1]

on Q[Tc2 , Nc2])(db)
)
n t.

=
(
σpred(n)(Q[Tc1 , Nc1] on Q[Tc2 , Nc2])(db)

)
n t.

=
(
πvar(Nn)σpred(n)(Q[Tc1 , Nc1] on Q[Tc2 , Nc2])(db)

)
n t

Here, the last equality is due to the fact that var(Nn) =
var(n)∪var(Nc1)∪var(Nc2) = var(Nc1)∪var(Nc2), as var(n) ⊆
var(c1) ⊆ var(Nc1). This implies that

var(Nn) = out(Q[Tc1 , Nc1]) ∪ out(Q[Tc2 , Nc2])

Hence, projecting the join result on var(Nn) does not mod-
ify the result. The result then follows from the observation that
Q[Tn, Nn] ≡ πvar(Nn)σpred(n)(Q[Tc1 , Nc2] on Q[Tc2 , Nc2]).

Proposition 4 Assume that all join indexes in the (T,N)-rep
have access time g, and that all indexes (join and enumeration)

have update time h, where g and h are monotone functions. Fur-
ther assume that, during the entire execution of update, K and

U bound the size of ρn, resp. ∆n, for all n. Then, updateT,N (ρ, u)
runs in time O (|T | · (U + h(K,U) + g(K,U))).

Proof. First note that the initialization of ∆n in line 15 can
be done in O(U) time (by copying ur(x)) to ∆n tuple by
tuple) and the initialization of ∆n in line 17 in O(1) time.
Therefore, lines 14–17 run in O(|T | ·U) time, which falls within
the claimed bounds. We next show that the for-loop of line
18–23 also runs within the claimed bounds. Since the body
of this for-loop is executed |T | times, it suffices to show that
each of the lines 19–23 run in time O(U + h(K,U) + g(K,U)).
Since |∆n| ≤ U by assumption, the statement ρn+ = ∆n of
line 19 can be executed in O(U) time by iterating over the
tuples t ∈ ∆n, and updating ρn(t) for each such tuple. (Recall
that multiplicity lookup and modification in a GMR are O(1)
operations). The indexes associated to ρn (if any) are updated
in time h(K,U). Therefore, the total time require to execute
line 19 is O(U + h(K,U)). We next bound the complexity of
line 21. Computing πvar(p)(ρm onpred p ∆n) using the join index
on ρm takes O(g(K,U)) time. Furthermore, the number of
tuples in πvar(p)(ρm onpred p ∆n) can be at most 2U . This is
because |∆p| ≤ U at any time during the execution. In the
worst case, therefore, πvar(p)(ρm onpred p ∆n) can at most delete
the tuples already present in ∆p (which requires U tuples),
and subsequently insert U new tuples (requiring another U
tuples), for at most 2U tuples in total. For each of the 2U
resulting tuples we update ∆p accordingly in O(1) time. The
total time to execute line 21 is hence O(2 · U + g(K,U)).
Finally, using similar reasoning, the complexity of line 23 can
be shown to be O(U).

B Proofs of Section 5.1

B.1 Proof of Proposition 7

Because no infinite sequences of reduction steps are possible,
it suffices to demonstrate local confluence:

Proposition 14 If H I1 and H I2 then there exists J such
that both I1 ∗ J and I2 ∗ J .

Indeed, it is a standard result in the theory of rewrit-
ing systems that confluence (Lemma 7) and local confluence
(lemma 14) coincide when infinite sequences of reductions
steps are impossible [5].

Before proving Lemma 14, we observe that the property
of being isolated or being a conditional subset is preserved
under reductions, in the following sense.

Lemma 11 Assume that H I. Then pred(I) ⊆ pred(H) and
for every hyperedge e we have extI(e) ⊆ extH(e), jvI(e) ⊆
jvH(e), and isolH(e) ⊆ isolI(e). Furthermore, if evH f then

also evI f .

Proof. First observe that pred(I) ⊆ pred(H), since reduction
operators only remove predicates. This implies that extI(e) ⊆
extH(e) for every hyperedge e. Furthermore, because reduction
operators only remove hyperedges and never add them, it
is easy to see that jvH(e) ⊆ jvI(e). Hence, if x ∈ isolH(e)
then x 6∈ jvH(e) ⊇ jvI(e) and x 6∈ var(pred(H)) ⊇ var(pred(I)).
Therefore, x ∈ isolI(e). As such, isolI(e) ⊆ isolH(e).
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Next, assume that evH f . We need to show that jvI(e) ⊆ f
and extI(e \ f) ⊆ f . The first condition follows since jvI(e) ⊆
jvH(e) ⊆ f where the last inclusion is due to evH f . The
second also follows since extI(e \ f) ⊆ extH(e \ f) ⊆ f where
the last inclusion is due to evH f .

Proof of Proposition 14. If I1 = I2 then it suffices to take
J = I1 = I2. Therefore, assume in the following that I1 6= I2.
Then, necessarily I1 and I2 are obtained by applying two
different reduction operations on H. We make a case analysis
on the types of reductions applied.

(1) Case (ISO, ISO): assume that I1 is obtained by re-
moving the non-empty set X1 ⊆ isolH(e1) from hyperedge e1,
while I2 is obtained by removing non-empty X2 ⊆ isolH(e2)
from e2 with X1 6= X2. There are two possibilities.

(1a) e1 6= e2. Then e2 is still a hyperedge in I2 and e1 is
still a hyperedge in I1. By Lemma 11, isolH(e1) ⊆ isolI2(e1)
and isolH(e2) ⊆ isolI1(e2). Therefore, we can still remove X2

from I1 by means of rule ISO, and similarly remove X1 from
I2. Let J1 (resp. J2) be the result of removing X2 from I1
(resp. I2). Then J1 = J2 (and hence equals triplet J ):

hyp(J1) = hyp(H) \ {e1, e2} ∪ {e1 \X1 | e1 \X1 6= ∅}
∪ {e2 \X2 | e2 \X2 6= ∅}

= hyp(J2)

pred(J1) = pred(H) = pred(J2)

(1b) e1 = e2. We show that X2 \X1 ⊆ isolI1(e1 \X1) and
similarly X1 \X2 ⊆ isolI1(e2 \X1). This suffices because we
can then apply ISO to remove X2 \X1 from I1 and X1 \X2

from I2. In both cases, we reach the same triplet as removing
X1 ∪X2 ⊆ isolH(e1) from H.7

To see that X2 \ X1 ⊆ isolI1(e1 \ X1), let x ∈ X2 \ X1.
We need to show x 6∈ jvI1(e1 \ X1) and x 6∈ var(pred(I1)).
Because x ∈ X2 ⊆ isolH(e1) we know x 6∈ jvH(e1). Then, since
x 6∈ X1, also x 6∈ jvH(e1 \X1). By Lemma 11, jvI1(e1 \X1) ⊆
jvH(e1\X1). Therefore, x 6∈ jvI1(e1\X1). Furthermore, because
x ∈ isolH(e1) we know x 6∈ var(pred(H)). Since var(pred(I1)) ⊆
var(pred(H)) by Lemma 11, also x not ∈ var(pred(I1)).

X1 \X2 ⊆ isolI1(e2 \X1) is shown similarly.

(2) Case (CSE, CSE): assume that I1 is obtained by re-
moving hyperedge e1 because it is a conditional subset of
hyperedge f1, while I2 is obtained by removing e2, condi-
tional subset of f2. Since I1 6= I2 it must be e1 6= e2. We need
to further distinguish the following cases.

(2a) e1 6= f2 and e2 6= f1. In this case, e2 and f2 remain
hyperedges in I1 while e1 and f1 remain hyperedges in I2.
Then, by Lemma 11, e2vI1 f2 and e1vI2 f2. Let J1 (resp.
J2) be the triplet obtained by removing e2 from I1 (resp. e1
from I2). Then J1 = J2 since clearly out(J1) = out(J2) and

hyp(J1) = hyp(H) \ {e1, e2} = hyp(J2)

pred(J1) = {θ ∈ pred(H) | var(θ) ∩ (e1 \ f1) = ∅,
var(θ) ∩ (e2 \ f2) = ∅}

= pred(J2)

From this the result follows by taking J = J1 = J2.
(2b) e1 6= f2 but e2 = f1. Then e1vH e2 and e2vH f2 with

f2 6= e1. It suffices to show that e1vH f2 and e1 \ f2 = e1 \ f1,
because then (CSE) due to e1vH f1 has the same effect as

7 Should X2 \X1 be empty, we don’t actually need to do
anything on I1: X1 ∪X2 is already removed from it. A similar
remark holds for I2 when X1 \X2 is empty.

CSE on e1vH f2, and we can apply the reasoning of case (2a)
because e1 6= f2 and e2 6= f2.

We first show e1 \ f2 = e1 \ f1. Let x ∈ e1 \ f2 and suppose
for the purpose of contradiction that that x ∈ e2 = f1. Then,
since e1 6= e2, x ∈ jv(e2) ⊆ f2 where the last inclusion is due
to e2vH f2. Hence, e1 \f2 ⊆ e1 \f1. Conversely, let x ∈ e1 \f1.
Since f1 = e2, x 6∈ e2. Suppose for the purpose of contradiction
that x ∈ f2. Because e1 6= f2, x ∈ jvH(e1) ⊆ e2 where the last
inclusion is due to e1vH e2. Therefore, e2 \ f1 = e1 \ f2.

To show that e1vH f2, let x ∈ jvH(e1). Because e1vH e2,
x ∈ e2. Because x occurs in two distinct hyperedges in H, also
x ∈ jvH(e2). Then, because e2vH f2, x ∈ f2. Hence jvH(e1) ⊆
f2. It remains to show extH(e1 \ f2) ⊆ f2. To this end, let
x ∈ extH(e1 \ f2) and suppose for the purpose of contradiction
that x 6∈ f2. By definition of ext there exists θ ∈ pred(H)
and y ∈ var(θ) ∩ (e1 \ f2) such that x ∈ var(θ) \ (e1 \ f2). In
particular, y 6∈ f2. Since e1 \ f2 = e1 \ e2, y ∈ var(θ)∩ (e1 \ e2)
and x ∈ var(θ) \ (e1 \ e2). Thus, x ∈ extH(e1 \ e2). Then,
since e1vH e2, x ∈ e2. Thus, x ∈ e2 \ f2 since x 6∈ f2. Hence
x ∈ var(θ) ∩ (e2 \ f2). Furthermore, since y 6∈ e2 also y 6∈
e2 \ f2. Hence, y ∈ var(θ) \ (e2 \ f2). But then θ shows that
y ∈ extH(e2\f2). Then, by because e2vH f2, also y ∈ f2 which
yields the desired contradiction.

(2c) e1 = f2 but e2 6= f1. Similar to case (2b).
(2d) e1 = f2 and e2 = f1. Then e1vH e2 and e2vHe1 and

e1 6= e2. Let K1 (resp. K2) be the triplet obtained by applying
(FLT) to remove all θ ∈ pred(I1) (resp. θ ∈ pred(I2) for which
var(θ) ⊆ var(e2) (resp. (var(θ) ⊆ var(e2). Furthermore, let J1
(resp. J2) be the triplet obtained by applying ISO to removing
isolI1(e2) from K1 (resp. removing isolI2(e1) from K2). Here,
we take J1 = K1 if isolK1

(e2) is empty (and similarly for J2).
Then clearly H I1 ∗K1 ∗ J1 and H I2 ∗K2 ∗ J2.
The result then follows by showing that J1 = J2. Towards
this end, first observe that out(J1) = out(K1) = out(I1) =
out(H) = out(I2) = out(K2) = out(J2). Next, we show that
pred(J1) = pred(J2). We first observe that pred(J1) = pred(K1)
and pred(J2) = pred(K2) since the ISO operation does not
remove predicates. Then observe that

pred(K1) = {θ ∈ pred(I1) | var(θ) 6⊆ var(e2)}
= {θ ∈ pred(H) | var(θ) ∩ (e1 \ e2) = ∅ and

var(θ) 6⊆ e2},
pred(K2) = {θ ∈ pred(I2) | var(θ) 6⊆ e1}

= {θ ∈ pred(H) | var(θ) ∩ (e2 \ e1) = ∅ and

var(θ) 6⊆ e1}.

We only show the reasoning for pred(K1) ⊆ pred(K2), the
other direction being similar. Let θ ∈ pred(K1). Then var(θ ∩
(e1 \ e2) = ∅ and var(θ) 6⊆ e2. Since var(θ) 6⊆ e2 there exists
y ∈ var(θ) \ e2. Then, because var(θ) ∩ (e1 \ e2) = ∅, y 6∈ e1.
Thus, var(θ) 6⊆ e1. Now, suppose for the purpose of obtaining
a contradiction, that var(θ) ∩ (e2 \ e1) 6= ∅. Then take z ∈
var(θ) ∩ (e2 \ e1). But then y ∈ extH(e2 \ e1). Hence, y ∈ e1
because e2vH e1, which yields the desired contradiction with
y 6∈ e2. Therefore, var(θ) ∩ (e2 \ e1) = ∅, as desired. Hence
θ ∈ pred(K2).

It remains to show that hyp(J1) = hyp(J2). To this end,
first observe

hyp(J1) = hyp(K1) \ {e2} ∪ {e2 \ isolK1
(e2)},

= hyp(H) \ {e1} \ {e2} ∪ {e2 \ isolK1
(e2)},

hyp(J2) = hyp(K2) \ {e1} ∪ {e1 \ isolK2
(e1)}

= hyp(H) \ {e2} \ {e1} ∪ {e1 \ isolK2
(e1)}.

Clearly, hyp(J1) = hyp(J2) if e2 \ isolK1
(e2) = e1 \ isolK2

(e1).
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We only show e2 \ isolK1
(e2) ⊆ e1 \ isolK2

(e1), the other
inclusion being similar. Let x ∈ e2 \ isolK1

(e2). Since x 6∈
isolK1

(e2) one of the following hold.

– x ∈ out(K1). But then, x ∈ out(K1) = out(I1) = out(H) =
out(I2) = out(K2). In particular, x is an equijoin variable
in H and K∈. Then x ∈ jvH(e2) ⊆ e1 because e2vH e1.
From this and the fact that x remains an equijoin variable
in K2, we obtain x ∈ e1 \ isolK2

(e1).
– x occurs in e2 and in some hyperedge g in K1 with g 6= e2.

Since e1 is not in K1 also g 6= e1. Since every hyperedge
in K1 is in I1 and every hyperedge in I1 is in H, also g

is in H. But then, x occurs in two distinct hyperedges in
H, namely e2 and g, and hence x ∈ jvH(e2) ⊆ e1 because
e2vH e1. However, because x also occurs in g which must
also be in I2 and therefore also in K2, x also occurs in two
distinct hyperedges in K2, namely e1 and g. Therefore,
x ∈ jvI2(e1) and hence x ∈ e1 \ isolI2(e1), as desired.

– x ∈ var(pred(K1)). Then there exists θ ∈ pred(K1) such
that x ∈ var(θ). Since pred(K1) = pred(K2), θ ∈ pred(K2).
As such, θ ∈ pred(H), var(θ)∩(e2\e1) = ∅, and var(θ) 6⊆ e1.
But then, since x ∈ var(θ); x ∈ e2; and var(θ)∩(e2\e1) = ∅,
it must be the case that x ∈ e1. As such, x ∈ e1 and
x ∈ var(K2). Hence x ∈ e1 \ isolK2

(e1).

(3) Case (ISO, CSE): assume that I1 is obtained by re-
moving the non-empty set of isolated variables X1 ⊆ isolH(e1)
from e1, while I2 is obtained by removing hyperedge e2, con-
ditional subset of hyperedge f2. We may assume w.l.o.g. that
e1 6= isolH(e1): if e1 = isolH(e1) then the ISO operation
removes the complete hyperedge e1. However, because no
predicate in H shares any variable with e1, it is readily veri-
fied that e1vH e2 and thus the removal of e1 can also be seen
as an application of CSE on e18, and we are hence back in
case (2).

Now reason as follows. Because e2vH f2 and because
isolated variables of e1 occur in no other hyperedge in H, it
must be the case that e2∩X1 = ∅. In particular, e1 and e2 must
hence be distinct. Therefore, e1 ∈ hyp(I2) and e2 ∈ hyp(I1).
By Lemma 11, we can apply ISO on I2 to remove X1 from e1.
It then suffices to show that e2 remains a conditional subset of
some hyperedge f ′2 in I1 with e2 \ f2 = e2 \ f ′2. Indeed, we can
then use ECQ to remove e2 from hyp(I1) as well as predicates
θ with var(θ) ∩ (e2 \ f2) 6= ∅ from pred(I1). This clearly yields
the same triplet as the one obtained by removing X1 from e1
in I2. We need to distinguish two cases.

(3a) f2 6= e1. Then f2 ∈ hyp(I1) and hence e2vI1 f2 by
Lemma 11. We hence take f ′2 = f2.

(3b) f2 = e1. Then we take f ′2 = e1 \ X. Since e1 6=
isolH(e1) it follows that e1 \X1 6= ∅. Therefore, f ′2 = e1 \X1 ∈
hyp(I1). Furthermore, since X ⊆ isolH(e1), no variable in X
is in any other hyperedge in H. In particular X ∩ e2 = ∅.
Therefore, e2 \ f ′2 = e2 \ (e1 \ X) = (e2 \ e1) ∪ (e2 ∩ X) =
e2 \ e1 \ e1 = e2 \ f2. It remains to show that e2vI1 e1 \X1.

– jvI1(e2) ⊆ e1 \ X1. Let x ∈ jvI1(e2). By Lemma 11, x ∈
jvI1(e2) ⊆ jvH(e2) ⊆ e1 where the last inclusion is due to
e2vH e1. In particular, x is an equijoin variable in H. But
then it cannot be an isolated variable in any hyperedge.
Therefore, x 6∈ X1.

– extI1(e2 \ e1) ⊆ e1 \ X. Let x ∈ extI1(e2 \ e1). Then x ∈
extI1(e2 \ e1) ⊆ extH(e2 \ e1) ⊆ e1 where the first inclusion
is by Lemma 11 and the second by e2vH e1. Then, because
x ∈ extH(e2\e1) it follows from the definition of ext, that x

8 Note that, since e1 does not share variables with any pred-
icate, the CSE operation also does not remove any predicates
from H1, similar to the ISO operation and hence yields I1.

occurs in some predicate in pred(H). However, X is disjoint
with var(pred(H)) since it consist only of isolated variables.
Therefore, x 6∈ X.

(4): Case (ISO, FLT) Assume that I1 is obtained by re-
moving the non-empty set X1 ⊆ isolH(e1) from hyperedge
e1, while I2 is obtained by removing all predicates in the
non-empty set Θ ⊆ pred(H) with var(Θ) ⊆ e2 for some hyper-
edge e2 in hyp(H). Observe that e1 ∈ hyp(I2). By Lemma 11,
X ⊆ isolH(e1) ⊆ isolI2(e1). Therefore, we may apply reduction
operation (ISO) on I2 to remove X1 from e1. We will now
show that, similarly, we may still apply (FLT) on I1 to remove
all predicates in Θ from pred(I1) = pred(H). The two opera-
tions hence commute, and clearly the resulting triplets in both
cases is the same. We distinguish two possibilities. (i) e1 6= e2.
Then e2 ∈ I1 and, var(Θ) ⊆ e2 and, since (ISO) does not re-
move predicates, Θ ⊆ pred(H) = pred(I1). As such the (FLT)
operation indeed applies to remove all predicates in Θ from
pred(I1). (ii) e1 = e2. Then, since X ⊆ isolH(e1) and isolated
variables do no occur in any predicate, X ∩ var(Θ) = ∅. Then,
since var(Θ) ⊆ e2 = e1, it follows that also var(Θ) ⊆ e1 \X.
In particular, since we disallow nullary predicates and Θ is
non-empty, e1 \X 6= ∅. Thus, e1 \X ∈ hyp(I1) and hence op-
eration (FLT) applies indeed applies to remove all predicates
in Θ from pred(I1)

(5) Case (CSE, FLT): assume that I1 is obtained by re-
moving hyperedge e1, conditional subset of e2 in H, while I2
is obtained by removing all predicates in the non-empty set
Θ ⊆ pred(H) with var(Θ) ⊆ e3 for some hyperedge e3 ∈ hyp(H).
Since the (FLT) operation does not remove any hyperedges,
e1 and e2 are in hyp(I2). Then, since e1vH e2 also e1vI2 e2
by Lemma 11. Therefore, we may apply reduction operation
(CSE) on I2 to remove e1 from hyp(I2) as well as all predi-
cates θ ∈ pred(I2) for which var(θ) ∩ (e1 \ e2) 6= ∅. Let J2 be
the triplet resulting from this operation. We will show that,
similarly, we may apply (FLT) on I1 to remove all predicates
in Θ∩pred(I1) from pred(I1), resulting in a triplet J1. Observe
that necessarily, J1 = J2 (and hence they form the triplet J ).
Indeed, out(J1) = out(I1) = out(H) = out(I2) = out(J2) since
reduction operations never modify output variables. Moreover,

hyp(J1) = hyp(I1)

= hyp(H) \ {e1}
= hyp(I2) \ {e1}
= hyp(J2)

where the first and third equality is due to fact that (FLT)
does not modify the hypergraph of the triplet it operates on.
Finally, observe

pred(J1) = pred(I1) \ (Θ ∩ pred(I1))

= pred(I1) \Θ
= {θ ∈ pred(H) | var(θ) ∩ (e1 \ e2) = ∅} \Θ
= {θ ∈ pred(H) \Θ | var(θ) ∩ (e1 \ e2) = ∅}
= {θ ∈ pred(I2) | var(θ) ∩ (e1 \ e2) = ∅}
= pred(J2)

It remains to show that we may apply (FLT) on I1 to
remove all predicates in Θ ∩ pred(I1), resulting in a triplet J1.
There are two possibilities.

– e3 6= e1. Then e3 ∈ I1, Θ ∩ pred((I1)) ⊆ pred(I1)), and
var(Θ ∩ pred(I1)) ⊆ var(Θ) ⊆ e3. Hence the (FLT) op-
eration indeed applies to I1 to remove all predicates in
Θ ∩ pred(I1).
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– e3 = e1. In this case we claim that for every θ ∈ Θ∩pred(I1)
we have var(θ) ⊆ e2. As such, var(Θ∩pred(I1)) ⊆ e2. Since
e2 ∈ hyp(I1) and Θ ∩ pred(I1) ⊆ pred(I1) we may hence
apply (FLT) to remove all predicates in Θ ∩ pred(I1) from
I1. Concretely, let θ ∈ Θ ∩ pred(I1). Because, in order
to obtain I1, (CSE) removes all predicates from H that
share a variable with e1 \ e2, we have var(θ)∩ (e1 \ e2) = ∅.
Moreover, because θ ∈ Θ, var(θ) ⊆ e1. Hence var(θ) ⊆ e2,
as desired.

The remaining cases, (CSE, ISO), (FLT, ISO), and (FLT,
CSE), are symmetric to case (3), (4), and (5), respectively.

B.2 Proof of Proposition 9

Proposition 9 For every GJT pair there exists an equivalent
canonical pair.

Proof. Let T be a GJT. The proof proceeds in three steps.
Step 1. Let T1 be the GJT obtained from T by (i) removing
all predicates from T , and (ii) creating a new root node r that
is labeled by ∅ and attaching the root of T to it, labeled by
the empty set of predicates. T1 satisfies the first canonicality
condition, but is not equivalent to T because it has none
of T ’s predicates. Now re-add the predicates in T to T1 as
follows. For each edge m → n in T and each predicate θ ∈
predT (m→ n), if var(θ) ∩ (var(n) \ var(m)) 6= ∅ then add θ to
predT1

(m → n). Otherwise, if var(θ) ∩ (var(n) \ var(m)) = ∅,
do the following. First observe that, by definition of GJTs,
var(θ) ⊆ var(n)∪var(m). Because var(θ)∩(var(n)\var(m)) = ∅
this implies var(θ) ⊆ var(m). Because we disallow nullary
predicates, var(m) 6= ∅. Let a be the first ancestor of m in T1
such that var(θ) 6⊆ var(a). Such an ancestor exists because the
root of T1 is labeled ∅. Let b be the child of a in T1. Since
a is the first ancestor of m with var(θ) 6⊆ var(a), var(θ) ⊆
var(b). Therefore, var(θ) ⊆ var(b)∪var(a) and var(θ)∩ (var(b)\
var(a)) 6= ∅. As such, add θ to predT1

(a → b). After having
done this for all predicates in T , T1 becomes equivalent to T ,
and satisfies canonicality conditions (1) and (3). Then take
take N1 = N ∪ {r}. Clearly, N1 is a connex subset of T1 and
var(N) = var(N ′). Therefore, (T1, N1) is equivalent to (T,N).

Step 2. Let T2 be obtained from T1 by adding, for each
leaf node l in T1 a new interior node nl labeled by var(l)
and inserting it in-between l and its parent in T1. I.e., if
l has parent p in T1 then we have p → nl → l in T2 with
predT2

(p → nl) = predT1
(p → n) and predT2

(nl → l) = ∅.9
Furthermore, let N2 be the connex subset of T2 obtained by
replacing every leaf node l in N1 by its newly inserted node nl.
Clearly, var(N2) = var(N1) = var(N) because var(l) = var(nl)
for every leaf l of T1. By our construction, (T2, N2) is equivalent
to (T,N); T2 satisfies canonicality conditions (1), (2), and (4);
and N2 is canonical.

Step 3. It remains to enforce condition (3). To this end,
observe that, by the connectedness condition of GJTs, T2
violates canonicality condition (3) if and only if there exist
internal nodes m and n where m is the parent of n such that
var(m) = var(n). In this case, we call n a culprit node. We
will now show how to obtain an equivalent pair (U,M) that
removes a single culprit node; the final result is then obtained
by iterating this reasoning until all culprit nodes have been
removed.

The culprit removal procedure is essentially the reverse
of the binarization procedure of Fig. 9. Concretely, let n be a

9 Note that all leafs have a parent since the root of T1 is an
interior node labeled by ∅.

culprit node with parent m and let n1, . . . , nk be the children
of n in T2. Let U be the GJT obtained from T2 by removing n
and attaching all children ni of n as children to m with edge
label predU (m→ ni) = predT2

(n→ ni), for 1 ≤ i ≤ k. Because
var(n) = var(m), the result is still a valid GJT. Moreover,
because var(n) = var(m) and T2 satisfied condition (4), we
had predT2

(m → n) = ∅, so no predicate was lost by the
removal of n. Finally, define M as follows. If n ∈ N2, then set
M = N2 \{n}, otherwise set M = N2. In the former case, since
N2 is connex and n ∈ N2, m must also be in N2. It is hence
in M . Therefore, in both cases, var(N) = var(N2) = var(M).
Furthermore, it is straightforward to check that M is a connex
subset of U . Finally, since N2 consisted only of interior nodes
of T2, M consists only of interior nodes of U and hence remains
canonical.

B.3 Proof of Lemma 5

We first require a number of auxiliary results.
We first make the following observations regarding canon-

ical GJT pairs.

Lemma 12 Let (T,N) be a canonical GJT pair, let n be a fron-

tier node of N and let m be the parent of n in T .

1. x 6∈ var(N \ {n}), for every x ∈ var(n) \ var(m).
2. hyp(T,N \ {n}) = hyp(T,N) \ {var(n)}).
3. θ 6∈ pred(m→ n), for every θ ∈ pred(T,N \ {n})
4. pred(T,N \ {n}) = pred(T,N) \ pred(m→ n).
5. pred(m→ n) = {θ ∈ pred(T,N) | var(θ)∩(var(n)\var(m)) 6=
∅}.

6. pred(T,N \ {n}) = {θ ∈ pred(T,N) | var(θ) ∩ (var(n) \
var(m)) = ∅}.

Proof. (1) Let x ∈ var(n) \ var(m) and let c be a node in
N \ {n}. Clearly the unique undirected path between c and n

in T must pass through m. Because x 6∈ var(m) it follows from
the connectedness condition of GJTs that also x 6∈ var(c). As
such, x 6∈ var(N \ {n}).

(2) The ⊇ direction is trivial. For the ⊆ direction, assume
that m ∈ N \ {n} with var(m) 6= ∅. Then clearly m ∈ N
and hence var(m) ∈ hyp(T,N). Furthermore, because N is
canonical, both m and n are interior nodes in T . Then, because
T is canonical and m 6= n we have var(m) 6= var(n). Therefore,
var(m) ∈ hyp(T,N) \ {var(n)}.

(3) Let θ ∈ pred(T,N \ n). Then θ occurs on the edge
between two nodes in N\n, say m′ → n′. By definition of GJTs,
var(θ) ⊆ var(n′)∪var(m′) ⊆ var(N \{n}). Now suppose for the
purpose of contradiction that also θ ∈ pred(m→ n). Because
T is nice, there is some x ∈ var(θ) ∩ (var(n) \ var(m)) 6= ∅.
Hence, by (1), x 6∈ var(N \ {n}), which contradicts var(θ) ⊆
var(N \ {n}).

(4) Clearly, pred(T,N) \ pred(m → n) ⊆ pred(T,N \ {n}).
The converse inclusion follows from (3).

(5) The ⊆ direction follows from the fact that m and n

are in N , and T is nice. To also see ⊇, let θ ∈ pred(T,N) with
var(θ)∩(var(n)\var(m)) 6= ∅. There exists x ∈ var(θ)∩(var(n)\
var(m)). By (1), x 6∈ var(N \ {n}). Therefore, θ cannot occur
between edges in N \ {n} in T . Since it nevertheless occurs in
pred(T,N), it must hence occur in pred(m→ n).

(6) Follows directly from (4) and (5).

Lemma 13 Let (T,N) be a canonical GJT pair, let n be a fron-
tier node of N and let m be the parent of n in T . Let z ⊆
var(N \ {n}).

1. var(n)vH(T,N,z) var(m).
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2. x 6∈ jv(H(T,N, z)), for every x ∈ (var(n) \ var(m)).

Proof. For reasons of parsimony, let H = H(T,N, z). We first
prove (2) and then (1).

(2) Let x ∈ var(n) \ var(m). By Lemma 12(1), x 6∈ var(N \
{n}). Therefore, x occurs in var(n) in H and in no other
hyperedge. Furthermore, because z ⊆ var(N \ {n}), also x 6∈ z.
Hence x 6∈ jvH(var(n)).

(1) We need to show that jvH(var(n)) ⊆ var(m) and
extH(var(n) \ var(m)) ⊆ var(m). Let x ∈ jvH(var(n)). By con-
traposition of (2), we know that x 6∈ (var(n) \ var(m)). There-
fore, x ∈ var(m) and thus jvH(var(n)) ⊆ var(m). To show
extH(var(n) \ var(m)) ⊆ var(m), let y ∈ extH(var(n) \ var(m)).
Then y 6∈ var(n) \ var(m) and there exists θ ∈ pred(T,N) with
var(θ)∩ (var(n)\var(m)) 6= ∅ and y ∈ var(θ). By Lemma 12(5),
θ ∈ predT (m → n). Thus, y ∈ var(m) ∪ var(n). Since also
y 6∈ var(n) \ var(m), it follows that y ∈ var(m). Therefore,
extH(var(n) \ var(m)) ⊆ var(m).

Lemma 14 Let (T,N) be a canonical GJT pair and let n be

a frontier node of N . Then H(T,N, z) ∗H(T,N \ {n}, z) for

every z ⊆ var(N \ {n}).

Proof. For reasons of parsimony, let us abbreviate H1 =
H(T,N, z) and H2 = H(T,N \ {n}, z). We make the follow-
ing case analysis.

Case (1): Node n is the root in N . Because the root of
a canonical tree is labeled by ∅ we have var(n) = ∅. Since n
is a frontier node of N , N = {n}. Thus, hyp(T,N) = ∅ and
hyp(T,N \ {n}) = ∅. Furthermore, pred(T,N) = pred(T,N \
{n}) = ∅ and z ⊆ var(N \ {n}) = var(∅) = ∅. As such, both H1

and H2 are the empty triplet (∅, ∅, ∅). Therefore H1 ∗H2.
Case (2): n has parent m in N and var(m) 6= ∅. Then

var(n) 6= ∅ since in a canonical tree the root node is the only in-
terior node that is labeled by the empty hyperedge. Therefore,
var(n) ∈ hyp(T,N), var(m) ∈ hyp(T,N), and var(n)vH1

var(m)
by Lemma 13(1). We can hence apply reduction (CSE) to
remove var(n) from hyp(H1) and all predicates that intersect
with var(n)\var(m) from pred(H1). By Lemma 12(2) and 12(6)
the result is exactly H2:

hyp(H2)

= hyp(T,N \ {n})
= hyp(T,N) \ {var(n)} = hyp(H1) \ {var(n)}

pred(H2)

= pred(T,N \ {n})
= {θ ∈ pred(T,N) | var(θ) ∩ (var(n) \ var(m)) = ∅}
= {θ ∈ pred(H1) | var(θ) ∩ (var(n) \ var(m)) = ∅}

Case (3): n has parent m in N and var(m) = ∅. Then
var(n) 6= ∅ since since in a canonical tree the root node is the
only interior node that is labeled by the empty hyperedge. By
definition of GJTs, it follows that for every θ ∈ pred(m→ n)
we have var(θ) ⊆ var(n)∪ var(m) = var(n). In other words: all
θ ∈ pred(m → n) are filters. As such, we can use reduction
(FLT) to remove all predicates in pred(m→ n) from H1. This
yields a triplet I with the same hypergraph as H1, same set
of output variables as H1, and

pred(I) = pred(H1) \ predT (m→ n)

= pred(T,N) \ predT (m→ n)

= pred(T,N \ {n}) = pred(H2),

where the third equality is due to Lemma 12(4). We claim
that every variable in e is isolated in I. From this the result

follows, because then we can apply (ISO) to remove the entire
hyperedge var(e) from hyp(I) = hyp(H1) while preserving
out(I) and pred(I). The resulting triplet hence equals H2. To
see that e ⊆ isol(I), observe that no predicate in pred(I) =
pred(T,N \ {n}) shares a variable with var(n) = (var(n) \
var(m)) by Lemma 12(6). Therefore var(n) ∩ var(pred(I)) = ∅.
Furthermore, var(n)∩ jv(I) = ∅ because jv(I) = jv(H1) and no
x ∈ var(n) = var(n)\ var(m) is in jv(H1) by Lemma 13(2).

Lemma 5 Let (T,N1) and (T,N2) be canonical GJT pairs with

N2 ⊆ N1. Then H(T,N1, z) ∗H(T,N2, z) for every z ⊆ var(N2).

Proof. By induction on k, the number of nodes in N1 \ N2.
In the base case where k = 0, the result trivially holds since
then N1 = N2 and the two triplets are identical. For the in-
duction step, assume that k > 0 and the result holds for k− 1.
Because both N1 and N2 are connex subsets of the same tree
T , there exists a node n ∈ N1 that is a frontier node in N1,
and which is not in N2. Then define N ′1 = N1 \ {n}. Clearly
(T,N ′1) is again canonical, and |N ′1 \N2| = k − 1. Therefore,
H(T,N ′1, z) 

∗H(T,N2, z) by induction hypothesis. Further-
more, by H(T,N1, z) ∗H(T,N ′1, z) by Lemma 14, from which
the result follows.

B.4 Proof of Lemma 6

Lemma 6 Let H1 and H2 be two hypergraphs such that for

all e ∈ H2 there exists ` ∈ H1 such that e ⊆ `. Then (H1 ∪
H2, z, Θ) ∗(H1, z, Θ), for every hyperedge z and set of predi-

cates Θ.

Proof. The proof is by induction on k, the number of hyper-
edges in H2 \ H1. In the base case where k = 0, the result
trivially holds since H1 ∪H2 = H1 and the two triplets are
hence identical. For the induction step, assume that k > 0
and the result holds for k − 1. Fix some e ∈ H2 \ H1 and
define H′2 = H2 \ {e}. Then |H′2 \ H1| = k − 1. We show
that (H1 ∪H2, z, Θ) ∗(H1 ∪H′2, z, Θ), from which the result
follows since (H1∪H′2, z, Θ) ∗(H1, z, Θ) by induction hypoth-
esis. To this end, we observe that there exists ` ∈ H1 \ {e}
with e ⊆ `. Therefore, jv(H1∪H2,z,Θ)(e) ⊆ e ⊆ `. Moreover,
e \ ` = ∅. Therefore, ext(H1∪H2,z,Θ)(e \ `) = ∅ ⊆ `. Thus
ev(H1∪H2,z,Θ) `. We may therefore apply (CSE) to remove e
from H1 ∪ H2, yielding H1 ∪ H′2. Since no predicate shares
variables with e \ ` = ∅ this does not modify Θ. Therefore,
(H1 ∪H2, z, Θ) ∗(H1 ∪H′2, z, Θ).

C Proofs of Section 5.2

Lemma 7 Let n be a violator of type 1 in (T,N) and assume

(T,N)
1,n−−→ (T ′, N ′). Then (T ′, N ′) is a GJT pair and it is equiv-

alent to (T,N). Moreover, the number of violators in (T ′, N ′) is
strictly smaller than the number of violators in (T,N).

Proof. The lemma follows from the following observations. (1)
It is straightforward to observe that T ′ is a valid GJT: the
construction has left the set of leaf nodes untouched; took care
to ensure that all nodes (including the newly added node p)
continue to have a guard child; ensures that the connectedness
condition continues to hold also for the relocated children of
n because every variable in n is present on the entire path
between n and p; and have ensured that also edge labels
remain valid (for the relocated nodes this is because var(p) =
var(g) ⊆ var(n)).
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(2) N ′ is a connex subset of T ′ because the subtree of T
induced by N equals to subtree of T ′ induced by N ′, modulo
the replacement of l by p in case that l was in N and p is
hence in N ′.

(3) (T,N) is equivalent to (T ′, N ′) because the construc-
tion leaves leaf atoms untouched, preserves edge labels, and
var(N) = var(N ′). The latter is clear if l 6∈ N because then
N = N ′. It follows from the fact that var(l) = var(p) if l ∈ N ,
in which case N ′ = N \ {l} ∪ {p}.

(4) All nodes in chT (n) \N (and their descendants) are
relocated to p in T ′. Therefore, n is no longer a violator
in (T ′, N ′). Because we do not introduce new violators, the
number of violators of (T ′, N ′) is strictly smaller than the
number of violators of (T,N).

Lemma 8 Let n be a violator of type 2 in (T,N) and assume

(T,N)
2,n−−→ (T ′, N ′). Then (T ′, N ′) is a GJT pair and it is equiv-

alent to (T,N). Moreover, the number of violators in (T ′, N ′) is

strictly smaller than the number of violators in (T,N).

Proof. The lemma follows from the following observations. (1)
It is straightforward to observe that T ′ is a valid GJT: the
construction has left the set of leaf nodes untouched; took care
to ensure that all nodes (including the newly added node p)
continue to have a guard child; ensures that the connectedness
condition continues to hold also for the relocated children of
n because every variable in n is also present in p, their new
parent; and have ensured that also edge labels remain valid
(for the relocated nodes this is because var(p) = var(n)).

(2) N ′ is a connex subset of T ′ because (i) the subtree of
T induced by N equals to subtree of T ′ induced by N ′ {p},
(ii) n ∈ N , and (iii) p is a child of n in T ′. Therefore, N ′ must
be connex.

(3) (T,N) is equivalent to (T ′, N ′) because the construc-
tion leaves leaf atoms untouched, preserves edge labels, and
var(N) = var(N ′). The latter follows because var(N ′) = var(N∪
{p}) and because var(p) = var(n) ⊆ var(N) since n ∈ N .

(4) All nodes in chT (n) \N (and their descendants) are
relocated to p in T ′. Therefore, n is no longer a violator
in (T ′, N ′). Because we do not introduce new violators, the
number of violators of (T ′, N ′) is strictly smaller than the
number of violators of (T,N).

D Description of Competing Systems

DBToaster. DBToaster (henceforth denoted DBT) is a state-
of-the-art implementation of HIVM. It operates in pull-based
mode, and can deal with randomly-ordered update streams.
DBT is particularly meticulous in that it materializes only
useful views, and therefore it is an interesting implementation
for comparison. It has been extensively tested on equijoin
queries and has proven to be more efficient than a commercial
database management system, a commercial stream processing
system and an IVM implementation [30]. DBT compiles given
SQL statements into executable trigger programs in different
programming languages. We compare against those generated
in Scala from the DBToaster Release 2.210, and it uses ac-
tors11 to generate events from the input files. During our
experiments, however, we have found that this creates unnec-
essary memory overhead. For a fair memory-wise comparison,
we have therefore removed these actors.

10 https://dbtoaster.github.io/
11 https://doc.akka.io/docs/akka/2.5/

Esper. Esper (E) is a CER engine with a relational model
based on Stanford STREAM [4]. It is push-based, and can deal
with randomly-ordered update streams. We use the Java-based
open source12 for our comparisons. Esper processes queries
expressed in the Esper event processing language (EPL).

SASE. SASE (SE) is an automaton-based CER system. It
operates in push-based mode, and can deal with temporally-
ordered update streams only. We use the publicly available
Java-based implementation of SASE13. This implementation
does not support projections. Furthermore, since SASE re-
quires queries to specify a match semantics (any match, next
match, partition contiguity) but does not allow combinations
of such semantics, we can only express queries Q1, Q2, and Q4

in SASE. Hence, we compare against SASE for these queries
only. To be coherent with our semantics, the corresponding
SASE expressions use the any match semantics [3].

Tesla/T-Rex. Tesla/T-Rex (T) is also an automaton-based
CER system. It operates in push-based mode only, and sup-
ports temporally-ordered update streams only. We use the
publicly available C-based implementation14. This implemen-
tation operates in a publish-subscribe model where events
are published by clients to the server, known as TRexServer.
Clients can subscribe to receive recognized composite events.
Tesla cannot deal with queries involving inequalities on multi-
ple attributes e.g. Q3, therefore, we do not show results for
Q3. Since Tesla works in a decentralized manner, we measure
the update processing time by logging the time at the Tesla
TRexServer from the stream start until the end.

ZStream. ZStream (Z) is a CER system based on a relational
internal architecture. It operates in push-based mode, and can
deal with temporally-ordered update streams only. ZStream is
not available publicly. Hence, we have created our own imple-
mentation following the lazy evaluation algorithm described
in the original paper [31]. This paper does not describe how
to treat projections, and as such we compare against ZStream
only for full join queries Q1–Q8.

12 http://www.espertech.com/esper/esper-downloads/
13 https://github.com/haopeng/sase
14 https://github.com/deib-polimi/TRex


