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Abstract

Nuclear transfer (NT) remains the most effective method to reprogram somatic cells to
totipotency. Somatic cell nuclear transfer (SCNT) efficiency however remains low, but recurrent
problems occurring in partially reprogrammed cloned embryos have recently been identified and
some remedied. In particular, the trophectoderm has been identified as a lineage whose
reprogramming success has a large influence on SCNT embryo development. Several interspecific
hybrid and cybrid reprogramming systems have been developed as they offer various technical
advantages and potential applications, and together with SCNT, they have led to the identification
of a series of reprogramming events and responsible reprogramming factors. Interspecific
incompatibilities hinder full exploitation of cross-species reprogramming systems, yet recent
findings suggest that these may not constitute insurmountable obstacles.
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The recent finding that non-enucleated human oocytes can efficiently reprogram transferred
human somatic nuclei to pluripotency (21% triploid blastocyst formation and ~3% ES-like
cell line derivation) [1] renews the interest in NT. SCNT using enucleated oocytes in other
mammalian species seems to remain the most effective method to reprogram somatic cells to
pluripotency [2,3]. In addition, since NT is the only available method to reprogram cells to
totipotency, and chimera formation in primates is exclusively possible via aggregation of
totipotent cells [4], the eventual generation of chimeric primates containing cells
genetically-modified in culture would require NT. The mechanisms of reprogramming by
NT are being investigated both directly in intraspecies SCNT embryos and in a variety of
cross-species hybrid and cybrid systems. Interspecific hybrid cells or organisms comprise
genomes, or parts of genomes, that originate from more than one species, while interspecific
cybrids, also known as nucleocytoplasmic hybrids, originate from the combination of the
nucleus or genome of one species with cytoplasm of another species.

The viability of cross-species (hybrid and cybrid) embryos tends to be inversely correlated
with the genetic or evolutionary distance between the species that are combined [5,6]. A
better understanding of the boundaries between species is not only fundamentally
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interesting, but it may also enable researchers, through intervention, to extend the actual
range of viable hybrids and cybrids. This could be useful for various zoological, agricultural
and biomedical purposes, including the identification of conserved reprogramming
mechanisms. In addition to highlighting major advances in SCNT research, we review here
the current hybrid and cybrid systems, the mechanistic insights they have recently provided
into nuclear reprogramming, as well as the nature of interspecific incompatibilities.

Recent progress in somatic cell nuclear transfer

In mice, using cumulus cells as nuclear donors, up to ~65% of SCNT embryos develop to
the morula/blastocyst stage, but only <3% of the transferred embryos develop to term [7].
With such a low implantation and post-implantation development efficiency, several
investigators have asked whether recurrent defects could explain the lethality of SCNT
embryos. Inhibition of histone deacetylases, such as with Trichostatin A (TSA) treatment,
increases full-term development of cloned embryos [8] likely through improving several
early events of nuclear reprogramming, including chromatin remodelling, histone
modifications, DNA replication and transcriptional activity [9,10]. In pigs, DJ-1 is an
ooplasm component that is, specifically in SCNT embryos, required for survival to the
blastocyst stage through negatively regulating p53 signalling [11]. Inhibition of p53 also
improves trophectoderm function of SCNT blastocysts in mice [12]. Since p53 normally acts
to suppress cell division in response to DNA damage, these results suggest that DNA
damage may often occur during the early cleavages in cloned embryos, activating p53,
which then induces cell cycle arrest and/or apoptosis, thereby explaining some of the
developmental delay and death of SCNT embryos. Perhaps in connection with this, errors in
chromosome segregation often occur (>90% of the cases) during early cleavages in murine
SCNT embryos, which appear not to affect survival until the blastocyst stage, but to impair
only post-implantation development [13]. Interestingly, if the extra-embryonic lineage of a
cloned blastocyst is replaced by one generated by /n vitrofertilization (IVF) in a process
called tetraploid complementation, the frequency of full-term development of cloned mice
increases by about 6-fold [14]. In the converse experiment, where an IVF-derived inner cell
mass is combined with cloned trophectoderm lineage, post-implantation development is
reduced to a level near that of regular SCNT, suggesting that defects in the trophectoderm
lineage may explain a large proportion of the post-transfer lethality observed in SCNT
embryos [14]. Genome wide transcriptional analysis of cloned embryos revealed specific
and recurrent decreased X-linked expression due to persistent Xist (a non-coding RNA that
inactivates one of the two X chromosomes in females) expression from the active X
chromosome (Xa) of transferred nuclei [15]. Inhibition of Xist function before the morula
stage restored X-linked expression and increased implantation and post-implantation
development of cloned embryos by more than 8-fold [15,16]. An overlapping set of genes
(including many X-linked downregulated genes) is also often inappropriately reprogrammed
in SCNT blastocysts across different nuclear donor cell types [15,17]. These results together
suggest that multiple defects occur during early cleavage in SCNT embryos, including
abnormal chromatin remodelling and chromosome segregation. When combined with
persisting Xist expression from Xa and the resulting globally reduced X-linked expression,
as well as recurrent failure to reprogram a relatively specific set of non X-linked genes, this
may often impair trophectoderm function, and hence, implantation and post-implantation
development of cloned blastocysts (Figure 1). This does not imply that cloned embryonic
tissues are without flaws; SCNT-derived post-implantation stage epiblast stem cells and
post-natal individuals often have aberrant transcriptional and/or epigenetic statuses [18,19],
although whether these observed defects are cell/tissue-autonomous, or secondary to
trophectoderm defects remains uncertain.
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In mice, recent experiments [20] solidified the concept that essential reprogramming factors
are located in the zygote nucleoplasm [21,22]. In order to leave these factors in the egg/
zygote, enucleation must be performed during mitosis, when the nuclear envelope is broken
down. In primates, SCNT is more problematic, and reproducible derivation of monkey
SCNT ES cells required the development of a less invasive mitotic egg enucleation protocol
[23,24]. In humans however, even with extreme care, enucleated mitotic eggs or zygotes
were unable to support the development of somatic cell nuclei beyond the 6-10 cell stage
[1,25]. Interestingly, the investigators asked what happens if the oocyte haploid genome was
left intact, and development of the resulting NT embryos proceeded to the blastocyst stage,
enabling the derivation of triploid human ES-like cells [1]. This suggests that in humans, as
opposed to all the other species in which SCNT has been tried so far, essential
reprogramming factors are tightly associated with, or even comprised within, the oocyte
genome, such that even mitotic enucleation removes these factors. SCNT in humans, at least
with current technology, is therefore unlikely to generate clinically relevant diploid ES cells.

Hybrid experimental systems and reprogramming insights

Three interspecies hybrid experimental systems currently exist: (i) hybrid cells generated by
the fusion of cells or microcells from two species (we ignore here hybrids containing less
than one chromosome from another species), (ii) interspecies NT (iNT) to Xenopus oocyte
(at the first meiotic prophase), and (iii) hybrid embryos (Figure 2). When undifferentiated
cells are fused with differentiated cells, differentiated cells are usually reprogrammed
towards an undifferentiated state, even if the two cell types originate from different species
[26,27]. Transcriptional analyses are greatly facilitated in interspecific hybrids due to
genetic differences between species that make it possible to distinguish expression from
each species’ genome by RT-PCR [28]. Using interspecific cell fusion, it was shown that the
Oct4 transcription factor, Polycomb repressive complex (PRC), and AlD-dependent DNA
demethylation activity are required for ES cells to successfully reactivate pluripotency gene
transcription in somatic cells [28-30] (See review by A. Fisher in this issue). A cell fusion
variant called microcell-mediated chromosome transfer interestingly enables the fusion of
only one to a few chromosomes from one cell type/species to another cell [31].
Chromosome-wide analysis of murine cells that carried human chromosome 21 revealed that
murine transcription factors were bound to and transcribed genes from human chromosome
21 in a human manner [32]. Thus, genetic sequence primarily directs transcriptional
programs, even in an interspecific cellular environment. Xengpus oocytes are intensely
active in transcription. It is possible to transplant up to hundreds of mammalian cell nuclei
directly into the Xenopus oocyte nucleus, referred to as the germinal vesicle (GV), and this
procedure induces the reactivation of transcriptionally silent mammalian loci [33].
Transcriptional reprogramming of mammalian somatic nuclei upon nuclear transfer to a
Xenopus oocyte GV is inhibited by the presence of a histone variant called Macro H2A in
somatic nuclei, and requires oocyte linker histone B4 and nuclear actin polymerization
[34-36]. Interspecies intra-cytoplasmic sperm injection (ilCSl) has been used mainly to
study the early reprogramming effect of non-enucleated oocytes on interspecific sperm
nuclei, including DNA demethylation, chromatin structure (HP1 levels), and several histone
modifications (changes in H3 methylation, H3 and H4 acetylation) [37-39]. Interspecific cell
fusion, ilCSI and iNT to Xenopus oocyte experiments have thus significantly contributed to
our current knowledge of reprogramming factors and mechanisms (reviewed in [40]), while
they also suggest that these mechanisms are highly conserved.

Cybrid experimental systems and reprogramming insights

Current cybrid experimental systems can be subdivided into three categories: those that
involve (i) nuclei incubated in interspecific cellular extract, (ii) cybrid cell lines generated
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through cytoplast fusion, and (iii) cybrid embryos (Figure 3). Xenopus laevis egg and oocyte
extracts can be easily prepared in large quantities and their ability to reprogram nuclei from
other species has been investigated. Using this system, the chromatin remodelling ATPases
ISWI and BRG1, as well as nucleoplasmin, were found as egg components required for
reprogramming of somatic nuclei [41-43]. Extracts from a distantly related frog species,
Xenopus tropicalis, whose embryonic cells and nuclei are smaller in size than those of X.
laevis, have also been prepared, and the incubation of sperm nuclei from one species in egg
extracts of another species and vice-versa, demonstrated that the magnitude of nuclear
swelling, as well as spindle length, were dependent on egg cytoplasmic factors/species
rather than on nuclear content/species. This was due to differences in the relative
concentrations of two key nuclear transport factors in cells of the two species in the case of
nuclear swelling, and to the gain of an inhibitory phosphorylation site in a microtubule-
severing factor homolog in X. laevis in the case of spindle scaling [44-46]. Thus, there seem
to exist quantitative and functional differences in relatively few key factors between species
that may account for their divergent nuclear remodelling phenotypes.

Experiments in which cultured mtDNA-less human cells were fused with various cytoplasts
isolated from other primate species showed that human nuclei are compatible with mtDNA
of some of their closest non-human relatives, such as chimpanzees and gorillas, but not with
mtDNA of species separated by 18 million years (MY of evolution (orangutans) or more
[47]. Interestingly, intraspecific fusion of human fibroblasts or hepatocytes with ES cell
cytoplasts did not fully reprogram the somatic nuclei, suggesting that reprogramming to
pluripotency by ES cell fusion requires the ES cell nucleus [48,49]. Many investigators have
tested the ability of enucleated eggs to reprogram interspecific somatic nuclei and generate
viable cybrid embryos/progeny, largely using interspecies SCNT (iISCNT) [5,6]. In most
cases, a fraction of iISCNT embryos developed until the blastocyst stage, although
reprogramming defects were observed in some instances, including a failure to properly
activate pluripotency genes [50-52]. Several pluripotency genes were nonetheless properly
activated in many cybrids [50,53,54], and ES-like cells have been isolated from iNT
blastocysts in a few occasions, although the efficiency was low and the reproducibility of the
results remains uncertain [55-57]. These results are nonetheless important as they suggest
that homologous egg factors needed to reprogram cells to pluripotency may function across
many mammalian species.

The nature of hybrid and cybrid incompatibilities

A long-standing question is whether the lethality and developmental failure of distantly
related hybrid and cybrid embryos are due to cellular incompatibilities, reprogramming
defects, and/or developmental failure. Hybrids generally survive better than cybrids of the
same interspecific combinations, indicating that the ooplasm most often supports better the
presence of an interspecific genome than the lack of an intraspecific genome [58,59].

Indeed, most cybrids made from divergent species could only develop until the blastocyst
stage, and they were characterized by a range of defects, including developmental delay or
failure, reduced cell numbers, nuclear/genome damage, structural disorganization, aberrant
gene expression and energy levels, as well as defects in nucleologenesis [50-52,54,59-66].
Despite all these observed defects in cybrid embryos, very little is known about the nature of
the underlying nucleocytoplasmic incompatibility. In iISCNT, treatment with TSA improves
aspects of reprogramming in some cybrid embryos, as in same-species SCNT, but it does
not improve survival [67-69]. This suggests that cybrid incompatibility may not be primarily
due to reprogramming defects, at least of the types that are improved by TSA treatment
[9,10]. Alternatively, cellular and developmental defects may underlie cybrid lethality. An
interesting report in which ES cell extracts were transferred along with murine somatic
nuclei into enucleated, mtDNA-depleted pig oocytes, showed that these changes (mtDNA
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replacement and addition of ES cell extract components) improved cybrid development,
although it is not known exactly how these changes were beneficial [70]. As discussed
earlier, it was found that differences in the concentration or regulation of relatively few
proteins between two Xenopus species could explain their different nuclear and spindle sizes
but it remains unclear whether such differences affect the viability of interspecific cybrids
[45,46]. Yet, a difference in the concentration of an embryonic transcription factor between
the same two frog species may be responsible for some of the incapacity of cybrid embryos
to undergo efficient gastrulation movements [59]. Specifically, the Xenopus cybrid had a
relatively insufficient, cytoplasmic species-like, transcription factor concentration, which
likely contributed to the inefficient induction response and subsequent gastrulation defects in
embryos with nuclei that normally have a higher concentration of that same transcription
factor. Viable cells have been isolated from cybrid embryos, but in most cases they could
not be expanded normally /n vitro, suggesting that their viability or ability to proliferate is
reduced [56,57,71]. In an /in vivo study, cybrid cell viability was improved if these cells
were transplanted into embryos of the cytoplasmic species, suggesting that inter-cellular
signalling with cytoplasmic species cells may rescue some of the cellular incompatibility of
cybrids [72]. The cellular incompatibility of cybrids could result from nucleo-mitochondrial
incompatibilities causing respiratory defects, as occurs in cybrids cells generated by
cytoplast fusion in culture [47,73,74], or from other kinds of cellular nucleocytoplasmic
incompatibilities, such as chromosomal loss/damage. More studies will be necessary to
determine the full spectrum of possible nucleocytoplasmic incompatibilities between
species, and whether it may be possible to correct them.

Conclusion

Analyses of nuclear reprogramming in SCNT and interspecific systems have led to the
identification of several reprogramming factors and recurrent defects occurring in SCNT
embryos, as well as some differentiation marks that restrict reprogramming in somatic
nuclei. On the other hand, they have also led to the discovery of a nucleo-mitochondrial
incompatibility between highly divergent species in culture in vitro [47,73,74], although the
in vivo relevance of this phenomenon remains unclear [59,75]. Also, quantitative and
functional differences in relatively few key factors between species may account for their
divergent phenotypes, while these differences may underlie hybrid and cybrid lethality
[45,46,59]. Comparative genome-wide analyses of chromatin and transcription in divergent
species [76,77], as well as in hybrids and cybrids [54,78,79], are being carried out and may
help to identify some of these disparities. A better understanding of the differences and
incompatibilities between species may indeed help to develop a variety of widely relevant
new tools and systems, including iNT-generated functional ES cells and interspecific
chimeras [80,81].

An interesting point is that, at the moment, it appears that enucleated animal oocytes are
better than their human counterpart at reprogramming intraspecies somatic cells [1,7,24,25].
For reasons of egg availability, and enucleated reprogramming capacity, we therefore
wonder whether it would be most advantageous to investigate further the possibility of
reprogramming human somatic nuclei using interspecific systems, including closely related
non-human primate species with compatible mitochondrial genomes [47]. Obviously, the
ethical implications of these experiments would need careful examination. Identifying and
rescuing cross-species incompatibilities also becomes a priority.
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Figure 1. Recurrent reprogramming defectsin SCNT embryos

In this example, a murine somatic cell nucleus is transferred into a mitotically-enucleated
oocyte, containing cytoplasmic and nuclear reprogramming factors. After NT, the chromatin
of the somatic nucleus is often not completely remodelled due to persistent histone
deacetylase (HDAC) activity. This, and other reprogramming aspects, can be improved by
HDAC inhibitor (HDACI) treatment. Abnormal chromosome segregation often occurs
during the early cleavages and appears to be a major cause of developmental failure when it
happens before the 8-cell stage. Following zygotic genome activation, abnormal gene
expression, including Xist RNA from Xa and the subsequent under-expression of X-linked
genes, further inhibits SCNT embryo development. This can be improved by removing Xist
from Xa in donor nuclei, or injection of Xist sSiRNA in SCNT zygotes. Finally, incomplete
reprogramming of the trophectoderm lineage, and the resulting defects in trophectoderm
development are a major cause of the lethality of post-implantation stage SCNT embryos.
This can be rescued by replacing the trophectoderm lineage with one generated from in vitro
fertilized embryos through tetraploid complementation.
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Figure 2. Inter specific hybrid reprogramming systems

(i) In interspecific cell fusion, cultured cells of one species are fused to cells of another
species, resulting in the formation of transient heterokaryons in which one cell type is
transcriptionally reprogrammed towards the other cell type. A heterokaryon may undergo
mitosis, in which case the two nuclei will fuse to generate a proliferating hybrid cell.
Interspecies microcell-mediated chromosome transfer is similar to cell fusion, except that
the nuclei of the cells from one species are fragmented into microcells containing only one
to a few chromosomes prior to fusing with interspecific cells. (ii) In NT to Xenopus oocyte
GV, a few hundreds of mammalian nuclei are injected into the oocyte GV, which induces
the transcriptional reactivation of previously silenced genes within a day or two in the
absence of cell division. (iii) Hybrid embryos can be generated either by cross-fertilization,
ilCSI or iNT using non-enucleated interspecies oocytes.
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Figure 3. Inter specific cybrid reprogramming systems

(i) Nuclei from one species are incubated into M-phase egg extracts prepared from another
species, resulting in nuclear and spindle scaling. (ii) In interspecific cytoplast fusion,
cultured cells from one species are enucleated and fused with cells from another species.
This can be combined with mtDNA-depletion of the other species cells to generate
xenomitochondrial cybrid cells. (iii) Cybrid embryos can be generated either by cross-
fertilization, ilCSI or iNT using enucleated interspecies oocyte.

Curr Opin Genet Dev. Author manuscript; available in PMC 2013 May 15.



