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Abstract

Compression schemes for advanced data structures have become a central modern challenge. 

Information theory has traditionally dealt with conventional data such as text, images, or video. In 

contrast, most data available today is multitype and context-dependent. To meet this challenge, we 

have recently initiated a systematic study of advanced data structures such as unlabeled graphs [8]. 

In this paper, we continue this program by considering trees with statistically correlated vertex 

names. Trees come in many forms, but here we deal with binary plane trees (where order of 

subtrees matters) and their non-plane version (where order of subtrees doesn’t matter). 

Furthermore, we assume that each name is generated by a known memoryless source (horizontal 

independence), but a symbol of a vertex name depends in a Markovian sense on the corresponding 

symbol of the parent vertex name (vertical Markovian dependency). Such a model is closely 

connected to models of phylogenetic trees. While in general the problem of multimodal 

compression and associated analysis can be extremely complicated, we find that in this natural 

setting, both the entropy analysis and optimal compression are analytically tractable. We evaluate 

the entropy for both types of trees. For the plane case, with or without vertex names, we find that a 

simple two-stage compression scheme is both efficient and optimal. We then present efficient and 

optimal compression algorithms for the more complicated non-plane case.

I. INTRODUCTION

Over the last decade, repositories of various data have grown enormously. Most of the 

available data is no longer in conventional form, such as text or images. Instead, biological 

data (e.g., gene expression data, protein interaction networks, phylogenetic trees), 

topographical maps (containing various information about temperature, pressure, etc.), 

medical data (cerebral scans, mammogram, etc.), and social network data archives are in the 
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form of multimodal data structures, that is, multitype and context dependent structures (see 

Figure 1). For efficient compression of such data structures, one must take into account not 

only several different types of information, but also the statistical dependence between the 

general data labels and the structures themselves. In Figure 1 we show an example of such a 

multimodal structure representing an annotated protein interaction network in which graphs, 

trees, DAGs, and text are involved.

This paper is a step in the direction of the larger goal of a unified framework for 

compression of multimodal graph and tree structures. We focus on compression of trees with 

structure-correlated vertex “names” (strings). There are myriad examples of trees with 

correlated names. As an example, in Figure 2 we present a Linnaean taxonomy of hominoid. 

As is easy to see, names lower in the tree (children) are (generally) variations of the name at 

the root of a subtree. Closer to the models that we will consider, there are binary tree models 

of speciation in phylogenetics, in which each vertex (representing an organism or a species) 

is associated with a genome (a DNA string); a parent-child relationship in this tree indicates 

a biological parent-child relationship (either at the level of species or individual organisms, 

depending on the application context). Naturally, the genome of a child is related to that of 

its parent; furthermore, the sequence of genomes in a given path down the tree has a Markov 

property: a child’s genome is related to that of its ancestors only through that of its parent.

To capture this intuitive behavior, we first formalize two natural models for random binary 

trees with correlated names and prove that they are equivalent (see Theorem 1 and Corolary 

1).

We focus on two variations: plane-oriented and non-plane- oriented trees [3]. In plane-

oriented trees, the order of subtrees matters, while in non-plane-oriented trees (e.g., 

representing a phylogenetic tree [20]) all orientations of subtrees are equivalent (see Figure 

3). For the plane-oriented case, we give an exact formula for the entropy of the labeled tree 

(see Theorem 2) and find that a simple two-stage compression algorithm (one stage to 

encode the tree structure, and the second to encode the names) based on arithmetic coding is 

both efficient and optimal to within two bits of the entropy. The observation that the natural 

two-stage scheme is optimal (so that the additional complication induced by the 

multimodality of this setting is only apparent) is of interest in light of the connection to 

phylogenetic trees and the fact that, in general (e.g., for various graph models with names), 

the problem of multimodal compression can be analytically and algorithmically intractable.

In the more complicated non-plane case, we focus on unlabeled trees and first derive the 

entropy rate (see Theorem 3). Then we propose two compression algorithms: a simple one 

of time complexity O(n) (where n is the number of leaves) that achieves compression within 

a multiplicative factor of 1% of the entropy, and then an optimal algorithm of time 

complexity O(n2) that is within two bits from the entropy. We note that non-plane trees are 

more challenging to study due to the need to account for the typically large number of 

symmetries. In particular, the entropy for non-plane trees depends on what we call the tree 
Rényi entropy of order 2 discussed in the remark below Theorem 3.
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Regarding prior work, literature on tree and graph compression is quite scarce. For unlabeled 

graphs there are some recent information-theoretic results, including [7], [8] (see also [10]) 

and [9]. In 1990, Naor [7] proposed an efficiently computable representation for unlabeled 

graphs (solving Turán’s [11] open question) that is optimal up to the first two leading terms 

of the entropy when all unlabeled graphs are equally likely. Naor’s result is asymptotically a 

special case of recent work of Choi and Szpankowski [8], who extended Naor’s result to 

general Erdős-Rényi graphs. In particular, in [8] the entropy and an optimal compression 

algorithm (up to two leading terms of the entropy) for Erdős-Rényi graph structures were 

presented. Furthermore, in [9] an automata approach was used to design an optimal graph 

compression scheme. There also have been some heuristic methods for real-world graphs 

compression including grammar-based compression for some data structures. Peshkin [23] 

proposed an algorithm for a graphical extension of the one-dimensional SEQUITUR 

compression method. However, SEQUITUR is known not to be asymptotically optimal. For 

binary plane-oriented trees rigorous information-theoretic results were obtained in [13], 

complemented by a universal grammar-based lossless coding scheme [14].

However, for structures with vertex names, which is the topic of this paper, there have been 

almost no attempts at theoretical analyses, with the notable exception of [12] for sparse 

Erdős-Rényi graphs. The only significant algorithmic results have been based on heuristics, 

exploiting the well- known properties of special kinds of graphs: for example in the case of 

Web graphs, their low degree and clustering [24] (see also [25], [27]). Similarly, there are 

some algorithms with good practical compression rate for phylogenetic trees (see [26]); 

however, they too lack any theoretical guarantees of their performance.

The tree models (without vertex names) that we consider in this paper are variations of the 

Yule distribution [17], which commonly arises in mathematical phylogenetics. Various 

aspects of these tree models have been studied in the past (see, e.g., [16]), but the addition of 

vertex names and the consideration of information-theoretic questions about the resulting 

models seems to be a novel aspect of the present work.

The rest of the paper is structured as follows: in Section II, we formulate the models and 

present the main results, including entropy formulas/bounds and performances of the 

compression algorithms. In Section III, we present the derivations of the entropy results. In 

Section IV, we present the compression algorithms and their analyses. Finally, in Section V, 

we conclude with future directions.

II. MAIN THEORETICAL RESULTS

In this section we introduce the concepts of binary plane and non-plane trees together with 

the notion of locally correlated names associated with their vertices. Then we define two 

models for these types of trees with correlated names and show the equivalence of these two 

models.

A. Basic definitions and notation

We call a rooted tree a plane tree when we distinguish left- to-right-order of the children of 

the nodes in the embedding of a tree on a plane (see [3]). To avoid confusion, we call a tree 
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with no fixed ordering of its subtrees a non-plane tree (also known in the literature as Otter 
trees [20]). In a non-plane tree any orientation of subtrees is equivalent.

Let T be the set of all binary rooted plane trees having finitely many vertices and, for each 

positive integer n, let Tn be the subset of T consisting of all trees with exactly n leaves. 

Similarly, let S and Sn be the set of all binary rooted non-plane trees with finitely many 

vertices and exactly n leaves, respectively.

We can also augment our trees with vertex names - given the alphabet A, names are simply 

words from Am for some integer m ≥ 1. Let LTn and LSn be the set of all binary rooted plane 

and non-plane trees with names, respectively, having exactly n leaves with each vertex 

assigned a name - a word from Am. In this paper we consider the case where names are 

correlated with the structure as discussed below.

Formally, a rooted plane binary tree t ∈ Tn can be uniquely described by a set of triples (vi, 
vj, vk), consisting of a parent vertex and its left and right children. Given such a set of triples 

defining a valid rooted plane binary tree, we can standardize it to a tree defined on the vertex 

set [2n - 1] = {1,…2n - 1} by replacing vertex v in each triple by the depth-first search index 

of v. We then consider two trees to be the same if they have the same standard 

representation. See the example in Figure 4. Furthermore, a tree with names lt ∈ LTn can be 

uniquely described as a pair (t, f), where t is a tree, described as above, and f is a function 

from the vertices of t to the words in Am. We can also describe an element of LTn as a set of 

pairs (vi, li) for all i = 1,2,..., 2n −1 representing the vertices and their names. If we identify 

the vertices (vi) with the integers 1, 2,..., 2n −1, f can be described as a sequence of 2n - 1 

words from Am.

Tree Notation.—Here we give notation regarding trees that will be used throughout the 

paper. Let t be a binary plane tree, and consider a vertex v in t.

We denote by λ(t, v) and p(t, v) the left and right child of v in t, respectively (i.e., these are 

vertices in t). By t(v), we shall mean the subtree of t rooted at v. We denote by tL and tR the 

left and right subtree of t, respectively. We denote by Δ(t) the number of leaves in the tree t. 
Finally, we denote by root(t) the root node of t.

B. The model

We now present a model for generating plane trees with structure-correlated names. This 

model will be such that individual names are tuples of independent and identically 

distributed symbols, (a property which we shall call horizontal independence), but the letters 

of names of children depend on the name of the parent (vertical Markovian dependence).

Our main model MT1 is defined as follows: given the number n of leaves in the tree, the 

length of the names m, the alphabet A (of size |A|) and the transition probability matrix P of 

size |A| × |A| (representing an ergodic Markov chain) with its stationary distribution π (i.e. 

πΡ = π), we define a random variable LTn as a result of the following process: starting from 

a single node with a randomly generated name of length m by a memoryless source with 

distribution π, we repeat the following steps until a tree has exactly n leaves:
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• pick uniformly at random a leaf v in the tree generated in the previous step,

• append two children vL and vR to v,

• generate correlated names for vL and vR by taking each letter from v and 

generating new letters according to P: for every letter of the parent we pick the 

corresponding row of matrix P and generate randomly the respective letters for 

vL and vR.

Alternatively, LTn is equivalent to an ordered pair of random variables (Tn, Fn), where Tn is 

a random variable supported on Tn and Fn is a random variable supported on sequences of 

words from Am of length 2n - 1.

Our second model, MT2 (also known as the binary search tree model), is ubiquitous in the 

computer science literature, arising for example in the context of binary search trees formed 

by inserting a random permutation of [n - 1] into a binary search tree [5]. Under this model 

we generate a random tree Tn as follows: t is equal to the unique tree in T1 and we associate 

a number n with its single vertex. Then, in each recursive step, let v1,v2,... ,vk be the leaves 

of t, and let integers n1, n2,..., nk be the values assigned to these leaves, respectively. For 

each leaf vi with value ni > 1, randomly select an integer si from the set {1,..., ni - 1} with 

probability 1
ni − 1  (independently of all other such leaves), and then grow two edges from vi 

with left edge terminating at a leaf of the extended tree with value si and right edge 

terminating at a leaf of the extended tree with value ni - si. The extended tree is the result of 

the current recursive step. Clearly, the recursion terminates with a binary tree having exactly 

n leaves, in which each leaf has assigned value 1; this tree is Tn.

The assignment of names to such trees, given length m, alphabet A, transition matrix P and 

its stationary distribution π, proceeds exactly as in the MT1 model: we first generate a 

random word from Am by a memoryless source with distribution π and assign it to a root, 

then generate correlated names for children, according to the names of the parents and to the 

probabilities in P. Throughout the paper, we will write P(y|x), for symbols x, y ∈ A, as the 

probability of transitioning from x to y according to the Markov chain P. We will also abuse 

notation and write P(x) as the probability assigned to x by π.

Recall that Δ(t) is the number of leaves of a tree t, and Δ(t (v)) denotes the number of leaves 

of a tree t rooted at v. It is easy to see [13] that under the model MT2, P(T1 =  t1)  =  1 (where 

t1 is the unique tree in T1 ) and

P Tn = t = 1
n − 1P TΔ tL

= tL P TΔ tR
= tR ),

which leads us to the formula

P Tn = t = ∏
v ∈ V t

∘
Δ t v − 1 −1

(1)
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where V
∘

t  is the set of the internal vertices of t. It turns out that the probability distribution 

in the MT1 model is exactly the same, as we prove below.

Theorem 1. Under the model MT1 it holds that

P(Tn =  t) = ∏
v ∈ V t

∘
Δ t v − 1 −1

(2)

where V t  is the set of the internal vertices of t.

Proof: We follow [17] and use the concept of labeled histories: a pair (t, ξ), where t ∈ Tn 

(generated by the model MT1) and ξ is a permutation of the natural numbers from 1 to n - 1, 

assigned to the internal n - 1 vertices of t, such that every path from the root forms an 

ascending sequence. If we think of the internal nodes of t as being associated with their DFS 

numbers, then the permutation ξ is a function mapping each internal node of t to the time at 

which its two children were added to it. Thus, for instance, the root always receives the 

number 1 , meaning that ξ(1) = 1 . Clearly, for each t, each labeled history (t, ξ) corresponds 

to exactly one sequence of generation, as it defines uniquely the order of the leaves, which 

are picked during consecutive stages of the algorithm. Moreover, the probability of each 

feasible labeled history (t, ξ) is equal to 1
n − 1 !  since it involves choosing one leaf from k 

available at the kth stage of the algorithm for k = 1,..., n-1. Therefore, denoting q(t) = |{ξ: (t, 
ξ) is a labelled history}|, we find

P Tn = t = q t
n − 1 !

Note that if Δ t v = k for any vertex v of t, then we know that the sequence of node choices 

corresponding to (t, ξ) must contain exactly k - 1 internal vertices from the subtree of v, and 

that v is the first of them. Moreover, for the subsequence in the sequence corresponding to (t, 

ξ) of a subtree t(v) rooted at vertex v, the sequences of Δ t v L − 1 vertices from its left 

subtree and of Δ t v R − 1 vertices from its right subtree are interleaved in any order. Thus 

we arrive at the following recurrence for q(t):

q(t) =
Δ(t) − 2

Δ tL − 1
q(tL)q(tR)

Δ(t) − 2 !
Δ tL − 1 ! Δ tR − 1 !

q tL q tR

This recurrence can be solved by observing that each internal vertex appears exactly once in 

the numerator, and that each internal vertex not equal to the root r appears exactly once in 

the denominator. Hence
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q t =
Π

v ∈ v∘ t
(Δ t v −  2)!

Π
v ∈ v∘ t / r

(Δ t v −  1)!

Since Δ t r = Δ t = n, we thus obtain

q t =

∏
v ∈ V t

∘
Δ t v − 2 !

∏
v ∈ V t

∘ \ r
Δ t v − 1 !

= n − 2 !
∏

v ∈ V t
∘ \ r

Δ t v − 1

leading finally to

P(Tn =  t) = q t
n − 1 ! = 1

∏
v ∈ V t

∘
Δ t v − 1

which completes the proof. ■

Clearly, both models are equivalent, since the underlying binary plane trees have exactly the 

same probability distributions:

Corollary 1. The models MT1 and MT2 are equivalent in the sense that they lead to the 
same probability distribution on trees.

We now can extend the above equivalence to non-plane trees. We define models MS1 and 

MS2 for non-plane trees: just generate the tree according to MT1 (respectively, MT2) and 

then treat the resulting plane tree Tn as a non-plane one Sn. Since MT1 and MT2 are 

equivalent, so are MS1 and MS2. In graph terminology, MS1 and MS2 are unlabeled version 

of their MT counterparts [8].

III. ENTROPY EVALUATIONS

In this section we estimate the entropy for the plane-oriented trees with names and that of 

non-plane trees without names. We shall see that the latter problem is mathematically more 

challenging.

A. The entropy of the plane trees with names

Recall that Δ LTn
L  is a random variable corresponding to the number of leaves in the left 

subtree of LTn. From the previous section, we know that P Δ LTn
L = i = 1

n − 1  Let also rn 

denote the root of LTn, for each n.

First, by the chain rule for entropy, we can write
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H(LTn) = H(Tn) + H(Fn Tn) (3)

The second term, which is the entropy of the names given the tree Tn, is easy to estimate as a 

result of the stationarity of the Markov process generating the vertex names. In particular,

H Fn Tn = 2mh(P) n  −  1   + mh(π)

where h(P)  = − Σa ∈ Aπ a Σb ∈ AP(b a)logP(b a) is the entropy of the Markov process with 

transition matrix P and stationary distribution π. It is also the entropy of a child letter given 

its parent letter. The second term in the above expression is simply the entropy of the name 

of the root. We note an important subtlety here: while the label function Fn is statistically 
dependent on the tree Tn, the conditional entropy H(Fn Tn =  tn), viewed as a function of the 

tree structure tn, is constant.

It remains to estimate H(Tn) in (3). In fact, this was already computed in [13]. This leads to 

our first main result.

Theorem 2. The entropy of a binary tree with names of fixed length m, generated according 
to the model MT1, is given by

H LTn = log n − 1 + 2n ∑
k = 2

n − 1 log2 k − 1
k k + 1 + 2mh P n − 1 + mh π (4)

where h(π) = − ∑
a ∈ A

π a logπ a

Remark. Note that because Fn and Tn are statistically dependent, H(LTn) is strictly less than 
H(Fn) + H(Tn), the fundamental lower bound on the expected code length if the names and 

the tree structure are compressed separately. This is to be expected: if one is given the 

multiset of names without any additional information about the tree structure, then the 

compression of the names either duplicates information from the tree (in the case where the 

tree can be recovered from the names) or is suboptimal in light of the fact that the 

dependence structure of the names cannot be estimated. In either case, separate compression 

is suboptimal.

Remark. We know that (see also [13])

2 ∑
k = 2

n log2 k − 1
k k + 1 ≈ 1.736
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for large n (we took n = 106). The above series converges slowly, with an error term of order 

O(log n/n). Therefore one would prefer a more explicit formula, which we offer next for 

large n. We approximate the sum using the Euler-Maclaurin formula [4] by the integral

∑
k = 1

n − 2 logk
k + 1 k + 2 ∼ ∫1

n − 2 log x
x + 1 x + 2 dx = − Li2 1 − n

2 + Li2 2 − n + log 2 − 2
n . log n − 2

+ Li2 − 1
2 + π2

12

where

Li2(x) = ∫1
x logt

1 − t dt

is the dilogarithmic integral. For large x the following holds [18], [19]

Li2(x) = − 1
2 log2x − π2

6 + O(logx/x ).

In fact, to get a better approximation of the sum we need two extra terms in the Euler-

Maclaurin formula which leads to the following approximation

∑
k = 1

n − 2 logk
k + 1 k + 2 ≈ Li2 3 2 + 1

12π2 + 1
2log2 2 − 1

72 + 23
12960 = 0.868...

which matches the first three digits of the sum.

Remark Note that the total entropy is proportional to n and m. In a typical setting m = O(1) 

or Θ(log n) (which is certainly needed if we want all the labels to be distinct), so H(LTn) 
would be O(n) or O(n log n), respectively.

An alternative way to prove Theorem 2 proceeds by writing 

H LTn = H(LTn Fn rn ) + H Fn rn , and the first term turns out to satisfy a recurrence which 

will also appear in a more fundamental way in several other places in the paper. Therefore, 

we state the following technical lemma, yielding the solution to this recurrence.

Lemma 1. The recurrence x1 = 0,

xn = an + 2
n − 1 ∑

k = 1

n − 1
xk,n ≥ 2 (5)

has the following solution for n ≥ 2:
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xn = an + n ∑
k = 2

n − 1 2ak
k k + 1 (6)

Proof: By comparing the equations for xn and xn+1 for any n ≥ 2 we obtain

xn+1
n + 1 =

xn
n +

nan + 1 − n − 1 an
n n + 1

Substituting yn =  
xn
n  and bn =

nan + 1 − n − 1 an
n n + 1  we get

yn+1 = yn + bn = y2 + ∑
k = 2

n
bk

yn = y2 + ∑
k = 2

n − 1
bk = y2 + ∑

k = 2

n − 1 ak + 1
k + 1 −

ak
k +

2ak
k k + 1 = y2 +

an
n −

a2
2 + ∑

k = 2

n − 1 2ak
k k + 1 =

an
n

+ ∑
k = 2

n − 1 2ak
k k + 1

and finally, after multiplying both sides by n, we obtain the desired result.

Note that Theorem 2 follows directly from Lemma 1.

B. The entropy of the non-plane trees

Now we turn our attention to the non-plane trees and the case when m = 0 or, equivalently, 

Sn instead of LSn. The case of labeled non-plane trees may be easily derived from this, 

because of the following relation:

H(LSn) = H(Sn) + H(Fn Sn)

where

H(Fn Sn) =H(Fn Tn) = 2mh(P)(n −  1)  + mh(π)

just as in plane trees. Thus,

H(LSn)  = H(Tn)  − H(Tn Sn)  + H(Fn Tn)

may easily be turned into an explicit expression.
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We thus only consider only the unlabeled case in what follows. Let Sn be the random 

variable with probability distribution given by the MS2 (or, equivalently, MS1) model. For 

any s ∈ S and t ∈ T let t ~ s mean that the plane tree t is isomorphic to the non-plane tree s. 

Furthermore, we use the following notation: [s] =  t ∈ T : t s  . For any t1;t2 ∈ Tn such that t1 

~ s and t2 ~ s it holds that P(Tn_t1) =P(Tn = t2) , since there is also an isomorphism between 

them [17]. By definition, s corresponds to | [s] | isomorphic plane trees, so for any t ~ s it 

holds that

P(Sn = s) =   [s] P(Tn = t) (7)

P Tn = t Sn = s = 1
s . (8)

Let us now introduce two functions: X(t) and Y(t), which are equal to the number of internal 

vertices of t ∈ T with unbalanced subtrees (unbalanced meaning that the number of leaves in 

its left and right subtree are not equal) and the number of internal vertices with balanced, but 

non isomorphic subtrees, respectively. Similarly, let X(s) and Y(s) denote the number of 

such vertices for s ∈ S. Clearly, for any t ∈ T, s ∈ S such that t ~ s it is straightforward that X 
(t) = X (s) and Y(t) = Y(s). Moreover, observe that any structure s ∈ S has exactly

s =  2X s + Y s

distinct plane orderings, since each vertex with non isomorphic subtrees can have either one 

of two different orderings of the subtrees, whereas when both subtrees are isomorphic we 

have only one ordering.

Now we conclude that

H Tn Sn

= − ∑
t ∈ Tn, s ∈ Sn

P(Tn = t, Sn = s)logP(Tn = t |Sn = s) = ∑
s ∈ Sn, t ∼ s

P Sn = s log s |

= ∑
s ∈ Sn, t ∼ s

P Sn = s X s + Y s = ∑
t ∈ Tn

P Tn = t X t + Y t = EXn + EYn

where we write Xn := X(Tn) and Yn := Y(Tn). We thus need to evaluate EXn + EYn . It turns 

out to be easiest to do this by determining the expected value of a random variable Zn 

representing the number of internal vertices with isomorphic child subtrees in a tree of size 

n. It satisfes Zn = n - 1 - (Xn + Yn). However, first we determine E[Xn], which will be useful 

later, in the proof of Theorem 4.
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The stochastic recurrence for Xn can be expressed as follows: X1 = 0 and

Xn = XUn − 1
+ Xn − Un −1 + I Un−1 ≠ n

2

for n ≥ 2, where Un is the variable on {1,2, ...,n} with uniform distribution, and the indicator 

(denoted by I (•)) contributes whenever the left and right subtrees of the root are of unequal 

size. This leads us to the following formula for EXn

EXn = 1
n − 1 ∑

k = 1

n − 1
E Xn/Un − 1 = k = 1

n − 1 ∑
k = 1

n − 1
EXk + EXn − k + E I Un − 1 ≠ n

2 Un − 1 = k

= EI Un − 1 ≠ n
2 + 2

n − 1 ∑
i = 1

n − 1
EXi.

Clearly,

𝔼I Un − 1 ≠ n
2 =

n − 2
n − 1  if n ≥ 2, n mod 2 = 0,

1  if n ≥ 3, n mod 2 = 1.

Using xn = 𝔼Xn and 𝔼I Un − 1 ≠ n
2 , we may apply Lemma 1 to find

𝔼Xn = an

+n ∑
k = 2

n − 1 2
k(k + 1) − ∑

k = 1

(n − 1)/2 2
(2k − 1)2k(2k + 1)

= an + n 1 − 2
n − ∑

k = 1

(n − 1)/2 1
2k − 1 − 2

2k + 1
2k + 1

The first term of the summation in the previous expression is equal to 1
2k + 1  furthermore, for 

any k ≥ 1, we have 1
2k + 1 = 1

2(k + 1) − 1  so that the summation can be written as

2 n + 1
2

−1
+ ∑

k = 2

(n − 1)/2 2
2k − 1 − 2

2k

= 2 n + 1
2

−1
+ 2 ∑

k = 3

(n − 1)/2 ( − 1)k + 1
k
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This implies

𝔼 Xn = an + n(1 − 2
n − (2 n + 1

2 )
−1

− 2 ∑
k = 3

(n − 1)/2 ( − 1)k + 1

k ) = 2n(1 − ln2) + O(1) ≈ n

⋅ 0.6137.

(9)

In order to estimate the entropy we recall function Z (t) representing the number of internal 

vertices of t with isomorphic subtrees. Obviously,

X(t)+Y(t)+Z(t)=n−1

Given s ∈ S we may define Z (t, s) as the number of internal vertices with both subtrees 

isomorphic to s. Clearly, Z Tn = ∑
s ∈ 𝒮

Z Tn, s ,  and 𝔼Zn: = 𝔼Z Tn

Let us also use s * s as a shorthand for a non-plane tree having both subtrees of a root 

isomorphic to s. The stochastic recurrence on Zn(s) becomes

Zn(s) = I Tn s * s + ZUn − 1
(s) + Zn − Un − 1

(s)

which leads us to

𝔼Zn(s) = 𝔼I Tn s ∗ s + 2
n − 1 ∑

k = 1

n − 1
𝔼Zk(s ).

Moreover, since under the condition that Δ Tn
L = k the event that Tn s ∗ s is equivalent to the 

intersection of the events Tn
L sand Tn

R s , we have

𝔼I Tn s ∗ s = 1
n − 1 ∑

k = 1

n − 1
ℙ Tn s ∗ s Un − 1 = k = I(n = 2Δ(s))

ℙ2 Tn/2 s

n − 1

Now, we apply Lemma 1 with xn = 𝔼Zn(s) and

an = I(n = 2Δ(s))
ℙ2 Tn/2 s

n − 1

to ultimately find (after some algebra)
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𝔼Zn = n ∑
k = 1

(n + 1)/2 bk
(2k − 1)k(2k + 1) + O(1 ), (10)

where bk = ∑
sk ∈ 𝒯k

ℙ2 Tk = sk  (see also [21] for analytic derivations of (10)). It is easy to 

compute bk (see Fig. 5) for a few small values of k, namely

b1 = b2 = 1, b3 = 1
2, b4 = 2

9, b5 = 13
144, b6 = 7

200.

In fact, in [21] we show that bn satisfies for n ≥ 2 the following recurrence

bn = 1
(n − 1)2

∑
j = 1

n − 1
b jbn − j

with b1 = 1.

Using (11) we find 𝔼Zn ≈ n 0.3725 ± 10−4 , and therefore

H Tn Sn = n − 1 − 𝔼 Zn ≈ n ⋅ 0.6275...

Since H Tn − H Sn = H Tn Sn , on average the compression of the structure (the non-plane 

tree) requires asymptotically 0.6275n fewer bits than the compression of any plane tree 

isomorphic to it. Furthermore, using Theorem 2, we conclude this section with the following 

second main result.

Theorem 3. The entropy rate h(s) = limn ∞H Sn /n of the non-plane trees is

h(s) = h(t) − h(t s) ≈ 1.109...

where

h(t |s) = 1 − ∑
k = 1

∞ bk
(2k − 1)k(2k + 1)

h(t) = 2 ∑
k = 1

∞ log2(k)
(k + 1)(k + 2)

with bk = ∑
sk ∈ 𝒯k

ℙ2 Tk = 5k
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Remark. The probability bk = ∑
sk ∈ 𝒯k

ℙ2 Tk = 5k  is often called the coincidence probability, 

and in fact is related to the Renyi entropy of order 2 for trees that we introduce next.

Recall that for general α ≥ 0, the Rényi entropy of a random variable X supported on some 

set X is given by

hα(X) = 1
1 − α log ∑

x ∈ 𝒳
ℙ[X = x]α

We will specialize the above to our distribution on trees and α = 2. It is relatively easy to 

check that the following quantity is Θ(1) as n ∞:

h2
t (n) =

−log ∑
t ∈ 𝒯n

ℙ2 Tn = t

n

and we write h2
t = limn ∞h2

t (n), if the limit exists. Then

bn = ∑
t

ℙ2 Tn = t exp −nh2
t

for large n. Actually, using [22] we prove in [21] that

bn 6n ⋅ ρn

where ρ = 0.3183843834378459 ... . Thus h2
t = − log(ρ)

IV. ALGORITHMS

A. Algorithm for plane trees

An optimal (up to two bits) compression algorithm for plane trees with names can be 

implemented in two stages: the first compresses the tree Tn, and the second compresses the 

name function Fn, conditioned on Tn. Both stages can be implemented via arithmetic coding, 

where each refinement of the interval in the scheme corresponds to a step in a depth-first 

traversal of the input tree. The result is an algorithm that runs in O n2log2nloglogn  arithmetic 

operations in the worst case. As the details for this plane case are quite simple, we leave 

them to the reader.

Below, we describe in detail the more complicated case of non-plane trees. Again, our 

schemes rely on arithmetic coding. In this case, we only consider non-plane trees without 

names to simplify our presentation.
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B. Algorithms for non-plane trees

For non-plane trees without vertex names, we present two algorithms: a suboptimal (in terms 

of expected code length) compression algorithm called COMPRESSNPTREE that runs in worst-

case O(n) time, and an optimal algorithm OPTNPTREE that runs in worst-case O(n2) time 

(provided we can multiply two binary numbers in O(1) time).

Given the optimal algorithm above, non-plane trees with vertex names may be optimally 

compressed in a manner similar to plane trees: namely, one first compresses the tree 

structure, and then compresses the labels conditioned on the structure. We omit the details.

B1: Suboptimal but Time-Efficient Algorithm—We use again arithemtic encoding 

to compress the tree. We first set the interval to [0,1) and then traverse the vertices of the 

tree. However, we visit always the smaller subtree (that is, the one with the smaller number 

of leaves) first (ties are broken arbitrarily).

At each step, if we visit an internal node v, we split the interval according to the 

probabilities of the sizes of the smaller subtree - that is, if the subtree rooted at v has k leaves 

and its smaller subtree has l leaves, then if k is even we split the interval into k
2 − 1 parts of 

length 2
k − 1  and one interval of length 1

k − 1  . Otherwise, k is odd, so we split the interval into 

parts, all of equal length. For example, if k = 6, then the subintervals have lengths 2
5 , 2

5  and 1
5

of the original interval. If k = 7, then the subintervals have length equal to 2
6  of the original 

interval. Finally, in both cases we pick l-th subinterval as the new interval. The pseudocode 

of algorithm is presented below:

Function COMPRESSNPTREE(sn)

[a, b) CompressNPTreeRec(sn)

p b − a, x a + b
2

Cn
(2) =  first  −logp + 1 bits of x

function COMPRESSNPTREEREC(s)

l 0, h 1

if Δ(s) ≥ 2 then

if Δ sL ≤ Δ sR  then
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w1 sL, w2 sR

else

w1 sR, w2 sL

lle f t, hle f t CompressNPTreeRec(w1)

range h − l

h l + range * hle f t

l l + range * lle f t

lright, hright CompressNPTreeRec(w2)

range h − l

h l + range * hright

l l + range * lright

return [l, h)

Here, we abuse notation slightly: we assume that the non-plane tree sn is given as an 

arbitrary plane-oriented representative. Then sn
L and sn

R are defined with respect to this 

representative.

Next, we present a proof of correctness of the COMPRESS- NPTREE algorithm for the non-

plane trees, together with the analysis of its performance. The algorithm does not match the 

entropy rate for non-plane trees, since for every vertex with two non isomorphic subtrees of 

equal sizes, it can visit either subtree first - resulting in different output intervals, so different 
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codewords too. Clearly, such intervals are shorter than the length of the optimal interval 

(which would be equal to the sum of the lengths of all intervals that can be obtained using 

COMPRESSNPTREE, given a tree s as an input); therefore, the codeword will be longer. 

However, given EYn, the expected redundancy rate is within 1% of the entropy rate as proved 

in Theorem 4 below.

Lemma 2. For a given non-plane tree s with exactly Y(s) vertices with balanced but not 

isomorphic subtrees, COM- PRESSNPTREE computes an interval whose length is equal to 

2−Y(s)ℙ Sn = s ).

Proof: Let [as, bs) be an interval returned by our algorithm, provided its input was s. Then, in 

fact we want to prove that bs − as = 2−Y(s)ℙ Sn = s .

Fix a plane tree t ~ s corresponding to the order of the visited vertices of s so that for any 

vertex of t, its left subtree is visited before its right subtree. Let its interval (compressed 

using the algorithm for plane trees) be [at, bt).

Now, observe that bs − as = 2X(s) bt − at , where X ( s ) is a number of vertices with 

unbalanced subtrees in s, because at each step, when we encounter such vertex, we scale the 

length of the interval twice as much for t when compared to s. When we encounter a vertex 

with balanced subtree, we scale both equally.

However, we already noted that all plane tree isomorphic to s have the same probabilities 

and there are [s] = 2X(s) + Y(s) many of them. Therefore (knowing that X(s) = X(t) and Y(s) 

= Y(t) for any t ~ s), we have

ℙ Sn = s   = [s] ℙ Tn = t = 2X(s) + Y(s)ℙ Tn = t   = 2X(t) + Y(t) bt − at = 2Y(s) bs − as ,

which completes the proof.

If we use the arithmetic coding scheme on an interval generated from a tree s, we find a 

codeword Cn
(2), which, as a binary number, is guaranteed to be inside this interval. Moreover, 

we know the following.

Theorem 4. The average length of a codeword Cn
(2) from algorithm COMPRESSNPTREE does 

not exceed 1.013H(Sn), where H(Sn) is entropy estimated in Theorem 3.

Proof: From Lemma 2, we know that

𝔼Cn
(2) = ∑

s ∈ 𝒮n

ℙ Sn = s −log2 2−Y(s)ℙ Sn = s + 1
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< ∑
s ∈ 𝒮n

ℙ Sn = s −log2ℙ Sn = s + Y(s) + 2

= H Sn + 2 + ∑
c ∈ S

ℙ Sn = s Y(s)

= H Sn + 2 + ∑
t ∈ 𝒯n

ℙ Tn = s Y(t) = H Sn + 2 + 𝔼Yn .

When combined with the asymptotic behavior of Yn we find, using (9) and (10),

lim
n ∞

𝔼Yn
n = lim

n ∞

n − 1 − 𝔼Xn − 𝔼Zn
n ≤ 0.014

that leads to

lim
n ∞

𝔼Cn
(2)

n ≤ lim
n ∞

H Sn
n +

𝔼Yn
n ≤ 1.124

and

lim
n ∞

𝔼Cn
(2)

H Sn
≤ 1 + lim

n ∞

𝔼Yn
H Sn

≤ 1 + 0.014
1.109 ≤ 1.013

as needed.

B2: Optimal algorithm for non-plane trees—In this section we present an optimal 

compression algorithm for non-plane trees based on arithmetic encoding. In order to 

accomplish it we need to define a total order among non-plane trees and compute efficiently 

the probability distribution ℙ Sn < s , where < is the order to be defined. Recall again that S 

is the set of all non-plane trees and Sn is the set of all non-plane rooted trees on n leaves. 

Furthermore, Δ(s) is the number of leaves of the non-plane tree s.

We start with the definition of our total ordering. In what follows, we will denote by 

subtrees(s) the set of subtrees of the tree s rooted at the children of its root.

Definition 1 (Total ordering on the set of non-plane trees). The relation < on S is defined as 

follows: s1 < s2 if and only if one of the following holds:

• Δ(s1) < Δ(s2),

• or Δ(s1) = Δ(s2) and min{subtrees(s1)} < min{subtrees(s2)},
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• or Δ(s1) = Δ(s2), min{subtrees(s1)} = min{subtrees(s2)} and max{subtrees(s1)} < 

max{subtrees (s2)}.

Here, min and max are defined recursively in terms of the order relation.

Theorem 5. The relation < is a total ordering on S.

Proof: The reflexivity and anti-symmetry are straightforward since either s1 < s2 or s1 = s2 or 

s1 > s2.

To prove the transitivity, we assume that s1 < s2 and s2 < s3. Now, if Δ(s1) < Δ(s2) or Δ(s2) < 

Δ(s3), then Δ(s1) < Δ(s3) (so s1 < s3), as from the definition of < we know that Δ(s1) ≤ Δ(s2) 

≤ Δ(s3).

The only remaining possibility is that Δ(s1) = Δ(s2) = Δ(s3). Then, we proceed similarly: if 

min{subtrees(s1)} < min{subtrees(s2)} or min{subtrees(s2)} < min{subtrees(s3)}, then 

min{subtrees(s1)} < min{subtrees(s3)} (so s1 < s3) since from the definition of < if Δ(s1) = 

Δ(s2) = Δ(s3), then min{subtrees(s1)} ≤ min{subtrees(s2)} ≤ min{subtrees(s3)}.

Therefore, the only missing case is when Δ(s1) = Δ(s2) = Δ(s3) and min{subtrees(s1)} = 

min{subtrees(s2)} = min{subtrees(s3)}. Since we know that s1 < s2 and s2 < s3, this implies 

that max{subtrees(s1)} < max{subtrees(s2)} < max{subtrees(s3)} by induction, and this 

completes the proof. ■

In what follows, we denote by less(s), gtr(s) the minimum/maximum root subtree, 

respectively, of s under the ordering just introduced. Moreover, we let Tn denote the 

(random) plane tree from which Sn is generated, and we recall the notation Tn
L and Tn

R for 

the left and right subtrees of Tn.

The basic plan is to determine an efficient algorithm that, given a non-plane tree s, outputs 

ℙ Sn < s  and ℙ Sn = s  . This will allow us to construct an arithmetic coding scheme as 

follows: we associate to s the half-open interval [a, b), whose left endpoint is given by 

ℙ Sn < s  and whose right endpoint is ℙ Sn ≤ s  . The length of this interval is clearly 

ℙ Sn = s  , and, because of our total ordering on non-plane trees, for two trees s1 < s2, the 

right endpoint of s1 is less than or equal to the left endpoint of s2. That is, the two intervals 

do not overlap. Having this interval in hand, we take the midpoint and truncate its binary 

representation as usual. This will give a uniquely decodable code whose expected length is 

within 2 bits of the entropy H (Sn).

Now we are in a position to derive the probabilities ℙ Sn = s  and ℙ Sn < s .

First, we derive an expression for ℙ Sn = s  In the case where s has two non-equal subtrees, 

we have
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ℙ Sn = s = ℙ less Sn = less(s), gtr Sn = gtr(s) = ℙ Tn
L less(s), Tn

R gtr(s)
+ ℙ Tn

L gtr(s), Tn
R less(s)

(12)

where we recall ~ denotes isomorphism. To calculate the first term on the right-hand side, 

we condition on the number of leaves in the left subtree of Tn taking the correct value:

ℙ(Tn
L less(s), Tn

R gtr(s))

= ℙ Δ Tn
L = Δ(less(s))

⋅ ℙ Tn
L less(s), Tn

R gtr(s) Δ Tn
L = Δ(less(s)))

= 1
(n − 1) ⋅ ℙ SΔ(less(s)) = less(s) ⋅ ℙ SΔ(gtr(s)) = gtr(s) ).

Here, we have applied the conditional independence of the left and right subtrees of Tn given 

the number of leaves in each. It turns out that the second term of (12) is equal to the first, so 

we get in this case

ℙ βn = s = 2
(n − 1) ⋅ ℙ SΔ(less(s)) = less(s) ⋅ ℙ SΔ(gtr(s)) = gtr(s) ).

In the case where the two subtrees of s are identical, only a single term in (12) is present, 

and it evaluates to

ℙ Sn = s = 1
n − 1 ⋅ ℙ SΔ(less(s)) = less(s) ⋅ ℙ SΔ(gtr(s)) = gtr(s)

= 1
n − 1 ⋅ ℙ2 SΔ(less(s)) = less(s) ).

Thus, in each case, we have derived a formula for P Sn = s  that may be recursively 

computed with O(n) arithmetic operations in the worst case.

It remains to derive an expression for P(Sn <  s) We again first consider the case where s has 

two non-identical subtrees. Following the definition of < , this event is equivalent to
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[Δ less Sn < Δ(less(s)) ∪ [Δ less Sn = Δ(less(s))   ∩  [Δ less Sn < Δ(less(s))
∪ [Δ less Sn = Δ(less(s))   ∩ [less Sn = less(s) ∩ gtr Sn < gtr(s)]  

(13)

The terms of this union are disjoint, so the total probability is the sum of the probabilities of 

the individual intersection events.

The first event is equivalent to the union of the disjoint events that the left subtree of Tn has 

<  Δ less s  leaves or more than n - Δ(less(s)) leaves. The probability of this event is thus

ℙ Δ less Sn < Δ(less(s)) = 2 ⋅ Δ(less(s)) − 1
n − 1

The second and third events can be similarly written in terms of disjoint unions of events 

involving the left and right subtrees of Tn. This gives recursive formulas for their 

probabilities. Since the formulas are conceptually simple to derive but tedious to write out 

explicitly, we do not list them, but we mention that at most 4 recursive tree comparison calls 

are necessary to evaluate P(Sn <  s) we need to know the probability that a tree of the 

appropriate size is < less(s), = less(s), < gtr(s), and = gtr(s).

Finally, we compute P(Sn <  s) in the case where the two subtrees of s are equal. This 

happens if

Δ less Sn < n/2

or Δ less Sn = n/2 and either subtree of Sn is less than the tree s’ comprising the two 

subtrees of s.

The probability of the first event is

ℙ Δ less Sn < n/2

= ℙ Δ Tn
L < n/2 + ℙ Δ Tn

L > n/2

= 1 − 1
n − 1

The probability of the second event may be computed by conditioning: the probability that 

Δ(less(Sn))  =  Δ Tn
L   =  n/2  is 1

n − 1  , and the probability, conditioned on this event, that 

either subtree of Sn is less than s’ is

ℙ Tn
L < s′ ∪ Tn

R < s′ Δ Tn
L = n/2   = 1 − ℙ Tn

L ≥ s′ Δ Tn
L = n/2 ⋅ ℙ Tn

R ≥ s′ Δ Tn
L = n/2   = 1

− 1 − ℙ Sn/2 < s′ 2
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where we have used the conditional independence of the two subtrees of Tn given their sizes.

Thus, the quantities P(Sn <  s) and P(Sn =  s) may be recursively computed. Importantly, all 

of the involved probabilities are rational numbers, and arithmetic operations are only 

performed on integers with value at most O 2n2
, so that the interval corresponding to s in 

our arithmetic coding scheme is exactly computable in polynomial time.

With these results in hand, the aforementioned arithmetic coding scheme, in which the 

interval corresponding to a tree s ∈ 𝒮n is  ℙ Sn < s , ℙ Sn ≤ s , which we call OPT- NPTREE, 

yields the following optimal compression result:

Theorem 6. The expected code length of the algorithm OPT- NPTREE is at most H(Sn) + 2 
bits.

Finally, we analyze the running time of the natural recursive algorithm for computing the left 

and right endpoints of the interval for s. We note that, to use the recursive formulas for the 

probabilities, we need to know less(s). To facilitate this, we can first construct a canonical 
representative plane tree t isomorphic to s, in which for each internal node of t, the left 

subtree is less than or equal to the right one. Note that the left and right subtrees of t are then 

canonical representations of less(s) and gtr(s), respectively. To construct such a tree from an 

arbitrary plane representative of s ∈ Sn can be done recursively, as the following algorithm 

shows:

Function CANONIZE (tn)

> Base case

if n < 2 then return tn

> Recursive case

CANONIZE (tR)

CANONIZE (tR)

if tn
L > tn

R then

swap tR,  tR

return tn

When testing whether or not tn
L > tn

R, we can take advantage of the fact that both subtrees 

have already been canonized. This saves some time in determining which subtree of each 

subtree is the lesser one. Nonetheless, the number of comparisons needed to compare two 

trees is O(n) in the worst case.
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To analyze the CANONIZE algorithm, denote by C(n) the number of integer comparisons used 

by the algorithm on a given tree t. It satisfies the recurrence

C(n) = C Δ tL + C Δ tR + O(n ),

with a base case of C(1) = O(1). The solution of this recurrence is O(n2) in the worst case, 

but on average is O(n log n).

Having a canonical representative of s in hand, calculating the left and right endpoints of the 

corresponding interval takes Θ(1) arithmetic operations at each recursive step (and, thanks to 

the canonical representation, deciding which subtree is the lesser one takes Θ(1) time), plus 

O(n) operations to evaluate the probability P(SΔ(less(s = less(s ) Thus, if we denote by T(n) 

the number of arithmetic and tree comparison operations to determine the left and right 

endpoints of the interval for a canonical representation t with n leaves, we have

T(n) ≤ T Δ tL + T Δ tR + O(n ),

with a base case of T(1) = O(1). Solving this, we find that, in the worst case, T n   = O n2  . 

Thus, in total, the number of arithmetic and tree comparison operations, including the 

construction of the canonical representation, is at most Θ n2  in the worst case.

Now we refine the analysis by taking into account the time taken by the arithmetic 

operations. In the calculation of each interval endpoint, we must keep track of an integer 

numerator and denominator. In each step, the numerator and denominator are both at most 

Θ(2n2
), so each may be represented exactly with Θ n2  bits. Each arithmetic operation 

between two such numbers takes at most O(n2 log n log log n) bit operations (since 

multiplying two N-digit numbers takes at most O(N log N log log N) operations). 

Furthermore, taking into account the lengths of the involved integers, the algorithm for 

computing P(SΔ(s′) = s′) takes time O(n2 log2 n log log n) (since Δ s′ < n and an easy 

inductive proof shows that the lengths of the integers required for the calculation never 

exceed O(n!)). Then the recurrence for the running time T(n) becomes

T(n) = T Δ tL + T Δ tR + O n2log2nloglogn ),

again with a base case of T(1) = O(1). Solving this, we get that

T n   = O n3log2nlog logn .

Since this is asymptotically larger than the time taken to construct the canonical 

representation, the worst-case total running time is O(n3 log2 n log log n) . The average-case 

running time can similarly be shown to be O(n2 log2 n log log n).
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V. CONCLUSION

In this paper we first studied binary plane trees with correlated names and its entropy - 

which gives the fundamental lower bound on the compression rate - and finally designed an 

algorithm achieving this bound within an additive constant number of bits in expectation. 

We also derived the more challenging entropy for non-plane trees and designed an optimal 

(in terms of expected code length) O(n2)- time algorithm, as well as a suboptimal O(n)-time 

algorithm (in a model in which arithmetic operations can be done in O(1) time).

The future directions may focus on construction of universal compression schemes for the 

presented models (e.g., in the setting where the transition matrix for the names is not 

known). one may also introduce some horizontal dependency between the letters of the 

names, using for example mixing sources (noting that a Markov horizontal dependency 

would be a trivial extension of the results of the present paper). Very recent work [15] 

concentrates on another nontrivial extension, namely to d-ary recursive trees (described in 

[3]), in which each internal vertex has exactly d children.

Finally, as argued in the introduction, our broader goal is to propose adequate models, 

bounds and algorithms for a wider class of structures, for example random graphs with 

vertex names.
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Fig. 1: 
Annotated protein interaction network: nodes in the network represent proteins in the human 

interactome, and there is an edge between two nodes if and only if the two proteins interact 

in some biological process. Associated with each node is a position in a fixed ontology 
(encoded by a DAG whose nodes represent classes of proteins defined by, say, structural or 

functional characteristics) known as the Gene Ontology [1], [2]. Nodes that are connected in 

the interaction network are often close in the ontology.

Magner et al. Page 28

IEEE Trans Inf Theory. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Linnaean taxonomy of hominoid
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Fig. 3: 
All plane-ordered representatives of one particular non-plane tree.
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Fig. 4: 
A rooted plane tree and its standardization. The left tree can be represented by the list of 

triples {(5,1,7), (1, 2,3)}. After standardization, this becomes {(1,2,5), (2,3,4)}. Note that 

this is distinct from the tree {(1, 2, 3), (3,4, 5)} or, equivalently, {(5,1, 7), (7, 2, 3)}.
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Fig. 5: 
An example of s1 * s1, s2 *s2, s3 * s3, where sj is, say, the left subtree in the jth pictured tree.
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