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Abstract
Milk supply and quality during lactation are critical for progeny survival. Maternal tissues and metabolism, influenced by 
hormonal changes, undergo modification during lactation to sustain breastfeeding. Two organs that suffer essential adjust-
ment are the mammary glands and the bone; however, renal calcium conservation and calcium absorption from the intestine 
are also modified. Lactation leads to a transient loss of bone minerals to provide adequate amounts of minerals, including 
calcium for milk production. Physiological, metabolic, and molecular changes in different tissues participate in provid-
ing nutrients for milk production. After weaning, the histological, metabolic, and hormonal modifications that take place 
in lactation are reverted, and bone remineralization is a central function at this time. This study focuses on the hormonal, 
metabolic, molecular, and tissue modifications that occur in mammary glands, bone, intestine, and kidneys in the mother 
during lactation and post-weaning periods.
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Introduction

Lactation and post-weaning are periods during which sev-
eral tissues suffer morphologic, metabolic, and hormonal 
changes. The central function of lactation is to synthesize 
and release milk; mammary glands change to meet the 
demand for milk production. In the bone, lactation leads to 
a transient loss of bone minerals to ensure adequate amounts 
of minerals, including calcium, for milk production. Other 
organs such as the gut and the kidney also modify their 
functions to support the levels of calcium and other nutrient 
requirements. After weaning, the mammary glands undergo 
involution, and the modifications in other tissues to sustain 
breastfeeding are reverted; in particular, bone remineraliza-
tion is a focal feature during this period.

Calcium is a central protagonist in lactation and post-lac-
tation. Plasma calcium exists in three distinct forms: approx-
imately 15% is bound to organic and inorganic anions, 40% 

to albumin, and the remaining 45% circulates as free ionized 
calcium. About 99% of the calcium is stored in the bones and 
the teeth as hydroxyapatite [1]. The total calcium is main-
tained within a range of 8.5–10.5 mg/dl (4.3–5.3 mEq/L or 
2.2–2.7 mmol) [2]. However, normal values and reference 
ranges may vary among laboratories by as much as 0.5 mg/
dl. In a non-lactating state, parathyroid hormone and calci-
triol regulate calcium homeostasis.

In lactation, the hormones produced intervene in calcium 
metabolism (described below). The mechanisms by which 
calcium is provided for milk synthesis may differ between 
species [3]. Reports in rodents indicate a loss of 25–35% 
of bone mass during lactation. Women lose less bone mass 
(5–8%) than rodents over the first 6 months after parturi-
tion, because humans usually nurse only one child versus 
multiparous rodents [3]. The main adaptation to provide cal-
cium for milk synthesis is bone demineralization, followed 
by the renal conservation of calcium [3]. Rodents also have 
increased intestinal calcium absorption during pregnancy 
[3].

Mammary gland

Mammary glands are specialized and complex secretory tis-
sues that produce milk to feed the newborn. They contain 
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epithelial cells, adipocytes, vascular endothelial cells, fibro-
blasts, and immune cells [4].

Mammary gland changes during lactation

Mammary glands change during pregnancy and culminate 
in lactation [5]. These changes require increased epithelial 
cell proliferation and differentiation in the milk-producing 
alveoli secretory gland (alveologenesis). On the other hand, 
the number of adipocytes decreases and vascularization 
increases in the mammary gland. At the end of pregnancy, 
the alveoli occupy most of the adipose space [5]. Lactation 
in rats is at its peak on day 12 after delivery, the period 
in which the mammary glands present prominent luminal 
structures and ducts and few visible adipocytes [5].

For the development of mammary glands during preg-
nancy, increase in progesterone and estrogen levels is 
essential. After delivery, the decrease in estrogen and pro-
gesterone levels facilitates the effect of prolactin in milk 
synthesis [3]. Suckling stimulates the hypothalamus to 
secrete oxytocin and prolactin. The augment of prolactin 
produced by suckling is pulsatile throughout lactation [3]. 
Prolactin is also produced by the breast during lactation [3]. 
The increase of this hormone produces several metabolic 
changes to promote lactogenesis.

Metabolic changes

During lactation, numerous changes in maternal metabo-
lism, triggered by hormonal signals, occur to fulfill the nutri-
ent, energy, and mineral requirements for milk production 
[6]. In the breasts, increased glucose utilization, fatty acid 
esterification, and lipid and amino acid uptake occur [7, 8]. 
Prolactin regulates lactogenesis and increases the synthesis 
of milk proteins, such as β-casein [9], lactoglobulin [10], 
α-lactoalbumin [11], and whey milk acid protein [12]. It 
also augments the enzymes and transporters involved in lipid 
uptake and de novo lipogenesis [13] as well as the enzymes 
that participate in lactose synthesis [14].

Lactose is the main carbohydrate component of the 
milk; this disaccharide is synthesized from glucose. Early 
rat studies from the Dermot Williamson group (1980) 
[15] estimated that in the mammary gland, the glucose 
uptake for lactose synthesis is about 23%, and the rest 
is for lipogenesis [15]. During lactation, the mammary 
gland is the most active site for both lipid synthesis (five-
fold higher than the liver) and fatty acid esterification [7]. 
Mammary glucose-transport activity raises with a con-
comitant increase in glucose transporters (GLUT) GLUT-8 
and GLUT-1; this later is the predominant isoform that 
transports mannose and galactose in addition to glu-
cose [16, 17]. Despite the importance of glucose in milk 
synthesis, there is not a complete understanding of the 

factors that trigger the transport of glucose by mammary 
glands. Prolactin together with glucocorticoids and the 
growth hormone increase glucose transport [18]; however, 
recent studies have found that GLUT’s expression was not 
affected by lactogenic hormones [19] and that the regula-
tion of GLUT1 and glucose uptake is probably elicited by 
hypoxia [16]. Other studies suggest that serotonin may 
participate in the expression of GLUT transporters [20].

Studies by Rudolph et al. [21] examined by microar-
ray analysis the expression of genes contributing to milk 
synthesis in the mammary gland, comparing the ratio of 
gene expression at lactation on day 2 to pregnancy on 
day 17. Important increases were found in lactose syn-
thesis enzymes with a remarkable change of 15-fold in 
the alpha-lactoalbumin expression [21]. Increased glyco-
lysis, pentose phosphate shunt, fatty acid/malate shuttle, 
and citric acid cycle enzymes were observed, especially 
enzymes involved in the regulation of lipogenesis de novo 
[21], such as aldolase, pyruvate kinase, and citrate kinase. 
Important increases in glucose transporter GLUT1, fatty 
acid uptake such as fatty acid plasma membrane trans-
porters, fatty acid translocase, and lipoprotein lipase have 
also been observed [21, 22]. Accordingly, with the high 
lipid levels in milk, the triglyceride synthesis enzymes 
glycerol kinase, long-chain acetyl-CoA synthase, 1-acyl-
glycerol-3-phosphate O-acyltransferase-1, and diacylg-
lycerol O-acyltransferase-1 were also upregulated [21]. 
The mRNA expressions of amino acid transporters as 
L-amino acid transporter (LAT-1) and the alanine serine 
cysteine (ASC) system were enhanced [21]. In rats, the 
expressions of LAT-1, ASC mRNA, and cationic amino 
acid transporter (CAT-1) were also increased. In contrast, 
the expression of the transporters for anionic amino acids 
EAAC1 and GLAST was low (Fig. 1).

The analysis of the signals regulating the expression 
of these enzymes and transporters in Rudolph studies 
[21] suggests that the lipogenic transcription factors C/
EBPδ, LXRβ, PPARγ, and SREBP1c play an important 
role in the upregulation of lipid synthesis, in particular 
SREBP1c whose increase was paralleled with augments in 
transcripts of genes known to be regulated by this factor. 
The mRNA expression of the signaling protein AKT1 was 
greatly enhanced; this protein is known to upregulate glu-
cose uptake, GLUT1 surface localization, as well as lipo-
genic enzymes during lactation [23]. Accordingly, with 
the central action of prolactin, the transcripts of prolactin 
signaling pathway, STAT5a, STAT5b, and the prolactin 
receptor (PRLR) were increased [21].

Interestingly, glucose utilization, lipogenesis, and lipid 
uptake decrease in the white adipose tissue [15], which 
indicates that adipocyte metabolism is modified to provide 
substrates for fat and lactose synthesis in the mammary 
gland.
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Changes in hormones produced by the mammary 
gland during lactation

Prolactin

Prolactin is a 198-amino acid protein (23 kd) produced in 
the lactotroph cells of the pituitary gland, which is known 
for its ability to promote lactation [24]. Prolactin is crucial 
in the growth and development of mammary glands (mam-
mogenesis), alveologenesis, milk protein synthesis, and 
maintenance of milk secretion (galactopoiesis) [24]. Pro-
lactin actions are mediated by prolactin receptor (PrlR), 
which activates Janus kinase 2 (JAK2)/signal transducers 
and activators of transcription (STAT5), MAP kinase, and 
phosphoinositide-3 kinase/AKT1 pathways [25].

Growth, development, and survival of mammary cells 
take place at pregnancy and are mediated through prolac-
tin signaling via PrlR and the Jak2/Stat5A pathway [26], 
inducing the cytokine receptor activator of nuclear factor 
κB ligand (RANKL) [27], which via its receptor RANK 
activates NF-kB, MAPKs, and AKT [28]. In addition to 
its actions on the hyperplasia of mammary epithelial cells, 
RANKL also participates in bone resorption [27]. Moreo-
ver, the prolactin-induced expression of E74-like factor 5 
(Elf5) is also required for the differentiation of alveolar 
cells [28].

Prolactin in addition to stimulating Jak2–Stat5 signaling 
also activates the PI3K–Akt pathway [25, 29]. These two 
signaling cascades mediate milk production. Stat5 regulates 
milk protein gene transcription, such as whey acidic protein 
(WAP), β-lactoglobulin, and β-casein genes, via its bind-
ing to gamma-activated sequence GAS sequences within 
promoter regions [25, 26]. On the other hand, Akt1 regu-
lates glucose transport, lactose synthesis, and lipid synthe-
sis. Importantly, prolactin promotes calcium delivery from 
the bone to the mammary gland via parathyroid hormone-
related protein (PTHrP) secretion by the mammary tissue.

Parathyroid hormone‑related protein

PTHrP is a hormone with homology to parathyroid hormone. 
It plays an essential role in regulating calcium homeostasis 
during lactation via bone resorption [30, 31]. The source of 
the parathyroid hormone-related protein during lactation is 
the mammary gland, where its mRNA and protein synthesis 
are upregulated [30, 31]. At the end of lactation, the fall 
in progesterone and estradiol, which occurs after delivery, 
accelerates parathyroid hormone-related protein production 
[32]. Suckling also induces its mRNA and protein expres-
sion [30, 33]; this effect is mediated by prolactin [34]. Some 
studies suggest that serotonin produced by the mammary 

Fig. 1   Enzyme and protein 
increase in alveoli cells during 
lactation. GLUT-1 glucose 
transporter-1, LPL lipoprotein 
lipase, LAT-1 L-amino acid 
transporter system, ASC alanine 
serine cysteine system, Fabp 
fatty acid-binding protein, 
DHAP dihydroxyacetone phos-
phate, Agpat-1 1-acyl glycerol-
3-phosphate O-acyltrans-
ferase-1, Agpat-2 diacylglycerol 
O-acyltransferase-2
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gland during lactation may also stimulate parathyroid hor-
mone-related protein synthesis and release [35].

Serotonin

Serotonin (5-hydroxytryptamine; 5HT) is produced in a 
variety of peripheral tissues, including the gut, bone, and 
mammary gland. It is synthesized by tryptophan hydroxy-
lase-1 from l-tryptophan [20]. In the mammary gland, two 
actions of serotonin have been described: a negative feed-
back on milk synthesis and secretion, and a positive effect 
on parathyroid hormone-related protein synthesis and secre-
tion [36]. Suckling is an important mechanism that regulates 
and maintains low levels of serotonin in milk. When the 
mammary gland is filled with milk, serotonin provides a 
negative feedback that inhibits milk synthesis in the mam-
mary epithelium [37]. The expression of β-casein is sup-
pressed in the mammary epithelial MCF-12A cells and is 
associated with the serotonin-7 receptor (5HT/) expression 
[37]. Furthermore, during lactation, serotonin has a nega-
tive control over the β-casein expression in the mammary 
gland through the serotonin-7 receptor (5HT7) expression 
[37], and increased mRNA abundance of calcium trans-
porters Ncx1, Serca2, Spca2, Pmca2, and Sglt1, but not the 
calcium-sensing receptor expression in the mammary gland 
[35], and increased osteoclasts and resorption of bone [35]. 
However, these effects can also be mediated by parathyroid 
hormone-related protein.

Changes in hormones and signals that modify 
morphology and function in the mammary gland 
during lactation

Glucocorticoids

Glucocorticoids trigger differentiation of the secretory epi-
thelium and milk production [38]. In the last part of the ges-
tation, and in parturition, maternal cortisol increases sharply 
[39]. Although this increase in circulating glucocorticoids is 
not the primary trigger of lactogenesis, it has a permissive 
action for the prolactin effects on α-lactalbumin and casein 
synthesis [39]. During lactation, glucocorticoid receptors act 
as a survival signal in the mammary gland [40] and inducer 
of milk protein gene expression and milk secretion [41, 
42]. In addition, glucocorticoids and prolactin activate the 
prolactin-inducible protein (PIP) and exert an antiapoptotic 
effect on the mammary gland during lactation [43].

Oxytocin

Oxytocin is a peptide hormone synthesized in the hypo-
thalamus, where it acts as a neurotransmitter. It is also 
released into the bloodstream via the posterior pituitary 

gland functioning as a hormone in peripheral targets [44]. 
During lactation, oxytocin increases in maternal circula-
tion in response to suckling [45]. The hormone participates 
in milk ejection through the contraction of myoepithelial 
cells within the mammary tissue. It can also regulate oste-
oblast and osteoclast functions during lactation [46].

Insulin

Early studies revealed that in addition to insulin, prolactin 
and corticoids are also required to maintain the synthe-
sis of milk components [47]; nevertheless, insulin is an 
important signal for milk production. Other investiga-
tions based on circulating concentrations of insulin and 
glucose at different days of lactation showed contrasting 
results. Women on the 3rd–4th day postpartum exhibited 
increased insulin levels [48]. In lactating humans and rats, 
suckling increases the insulin release [49, 50]. In contrast, 
compared with non-lactating rats, 11–13 day lactating 
rats presented lower glucose and plasma insulin levels [8, 
51], which can be explained by the high rate of glucose 
utilization and increased insulin sensitivity [8, 51] in the 
mammary gland. Molecular studies helped disclose the 
role of insulin, demonstrating that insulin receptor sub-
strate-1 expression and its transduction pathway via Akt1 
increase dramatically in the mammary glands in lactation 
[21, 52–54], supporting the important role of this hormone 
in the mammary gland during lactation.

Calcium‑sensing receptor

This receptor is a G-protein-coupled receptor that recog-
nizes and responds to small changes in the extracellular 
ionized calcium concentration [55]. Currently, it is known 
that this receptor is present in the mammary gland [56] 
and bone [57]. The calcium-sensing receptor expression 
augments during lactation in the mammary gland [58] 
and functions as a feedback regulator during breastfeed-
ing [58]. Hormonal changes at the start of lactation induce 
parathyroid hormone-related protein secretion that acts on 
bone cells to promote bone resorption and liberate calcium 
in circulation [59]. Circulating calcium, in turn, helps to 
control parathyroid hormone-related protein secretion in 
the mammary gland through the calcium-sensing recep-
tor [59]. If the systemic calcium levels decline and cal-
cium influx in the mammary gland decreases, then the 
calcium-sensing receptor expression in the mammary 
gland is reduced. These changes lead to increased para-
thyroid hormone-related protein secretion in the maternal 
circulation by the mammary epithelial cells to increase the 
release of calcium from bone reserves [59].
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Bone

Bone is formed from different cell types: preosteoblasts, 
osteoblasts, bone-lining cells, osteocytes, preosteoclast, and 
osteoclast [60]. Osteocytes represent 90% of the total cells 
in the normal skeleton [61]. During lactation, bone plays a 
critical role in the release of minerals for milk synthesis.

Bone changes during lactation

Bone resorption and demineralization take place during 
lactation due to an increase in the number and activity of 
osteoclast [61]; nevertheless, osteocytes and osteoblast also 
participate in bone mass decrease. Osteocytes express the 
osteoclast-related genes that are upregulated during lactation 
and contribute to bone resorption during lactation (osteo-
cytic osteolysis) [62]. Osteoblasts also increase; however, 
the bone turnover is in favor of bone mass loss, because 
the osteoclast and osteocyte activity is higher compared to 
osteoblasts [63].

Hormonal signal changes that modify bone 
morphology during lactation

The mechanisms that initiate bone loss during lactation are 
not fully understood; several hormones may participate in 
this process. Studies in rats demonstrated high prolactin 
levels induced bone density loss [64, 65]; however, pro-
lactin induces bone density loss only during the late lac-
tating period [64]. Both suckling and prolactin inhibit the 
pulse center of the gonadotropin-releasing hormone that 
suppresses the luteinizing and follicle-stimulating hor-
mone. These hormonal changes result in diminished levels 
of progesterone and estradiol [66]; this decrease of steroid 
hormones along with serotonin-induced parathyroid hor-
mone-related protein secretion by prolactin promotes bone 
resorption. Nevertheless, parathyroid hormone-related pro-
tein and decreased steroid hormone levels are not the only 
participants in the accelerated bone loss during lactation 
[67]. Among other factors that may participate is the fibro-
blast growth factor 21 (FGF21), a molecule that increases 
during lactation and whose ablation results in lack of bone 
resorption during lactation [68].

Parathyroid hormone‑related protein

PTHrP secreted by the mammary gland during lactation is 
determinant for calcium milk supply through bone resorp-
tion [30, 31]. Several tissues produce parathyroid hormone-
related protein; however, this cannot be detected in the 
serum of healthy non-lactating individuals, suggesting this 

hormone functions locally in an autocrine or paracrine man-
ner and acts as an endocrine factor only during lactation [3]. 
Parathyroid hormone-related protein is generated locally in 
bone and is essential for endochondral bone formation in 
neonates and maturity for bone remodeling [69, 70]. As a 
hormone, parathyroid hormone-related protein-mediated 
actions are produced by binding to the G protein-coupled 
receptor [69]. In the bone, parathyroid hormone-related pro-
tein acts via the RANL/RANK signaling pathway, stimu-
lating the tissue resorption and liberating skeletal calcium 
stores [69].

Calcitonin

Calcitonin is a hormone that regulates calcium homeostasis 
in vertebrates via osteoclast-mediated bone resorption and 
Ca2+ excretion by the kidney [71]. The hormone is produced 
primarily by the C cells of the thyroid gland [72]. Inter-
estingly, the mammary epithelial cells are also an essential 
source of calcitonin during lactation [73]. However, it is 
unknown whether the breast, thyroid gland, or other cells 
are the source of the hormone during lactation. The effect 
of calcitonin is mediated by its receptors (CTRs), a member 
of the G-protein-coupled receptor (GPCR) [71]. Calcitonin 
levels during lactation are increased [3] and it might have an 
essential role in preventing excessive bone resorption [74].

Intestinal changes during lactation

Intestinal calcium absorption is normal in lactating women, 
but increased in rodents [3]. In rats, lactation induces mor-
phological changes in the intestine [75], including increased 
length and weight [76, 77]. Wongdee et al. [75] found that 
lactating rats had higher villous heights in the ileum, duode-
num, and jejunum compared with nulliparous rats. In addi-
tion to calcium, leucine and glucose absorption increased 
during lactation, reaching their peak at the 10th day of lacta-
tion [78]. Other changes in the gut of lactating rats include 
increased disaccharidase activities [79].

Prolactin stimulates intestinal calcium absorption in 
rodents [65, 75, 80]; however, hyperprolactinemia per se 
cannot explain the intestinal adaptive changes of lactation 
[81], suggesting that other factors may participate in this 
effect. Intestinal calcium absorption occurs through two 
different mechanisms: (1) the paracellular transport path-
way, which is the result of passive diffusion, and (2) the 
active transcellular pathway, which is crucial during lacta-
tion when there is a high calcium demand. In intestine-like 
Caco-2 monolayer cells, prolactin increases the protein of 
the first step of the active transcellular pathway: voltage-
dependent L-type calcium channel (Cav) 1.3 [82]. Lactating 
mice increase the intestinal expression of the active transcel-
lular transport proteins: the 1,25(OH)2D-inducible epithelial 



830	 The Journal of Physiological Sciences (2019) 69:825–835

1 3

calcium-selective channel (TRPV6) and the S100 calcium-
binding protein G (S100G) [83]. However, no alterations 
were found in the passive diffusion protein expression of 
cation-permeable claudin-2, claudin-12, or claudin-15 [83]. 
Fibroblast growth factor (FGF)-23 is a negative regulator 
of calcium absorption and is increased perhaps as a com-
pensatory mechanism to prevent calcium hyper-absorption 
[75, 80].

Renal changes during lactation

During lactation, urinary calcium excretion is decreased 
in rodents and humans to maintain calcium levels for milk 
production. This effect is mediated by both prolactin and 
parathyroid hormone-related protein, which stimulate cal-
cium reabsorption [3, 59]. At the molecular level, the expres-
sion of transient receptor potential cation channel subfamily 
V member 5 (Trpv5) and calbindin 1 (Calb1) was found 
to increase in the kidney of lactating mice; however, no 
changes were observed in claudins involved in Ca2+ and 
Mg2+ transport (claudin-2, claudin-14, claudin-16, or clau-
din-19) [83].

Post‑lactation

The metabolic and histological changes needed for milk pro-
duction are reverted after weaning. The mammary gland and 
the skeleton undergo rapid morphological changes, and the 
physiological actions shift toward restoration in the bone.

In rodents, studies conducted immediately after weaning 
reveled high plasma calcium levels [3, 84]. The transient 
hypercalcemic levels seen after weaning are likely a conse-
quence of the decreased outflow of calcium into the mam-
mary gland with concurrent bone reabsorption and release 
of calcium into circulation. One week after weaning, the 
plasma calcium levels returned to the normal range and 
remained steady afterward [3].

Mammary gland in post‑lactation

After weaning, the mammary gland morphology remodels 
to reach the pre-pregnant state. These processes are medi-
ated by local signals and changes in circulating levels of 
hormones [85]. Mammary gland involution initiates with 
the apoptosis of epithelial cells, the collapse of alveolar 
structures, a decrease in milk synthesis, and a rise in fat 
cells [85]. Involution of the mammary glands can be divided 
into two different stages: the first starts immediately upon 
weaning, lasts for about 48 h, and is reversible [86]. This 
phase is regulated by local factors within the gland [85]. 
The second phase is controlled by hormonal factors [87]. 
The first involution stage is protease-independent and is 

triggered by milk stasis (milk synthesis, which remains in 
the mammary gland and cannot come out) within the alve-
olar lumen and the decrease in lactogenic prolactin levels 
[85]. In mice, the rapid involution during the first 2 days 
is related to the shedding of apoptotic bodies derived from 
the alveolar epithelial cells in alveolar lumens. The process 
is followed by a gradual regression in which macrophages 
phagocytose the apoptotic bodies within the epithelium [86]. 
In rats, glandular involution is more gradual and uniform 
with the shedding of the apoptotic epithelial cells in alveolar 
lumens being a lesser noticeable process [86]. The second 
phase of involution is characterized by proteolysis of the 
mammary gland basement membrane and tissue remodeling 
[85]. The mechanism is triggered by matrix metalloprotein-
ases, the phagocytic clearance of apoptotic bodies, and the 
re-differentiation of adipocytes.

Metabolic changes

Since the increase in nutrient synthesis and transport are 
no longer required for milk production, the expression of 
GLUT1 [17], fatty acid-binding proteins [22], amino acids 
uptake [88], and the biochemical machinery for milk syn-
thesis are decreased. Milk stasis has an essential role in this 
process [85, 88].

Several studies have focused on the signaling pathways 
that participate in mammary gland involution. As described 
above, in lactating rodents, the signaling pathway was gov-
erned by phosphorylated STAT5 for lobule-alveolar develop-
ment and milk protein gene expression [89]. This pathway 
decreases within 3–6 h of milk stasis [90]. Then, STAT3 
phosphorylation increases and its activity consequently 
enhances [90]. Expression and secretion of proinflammatory 
cytokine leukemia inhibitory factor (LIF) activate STAT3 
[91]. STAT3 induces mammary epithelial cell death and 
suppression of cell survival signals through PI3K-AKT-
mediated survival signaling [92]. It also increases insulin-
like growth factor binding protein-5 (IGFBP5) that affects 
proliferative IGF1 signaling [93]. Besides, the activation 
of nuclear factor-κB (NF-κB), the increase of nitric oxide 
synthase 2 gene expression, and the subsequent increase 
in nitric oxide levels drive the decrease in milk levels and 
increase in the cleavage of caspase-3, promoting apoptosis 
[94, 95].

Post‑lactation changes in hormones and signals 
produced by the mammary gland

The second phase of mammary gland involution involves 
the decay of hormones produced during lactation. Prolactin, 
a central orchestrator of mammary gland, changes during 
lactation and drops to the non-lactating serum levels, and, 
consequently, prolactin-induced parathyroid-related protein 
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mammary production decreases [30, 31]. The expression of 
the calcium-sensing receptor decreases after the cessation 
of lactation [96]. In contrast, the increased serum serotonin 
levels observed during lactation remain high after 21 days of 
lactation [68]. Because mammary glands involute after lac-
tation, these data suggest that other tissues may participate 
as serotonin sources during post-lactation.

Post‑lactation changes in hormones and signals 
that modify morphology and function 
in the mammary gland

A decrease in glucocorticoids is required for breast invo-
lution and apoptosis. There is a significant decrease in 
glucocorticoid hormones 3 days after the end of lactation 
(34–14 nM) [87]. In contrast, serum insulin levels increase 
compared with those observed at day 7 of lactation [68]. 
Interestingly, these studies have also found that serum IGF-I 
levels, which remain constant during lactation, increased 
21 days after the end of lactation [68].

Bone in post‑lactation

In the post-lactation period, intense remineralization occurs 
with substantial increases in bone formation to reconstruct 
bone [3, 97, 98]. In mice, bone mineral content is recovered 
within 2–4 weeks after weaning and 4–8 weeks in rats [3]. 
In humans, dual-energy X-ray absorptiometry (DXA) studies 
reveal bone recovery 12 months after weaning [3].

Remineralization is a rapid process that starts with 
decrease of osteoclast population within 24 h after removal 
of pups [97]. At the molecular level, the expression of the 
receptor activator of nuclear factor κB (RANK) decreases 
and osteoclast apoptosis increases 1 day after weaning. Oste-
ocytic osteolysis also drops, and osteocytes start to express 
osteoblast-specific genes [62]. Furthermore, a trigger in the 
osteoblast number and an increase in bone density also con-
tribute to the recovery of bone mass [97, 99]. In both ani-
mal and human studies, morphology data indicate that the 
skeleton is restored to its prior mineral content despite the 
marked trabecular microarchitectural deterioration during 
lactation [100].

The mechanisms and factors that stimulate bone recov-
ery after weaning are still debatable. The reversed hormonal 
milieu produced by the decrease of prolactin—and increased 
to normal levels of gonadotropin-releasing hormone, lute-
inizing hormone, follicle-stimulating hormone, and estro-
gen—may participate in bone mineralization. A recent study 
found that estrogen increases osteoclasts apoptosis and 
decreases bone resorption through Fas/FasL pathway and 
receptor-interacting protein 140 (RIP140) [101]. However, 
the hypothalamic–pituitary–gonadal system is not determi-
nant for bone remineralization [102]. Studies of the hormone 

profile in rats found that after 24 h of weaning, the maternal 
concentrations of prolactin decreased; and serum calcium, 
estrogen, and calcitonin were increased [97]. The increase of 
calcitonin does not seem to be required for bone reminerali-
zation, since bone mass is fully restored within 18 days after 
weaning in calcitonin/calcitonin gene-related peptide-alpha 
(Ctcgrp) null mice [98]. Other studies have revealed that 
skeletal recovery after lactation does not require osteoblast-
derived parathyroid hormone-related protein [103], parathy-
roid hormone [104], or vitamin D [105]. Compatible with 
osteoblast activity, the bone formation markers osteocalcin 
and procollagen type-1 amino-terminal propeptide (P1NP) 
were increased during post-weaning versus a pre-pregnancy 
baseline, pregnancy, and lactation [104].

Tibial microarray studies in mice comparing 7 days after 
weaning versus pre-pregnancy found that more than 700 
genes had been differentially expressed. Some of these are 
related to the proliferation and activity of osteoblasts and the 
inhibition of osteoclasts [98]. There were decreased levels in 
cathepsin K—a lysosomal cysteine protease involved in bone 
remodeling and resorption—as well as in IGF-binding pro-
tein 2, which stimulates bone resorption. Downregulation of 
Wnt family inhibitors was also observed. Protein transcripts 
involved in energy production pathways such as peroxisome 
proliferator-activated receptor coactivator-1 alpha (PGC1-
alpha), pyruvate dehydrogenase kinase, isoenzyme-4, and 
insulin-responsive glucose transporter-4 (GLUT-4; key 
transporter for glucose in osteoblasts) were increased to 
ensure energy for skeletal restoration [98].

Intestinal changes in post‑lactation

Although the increased intestinal length produced during 
lactation partially diminishes after weaning, the gut does not 
completely regress by day 30 post-lactation [77, 78]. Other 
studies in rats have shown that calcium transport in the intes-
tine is increased in post-lactation, failing to attain control 
values by 3 weeks post-weaning [106]. Given the active rem-
ineralization and osteoblast proliferation in post-lactation, 
this suggests that increased absorption is likely used during 
this period to supply metabolites for bone regeneration.

Conclusion

Lactation is an evolutionary adaptation that gives mam-
mals the opportunity to provide reliable nurturing to their 
offspring in face to uncertain access to food. A highly 
integrated maternal tissue network modifies its function 
to supply the different components needed for milk pro-
duction in the mammary gland. In particular, skeletal 
demineralization is a refined strategy that assures calcium 
supply. The current literature principally documented the 
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changes produced in the mammary gland and in the skel-
eton; less information exists on the changes to the gut and 
kidney. In spite of the various models used, an integrated 
picture of the morphological, hormonal, and molecular 
changes that occur in lactation has emerged (Fig. 2). In 
contrast, most studies in post-lactation focus on mam-
mary gland involution and morphological changes in bone 
structure, and there is little information on the factors and 
molecular mechanisms that take place in post-lactation. 
Identifying the factors involved in bone remineralization 
in post-lactation will help to develop therapeutic strategies 
for illness with bone loss.
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