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Abstract 

When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers 
commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon 
to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR 
spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards 
and experimental processing time. As an alternative, we introduce the in silico Chemical Library Engine (ISiCLE) NMR 
chemical shift module to accurately and automatically calculate NMR chemical shifts of small organic molecules 
through use of quantum chemical calculations. ISiCLE performs density functional theory (DFT)-based calcula-
tions for predicting chemical properties—specifically NMR chemical shifts in this manuscript—via the open source, 
high-performance computational chemistry software, NWChem. ISiCLE calculates the NMR chemical shifts of sets of 
molecules using any available combination of DFT method, solvent, and NMR-active nuclei, using both user-selected 
reference compounds and/or linear regression methods. Calculated NMR chemical shifts are provided to the user for 
each molecule, along with comparisons with respect to a number of metrics commonly used in the literature. Here, 
we demonstrate ISiCLE using a set of 312 molecules, ranging in size up to 90 carbon atoms. For each, calculation of 
NMR chemical shifts have been performed with 8 different levels of DFT theory, and with solvation effects using the 
implicit solvent Conductor-like Screening Model. The DFT method dependence of the calculated chemical shifts have 
been systematically investigated through benchmarking and subsequently compared to experimental data available 
in the literature. Furthermore, ISiCLE has been applied to a set of 80 methylcyclohexane conformers, combined via 
Boltzmann weighting and compared to experimental values. We demonstrate that our protocol shows promise in the 
automation of chemical shift calculations and, ultimately, the expansion of chemical shift libraries.
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Background
Metabolomics is being increasingly applied in biomedi-
cal and environmental studies, despite the technical 
challenges facing comprehensive and unambiguous 
identification of detected metabolites [1–3]. The capa-
bility to routinely measure and identify even a modicum 
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of biologically important molecules within all of chemi-
cal space—greater than 1060 compounds [4]—remains 
a grand challenge in biology. The prevention and treat-
ment of metabolic diseases, determining the interac-
tions between plant and soil microbial communities, and 
uncovering the building blocks that led to abiogenesis 
will all strongly depend on confidently identifying small 
molecules, and thus understanding the mechanisms 
involved in the complex processes of metabolic networks 
[5–7]. The current gold standard for chemical identifica-
tion requires matching chemical features to those meas-
ured from an authentic chemical standard. However, this 
is not the case with the vast majority of molecules. For 
example, only 17% of compounds found in the Human 
Metabolome Database (HMDB) and less than 1% of com-
pounds found in exposure chemical databases like the 
U.S. Environmental Protection Agency (EPA) Distributed 
Structure-Searchable Toxicity (DSSTox) Database [8] can 
be purchased in pure form [9, 10]. Although analytical 
techniques like nuclear magnetic resonance (NMR) spec-
troscopy [11–13] and mass spectrometry (MS) [14–16] 
have been applied for the identification of metabolites 
and to build libraries [17–21], determining the complete 
composition of entire metabolomes is still non-trivial 
for both technical and economic reasons. In this regard, 
libraries constructed of experimentally obtained data are 
too limited, expensive, and slow to build, even for librar-
ies with thousands of metabolites [22–25].

The most practical approach expand reference libraries 
for comprehensive identification of compounds detected 
in metabolomics studies is through in silico calculation 
of molecular attributes. Molecular properties that can be 
both accurately predicted computationally and consist-
ently measured experimentally may be used in “stand-
ards free” metabolomics identification approaches. The 
metabolomics community has made many advances in 
calculations of measurable chemical attributes, such as 
chromatographic retention time [26, 27], tandem mass 
spectra [28–30], ion mobility collision cross section 
[31, 32], and NMR chemical shifts [33]. Recently, high 
throughput computation of chemical properties has 
been demonstrated using machine learning approaches 
[34–37]. These tools are a good resource for the metabo-
lomics community, however, machine learning methods 
are limited by the size and scope of the initial training set, 
and thus ultimately limited by the number of authentic 
chemical standards available for purchase. In contrast, 
structure-based approaches, utilizing first principles of 
quantum chemical calculations, leverage our understand-
ing of the underlying chemistry and physics to directly 
predict chemical properties of any chemically valid mol-
ecule. Thus, quantum chemical calculations enable us to 
overcome the reliance on authentic chemical standards in 

metabolomics. In this study, we focus on expanding the 
utility of density functional theory (DFT), a widely used 
electronic structure approach, which has been applied 
to predict NMR chemical shifts [38–41]. DFT enables 
examination of molecular conformers [42–45] and allows 
custom solvent conditions [46–48]. Ultimately, compu-
tational modeling can be used in the rapid identification 
and study of thousands of metabolites, culminating in in 
silico metabolome libraries of multiple chemical proper-
ties. Furthermore, the same tools that can be used to aid 
identification of small molecules in complex samples can 
also be used for structure confirmation and correction. 
For example, we recently used the tool described in this 
manuscript to help correct the misidentification of the 
isoflavonoid wrightiadione to the actual structure as an 
isobaric isostere, the alkaloid tryptanthrin [49].

Metabolomics researchers unfamiliar with DFT or 
similar calculations may find the application of quan-
tum chemical calculations complicated or challeng-
ing to apply quickly, and thus avoid these techniques. 
To this end, and to help bring DFT calculations to large 
sets of small organic molecules relevant to the main-
stream metabolomics community, we have developed a 
Python-based workflow and analysis package, the ISiCLE 
(in silico Chemical Library Engine) NMR chemical shift 
module employs DFT methods through use of NWChem 
[50], a high-performance quantum chemistry software 
package developed at Pacific Northwest National Labo-
ratory (PNNL). The module automates calculations of 
NMR chemical shifts, including solvent effects, via the 
COnductor-like Screening Model (COSMO) [51] of user-
specified NMR-active nuclei for a given set of molecules 
for multiple DFT methods. ISiCLE also calculates the 
corresponding errors if experimental values are avail-
able. In this paper, we describe ISiCLE’s NMR module, 
provide a working tutorial example, demonstrate its use 
through the calculation of chemical shifts for a large set 
of small molecules, and, finally, show how ISiCLE can be 
applied to rapidly calculate chemical shifts of arrays of 
Boltzmann-weighted conformers to yield high accuracy 
chemical shift calculations.

Methods
In silico Chemical Library Engine (ISiCLE)—NMR module
ISiCLE is a Python module that provides straightfor-
ward automation of DFT using NWChem, an open 
source, high-performance computational quantum 
chemistry package, developed at Pacific Northwest 
National Laboratory (PNNL), for geometry optimiza-
tion and chemical shift and solvent effect calculations. 
Figure  1 shows a schematic representation of ISiCLE. 
For typical use, ISiCLE requires only a list of mol-
ecules and a list of desired levels of DFT theory from 
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the user. For more advanced use cases, users may adjust 
NWChem parameters by modifying the provided .nw 
template file.

Here, we describe each step of a typical ISiCLE run (see 
Fig. 2 for a general workflow for using the ISiCLE NMR 
module).

To start, users must prepare File A, containing a list of 
molecules, and File B, containing a list of DFT combina-
tions, which both are required to be in Excel format (.xls 
or .xlsx). File A must contain all input molecules either 
as (i) International Union of Pure and Applied Chemis-
try (IUPAC) International Chemical Identifier (InChI) 
strings [52, 53] or (ii) XYZ files, a free-format text file 
having XYZ coordinates of atoms. In subsequent ver-
sions, alternative file formats will be supported, such as 
TSV for inputs and outputs.

Once prepared, the user runs ISiCLE. First, ISiCLE 
opens File A for the input molecules. OpenBabel, an 
open-source chemical informatics toolbox available with 
Python wrappers [54, 55], is called to generate geometry 
files. For InChI inputs, OpenBabel generates .xyz files for 
each molecule, unless .xyz files are provided, and con-
verts InChI to InChIKey for naming files (otherwise, the 
base names of XYZ files are used for naming subsequent 
files). Next, OpenBabel applies the Merck molecular 
force field (MMFF94) [56] to generate a rough three-
dimensional (3D) structure for each molecule, resulting 
in associated .mol files. ISiCLE then prepares NWChem 
input files based on the specified DFT methods, solvents, 
shielding parameters and regarding task directives given 
by the user-prepared File B. Finally, ISiCLE submits 
the appropriate files to, if relevant, a remote NWChem 
installation (typically on a non-local, networked, high-
performance computer), and then retrieves the output 
files once the calculations are complete. Additional infor-
mation and further details about ISiCLE is provided in 
Additional file 1 (S1). Note that future versions of ISiCLE 
will automatically generate conformers of a given mol-
ecule, as part of the seamless pipeline.

For each molecule, ISiCLE generates MDL Molfiles 
(.mol) [57] that contain isotropic shieldings and NMR 
chemical shifts. ISiCLE exports isotropic shieldings for 
each molecule and appends them to a MDL Molfile in the 
same atomic order of the original XYZ files. Then, ISiCLE 
converts isotropic shieldings to NMR chemical shifts by 
subtracting the isotropic shielding constants for the spec-
ified nuclei of the molecule of interest from those of a ref-
erence compound computed at the same level of theory 
(Eq.  1). For this manuscript, tetramethylsilane (TMS) is 
used as a reference compound. The experimental chemi-
cal shifts of TMS are assigned a value of zero, thus the 
calculation of NMR chemical shifts needs only isotropic 
shieldings of TMS [58–61]. Any molecule can be used as 
reference in ISiCLE as long as it has the specified nuclei 
and its experimental (or calculated) chemical shifts are 
supplied. It is explained in detail in a supplemental tuto-
rial how a user inputs experimental data. The equation 
for calculating chemical shifts from isotropic shieldings 
is:

Fig. 1  Schematic representation of inputs and outputs of the ISiCLE 
NMR module

Fig. 2  The step-by-step conceptual workflow for the ISiCLE NMR 
module. Conformer generation with Boltzmann weighting is optional 
and will be automated in subsequent versions. Please see github.
com/pnnl/isicle for the latest versions
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where δi and δref  are the chemical shifts of atom i (of the 
molecule of interest) and the reference molecule, respec-
tively. σi and σref  are the isotropic shielding constants of 
atom i and the reference molecule, respectively.

ISiCLE also calculates errors in NMR chemical shifts if 
experimental data is provided in the MDL Molfiles in a 
required way as explained in the tutorial. The errors are 
quantified in terms of mean absolute error (MAE) (Eq. 2), 
corrected mean absolute error (CMAE) (Eq.  3), root 
mean square error (RMSE) (Eq. 4), and maximum abso-
lute error (Eq. 5).

where N is the total number of chemical shifts, and 
δcalc and δexp are the lists of calculated and experimental 
chemical shits, respectively.

Empirical scaling of isotropic shieldings or NMR chem-
ical shifts is the most common approach to remove sys-
tematic errors. If experimental data is provided, ISiCLE 
uses two optional approaches for its linear regression 
method, where slope and intercept values are derived 
from (i) regression of computed NMR chemical shifts 
versus experimental NMR chemical shifts using (Eq.  6), 
and/or (ii) regression of computed isotropic shieldings 
versus experimental NMR chemical shifts using (Eq. 7).

where σcalc is the list of isotopic shielding constants of 
molecules.

(1)δi = σref − σi + δref

(2)MAE =

∑N
i=1

∣

∣δexp − δcalc
∣

∣

N

(3)

CMAE =

∑N
i=1

∣

∣δexp − (δcalc − intercept)/slope
∣

∣

N

(4)RMSE =

√

∑N
i=1

(

δexp − δcalc
)2

N

(5)max
i=1,2,...,N

∣

∣δexp − δcalc
∣

∣

(6)δexp =
intercept − δcalc

−slope

(7)δexp =
intercept − σcalc

−slope

Alternatively, if the user does not provide experimen-
tal NMR chemical shifts, ISiCLE can scale NMR chemi-
cal shifts using provided intercept and slope values. 
The scaled NMR chemical shifts are appended to MDL 
Molfiles.

A detailed description of InChIs and InChIKeys, and 
why they were chosen, can be found in the Additional 
file  1 (S2). Similarly, justification for the use of MDL 
Molfiles is explained in Additional file 1 (S2). In the next 
version, ISiCLE will be compatible with other file for-
mats, such as the NMReDATA [62] format that has been 
recently designed for NMR data use. To help ease the use 
of our data, we provide NMReDATA files for the demon-
stration set in the Additional file 2.

Furthermore, installation details for OpenBabel and 
other required Python packages are provided in the tuto-
rial (see Additional file  2). The Windows-based tutorial 
provides step-by-step instructions for running ISiCLE 
for the first time, including information for installation 
of packages, properly preparing input files, running a cal-
culation, and obtaining output files. The tutorial includes 
example molecules with anticipated output files for use 
as a practice set and for benchmarking purposes. It is 
designed to guide users of ISiCLE and NWChem in the 
use of the input files and scripts, demonstrated using 
three small molecules: methanol, methyl-isothiocyanate, 
and nitromethane. Calculation time may vary (depending 
on network speed, local computational power, etc.), but it 
is expected to take less than 10 min.

Demonstration set
For an initial demonstration of ISiCLE, we have compiled 
a molecule set of 312 compounds from previous studies: 
Alver [63], Asiri et al. [64], Bally and Rablen [65], Bagno 
et al. [66], Borkowski et al. [67], Coruh et al. [68], Fulmer 
et al. [69], Hill et al. [70], Izgi et al. [71], Karabacak et al. 
[72], Krishnakumar et  al. [73–75], Kwan and Liu [45], 
Li et  al. [76], Lomas [77], Osmialowski et  al. [78], Par-
lak et al. [79], Perez et al. [80], Rablen et al. [81], Sarotti 
and Pellegrinet [82, 83], Sebastian et  al. [84], Seca et  al. 
[52], Senyel et al. [85, 86], Sridevi et al. [87], Tormena and 
da Silva [88], Vijaya and Sankaran [89], Watts et al. [53], 
Wiitala et  al. [90, 91], Willoughby et  al. [92], and Yang 
et  al. [93]. We aimed to cover a broad chemical space 
and distribution of sizes. Our criteria also included the 
existence of all 1H and/or 13C NMR experimental data 
in chloroform solvent, referenced to TMS at room tem-
perature, for comparisons. Note that the NMR spectra 
of each molecule set were not recorded at the same mag-
netic field strengths. A summary of the demonstration 
set compounds are given in Table 1. Detailed information 
about the individual sets is given in Additional file 1 (S3).
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Computational details
As a first demonstration of ISiCLE, a benchmark study 
was performed with 8 different DFT methods to predict 

1H and 13C NMR chemical factors for the calculations of 
chemical shifts in chloroform. Each compound was opti-
mized with the Becke three-parameter Lee–Yang–Parr 

Table 1  Demonstration set sources and details

Details (i.e. experimental conditions, total and average number of nuclei, molecule types and classes) for each molecule set are given in Additional file 1 (S3)

References # of molecules Ave. atoms 
per molecule

Ave. H 
per molecule

Ave. C 
per molecule

Types of molecules

Alver [63] 1 24 11 8 Boron-based compound

Asiri et al. [64] 1 33 12 16 Organic photochromic compound

Bagno et al. [66] 4 44 21 18 Small organic molecules with constrained conforma-
tions

Barkowski et al. [67] 15 83 50 31 Pentacyclic terpenoids (fernenes)

Coruh et al. [68] 1 25 8 13 Heterocyclic aromatic compound

Fulmer et al. [69] 33 14 9 4 Commonly used NMR solvents

Hill et al. [70] 1 70 33 30 Complex drug with multiple chemical groups and 
one stereocenter

Izgi et al. [71] 1 24 15 8 Molecule with cyclohexene (C6H10) attached to 
ethylamine (C2H7N)

Karabacak et al. [72] 1 17 8 7 Planar benzene ring with attached B(OH)2 and two 
F groups

Krishnakumar et al. [74] 2 16 4 6 Agrochemical intermediate compounds with planar 
rings

Krishnakumar et al. [73] 2 16 7 7 Nitrotoluene derivatives

Krishnakumar et al. [75] 2 17 6 7 Phenol derivatives

Kwan and Liu [45] 1 42 22 18 Natural product

Li et al. [76] 78 11 4 5 Molecules with a large number of connected sub-
stituent groups

Lomas [77] 15 18 12 5 Saturated alcohols

Osmialowski et al. [78] 28 28 11 14 Substituted phenacylpyridines (ketimine forms) and 
tautomers

Parlak et al. [79] 1 26 4 12 Polyfluoroaromatic compound with two rings

Perez et al. [80] 2 22 10 8 Chloropyrimidine species

Rablen et al. [81] 80 6 4 11 Rigid organic compounds with constrained confor-
mations

Sarotti and Pellegrinet [82, 83] 66 15 8 6 Low polarity compounds with constrained confor-
mations

Sebestian et al. [84] 1 26 11 14 Phenyl cyanide compound with two planar phenyl 
rings

Seca et al. [52] 4 40 24 65 Light petroleum extracts

Senyel et al. [85] 1 23 13 9 A structural element of many pharmaceutical drugs

Senyel et al. [86] 1 28 18 8 3-Piperidino-propylamine molecule

Sridevi et al. [87] 1 21 8 10 Chromene, a two ringed planar compound

Tormena and da Silva [88] 3 17 8 8 Para-X-sub’ed (X=H, CH3O, & NO2) aromatic carbonyl 
compounds

Vijaja and Sankaran [89] 1 47 24 20 Azine

Watts et al. [53] 6 45 21 18 Coniferol, a building block of lignin, stereoisomers 
and conformers

Wiitala et al. [90] 43 11 6 3 Organic compounds

Wiitala et al. [91] 7 24 14 8 Cis-/trans-forms of 2-, 3-, and 4-methylcyclohexanols

Willoughby et al. [92] 2 22 14 7 Cis-/trans-diastereomers of 3-methylcyclohexanol

Yang et al. [93] 2 57 28 23 Complex natural products

This study’s demonstration set 312 20 10 8 Small- to medium-sized organic molecules with 
constrained conformations
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(B3LYP) hybrid functional [94–96] and the 6-31G(d) 
split-valence basis set [97]. This level of theory in geom-
etry optimization was chosen because of its broad appli-
cation in the literature for organic molecules [98, 99]. 
Isotropic magnetic shielding constants were calculated 
with the 4 different functionals, BLYP [94, 95], B3LYP 
[97–99], B35LYP, and BHLYP [100]. DFT methods were 
selected with different Hartree–Fock (HF) ratios: BLYP 
(0% HF), B3LYP (20% HF), B35LYP (35% HF), BHLYP 
(50% HF). Each method was tested with 2 different 
correlation-consistent Dunning basis sets (double-zeta 
cc-pVDZ [101] or triple-zeta cc-pVTZ [101]). All basis 
sets were obtained from the Environmental Molecular 
Sciences Laboratory (EMSL) Basis Set Exchange [102–
104]. For each optimized geometry, 1H and 13C NMR 
chemical shifts were computed relative to TMS using 
the Gauge Including Atomic Orbitals (GIAO) formalism 
[105]. Chloroform solvation effects were simulated using 
COSMO.

For a second demonstration of ISiCLE, the NMR 
chemical shifts, along with frequency calculations (and 
subsequent Boltzmann weighting), two sets of axial and 
equatorial conformers (40 conformers each) of methyl-
cyclohexane were processed. We performed in vacuo 
molecular dynamics (MD) simulations, using the sander 
MD software program from AmberTools (version 14) 
[106], to generate 80 conformers of the methylcyclohex-
ane compound. These conformers were generated in four 
stages. First, the initial geometries of axial and equato-
rial conformers were taken from the study of Willoughby 
et al. [92]. Second, a short energy minimization run was 
performed to relax the initial structure and to remove 
any non-physical atom contacts. Third, a short 50 ps MD 
run was performed (in 0.5 fs time steps) to heat the struc-
ture from 0 to 300 K, without non-bonded cutoffs. In the 
fourth step, we performed 8 simulated annealing cycles, 
where each cycle was run for 1600  ps in 1  fs MD steps 
with the following temperature profile: heating from 300 
to 600 K (0–300 ps), equilibration at 600 K (300–800 ps), 
cooling from 600 to 300 K (800–1100 ps), and equilibra-
tion at 300 K (1100–1600 ps). Ten conformers from the 
equilibration stage at 300 K, of each simulated annealing 
cycle, were randomly selected to obtain the 80 conform-
ers. After the conformers were obtained, M06-2X was 
used with the basis set of 6-31 + G(d,p) for the geometry 
optimization and frequency calculations and B3LYP with 
6-311 + G(2d,p) method for the calculations of NMR 
chemical shifts. Relative free energies of the conforma-
tions and Boltzmann weighted NMR chemical shifts were 
compared to those found in the literature [92, 107–109].

All results shown in this manuscript were generated 
using the Cascade high-performance computer (1440 
compute nodes, 23,040 Intel Xeon E5-2670 processor 

cores, 195,840 Intel Xeon Phi 5110P coprocessor cores, 
and 128 GB memory per compute node [110]), in EMSL 
(a U.S. national scientific user facility) located at PNNL. 
Cascade is available for external users through a free, 
competitive proposal process. ISiCLE can utilize local 
clusters or high-performance computing resources avail-
able to the user. NWChem is freely available and can be 
downloaded from the website [111, 112].

Results and discussion
NMR chemical shift calculations have been used success-
fully to identify new molecules, determine metabolite 
identifications, and eliminate structural misassignments 
[59, 113]. In the last two decades, many research groups 
have performed benchmark DFT studies on the accuracy 
of optimized molecular geometry [92, 114–116], func-
tionals [117, 118], basis sets [88, 119], and solvation mod-
els [90, 120, 121] for NMR chemical shifts [60, 122–124]. 
Each group uses a molecule set focusing on a unique 
chemical class [78, 125–129] and several groups have rec-
ommended different exchange–correlation (XC) energy 
functionals with a different basis set for a particular 
condition or suitable to specific chemical functionalities 
and properties [70, 77, 130–133]. The prevailing opinion 
is that reliable isotropic NMR chemical shifts strongly 
depend on accurate calculations of molecular geometries 
and inclusion of HF exchange in selected DFT methods, 
to an extent [134, 135]. On the other hand, the size of 
the basis set does not increase the accuracy after a point 
[136, 137].

The ISiCLE software can be installed locally. As seen in 
Fig. 1, it requires only two input files, prepared in Excel: 
a sequence of InChI or XYZ molecule geometry files, and 
a sequence of DFT methods of the user’s choice. Prepara-
tion of NWChem “run files,” 3D molecule geometry files, 
and/or Linux/Unix shell script “drivers” are not required. 
As output, ISiCLE prints isotropic shielding, calculated 
by NWChem, and calculated chemical shifts with respect 
to a reference molecule and/or application of a user-
specified linear regression technique. ISiCLE is a prom-
ising tool contributing to standards-free metabolomics, 
which depends on the ability to calculate properties for 
thousands of molecules and their associated conformers.

Application 1: chemical shift calculations 
for a demonstration set of molecules
To test ISiCLE, we generated a set of 312 molecules. This 
set is large relative to other metabolomic molecule sets 
found in the literature, which in our literature survey 
averaged 34 molecules (Table 1). Our molecule set ranges 
from small- to large-sized molecules (number of carbon 
atoms ranging from 1 to 90), and experimental 13C and 
1H NMR data in chloroform were available for each of 
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them. Our set also spans a wide array of chemical classes, 
including acetylides, alkaloids, benzenoids, hydrocar-
bons, lipids, organohalogens, and organic nitrogen and 
oxygen compounds. ISiCLE was used to successfully 
perform DFT calculations for this set under chloroform 
solvation using eight different levels of DFT theory (4 dif-
ferent functionals and 2 basis sets for 13C and 1H).

A total of 2494 carbon nuclei and of 3127 hydro-
gen nuclei were calculated for all 312 molecules of the 
demonstration set and compared with experimental 
data. Deviation bars indicating MAE and MAXAE are 
plotted for each method in Fig.  3. For both 13C and 1H 
NMR chemical shifts, the MAE of each method with 
cc-pVTZ is higher than those with cc-pVDZ. For 13C, 
the MAE of each method with cc-pVTZ (7–10  ppm) is 
higher than those with cc-pVDZ (5–6  ppm). MAE of 
methods with a larger basis set deviate more compared 
to those with a smaller basis set. The smallest devia-
tions are observed for B3LYP and B35LYP, both in MAE 
and MAXAE results. The same situation is observed for 
1H NMR chemical shifts as well: MAE of each method 
with cc-pVTZ (~ 0.35 ppm) is higher than those with cc-
pVDZ (~ 0.30  ppm). In contrast to 13C NMR chemical 
shifts, 1H NMR chemical shifts are better predicted with 
methods using larger basis sets (cc-pVTZ). Although the 
error differences among each method may be too low to 
confidently identify the outperforming method, B3LYP/

cc-pVDZ is the most successful combination in the calcu-
lation of 13C and 1H NMR chemical shifts for our applica-
tion shown here.

Figure  4 shows computational costs of DFT combi-
nations for the demonstration set. We found that the 
smaller basis set (cc-pVDZ) in the calculation of both 

Fig. 3  Mean absolute errors (MAE) and maximum absolute errors (MAXAE) of chemical shifts for the demonstration set. The grey bars represent 
MAE, the black bars represent MAXAE. For all methods, geometries are optimized at B3LYP/6-31G(d) in chloroform

Fig. 4  Computational costs of DFT methods performed for the 
demonstration set. Each bar is for two DFT methods with basis sets 
of cc-pVDZ and cc-pVTZ. The grey bars represent CPU times for the 
methods with cc-pVDZ and the black bars represent those with 
cc-pVDZ and the black bars represent those with cc-pVTZ
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13C and 1H NMR chemical shifts was an acceptable com-
promise between accuracy and computational perfor-
mance, compared with the larger cc-pVTZ basis. This 
finding is similar to a recent benchmark study [138] that 
showed B3LYP/cc-pVDZ is a reliable combination, bal-
ancing accuracy with computational cost in 13C chemi-
cal shifts calculation. The larger basis set (cc-pVTZ) took 
2–3 times longer to complete than cc-pVDZ (in terms 
of total CPU time). The computational times of the iso-
tropic shielding and chemical shift calculations for this 
demonstration set are given in the file of Demonstration-
Set_CPUtimes.xlsx in the Additional file 2.

Effect of scaling by linear regression
We performed the most general approach to error reduc-
tion, empirical scaling. Our molecule set has 1554 and 
1830 experimental 13C and 1H NMR chemical shifts, 
respectively. It provides confidence for applying lin-
ear regression effectively as it reduces the possibility 
of overfitting. Empirical scaling was applied to the data 
obtained with the best combination, B3LYP/cc-pVDZ, 
using two different relationships: computed shifts ver-
sus experimental chemical shifts (Eq.  6), and computed 
isotropic shieldings versus experimental shifts (Eq.  7). 
Once the empirical scaling was applied, the accuracy 
for 13C chemical shifts and 1H chemical shifts improved 
by 0.7 and 0.11  ppm, respectively. Our computed NMR 
chemical shifts and shieldings deviate from unity (desired 
slope = 1) by 0.02 for both 13C and 1H NMR chemical 
shifts. Linear fits with correlation coefficients of 0.99 
(Fig.  5a, b) and 0.93 (Fig.  5c, d) for 13C and 1H NMR 
chemical shifts, respectively, were observed, which also 
shows that B3LYP/cc-pVDZ is able to produce data free 
from random error. Results of linear regression to the 
13C and 1H NMR chemical shifts obtained by other DFT 
methods are given in the Additional file 1 (S5).

Detailed look at 13C NMR chemical shifts
The carbon (13C) magnetic shieldings and chemical 
shifts derived from the various DFT methods are highly 
correlated, as shown by a correlation coefficient of 0.99 
(Fig.  5). The inclusion of a scaling factor enhances the 
performance of theoretical calculations with B3LYP/cc-
pVDZ//B3LYP/6-31G(d) and decreases the MAE in 13C 
NMR chemical shifts for this set by approximately 13%.

There has been a trend toward using multiple refer-
ences, such that each molecule should be referenced to 
a molecule with similar properties to improve accuracy 
of NMR chemical shifts [123, 134, 139]. Sarotti et  al. 
examined the influence of the reference compound used 
in the 13C [83] and 1H [82] NMR chemical shift calcula-
tions over a set of organic compounds, all of which were 
included in our calculations. They recommended the use 

of benzene and methanol as a reference standard in the 
calculations of chemical shifts of sp-sp2- and sp3- hybrid-
ized carbon atoms, respectively, instead of TMS for all 
type of carbon atoms [140]. Propelled by the discussion 
in the study of Grimblat et al. [141] about the distribution 
of the errors observed in sp2- and sp3- carbons, we deter-
mined the distribution of the data of chemical shifts of 
sp2- (933 carbons) and sp3- (745 carbons) hybridized car-
bons (Fig. 6, the sp2- and sp3- derived series of carbons 
show two separate chemical shift distributions and two 
separate error distributions over a much larger variety 
of compounds than Grimblat et  al. For our demonstra-
tion set, both errors between calculated and experimen-
tal sp2- and sp3- chemical shifts more closely resemble a 
Student’s t-distribution [58, 142], rather than a normal 
distribution [138, 143]. The correlation coefficients of the 
errors of sp2- and sp3- carbons are 0.93 and 0.78, and 0.98 
and 0.95 for Student’s t-distribution and normal distribu-
tion, respectively.

Furthermore, we looked for the bonded neighbors of 
each carbon and hydrogen extensively in Fig. 7. For car-
bon shifts, error was measured for carbon (n = 1709), 
chlorine (n = 149), fluorine (n = 8), hydrogen (n = 1161), 
nitrogen (n = 199), oxygen (n = 251) and sulfur (n = 20) 
attachments. The largest deviations occur in carbon–
chlorine and carbon–sulfur attachments with MAEs 
of 11.2 and 5.8  ppm and MAXAE 39.7 and 16.5  ppm, 
respectively. The study by Li et al. [76], which used a set 
of chlorinated carbons, reports the same conclusion: cal-
culation accuracy decreases as the size of the basis set 
used increases, but improvement was obtained after lin-
ear regression corrections for B3LYP/6-31 + G(d,p) with 
slope of 0.98. Other than chlorine and sulfur, carbon-
hydrogen attachments also make the 13C NMR chemi-
cal shift DFT calculations deviate significantly from 
experimental values, with MAE of 4.7 and 3.9 ppm and 
with MAXAE of 51.6 and 34.9 ppm. Carbon was found in 
rings in 70% of the cases, and these carbons show a MAE 
of 4.6  ppm. Also, the MAE of 13C NMR chemical shift 
is 3.9  ppm for carbons bonded to a hydrogen atom but 
reaches 9.7 ppm in all other cases.

Oxygen and nitrogen attachments to carbon led to 13C 
NMR chemical shifts with MAE up to 3.1 and 4.2  ppm 
and MAXAE of 32.5 and 23.6 ppm, respectively. Interest-
ingly, half the C–O attachments found in ring-form had 
chemical shifts with a MAE of 2.8 ppm, compared to the 
chemical shifts of C–O attachments not found in a ring, 
which had a relatively higher MAE of 3.2  ppm, leading 
to a percent difference of 14.1%. NMR chemical shifts of 
C–N attachments, present in a ring or not, show close 
MAE of 4.19 and 4.26 ppm, respectively, a percent differ-
ence of 1.6%. This is to be expected, since C–O attach-
ments are expected to show some deviation in chemical 
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shift due to the polarization of the electron distribution 
caused by the high electronegativity of oxygen, while 
nitrogen atoms have a lower electronegativity, leading to 
a lower deviation in C–N chemical shifts.

The correlation plot (Fig. 5a, b) shows a linear pattern 
with only minor deviations of the predicted 13C shield-
ings or 13C chemical shifts from the fitted line. It is veri-
fied by the correlation coefficient of 0.99, as observed in 
previous studies [130, 144], that the deviation of the slope 

from unity within the range of 0.95 and 1.05 is an indica-
tor of a reliable method. However, when placed in sub-
groups of different attachment types, distant outliers are 
observed, with some more than 15  ppm away (Fig.  7a). 
Most outliers are observed in the C–C and C–H attach-
ments, respectively. C–Cl and C–N chemical shifts have 
a high occurrence of outliers, which may be due to the 
chemical properties of chlorine and nitrogen such as 
being remarkably close to first ionization energies. We 

Fig. 5  Linear correlation plots of a 13C and c 1H isotropic shielding values, and b 13C and d 1H NMR chemical shifts versus experimental NMR 
chemical shifts. Chemical shifts are calculated using the GIAO/B3LYP/cc-pVDZ//B3LYP/6-31G(d) level of theory for the demonstration set in CDCl3 
(312 molecules (1554 carbons and 1830 hydrogens)). R2 indicates the correlation coefficient
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suspected that some cases of high calculation errors 
could be due to the consideration of only a single con-
former. For the highest accuracy, proper conformational 
sampling must be considered, as demonstrated below 
in “Application 2: Boltzmann-weighted NMR chemical 
shifts of methylcyclohexane” section

Detailed look at 1H NMR chemical shifts
Proton (1H) chemical shifts are significantly affected 
by intermolecular interactions, particularly in aqueous 

states, especially compared to 13C chemical shifts. Agree-
ment with experimental values improves as empirical lin-
ear scaling is performed for 1H chemical shifts. GIAO/
B3LYP/cc-pVDZ//B3LYP/6-31G(d) yields scaled 1H 
chemical shifts in chloroform solution having a MAE of 
0.30 ppm in comparison with solution experimental val-
ues. The 1H chemical shifts in the range of 10–17  ppm 
show the largest deviation, occurring higher than 5 ppm.

In Fig. 7b, error bars are shown for 1H chemical shifts 
when the hydrogen attaches to carbon (n = 1793), 

Fig. 6  Chemical shifts of sp2- and sp3- hybridized carbon atoms. a Chemical shifts, b associated errors. Chemical shifts were calculated using the 
B3LYP/cc-pVDZ//B3LYP/6-31G(d) level of theory in CDCl3

Fig. 7  Chemical shift prediction errors for different functional groups. a 13C NMR chemical shifts, b 1H NMR chemical shifts. All molecules are from 
the demonstration set and are calculated using the GIAO/B3LYP/cc-pVDZ//B3LYP/6-31G(d) level of theory in chloroform



Page 11 of 16Yesiltepe et al. J Cheminform           (2018) 10:52 

nitrogen (n = 17), and oxygen (n = 41). Oxygen-bound 
hydrogen nuclei have the largest errors (up to 10 ppm), 
which is to be expected due to the electronegative 
property of oxygen atoms, as discussed in the previous 
section. It is followed by less electronegative nitrogen-
bound hydrogen atoms, with an MAE of 0.71 ppm and a 
MAXAE of 2.25 ppm. About 95% of the 1H NMR chemi-
cal shifts calculated for this set are from H–C attach-
ments. These chemical shifts had a MAE of 0.27 ppm and 
a MAXAE of 4.41 ppm. The high occurrence of outliers 
could be evidence of how 1H NMR chemical shifts are 
sensitive to intermolecular interactions.

H–O attachments are highly sensitive (to concentra-
tion, solvent, temperature, etc.), and it is non-trivial to 
determine the NMR chemical shift value of arbitrary 
protons experimentally as well as predict them by using 
a single, “catch all” DFT method, which explains the rela-
tively low correlation coefficient of 0.93 (Fig. 5c–d). For 
future studies, we may need to consider the use of differ-
ent DFT methods, including the use of explicit solvation, 
particularly in the calculation of 1H NMR chemical shifts 
in the presence of H–O attachments.

Application of empirical scaling to functional groups 
are given in detail in the Additional file 1 (see S7 and S8).

Cross‑validation
As a final assessment for the data collected with the dem-
onstration set, we assessed the stability and accuracy of 
the linear regression approach using cross-validation 
[145]. Cross-validation is a technique mostly used in pre-
diction problems to evaluate how much a given model 
generalizes to an independent set of data. Specifically, we 
performed Monte Carlo cross-validation [146, 147]. The 
procedure of application of Monte Carlo cross-validation 
method is explained in Additional file 1 (S9).

We observed that the estimated linear model parame-
ters (i.e. slope and intercept) from the training set do not 
differ from that of the entire set. Therefore, the predictive 

linear model is stable to be accurately estimated and the 
subsets of 13C and 1H NMR chemical shifts generalize 
well to the groups that are not represented in the training 
fold.

Application 2: Boltzmann‑weighted NMR chemical shifts 
of methylcyclohexane
Metabolites were experimentally interrogated using solu-
tion-state NMR, where the observed signal arises from 
the combined signals of present conformers. It is routine 
that NMR chemical shifts calculations are carried out on 
a single dominant conformer. However, it is well known 
that metabolites do not comprise a single conformer in 
solution and are instead found in a collection of various 
conformers [148], and the accuracy of NMR chemical 
shifts heavily depends on molecular geometries and con-
formation consideration [46]. It has been shown that for 
the highest accuracy NMR chemical shift calculations, 
consideration of conformers is critical, even for relatively 
small molecules [149]. As a second demonstration of ISi-
CLE, a conformational analysis based on DFT was per-
formed on a set of 80 conformers of methylcyclohexane 
using a Boltzmann distribution technique. Boltzmann 
weighting determines the fractional population of each 
conformer based on its energy level [92]. High-through-
put and straightforward DFT-based NMR chemical shift 
calculations of all 80 methylcyclohexane conformers was 
performed by ISiCLE then compared to experimental 
values.

It has been shown by Willoughby et  al. [92] that the 
effects of molecular flexibility on NMR chemical shifts 
can be captured by Boltzmann weighting analysis, as 
demonstrated with methylcyclohexane (Fig.  8). Methyl-
cyclohexane is a well-studied small molecule [150–154]. 
It is flexible, composed of a single methyl group attached 
to a six-membered ring, and known to exist as an assem-
bly of two chair conformers. There are two distinct 
conformations of which chair–chair interconversion is 

Fig. 8  The a equatorial and b axial structures of methylcyclohexane
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rapid and dominated by equatorial to axial conforma-
tion. We weighted 40 axial and 40 equatorial conform-
ers in chloroform and obtained a relative free energy of 
1.99  kcal/mol with NWChem, similar to calculations 
using Gaussian [155] by Willoughby et  al. [92], and 
similar to experimental findings (1.73  kcal/mol [156], 
1.93  kcal/mol] [108]) and computed (2.15–2.31  kcal/
mol [107] and 1.68–2.48  kcal/mol [109]) values. We 
compared the Boltzmann-weighted 1H and 13C chemi-
cal shifts (a ratio of 3% axial to 97% equatorial) to experi-
mental values reported by Willoughby et  al. [92]. The 
Boltzmann-weighted, scaled MAE was 0.017 ppm for 1H 
chemical shifts ( δexp = 1.00× δcomp+ ∼ 0.00 ), similar to 
the experimental value of 0.018 ppm in the study of Wil-
loughby et al. Also, the MAE for 13C chemical shifts was 
4.4  ppm and decreases to 0.8  ppm when the chemical 
shifts were scaled ( δexp = 0.99× δcomp + 0.13 ) (Fig.  9). 
Further details can be found in the Additional file 1 (S10).

Conclusions
We introduce the first release of ISiCLE, which predicts 
NMR chemical shifts of any given set of molecules rel-
evant to metabolomics for a given set of DFT techniques. 
ISiCLE calculates the unscaled or scaled NMR chemical 
shifts (depending on the user’s choice of DFT method) 
and writes the data to appended MDL Molfiles. It also 
quantifies the error in calculated NMR chemical shifts if 
the user provides experimental values.

The functionality of ISiCLE is demonstrated on a mol-
ecule set consisting of 312 molecules, with experimental 

chemical shifts reported in chloroform solvent. 1H and 
13C NMR chemical shifts were calculated using 8 dif-
ferent levels of DFT (BLYP, B3LYP, B35LYP, BHLYP and, 
cc-pVDZ, and ccpVTZ), referenced to TMS in chloro-
form by carrying initial geometry optimizations out at 
B3LYP/6-31G(d) for all molecules. The optimal com-
bination for this set was found to be B3LYP/cc-pVDZ//
B3LYP/6-31G(d) with mean absolute error of 0.33 and 
3.93 ppm for proton and carbon chemical shifts, respec-
tively. We show that DFT calculations followed by linear 
scaling do in fact provide an analytically useful degree of 
accuracy and reliability. Finally, we used ISiCLE for the 
calculation of NMR chemical shifts of 80 Boltzmann-
weighted conformers of methylcyclohexane and com-
pared our results with earlier studies in the literature.

ISiCLE is a promising automated framework for accu-
rate NMR chemical shift calculations of small organic 
molecules. Through this tool, we hope to expand 
chemical shift libraries, without the need for chemi-
cal standards run in the laboratory, which could lead to 
significantly more identifiable metabolites. Future work 
includes wrapping individual steps of the ISiCLE NMR 
module into a formal workflow management system such 
as Snakemake, to include better fault tolerance, modu-
larization, and improved data provenance. Furthermore, 
additional chemical properties will be included, such as 
ion mobility collision cross section and infrared spec-
tra. Finally, ISiCLE will be adapted to run seamlessly on 
cloud computer resources such as Amazon AWS, Micro-
soft Azure, and Google Cloud. ISiCLE is a promising 
tool contributing to standards-free metabolomics, which 
depends on the ability to calculate properties for thou-
sands of molecules and their associated conformers.

Additional files
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Additional file 2. Supporting information files. Including tutorial, code, 
and all other files.
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