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Abstract

The ability to evaluate empirical diffusion MRI acquisitions for quality and to correct the resulting 

imaging metrics allows for improved inference and increased replicability. Previous work has 

shown promise for estimation of bias and variance of generalized fractional anisotropy (GFA) but 

comes at the price of computational complexity. This paper aims to provide methods for 

estimating GFA, bias of GFA and standard deviation of GFA quickly and accurately. In order to 

provide a method for bias and variance estimation that can return results faster than the previously 

studied statistical techniques, three deep, fully-connected neural networks are developed for GFA, 

bias of GFA, and standard deviation of GFA. The results of these networks are compared to the 

observed values of the metrics as well as those fit from the statistical techniques (i.e. Simulation 

Extrapolation (SIMEX) for bias estimation and wild bootstrap for variance estimation). Our GFA 

network provides predictions that are closer to the true GFA values than a Q-ball fit of the 

observed data (root-mean-square error (RMSE) 0.0077 vs 0.0082, p<0.001). The bias network also 

shows statistically significant improvement in comparison to the SIMEX-estimated error of GFA 

(RMSE 0.0071 vs. 0.01, p<0.001).
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1 INTRODUCTION

Diffusion-weighted magnetic resonance imaging (DW-MRI) harnesses the diffusion of water 

for use as a proxy for underlying tissue microstructure. Diffusion tensor imaging (DTI) 

characterizes this microstructure, but cannot discern fibers in more than one direction per 

voxel, while high angular resolution diffusion imaging (HARDI) is able to discern crossing 

fibers. Harmonization of DW-MRI acquisitions remains an important, yet largely 

misunderstood area of research. DTI-derived metrics are known to have bias as a result of 

imaging noise [1–6].

Here we focus on a particular HARDI metric, generalized fractional anisotropy (GFA). 

Previous work provided methods for both bias correction and variance estimation of GFA 

from a single, empirical HARDI scan [7]. Simulation Extrapolation (SIMEX) was used to 

estimate bias of GFA, while a wild bootstrap technique was used to estimate the standard 

deviation of GFA. While these methods work well, they tend to be computationally intensive 

due to the Monte Carlo simulations required. An alternative estimation technique would 

have to be developed in order to make these methods widely applicable in a clinical setting.

The application of deep neural networks (DNN) is a relatively recent development within the 

medical imaging literature [8, 9] but is growing rapidly in popularity. The ability of DNNs to 

utilize large datasets in a fast and flexible way makes them very attractive to researchers 

looking to explore big data. Deep learning has been successfully used in a variety of 

neuroimaging applications including image registration [10], segmentation [11, 12], inter-

scanner harmonization in diffusion MRI[13], traumatic brain injury identification [14], and 

many more.

In this work, we demonstrate a deep neural network approach for learning GFA itself, in 

addition to the bias and variance of GFA from the observed data. We find that we can take 

observed data, put it into our network and estimate a GFA value that is closer to the truth 

than what would result from calculating GFA from the orientation distribution function 

(ODF) of the original data via a regularized Q-ball fit.

Figure 1 maps out the relationship between the traditional statistical modeling techniques 

and the deep learning approximations proposed herein. The former are relatively 

computationally intensive, while the latter are much faster to apply to new datasets, though 

they involve extensive training initially.

2 METHODS

2.1 Data acquisition and preprocessing

The empirical data used in this experiment were obtained from a healthy volunteer 3T 

Phillips Scanner with a 32-channel head coil after informed consent [15, 16]. The session 

consisted of 96 gradient directions at a b-value of 3000 s/mm2. The voxel resolution is 

2.5mm × 2.5mm × 2.5mm with a matrix of 96 × 96, FOV=240 × 240 mm2, and 38 axial 

slices. The scan parameters were: Multi-Band=2; SENSE=2.2; TR= 2650 ms; TE=94 ms; 

partial Fourier=0.7. Fold over direction was A-P with a P fat shift. For each shell, an 
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additional diffusion scan was acquired with reverse phase encoded volumes (i.e., fold over 

direction A-P with A fat shift) with a minimally weighted volume and 3 diffusion weighting 

directions with a b-value of 1000 s/mm2 along the imaging frame cardinal directions, and all 

other parameters were kept constant. The image was transformed to MNI space, resulting in 

an image matrix of 78 × 93 × 75. This registered image was used for the analysis.

A truth model is considered as the ‘ground truth’ data in this experiment. This model is 

generated from the spherical harmonic coefficients of the DW signal. This truth model is 

assumed to be less noisy and used as the basis for comparison of the methods.

To represent data from a typical DW acquisition, random Rician noise was added in 

quadrature to the ground truth data. The resulting ‘observed’ dataset, Xobs, represents an 

empirically observed HARDI acquisition, as the noise value is the standard deviation of the 

residuals, σE. The value of σE impacts the signal-to-noise ratio (SNR) of the observed data.

2.2 Preparation for analysis: calculation of true GFA, bias, variance

Calculating true GFA—The true GFA value is calculated via a regularized Q-ball 

imaging fit [17] to the true data model. For this work, a spherical harmonic basis was used in 

the reconstruction of the fiber orientation distribution function (ODF). GFA is given by

GFA = std(ψ)
rms(ψ) =

m∑i = 1
m ψ i − ψ 2

(m − 1)∑i = 1
m ψ i

2 (1)

where ψ is the ODF vector, and ψ  is its mean [18].

Calculating true bias—We used a Monte Carlo approach to determine the true bias of an 

observed GFA value. This method involves simulating an observed voxel, calculating the 

GFA value for that voxel, subtracting the true GFA to determine the error for that observed 

voxel. This process is then repeated 100 times, after which the 100 errors are averaged, 

resulting in the true, voxel-wise bias of GFA.

Calculating true standard deviation—A similar approach is used for determining the 

true standard deviation of an observed GFA value per voxel. We simply take the 100 

simulated GFA values from the same Monte Carlo procedure used for calculating true bias. 

Taking the standard deviation of these observed GFA values gives the true, voxel-wise 

standard deviation of GFA.

SIMEX bias estimation—The SIMEX was developed by Cook and Stefanski [19] to 

correct for measurement error induced bias. In statistics, it is often used for analysis of 

electronic medical records to correct human errors, but here we apply it to help correct errors 

induced by the imaging machinery itself. This method applies as long as the metric of 

interest changes monotonically as a function of noise and the noise distribution can be 

estimated [19]. SIMEX utilizes the relationship between the noise level and the metric to 

estimate the potential, noise- (or error-) free value of the metric of interest. The method is 

simple and worked sufficiently well to quantify the bias and variance of GFA in an empirical 
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HARDI acquisition. This method was first applied to DTI acquisitions [20] and was recently 

expanded to apply to HARDI acquisitions in [7].

A brief explanation of the SIMEX procedure follows and full details of the algorithm can be 

found in [7]. SIMEX is built upon the idea that our observed data are a function of the true 

underlying data and random noise. For our application, all calculations are done per voxel, 

and the observed data are the result of adding stacked Rician noise with standard deviation 

σE to our truth data [21]:

Xobs = Xtruth°RσE (2)

In order to estimate the bias of our metric, we must discern the relationship between the 

metric and the noise level. Thus, we generate data values with increasing amounts of noise 

(indexed by ω), calculate the metric, and observe the relationship between the ω and the 

metric. Once enough data points have been generated to establish a pattern, we can fit a 

quadratic curve and find our bias-corrected value by extrapolating backward. The value of 

the noiseless metric can be found by extrapolating this curve to the point where ω = −1, i.e. 

the point where there is no imaging noise.

Once we calculate the SIMEX-extrapolated GFA value, we can estimate the error of GFA by 

subtracting it from the observed GFA value:

BıaS = GFAobs − GFASIMEX (3)

Bootstrap estimation of variance—The previously used statistical method for 

estimating the variance of GFA in HARDI acquisitions was the wild bootstrap. A bootstrap 

method is ideal, as they do not require the use of several repeated data acquisitions to 

estimate variance. In particular, the wild bootstrap is chosen due to its ability to estimate 

variances even when the model tends to have heteroscedastic errors, as is the case with DTI 

data [22, 23].

The wild bootstrap procedure is a modified residual bootstrap, where the first step is to 

compute the residuals between the model and the observed data. The signs of the residuals 

are then flipped randomly and added back to the observed data, resulting in a new, 

bootstrapped data set. This step is then repeated 100 times and the GFA is calculated for 

each of the 100 bootstrapped acquisitions. The standard deviation is then taken across all n 

simulated datasets as an estimate of the true standard deviation [24]. Please refer to [7] for 

full details on the wild bootstrap procedure for HARDI data acquisitions.

2.3 Data processing for deep network

The data require further processing for input to our deep learning networks. The inputs for 

the deep neural networks are 6th order spherical harmonic (SH) coefficients for each voxel. 

These coefficients were calculated as described in [17, 25]. The input for a single voxel is 

thus a 28×1 vector. The outputs for the deep neural networks are the true values of GFA, bias 
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of GFA, and standard deviation of GFA as defined in section 2.2. The outputs are thus single 

values for each of the 3 networks.

The HARDI truth data consists of a single brain volume with 75 axial slices. First, we 

separated the training data from the validation data. Training data were defined as the first 

41 axial slices of the volume, and the validation data were defined as the remaining 34 

slices. In terms of number of voxels, this amounts to approximately 65% of the data for 

training and 35% for validation. The training and validation data sets were handled 

separately from this point on. Note that the partition is anatomically distinct, leaving no 

spatial consistency between training and validation sets. Separation of the training and 

validation data sets in this fashion yields results that are the worst-case scenario for our 

models. Models trained with a true mix of voxels from all brain regions are likely to have 

even better performance than those tested herein.

The next step was to remove any background voxels, as our data was not masked prior to 

separation of training and validation data. This was done by removing all voxels with no 

diffusion information. After removal of these background voxels, the data are ready for 

fitting.

2.4 Network design

We train three distinct fully connected deep neural networks to predict (1) GFA, (2) the bias 

of GFA and (3) the variance of GFA. Each of the three networks takes 6th order spherical 

harmonic (SH) coefficients as input. The GFA network uses the true GFA as the output, the 

bias network uses the true bias as the output, and the variance network uses the true standard 

deviation as the output. Each network uses a mean squared error loss and Adam optimizer 

[26]. Training data were voxels from the observed data, Xobs. The first 41 slices of our 

observed data were used as training data and the remaining 34 slices were reserved as a 

validation set. For each network, 40,942 voxels were included for the network training and 

27,798 voxels were included for network validation. For training, 5-fold cross-validation 

was used to assess performance with 20% validation in each set. Root mean squared error 

was used to evaluate network performance for each. The validation error was computed at 

the empirically chosen epoch where the testing error was the smallest.

GFA network—The output of the GFA network is the voxel-wise true GFA. This network 

consists of 5 fully connected layers with 1200, 400, 200, 100, 66 neurons, respectively, with 

a single output neuron. The first three layers use a ‘ReLU’ activation function. The first two 

layers are followed by a 30% dropout layer to help prevent overfitting. A batch size of 1,000 

was used.

Bias network—The output of the bias network is the voxel-wise true bias of GFA. This 

network consists of 5 fully connected layers with 400, 300, 200, 100, 66 neurons, 

respectively, with a single output neuron. The first two layers use a ‘ReLU’ activation 

function. The activation function is not used in the later layers to avoid constraint to positive 

values. The first two layers are followed by a 30% dropout layer to help prevent overfitting. 

A batch size of 1,000 was used.
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Variance network—The output of the variance network is the voxel-wise true standard 

deviation of GFA. This network consists of 5 fully connected layers with 1200, 400, 200, 

100, 66 neurons, respectively, with a single output neuron. The first three layers use a 

‘ReLU’ activation function. The first two layers are followed by a 30% dropout layer to help 

prevent overfitting. A batch size of 1,000 was used.

2.5 Statistical Analysis

Statistical significance of the proposed method is determined via a comparison of the 

squared errors of each method. For the GFA network, a two-way ANOVA was fit for the 

squared errors of the observed GFA, SIMEX-corrected GFA, and the DNN-predicted GFA. 

Following a significant result for the ANOVA, pairwise two-sample t-tests were conducted 

to determine pairwise significance after a Bonferroni correction. For both the bias and 

variance networks, two-sample t-tests were conducted between the statistical techniques and 

their DNN counterparts. All tests were conducted at a 5% significance level.

2.6 Characterization on an independent dataset

In order to evaluate the generalizability of the pre-trained deep neural networks, we have 

applied the methods described above on an additional independent dataset without 

retraining. This additional dataset is from the 2017 ISMRM TraCED challenge (https://

my.vanderbilt.edu/ismrmtraced2017/). These data were acquired on a 3T Philips scanner and 

consisted of 64 gradient directions at a b-value of 3000 s/mm2 with a voxel resolution of 

2.5mm × 2.5mm × 2.5mm with a matrix of 96 × 96, FOV=240 × 240 mm2, and 44 slices. 

The scan parameters were: Multi-Band=2; SENSE=2.2; TE=99 ms; partial Fourier=0.755. 

Fold over direction was A-P with a P (posterior) fat shift. This additional dataset was 

processed the same way as the first and used as input into the three proposed deep neural 

networks.

3 RESULTS

3.1 Network results

Full details of the algorithm used in this analysis are shown in Figure 2. The results of the 

neural networks are compared to the results from the single observation as well as the 

statistical approaches (SIMEX and wild bootstrap). All calculations for the traditional 

statistical approaches were performed in Matlab version R2016a (MathWorks, Natick, MA) 

[27] and with the Camino Diffusion MRI toolkit [28]. The deep learning networks were 

trained using Python version 3.6.4 (Python Software Foundation) [29] and the Keras deep 

learning library [30]. All code, data, and trained models are available here: www.nitrc.org/

projects/masimatlab under “Deep learning bias and variance (HARDI).”

The deep learning results are compared to the observed values as well as the SIMEX-

corrected values for both GFA and bias, while the deep learning variance estimation is only 

compared to our SIMEX estimate.

Figure 3 plots the true values for GFA, bias of GFA and standard deviation of GFA against 

the observed, estimated, and predicted values. The observed GFA plot (A.1) shows a small 
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amount of error, though only referring to a single scan, not an average across all possible 

scans. We found that our deep learning approach more effectively approximated the true 

GFA in comparison to the observed GFA (RMSE 0.0078 vs. 0.0082, p<0.001). The deep 

learning approach approximates the SIMEX estimate of GFA very well (RMSE 0.0078 vs 

0.0078, p=0.987). Finally, the SIMEX estimate showed statistically significant improvement 

over the observed estimate (RMSE 0.0078 vs. 0.0082, p<0.001).

The second column of Figure 3 refers to the performance of SIMEX and the deep learning 

network on the bias of GFA. The observed error of GFA is plotted against the true bias of 

GFA in B.1. We find that the neural network predicted bias is superior to the estimated bias 

of SIMEX (RMSE 0.0071 vs. 0.01, p<0.001).

The third column of Figure 3 demonstrates the performance of the wild bootstrap and the 

deep learning network on the standard deviation of GFA. The RMSE of the wild bootstrap is 

12% lower than that of the deep neural network (RMSE 0.0011 vs. 0.00097, p<0.001).

Figure 4 provides a qualitative look at the comparative performance of each method for 

GFA, bias of GFA and standard deviation of GFA. The true GFA, bias, and standard 

deviation are shown in the first row, with subsequent rows demonstrating the fitted values 

along with difference images. We find that our deep learning networks return appropriate 

values for GFA, bias, and variance in compliance with tissue microstructural differences. 

The gray box shows the error between the observed GFA and the true GFA as well as the 

difference between this observed error and the true bias of GFA.

Figure 5 shows the training and cross-validation error curves for each of the three networks. 

The GFA network required 147 epochs of training and showed the least amount of 

overfitting. The bias network required much less training, reaching a minimum error before 

100 epochs and demonstrated a significant amount of overfitting in later epochs. Finally, the 

standard deviation network trained very quickly and saw similar overfitting to the bias 

network as it trained for more epochs.

3.2 Performance on an independent dataset

The following are the results of the application of our pretrained networks to the 

independent TraCED dataset. We found that the deep learning approach was not as effective 

as the SIMEX approach in estimating GFA (RMSE 0.0208 vs. 0.0091, p<0.001). In addition, 

the deep learning approach failed to show significant improvement over the observed 

estimate of GFA (RMSE 0.0208 vs. 0.0102). The SIMEX approach, however, showed a 

statistically significant improvement when compared to the observed estimate (RMSE 

0.0091 vs. 0.0102, p<0.001). For the bias network, we found that the neural network 

predicted bias resulted in a larger RMSE, it is not statistically different from the SIMEX 

estimated bias (RMSE 0.0182 vs. 0.0091, p=0.26). The deep learning network on the 

standard deviation of GFA resulted in a larger RMSE than the estimates obtained from the 

wild bootstrap (RMSE 0.0018 vs. 0.0013, p<0.001).
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4 DISCUSSION

Our previous work using SIMEX and the wild bootstrap to characterize HARDI data 

acquisitions have a variety of important applications to harmonization and data quality 

analyses. However, these methods can be time consuming and complicated for the casual 

user. The ability to evaluate and correct imaging metrics can allow for better inference and 

more replicable results. These methods can be especially useful in cases where brain 

changes are of interest, as the changes in brain microstructure are often very small and can 

be either diminished or magnified by bias.

In this paper we have demonstrated the potential of a deep neural network to predict the true 

GFA value of a voxel more accurately than a regularized Q-ball fit on the observed data 

without a considerable increase in computation time. The SIMEX and wild bootstrap 

method can take up to ten hours per acquisition, where the trained neural networks provide 

results in 2–3 seconds. The neural networks explored herein are excellent candidates for 

inclusion in standard data processing procedures, as monitoring bias and variance of well-

known metrics such as GFA is valuable for understanding data quality. While the networks 

demonstrated here are not perfect, these results are encouraging and reveal the potential of 

similar networks to enhance and support the traditional methods in diffusion imaging.

As discussed in Section 3.2, the inability of the deep learning networks to outperform the 

SIMEX and wild bootstrap methods demonstrates that these networks, once trained, may 

only be useful for scans within the exact same study parameters or for single subject data. 

The two datasets used herein were acquired on different scanners and with a different 

number of gradient directions, though both were acquired with the same b-value of 3000 

s/mm2. While more analyses will be required to make any definitive statements about the 

performance and generalizability of these methods, we believe that the results within a study 

are compelling enough to warrant further research and deep neural network model 

development for HARDI data.

Future work will include training networks for various noise levels and b-values, as this 

work was done with a single noise level at b=3000 s/mm2. The ability to incorporate SNR 

information can only improve the performance and usefulness of these networks.
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Figure 1: 
Broad overview of methodology presented. The true GFA is obscured by noise and artifacts 

in the imaging process. We previously used traditional statistical modeling to recover the 

true values through SIMEX and the wild bootstrap. In this paper, we extend this idea and 

replace the statistical modeling techniques with deep learning approximations for bias and 

variance.
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Figure 2: 
Overview of the algorithm used in this analysis. Data processing steps and statistical 

modeling procedures are located within the gray box. The results of the statistical 

procedures are compared to the deep learning approximations that are shown on the bottom 

half of the algorithm. In this algorithm outline, the shapes refer to data types, shape colors 

refer to result metrics and the arrow colors refer to the methodology employed.
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Figure 3: 
Quantitative results of the deep learning approximation in comparison to observed results as 

well as statistical results (SIMEX and bootstrap). The deep learning approach outperforms 

the Q-ball calculation of GFA from the observed data (A.1 and A.2) and has similar 

performance to the SIMEX-corrected GFA values (A.2, and A.3). The deep learning 

technique for bias prediction (B.3) results in a smaller RMSE in comparison to the SIMEX 

error estimation technique (B.2). The deep learning approach shows larger RMSE for 

standard deviation prediction (C.2) in comparison to the wild bootstrap technique (C.1).
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Figure 4: 
Qualitative results demonstrate the performance of the GFA, bias, and standard deviation 

estimation methods when compared to the ground truth values of each. We see that the DNN 

maintains the structural qualities of the brain and maintains comparable error when 

compared to the statistical techniques. Note that each column of images maintains the same 

color scale.
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Figure 5: 
Training and cross-validation error curves for each of the three deep neural networks. The 

GFA network (A) shows no overfitting, while the other two networks demonstrate increasing 

overfitting with a larger number of epochs. All three networks train within 100 epochs. The 

final model is taken from the epoch with the lowest cross-validation error within the training 

cohort.
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