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Abstract
The statistical analysis of cancer bioassay data has historically depended on the pathological
determination of the experimental animal's cause of death. The poly-k statistical test has provided a
method of statistical analysis of animal bioassay data without the need for cause of death information.
The test has been shown to have good statistical properties in the typical 2-year cancer bioassay.
However, while the poly-k test has been applied to chronic lifetime animal studies, it has not been
formally evaluated with respect to the operating characteristics of this statistical test when applied
to such studies. Thus, our objective is to assess the performance of the poly-k test for lifetime studies
and to make comparisons with other tests. We observed in one recent lifetime study of the gasoline
additive MTBE that the application of the poly-k test was not statistically robust. Simulation studies
were subsequently conducted for a limited number of scenarios of lifetime cancer bioassays. These
simulations showed that the poly-k test is not statistically robust for testing effect of increasing dose
in some lifetime cancer studies.
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INTRODUCTION
The statistical analysis of animal cancer studies has enjoyed a long and evolving history. One
reason why the topic has been important is the fact that the toxicological testing issue is basic
to the use of data for extrapolating from animal risk to humans. For instance, our data example
concerns the analysis of the risk of the gasoline additive chemical MTBE on Sprague-Dawley
rats, which has been a point of policy debate due to its implication of risk of cancer to humans.
Methods using basic competing risk methodologies were generally used until it was established
that for incidental tumors, tumors that are occult and believed to not be a cause of death, and
differential survivals among experimental groups could lead to misleading statistical
interpretations of the experimental data (Hoel and Walburg 1972). For tumors that were
considered to be a cause of death in tumor bearing animals, a traditional survival analysis
method such as the Cox proportional hazards analysis, was generally accepted along with a
Kaplan-Meier estimator of the probability of mortality as a function of time with regard to the
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tumor of interest. For incidental tumors Hoel and Walburg provided an alternative to Kaplan-
Meier estimation as well as an interval method for testing treatment-control differences (Hoel
and Walburg 1972).

In testing for treatment effects of incidental tumors (tumors that can be observed only if the
animal died due to causes other than the tumor of interest), an improved method was developed
by Dinse and Lagakos (Dinse and Lagakos 1983), who applied a logistic regression analysis
that included time as a covariate. Peto (Peto et al. 1980) further developed methods in which
the pathologist determined for each specific animal how likely the tumor of interest was the
cause of death in tumor-bearing animals and developed a method for the overall testing of
treatment effects for a given tumor type where there was a mixture of lethal and incidental
effects on the mortality of the animals. All of these methods required a determination by the
pathologist as to whether each animal's cancer was a likely contributor to the animal's death
or was primarily independent of the animal's death.

Bailer and Portier (Bailer and Portier 1988; Portier and Bailer 1989) next developed a method
of weighting an animal's time at risk, thereby avoiding the need for the pathologist
determination of lethality. Their test, the “poly-k” (Portier et al. 1986), was based on
observations from an extensive analysis of a large database of tumors from control rodents in
a typical 2-year bioassay. They found that general survival time for most tumor types could be
adequately modeled by a two parameter Weibull distribution. An estimate of the Weibull shape
parameter, k as in poly-k, was then used as the power “k” in the poly-k weighting scheme
taking values 1 to 5 with 3 being typical. The same paper uses a lifetime study of Fischer 344
control rats in an asbestos exposure study to support the applicability of the Weibull distribution
to lifetime studies.

The National Toxicology Program (NTP) has adopted the poly-k method of analysis for its
cancer bioassay program and it has been discussed in some detail by a number of statisticians
concerned with its adoption as U.S. Food and Drug Administration (FDA) policy (STP Peto
Group 2002). One concern with the test has been the assumption of the particular power for
the weighting of the time at risk for a given animal with the default being k = 3. It has been
reported that the test is quite robust over various values of k, so the choice of k is not of great
concern (Bailer and Portier 1988; Portier and Bailer 1989; Dinse 1994). In the NTP
applications, the animals are sacrificed at 2 years. However, some researchers have also applied
the test to lifetime studies, as was recently done, e.g., in an analysis of the cancer effects of
aspartame (Belpoggi et al. 1995). But tests proposed for a 2-year study may not be appropriate
for a lifetime study and the naïve application of tests proposed for 2-year studies to lifetime
studies is not appropriate. So, our goal is to make an extensive assessment of the performance
of the poly-k test in lifetime studies and to make comparisons with other tests based on whether
or not the tumor is the cause of death.

AN EXAMPLE
A study of the gasoline additive MTBE showed, among various outcomes, a significant dose
effect for Leydig cell tumors (LCTs), which are incidental in male Sprague-Dawley rats
(Belpoggi et al. 1995; Belpoggi et al. 1997). For more detailed description of the experiment
we refer the reader to the two papers by Belpoggi et al. (Belpoggi et al. 1995; Belpoggi et
al. 1997). Upon a recent reanalysis by pathologists, some of the tumor pathologies were
changed, and the new findings were published (Belpoggi et al. 1998). In the original paper,
where three dose groups with n = 60 animals per group were studied (Belpoggi et al. 1995),
the Hoel-Walburg method had been used and the findings were that the Leydig tumors were
significantly increased in the high experimental groups over the control group. This analysis
is also in agreement with the Dinse-Lagakos score test and the poly-3 test. A statistical analysis
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using the revised pathology of the Leydig tumors using the poly-3 test, based on estimated
time of death, was recently conducted and suggested that there was no dose effect on the Leydig
cell tumors (Goodman et al. 2007). The authors of the re-analysis did not have the original data
at the time and estimated the times of death for the individual animals. In contrast to the typical
2-year NTP study, the MTBE study was more than 3 years in duration and the last observed
animal death was at 174 weeks. The Kaplan-Meier survival plots for these data are depicted
in Figure 1.

We have analyzed this revised data first using the Dinse-Lagakos test (logistic regression score
test) for incidental tumors, obtaining a two-sided p-value of 0.1. For the poly-k test, shown in
Table 1 are the p-values as a function of the choice of k used in the risk adjustment for the
animals. We also report p-values from some possible re-weighting schemes for the poly-k test.
The reported p-values are from a two-sided test whereas Goodman et al. (2007) used a one-
sided test. The disturbing issue here is that for the poly-k test we observed p-values ranging
from p = 0.03 for k = 1.5 to an insignificant p = 0.42 for k = 6. The default value of k = 3 gives
approximately the same p-value of 0.1 as did the logistic score test.

It should also be mentioned that if in this example the poly-k weights were applied up to 2
years (730 days) of age with a denominator of tmax = 730 days, and then a full weight of 1 was
used for animals dying after 2 years of age, which could be considered as one type of re-
weighted poly-k approach, the range of p-values was more consistently between 0.01 and 0.02
for the various values of k (see polykw1 entries in Table 1). Here, it is important to point out
that the estimated value of k for the time-to-death in the MTBE study obtained by fitting a
Weibull model is about 7 (it is about 10 for the control dose group). Alternatively, one could
use the usual poly-k weights up to 2 years (tmax is observed maximum t) and then use a weight
of 1 after 2 years (see polykw3 entries in Table 1). This leads to p-values ranging from 0.03
for k = 1.5 to 0.08 for k = 6. Another approach is to use tmax = the 95 percentile of the time-
to-death distribution and apply a re-weighted poly-k. This results in p-values ranging from 0.02
for k = 1.5 to 0.19 for k = 6. Additional analysis results are reported in Table 1 for situations
where outlier time points were removed. Further discussion is provided in the discussion
section on the effect of different weighting schemes for adjusting the effect of differential
survival.

The issue, however, from this practical example is: Is the poly-k test and especially poly-3 test
truly robust and is it appropriate for lifetime rodent studies? How does its performance in terms
of power compare with other tests? The poly-k test traditionally was applied to terminal
sacrifice studies. The simulations supporting its use were from such terminal sacrifice studies
and thus the robustness for lifetime studies needs to be established. For example, the
distribution of survival times may become a critically important assumption if the poly-k test
is applied to lifetime studies. This led us to carry out some simulation studies of the competing
tests for either lethal or incidental tumors.

METHODS
Suppose the time-to-tumor onset and time-to-death without the tumor of interest are denoted
by T1 and T2, respectively. Let the time to the first of the two events be denoted by T and let
Y(t) = I(T1 < T2 | T = t) be an indicator of whether the tumor of interest is present at time t or
not. With out loss of generality, let us assume that T is continuous. Define the hazard functions
corresponding to tumor incidence and tumor-free death as h1(t) and h2(t), respectively, and the
expected proportion of tumors that develop during the study byπ. For a lifetime animal study,
this proportion can be expressed as,
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where tmax is the death time of the last surviving animal in a lifetime study.

Now consider an experiment with n animals, where ni of them are exposed to dose xi (i = 1,
…,I) over an extended period of time and n0 animals are concurrently followed as controls
(x0 = 0). We assume that x0 < x1 <…< xI. Let dij be the number of deaths with tumor in dose
group i at time tj in [0,tmax]. Then, the number of events at the jth time of death with tumor is

 and giving the total number of animals with the tumor to be d. Our interest is to test
for a trend in tumor incidence rates (or presence of treatment effect) and there have been several
approaches proposed to date. We will consider methods that do and do not adjust for differential
mortality. Clearly, since the π can be confounded by differential mortality in each dose group,
methods that ignore differential mortality could lead to biased conclusions. We briefly describe
some of the methods that have been used in testing trend in tumor incidence.

We start from the most widely used trend test, the Cochran-Armitage test (Cochran 1954;

Armitage 1955). Let di be the number of animals with tumor in group i and  Under the
null hypothesis (H0) of no treatment effect on tumor onset, the expected number of animals
with tumor in the ith group is ei = dpi, where pi = ni/n. The Cochran-Armitage linear trend test
for proportions (Baker et al. 2007; Cochran 1954, Armitage 1955) is derived by pooling the
entire duration of a study for each group and applying the test statistic given below for testing
trend in proportions (which also corresponds to the score test statistic for testing β = 0 under
a particular logistic model or the extended Mantel-Haenszel test (see Piegorsch and Bailer
1997, pp:228-234)

where , and x̄ is the mean dose. Under the null hypothesis H0, the test
statistic Z has a standard normal asymptotic distribution. Clearly, this test does not adjust for
any survival differences between the dose groups and is shown to be sensitive to increases in
death due to high dose toxicity. Consequently the test may not control the type-I error rate
(Bailer and Portier 1988).

The poly-k test (Bailer and Portier 1988; Portier and Bailer 1989) is derived as a direct
modification of the Cochran-Armitage test by applying a weighting scheme for the contribution
towards the denominator of the Cochran-Armitage test to be a power of the fraction of the time
the animal survives. While all animals that survive to the end of the study irrespective of their
tumor status or those who died early and have the tumor contribute fully with wij = 1 (weight
for animal j in the ith dose group), those that die early without the tumor are assigned weights
that are functions of their age defined by wij = (tij/tmax)k (where tmax is the death time of last
surviving animal in a lifetime study, tij is the observed death time for animal j in dose group i
and k is non-negative). Then, the number at risk for the ith dose group is defined as the sum
of these weights. It has been shown that for most tumors k = 3 leads to a robust test for trend
(Portier and Bailer 1989). For details of the tests and the suggested variance correction see
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Bieler and Williams (1993) and also Piegorsch and Bailer (1997). This test of trend for the
study design employed by the NTP, i.e., 2-year terminal sacrifice bioassay, has been endorsed
as a preferred test with k = 3 as a default choice of k when it is not possible to decide whether
the tumor under study is known to be lethal or non-lethal.

The logistic regression score test is obtained from the logistic regression model of tumor
prevalence as a function of dose and survival time (linear treatment of dose and time) and
inclusion of time as predictor adjusts for survival differences (Dinse and Lagakos 1983). Let
the logistic model be defined as logit(p) = γ0 + γ1 x + γ2 t, where p is the probability that the
tumor is present at time t. The test statistic is the logistic score function for γ1 divided by the
(γ1, γ1)-element of the inverse of the observed information matrix, evaluated at γ1 = 0 and the
maximum likelihood estimates of γ0 and γ2 under the restriction that γ1 = 0. Under the null
hypothesis H0, the score test statistic is asymptotically normally distributed. For details of the
score test see Dinse and Lagakos (1983).

Finally, the log-rank test (Kalbfliesch and Prentice 2002) is obtained by summing terms as in
the Cochran-Armitage test on each stratum defined by each tumor death time and treating
animals that die without the tumor as censored. Suppose there are j = 1,…,J time intervals. Let
nij denote the number of animals at risk in the jth stratum (stratum total equals n.j) and ith group
and let dij denote the number of animals “dying” with tumor in the jth stratum (stratum total
equals d.j) and ith group. Under the null hypothesis of no treatment effect on tumor mortality,
the expected number of animals with tumor in the ith group and jth time is eij = d.jpij, where
pij = nij/n.j. Similar to the poly-k test, the log-rank test is computed by applying the Mantel-
Haenzel test statistic, which can be given by,

where , and x̄ is the mean dose. Under null hypothesis H0, the
test statistic Z has an asymptotic normal distribution. This method also accommodates differing
follow up periods.

SIMULATION STUDY
The main goal of this study is to evaluate the robustness of the poly-k method, in particular
when k = 3, using simulated data for a lifetime study without sacrifice, and to compare its
performance with the log-rank test, which is valid for lethal tumors, and the logistic score test,
which is valid for incidental tumors. We will also make comparisons with the Cochran-
Armitage test, which does not account for differential survival but is valid when there is not
differential survival between the groups as our reference. The simulation study will be helpful
to understand the performance of the poly-k test (especially for k = 3) when lethality is assumed
and when it is not. We considered two simulation scenarios. In both scenarios, the data were
simulated to be similar on all characteristics except on the spacing of the dose levels and the
effect of dose on mortality and tumor onset. Incidental tumors were simulated such that they
can be observed only if the animal died due to causes other than the tumor of interest, whereas
lethal tumors were simulated such that mortality was directly caused by the tumor under study.
The observed outcome in each animal was determined using a Weibull model with hazard
function given by
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where λk is the scale parameter, ηk is the shape parameter and βk is the log-hazard ratio for
dose x and k = 1,2.

The shape parameters ηk (k = 1,2) decide the steepness of the tumor incidence and mortality,
respectively, independent of the dose. The scale parameters λ1 and λ2 multiplied by the log-
linear term are related to the dose and would determine the average time-to-tumor onset and
time-to-death from competing risks in the control group (X = 0), respectively. The data on time
to event (t) and event status (Y) for each animal were determined using the following procedure.
For incidental tumors, the time-to-non-lethal tumor onset (t1) and time-to-death (t2) were
computed, then the indicator of tumor presence at the time of death (Y) was assigned the value
of 1 if t1 ≤ t2 and time-at-death was t = t2. For lethal tumors, the time-to-death from the tumor
of interest (t1) and time-to-death from other cause (t2) were computed and the tumor was
considered cause of death (Y = 1) if t1 ≤ t2 and the time-to-death t = min{t1,t2}. The two times
t1 and t2 were generated independently.

In the first scenario we simulated data from four dose groups X = 0, X = 0.5, X = 1, and X =
2. The simulation study mimics Peddada et al. (Peddada et al. 2005) with a slight modification
of the simulation parameters. The mortality shape parameter was fixed at η2 = 5 and the
corresponding scale parameter λ2 = 4.48 × 10−8 so that control survival at 24 months is exp
(−λ2tη2) = exp(−4.48 × 10−8×245) = 0.7 or exp(−4.48× 10−8×(24/730)5 ×245) = 0.7 when t =
730 days. Three different values of dose effect on competing risk rates [exp(β2) = 1.0, 1.5 and
2.0] ranging from no dose effect on mortality to high dose effect were considered. For tumor
onset, we studied three shape parameters 1.5, 3 and 6 and six scale parameters corresponding
to rare tumor rate (π = 0.05) and common tumor rate (π = 0.30) in the control group (X = 0)
for each shape parameter. In Table 3 are given the parameters used in each simulation study,
values of dose effect on tumor onset [exp(β1) = 1.0, 1.5 and 2.0] and the probabilities of Y =
1 (having tumor in the incidental case or death from tumor in the mortality case) for some of
the studied conditions. For instance, when η1 = 1.5 and λ1 = 0.0025 (a common tumor scenario),
shown in Table 3 are the tumor rates for β1 = β2 = 0 to be 0.3 while for β1 = 0.42 and β2 = 0
the rates increase from 0.30 to 0.52. Tumor rates for rare tumors were also computed for
different scenarios, e.g., when η1 = 1.5, λ1 = 0.00038 and β1 = β2 = 0, the rate was 0.05 while
for β1 = 0.42 and β2 = 0 the rates increased from 0.05 to 0.11 (table not reported).

In the second scenario we simulated data with three dose-groups in which there were 100
animals in each group. The doses were evenly spaced with X = 0 (control), X = 1 (low dose)
and X = 2 (high dose). In simulating the data, a Weibull tumor onset distribution with two
shape parameters, 4.2 for the censored and 6.4 for those that died with tumor and two scale
parameters 0.001010 and 0.001205 taken from fitting a Weibull model to liver carcinoma data
from a B6C3F1 mouse study were used. This was done by considering seven different dose
effects on tumor onset or tumor lethality [exp(β1) = 0.6, 1.0, 1.4, 1.6, 1.8, 2.0, and 2.2] and
three dose effects on competing risk rates [exp(β2) = 0.6, 1.0, and 1.4] that lead to seven
different overall tumor onset probabilities and three different competing risk rates.

The type-I error rate and power evaluations for a two-sided test were based on a nominal
significance level of 5%. Two thousand simulated datasets for each of the different parameter
configurations were generated and these would have a margin of error about 1%. Analysis was
then made using the Cochran-Armitage, logistic regression, poly-k (k = 1.5, 2.0, 3.0, 4.0, 5.0,
and 6.0) and log-rank tests of trend. We also considered some potential re-weighting schemes
for the poly-k test (mentioned in the introduction and discussion sections) that use different
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weighting schemes for tumor free deaths and hence the contribution of these animals to the
denominator of the test statistic.

RESULTS
Several scenarios were examined both for the situation where the tumor is lethal and is declared
a cause of death and the case where the tumor is incidental and was not considered to be related
to the cause of death. To begin, consider the simplest situation where cancer is increased with
increasing dose while the other causes of death are not affected by the exposure. The statistical
power for increasing tumor hazard rates for the case where the tumor is instantly lethal and is
a cause of death is shown in Panel A of Figure 2. We see that the tests all behave properly;
however, the log-rank test, which necessarily assumes that the tumor is the cause of death has
a power much greater than that of the poly-k, consistent with the fact that log-rank is the most
powerful test for fatal tumors while the logistic regression score test is most powerful for
incidental tumors. The Cochran-Armitage test performed similarly to the poly-1.5 test. The
poly-k tests were more conservative with lower type-I error rates (rejects less frequently than
nominally specified under the null hypothesis or observed alpha < nominal alpha) that
decreased with increasing value of k (see Table 4). In Panel B of Figure 2 is presented a similar
situation for the case where the tumors are incidental except now the logistic regression analysis
replaces the log-rank test for the incidental case. Again, the test, which assumes knowledge of
the cause of death has power considerably greater than that of the poly-k test as well as the
Cochran-Armitage test, which was similar to the poly-1.5 test but superior to the poly-3 and
poly-6 tests. Similar results are reported in Table 5 for common tumors and Table 6 for rare
tumors.

We next considered the opposite scenario where the chemical affects the cause of death for the
non-tumor mortality but has no effect on the tumors themselves. The case where tumors are
considered to be a cause of death is shown in Panel C of Figure 2. What we observe is that the
log-rank test as well as the poly-6 test behave properly, that is, both of them had the expected
power of rejecting the null hypothesis regardless of dose effect on the non-cancer causes of
death. The other two poly-k tests and the Cochran-Armitage test all proceed to have increasing
probabilities of rejecting the null hypothesis when in fact it should be accepted since the
chemical is not affecting the tumor. The corresponding situation for the case where tumors are
incidental is presented in Panel D of Figure 2. The situation is similar as with Panel C of Figure
2. In both situations the poly-1.5 and the poly-3 test as well as the Cochran Armitage test give
misleading conclusions concerning the statistical significance of tumorigenicity when in fact
there is no dose effect on the incidence of tumors.

The type-I error rates corresponding to the different tests for rare as well as common tumor
scenarios are given in Table 4. As expected the logrank test for lethal tumors and the logit score
test for incidental tumors maintained the nominal type-I error rate irrespective of whether
treatment dose affects lethality or not. On the other hand the poly-3 test was liberal, rejecting
more than the expected 95% when k was 3 or less, but was conservative when k was larger
than 3. For instance, the type-I error rate increased from 0.0.019 to 0.265 when k changed from
k = 3 to k = 6. This effect was less pronounced when the tumor was rare.

The results of the scenario where the chemical affects the tumors but it also affects the non-
cancer mortality are shown in Panels A and B of Figure 3. The two figures show the probability
of rejecting the null hypothesis of the statistical test as the tumor hazard ratio is increased. What
is observed is that both the log-rank test and the logistic test behave properly with good power
in their corresponding situations of lethal tumor and incidental tumor scenarios, respectively,
when compared to the other tests. The poly-k test for k = 1.5 and 3 as well as the Cochran-
Armitage test all incorrectly reject the null hypothesis when the tumor is not affected by the
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exposure, i.e., hazard-ratio equal to 1.0. What these tests are saying is not that there is a positive
effect of the chemical on the tumor but that in fact there is a protective effect that is of course
incorrect in this situation. Also the power of both the log-rank test and of the logistic test is
considerably greater than that of the poly-k and the Cochran-Armitage tests. When we
considered similar situations except now the chemical has a protective effect for non-cancer
mortality (data not shown) in other words at higher doses the animals tend to live longer; which
is a very uncommon situation but it is what apparently occurred in the previously mentioned
analysis of MTBE data, we observed the same problem with the tests. Other than the log-rank
test and the logistic test, all other tests were not behaving properly for the situation where the
chemical was not affecting the tumor.

Finally we consider the remaining scenario of the exposure affecting both the tumors and the
non-tumor mortality. The effect on the tumor hazard ratio is set at 2.2 and the hazard ratio for
non-tumor mortality is varied from no effect at 1.0 up to 2.2. What is observed in Panels C and
D of Figures 3 as well as Tables 5 and 6 is that the poly-k and Cochran Armitage test rapidly
lose power compared to the log-rank and logistic tests with increasing effects on the non-cancer
mortality. As shown in Table 5, when the true shape parameter changes from k = 3 to k = 6
the power of the poly-3 test decreases from 0.98 to 0.88 in the case of lethal tumors and from
0.96 to 0.78 in incidental tumors. This problem is minimal when the tumor is rare.

DISCUSSION
The application of the poly-k test in lifetime animal cancer studies was examined and was
shown to have lower power compared to the log-rank and logistic tests since the latter two tests
incorporate lethality information. In the 2-year sacrifice studies as used by the NTP the choice
of test and power differences should not matter nearly as much since typically most animals
will be sacrificed. The problem in lifetime studies besides the loss of power is that if the
chemical simply affects general survival the poly-k test may incorrectly conclude that the
chemical also affects the occurrence of tumors and is thus an animal carcinogen. This is clearly
an unacceptable situation. We conclude that lethality information and the use of the appropriate
statistical test are necessary in lifetime studies especially when differential survival is present.

In addition to the scenarios that are reported in the graphs we also studied tumor rate scenario
between 5% and 30% and the results were consistent and similar to the rare and common tumor
scenarios and hence are not reported. We also studied several other methods such as the Hoel-
Walburg test, Gart's trend test (Gart et al. 1979), and the Jonckheer-Terpstra test (Hollander
and Wolfe 1999) for incidental tumors and they performed no better than the reported methods.
Similarly, we also considered other variations of poly-k (k = 2, 4, and 5) and the results were
similar to those reported.

In a limited simulation study we studied the effect of several different weighting schemes for
adjusting differential survival and found the results to be interesting and warrant further
investigation. Accordingly, we are studying these methods in further detail both analytically
and in a simulation study. Our limited simulations showed that these weighting schemes could
lead to more robust survival adjusted tests than the poly-k test that uses the usual weights. The
poly-k weight for an animal dying at time ti is (ti/tmax)k, where tmax is the largest death time
observed in the study. In a typical 2-year study, many animals die at tmax as a result of the
terminal sacrifice. In a lifetime study, however, typically a single animal dies at tmax. Thus, in
contrast to a 2-year study, a single animal in a lifetime study might exert undue influence. As
an extreme example, suppose that most animals die before 2.5 years, but one animal survives
for 4 years. The single animal dying at 4 years will cause all other (tumor-free) animals to have
small weights, especially for large values of k, thus reducing the effective sample size and
exaggerating the tumor response relative to an otherwise identical data set without this one
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animal. One possibility is that the poly-k test performs poorly in lifetime studies for which the
death time determining tmax is an outlier, but performs reasonably well otherwise. One strategy
that is used in some life studies is to sacrifice the animals in a dose group after 95% of them
have died. We could apply the same idea and set tmax at the 95% percentile in which avoiding
the one or two old age outliers. We could also use arguments similar to ones used in regression
analysis to remove outlier time points and reanalyze the data using the poly-k method. This
example illustrates the need and importance of investigating the pattern of deaths in the analysis
of animal bioassay data.

Our simulation results in general show that the poly-k test is not robust for testing trend in
some lifetime animal studies, especially the poly-3 test was not at all robust (did not result in
similar p-values for data generated from different shape parameter values). So, with lifetime
studies that result in differential survival the problem remains what analysis to use when the
pathologist is not able to decide whether the tumor is incidental or a cause of death. We have
shown that the unmodified poly-k test is not a solution to the issue and can in some
circumstances produce a misleading result. Peto et al. (STP Peto Working Group 2002) have
provided methods in which the degree of lethality is included in the analysis. We do not have
a solution and do not fully know at this time how serious this issue is. Currently, we are
conducting simulations for various scenarios using modified poly-k tests based on interesting
observations we have from application to the data example. The results are reported in Tables
1 and 2. Both tables show that while the poly-k test exhibits inconsistency or non-robustness
to changes in the shape parameter k, some modification of the weighting scheme leads to a
more consistent and robust results.

The proposed modifications of the poly-k (re-weighted poly-k) would address issues of outliers
and they are less sensitive to lethality determination by pathologists. But they need further
investigation as what we have so far is their application to the MTBE data example. We are
studying these further using simulation studies. The way the re-weighting works is it avoids
the problem from the application of the poly-k weights (Bailer and Portier 1988; Portier and
Bailer 1989), which would heavily reduce effective sample size since animals that die tumor
free early on in the study would get very small weights and hence would contribute less to the
denominator of the test statistic.

The proposed re-weighting schemes are:

(i) using a weight with tmax = the 95 percentile of the time-to-death distribution as the
denominator for the poly-k weights and weight animals that die tumor free before the end
of the study accordingly up to tmax but give full weight to those who survived beyond
tmax and to those that die with the tumor

(ii) using tmax = 2 years (730 days) as the denominator for the poly-k weights and weighting
animals that die tumor free before the end of the study accordingly up to 2 years but giving
full weight to those who survived beyond two years and those that die with the tumor

(iii) using tmax = maximum observed time-to-death as the denominator for the poly-k
weights and weight animals that die tumor free accordingly up to 2 years but give full
weight to those who survived beyond two years and those that die with the tumor

(iv) calculating tmax after removing animals with observed outlier time-to-death and using
either of the above three suggested weighting schemes on the remaining animals.

(v) Do the above three re-weighting schemes after totally removing animals with observed
outlier time-to-death. The removing of outliers could be made on similar arguments used
in regression analysis.
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Another approach for sacrifice data is to use an estimated k (Moon et al. 2003), which is in
line with the Bailer and Portier (1988) observation that if the shape of the tumor incidence
functions is expected to follow time to some power k, poly-k would have superior operating
characteristics. We plan to explore this technique, the order restricted test in (Peddada et al.
2005) and our proposed weighting schemes in our future work. We also plan to investigate the
robustness of these methods to the assumption of a Weibull distribution made on time-to-death
data.
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Figure 1.
Kaplan-Meier Survival Curves for the three dose groups in the Leydig tumors MTBE data
example (solid line = control dose, broken line = 250mg/kg/day, dotted line = 1000mg/kg/day).
There were 3/60, 5/60 and 11/60 LCT events for control, 250mg/kg and 1000mg/kg doses,
respectively, and are indicated by + signs in the plots.
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Figure 2.
Test size and power of trend tests for equally spaced three dose groups and n = 100 per group
(shape and scale parameters for other causes of death were fixed at 4.2 and 0.01205,
respectively). Panel 2A and 2B are when treatment does not affect death due to causes other
than the tumor of interest, i.e., non-cancer hazard ratio HR = 1 and Panel 2C and 2D are when
treatment does not affect the tumor of interest, i.e., tumor onset hazard rate = 1 but affects non-
cancer mortality.
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Figure 3.
Test size and power of trend tests for equally spaced three dose groups and n = 100 per group
(shape and scale for other causes of death were fixed at 4.2 and 0.01205, respectively). Panel
3A and 3B are when the treatment effect on death due to other causes is fixed at hazard ratio
HR = 1.4 and Panel 3C and 3D are when the treatment effect on tumor incidence is fixed at
HR = 2.2 and when the treatment affects non-cancer mortality.
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Table 3

Probability of having an event (death for incidental tumor and death due to tumor for lethal tumor) for selected
parameters of overall tumor rate and overall mortality rate. Four dose groups with doubling spacing and n = 50
per group (η2 = 5.0 and λ2 = 0.448×10−7).

(η1 = 1.5 and λ1 = 0.0025, exp(β2) = 1.0)

Probability exp(β1) = 1.0 exp(β1) = 1.5 exp(β1) = 2.0

Pr(Y = 1|X = 0) 0.30 0.30 0.30

Pr(Y = 1|X = 0.5) 0.30 0.35 0.39

Pr(Y = 1|X = 1.0) 0.30 0.41 0.50

Pr(Y = 1|X = 2.0) 0.30 0.52 0.74

(η1 = 1.5 and λ1 = 0.0025, exp(β2) = 2.0)

Probability exp(β1) = 1.0 exp(β1) = 1.5 exp(β1) = 2.0

Pr(Y = 1|X = 0) 0.30 0.30 0.30

Pr(Y = 1|X = 0.5) 0.27 0.32 0.36

Pr(Y = 1|X = 1.0) 0.25 0.35 0.43

Pr(Y = 1|X = 2.0) 0.21 0.41 0.59

(η1 = 3.0 and λ1 = 0.000017, exp(β2) = 1.0)

Probability exp(β1) = 1.0 exp(β1) = 1.5 exp(β1) = 2.0

Pr(Y = 1|X = 0) 0.304 0.304 0.304

Pr(Y = 1|X = 0.5) 0.304 0.354 0.393

Pr(Y = 1|X = 1.0) 0.305 0.409 0.492

Pr(Y = 1|X = 2.0) 0.305 0.528 0.700

(η1 = 3.0 and λ1 = 0.000017, exp(β2) = 2.0)

Probability exp(β1) = 1.0 exp(β1) = 1.5 exp(β1) = 2.0

Pr(Y = 1|X = 0) 0.304 0.304 0.304

Pr(Y = 1|X = 0.5) 0.258 0.303 0.338

Pr(Y = 1|X = 1.0) 0.219 0.302 0.374

Pr(Y = 1|X = 2.0) 0.152 0.300 0.451
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