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Abstract

This paper develops a sampling-based approach to implicit dual control. Implicit dual control
methods synthesize stochastic control policies by systematically approximating the stochastic
dynamic programming equations of Bellman, in contrast to explicit dual control methods that
artificially induce probing into the control law by modifying the cost function to include a term
that rewards learning. The proposed implicit dual control approach is novel in that it combines a
particle filter with a policy-iteration method for forward dynamic programming. The integration of
the two methods provides a complete sampling-based approach to the problem. Implementation of
the approach is simplified by making use of a specific architecture denoted as an H-block.
Practical suggestions are given for reducing computational loads within the H-block for real-time
applications. As an example, the method is applied to the control of a stochastic pendulum model
having unknown mass, length, initial position and velocity, and unknown sign of its dc gain.
Simulation results indicate that active controllers based on the described method can
systematically improve closed-loop performance with respect to other more common stochastic
control approaches.
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1 INTRODUCTION

Recent literature has seen the emergence of sampling methods capable of approximating
solutions to a wide range of problems previously considered intractable [27][36]. Sampling
methods will continue to become more attractive with the availability of increasingly more
powerful computing hardware. In light of these new developments, it is potentially
beneficial to revisit old and challenging problems from the control literature.

In this paper, a sampling method is introduced for approximating the closed-loop solution to
the nonlinear stochastic control problem. The proposed method can be considered as a form
of implicit dual control since it acts systematically to approximate the Stochastic Dynamic
Programming (SDP) equations of Bellman. This is in contrast to explicit dual control
methods that induce probing into the control law by artificially changing the cost function.

3Correspondence to: David S. Bayard, MS 198-326, Jet Propulsion Laboratory, 4800 Oak Grove Drive, CA 91109, USA;
david.bayard@jpl.nasa.gov; Phone 818-354-8208; FAX 818-957-2763.
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In general, dual controllers have the desired property of active learning, that is, they
optimally proportion their effort between controlling the plant, and actively probing the
plant to extract useful information.

The proposed sampling method for dual control is based on combining particle filtering [55]
with the Iteration in Policy Space (IPS) algorithm [15][12]. Particle filtering is emerging as
the sampling method of choice for solving a broad class of nonlinear estimation problems.
The IPS algorithm is a sampling method for forward dynamic programming that
approximates the SDP solution using policy iteration. Combining these two approaches
gives an overall sampling method for dual control that, in principle, can be applied to a wide
range of nonlinear stochastic control problems.

In [56] particle filtering is discussed in the context of generating control policies of the
feedback type (e.g., heuristic certainty equivalent, and open-loop feedback policies). The
current paper extends these results by generating dual controllers that are of the closed-loop
type. This extension is important because closed-loop control policies generally exhibit
improved performance due to their property of active learning.

Optimal stochastic control is discussed in Section 2, and particle filtering is discussed in
Section 3. Implicit dual control based on the IPS algorithm is discussed in Section 4, and is
used to develop sampling-based dual control methods in Section 5. A stochastic pendulum is
introduced in Section 6 as a model useful for studying both estimation and control. The
pendulum model is used to study particle filtering in Section 7, and dual control in Section
8. Results are encouraging, indicating that active controllers based on sampling methods are
capable of systematically improving performance relative to non-active control policies.
Conclusions are postponed until Section 9. All results from this paper were first reported in
a departmental report [18].

2 OPTIMAL STOCHASTIC CONTROL

2.1 Problem Statement
Consider the following discrete-time state and measurement equations,

X1 = fre( X, g, W) (2.1)

Ye=hi(xr, vi) (2.2)

Here, x € R™ is the state, u € R"u is the control, w € R™W is the process noise, y € R is the
measurement, and v € R"V is the measurement noise. The random quantities {w;}, {v;} are
assumed to be independent zero-mean white noise sequences and jointly independent of the
random initial condition Xg. The noise and initial state statistics are assumed to be known
and specified by the following probability densities,

X0 ~ px(x0), Wi ~ pwlk,wk), vi ~ pu(k,vi) (2.3)

It is desired to minimize the following expected cost criteria,
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J)=E[L] (2.4)

N-1

L:gN (XN)+Zgi(x1', i, H",’)
0 (2.5)

over a class of admissible control policies. Here, g;, i = 0, ..., N are specified weighting
functions. It is convenient for later use to define a truncated cost structure starting at time k,

N-1
Ly=g,(x,)+ Zgi(x,-, i, Wi)
i—k (2.6)

Let the information state Iy at time k be defined by,

L=y, ., Y0, Up—1, - .., Up] 2.7

Io=[y0] (2.8)

The information state I, summarizes all measurement information causally available at time
k. An admissible policy is defined by a sequence of controls IT = [ug(lp), ..., Un—1 (IN=1)]
where each control u, maps the information state Iy into a constrained space of allowable
inputs &(ly), i.e.,

ur(Iy) € B(Iy) € R™ (2.9)

2.2 Stochastic Dynamic Programming (SDP)
The admissible control policy that minimizes (2.4) is denoted as,

O9=[ug o), ..., uS 0, )] (2.10)

where “CLO” stands for Closed-Loop Optimal [10]. Using the principle of optimality, it can
be shown that the CLO control policy satisfies the following stochastic dynamic
programming equations of Bellman,
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J,\%O (Ly,l ):LIHIIIE[gN" +8y ‘l\'—l ]

JkCLO(Ik)=H}’£nE [ex T T )]

JLO(I)=minE[ go+J L0 I))|I,
SLO(Io) min [go+J 7 (I)o] (2.11)

and the total cost is given by,

JEP=E[J§ (1)) (2.12)
The information state Iy in (2.7) can be written recursively in time,

Dev1 =, Y+ 15 Uk) (2.13)

This relation serves as an alternative state equation replacing (2.1), where I now plays the
role of the state, and the quantity yy+1 plays the role of process noise (a more general state-
dependent definition of process noise is used in [21] to make this interpretation precise).
Since the information state Iy in (2.13) is updated using available information yy.1, Uy, it is
considered fully observed. This is in contrast to the state x, in (2.1) that is only partially
observed through the noisy measurement (2.2).

2.3 Stochastic Control Policies

A general overview of stochastic control policies is given in [10]. There are three main
classes of stochastic control policies: the Open-Loop (OL) class, the Feedback (F) class, and
the Closed-Loop (CL) class.

The Open-Loop (OL) policy uses only prior information, and computes the control without
using any measurement information. Because measurements are not used, no learning takes
place. The Feedback (F) policy determines the control input at each stage k using all
measurements gathered up until time k (i.e., feedback from measurements), but does not
anticipate that future measurements will be made. Since F policies learn from
measurements, they use feedback and are generally known to perform better than OL
policies. In certain cases this improvement can be proved theoretically [14][21].

Two commonly used F policies are the open-loop feedback (OLF) policy (originally denoted
as OLOF in [28]), and the heuristic certainty equivalence (HCE) policy. The OLF policy at
each time k is derived by solving for the OL control sequence uy, ..., uy using all the
information obtained up to time k as the prior, and then applying only the first control uy to
the plant. Since the OLF policy calculates a new open-loop control sequence at each time k,
it makes use of both open-loop and feedback notions, and hence its name. The control
policies developed in [9][61] are of the OLF type.

The HCE policy is generated by first solving the underlying deterministic optimal control
problem (obtained by setting all random variables to their mean values with probability one,
and assuming that the full state x is measured perfectly), to give the deterministic feedback
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relation uy = ¢(xk). The HCE policy is then defined by substituting the conditional-mean

state estimate Xy = E[x/li] for the true state x to give the stochastic policy ' “F=¢(%).
Interestingly, the HCE policy is known to be optimal for the Linear Quadratic Gaussian
(LQG) problem [21], the Linear Quadratic Gaussian-Sum (LQGS) problem [2], and for
other restricted classes of problems [11]. While HCE is usually not optimal for more general
systems, it is often used as a heuristic method to generate potentially useful suboptimal
control policies [21]. For example, most modern indirect model reference adaptive control
(MRAC) schemes [38] and self-tuning regulators (STRs) [39] are of the HCE type, since
they substitute estimates for true parameters in deterministically-derived control laws.

The optimal policy that minimizes the expected performance cost, denoted earlier as the
Closed-Loop Optimal (CLO) policy (2.10), is known to belong to the CL class [10]. The CL
policy, like the F policy, determines the control at each stage k using all measurements
gathered up until time k, but in addition, anticipates the fact that future measurements will be
made. The anticipation of future measurements induces the CL policy to actively probe the
system for new information. This intentional probing action, or “active learning feature”, is
a key property of CL policies. Because probing action tends to “shake up” the plant, it is
often in direct conflict with the immediate goals of controlling the plant. Consequently, CL
policies are sometimes called “dual” controllers. This term was originally introduced by
Feldbaum [29][30], who noted the dual character of the optimal policy in controlling the
state, while simultaneously regulating its learning for control purposes. Surveys on dual
control include the papers [32][66][67] and a recent book on the subject [33].

A dual controller might either dither the control input, or might use larger and/or more
dynamic inputs to excite the system and better learn the plant dynamics, while
simultaneously controlling the plant’s behavior. While F policies also learn, they only do so
by making mistakes. Such learning is strictly accidental and not the result of planned
probing actions. Accordingly, CL policies have the potential to improve significantly on the
performance of F class policies.

In general, the computation of the optimal CL policy (i.e., the CLO policy) requires solving
the stochastic dynamic programming (SDP) equations [8][10][19]. Unfortunately, any direct
solution to the SDP equations requires overcoming the “curse of dimensionality” [19], and is
for the most part computationally intractable. To date, numerical solutions have been
computed for only the simplest of scalar systems [6][7][34][42]. The difficultly involved in
solving the SDP equations has led researchers to look for simpler methods for generating
dual control policies. Current practical approaches to dual control can be divided into two
main categories: implicit dual and explicit dual.

Implicit dual control methods apply approximations to the SDP equations to obtain actively
adaptive suboptimal control policies that have desired probing properties, and improved
performance. In contrast, explicit dual approaches modify the cost function to include extra
terms that reflect the information gathered from future measurements. Upon minimization of
the overall cost, these extra terms artificially induce probing action into the controller. The
control policies developed in [3][31][49][52] are of the explicit dual type. These and other
explicit dual controllers are discussed in the survey literature [32][33][66][67]. The main
focus of the current paper is on implicit dual controllers, to be discussed next.

It is known that each minimizing control u“° depends on Iy only through the conditional
density p(x|lx) [21]. This fact establishes an important link between the fields of stochastic
control and nonlinear estimation. The conditional density is known to propagate according
to a recursive equation of the form,
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P 1 ks 1)=F APk Ii), Yicw 1, e} (2.14)

Unfortunately, the mechanization of (2.14) is often intractable due to the need to calculate
multidimensional integrals. However, a key problem studied in nonlinear estimation is the
systematic approximation of the conditional density p(x|li) for the purpose of developing
practical recursive filters. Arguably, the most useful recursive filters to have emerged from
decades of research on this problem are the Extended Kalman Filter (EKF) [35][55], the
Gaussian Sum Filter (GSF) [4][59], the Multiple Model (MM) filter [47][51], and recently,
the Particle Filter (PF) [5][27][40][55]. As discussed below, each of these filtering methods
has been applied by researchers to address the stochastic control problem.

The EKF propagates two central moments (conditional mean and covariance), and has given
rise to stochastic controllers derived based on a wide-sense (WS) approximation. Wide-
sense dual controllers have been successfully developed in the literature [10][62] [63] [64].
Related approaches that modify the problem statement to make the wide-sense
approximation an exact sufficient statistic are given in [45][49][54][60].

The GSF is a recursive filter [4][59] that makes a Gaussian-sum approximation to p(x|ly).
Implicit dual controllers based on the GSF have been developed in [1], and shown by
simulation to have improved performance compared to F-class policies.

In a multiple-model problem, the state is decomposed as x = [£, 8] where & propagates as a
conditionally linear gaussian state-space system, and € is a constant (but unknown), discrete-
valued parameter vector belonging to a finite set 8 € 6 = {6, ..., 65}. Implicit dual
controllers based on the MM structure have been developed in [22][23][26] [48] [65], and
have been shown by simulation to improve on F class policies.

The PF recursive filter is a relatively recent development that holds considerable promise for
computing solutions to complex nonlinear estimation problems [27][40][55]. Consequently,
the choice of the PF approximation as a sufficient statistic for solving stochastic control
problems offers exciting new possibilities for controlling a wide range of nonlinear
stochastic systems. To date, the application of PF to stochastic control has been limited to
non-dual policies such as HCE and OLF [56]. The current paper aims to fill this gap by
providing an approach to implicit dual control based on the PF approximation.

Compared to other approximations, the particle approximation has the advantages of
capturing the multimodal and non-Gaussian character of the underlying conditional density,
as well as being applicable to more challenging nonlinear problems that cannot be reliably
linearized or approximated by an EKF. The PF approximation does not rely on linearization,
and so does not break down when nonlinearities become dominant or when statistical
variances become large. While in principle the GSF approximation offers similar
advantages, the PF is considerably simpler to implement since it invokes simulation rather
than a large bank of EKFs. Compared to GSF, the PF approximation also has the advantage
of handling large variances without requiring periodic re-initialization [4]. However, the
most important aspect of the PF approximation may be that it is sample-based and integrates
well with other available sample-based methods for dual control synthesis [12][13][15].

3 PARTICLE FILTER

3.1 Background

Nonlinear estimation is concerned with the problem of mapping the conditional probability
p(xklk) at time k into the conditional probabiliy p(X+1|lx+1)at time k + 1, given the most
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recently measured quantities yyx+1 and uy. The nonlinear estimation process can be realized in
two successive steps [55],

POk [T )= [ pCeierr |5k 1) pCeellic Y xi @.1)

POk 113+ 1) P (ke 1 T k)
fP(,\‘k+1|xk+1 VP (Xpes 1 M, g )dXpeqq (3.2)

P 1li+1)=

Equations (3.1) and (3.2) are commonly referred to as the time update and measurement
update, respectively. They can be combined to give the single functional equation (2.14).

Particle filtering has been developed recently as an approach to approximating the solution
to the nonlinear estimation problem. In particle filtering, at each stage k, the conditional
probability p(xy/lk) is approximated by a lumped-mass representation defined by a set of m

i 5
particles in the particle set ;) ._,, each of equal weight, 1/s. Conceptually, these particles
can be thought of s samples drawn from the density p(x|lx), whereby a histogram made
from the samples would reveal a direct visualization of p(xy/lx). Mathematically, the particle

i S
approximation {x;} _, to the density p(x/l,) can be written as,

IR ,
POl = ;;axk - )

J (3.3)

where the delta function notation d(x —Xg) denotes a unit mass at location xg.

Consistent with the functional equation (2.14) for nonlinear estimation, the particle set
i s
Q{-xf(}jzl at time k representing p(xy/ly) is updated using the latest information yy1, Uy to

become the new particle set Q{-VLL}J-ZI representing p(Xk+1/lk+1). One of the simplest particle
filter methods to perform this updating is the sampling importance resampling (SIR) filter

[55],
QUL 17, =7 (U1 v,
Hea1) j=1 i) jmpo Vel Hk (3.4)

* FORj=1:s

— Draw xz;“ ~ p(.xk+1|,x‘,i, uy)

— Calculate Wi, ;=p(s 1%, )
« ENDFOR
L] s ’*‘j

Calculate total weight: '= 2 ;_; Wi+1
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. . i ~J
Normalize weights: w;, =Wy, /1

* Resample
Qix 1 =RESAMPLE|Q{x . w/ V
Moo= K> Wit j=1

N

The notation Q{x/, w/} ., denotes that the j’th particle xj has weight wi. The notation Q{x'}_,
having a single argument is a simplification that indicates all particles have equal weights,
i.e., w = 1/s, for all j. The operation called “RESAMPLE” simply draws m random samples
from the lumped-mass distribution defined by the specified particle set. Specifically, given a

particle set {1 Wi, };31, RESAMPLE maps the s particles with weights wl, into s new
particles having equal weights w! = 1/s, j =1, ..., s. Many methods for resampling exist in
the literature. To minimize computation in the current application, the Systematic
Resampling method of Kitagawa [44] is chosen because it has complexity O(s).

; 5
After update, the particle set Q{XL 1 j=1provides the lumped-mass approximation to the
conditional density p(Xy+1/lk+1),

1< .
P 1Mks1) > _Zé(-\"kﬁ'l - x/]<+l)
54
J=1 3.5)

This process is repeated for each k to propagate the conditional density.
3.2 Particle Filtering in Stochastic Control

i S
The particle set Qk{xi} j=15erves as an approximate sufficient statistic replacing the
conditional density p(xy/lx). A stochastic control framework based on particle-filtering is
shown in Figure 3.1 Here, the control input becomes a function of the current particle set,

; 5
=i (e x) ) (3.6)

This restricted form of the controller reduces the dimensionality of the underlying state from
I, which is of growing dimension, or from the equivalent representation of the state as p(x|

I ) which has infinite dimensions. The advantages of a finite dimensional approximation to
the state that does not grow with time has been discussed in [62]. Specific use of the particle
set to fulfill this role, has been suggested earlier in Salmond and Gordon [56] which
develops HCE and OLF control policies based on the particle approximation. The current
paper extends the application of particle filters to developing implicit dual controllers.

3.3 Dealing with Constant Parameters

One difficultly that arises in particle filtering is when a subset of the state vector x
corresponds to a set of constant parameters. Let 6 denote a vector of such parameters with
the corresponding dynamics,
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O 11=0k (3.7

Having no process noise on the right hand side of (3.7) causes difficulties in particle filtering
due to a phenomena called sample impoverishment [55][50]. This is an undesirable behavior
where all particles collapse into a single particle. While various methods have been
developed to address sample impoverishment, the problem is very challenging when process
noise is completely absent, and there are few general results.

One common approach to try to “fix” (3.7) is to add a small amount of process noise,

O +1=0k+wr (3.8)

The process noise wy added is assumed to be white, zero-mean, and with Gaussian statistics,

wy ~ N(O, Wy) (3.9)

The presence of process noise helps avoid sample impoverishment and improves the overall
robustness of the particle filter. However, the method becomes suboptimal since adding
process noise introduces an artificial dilution of information over time that is not part of the
original problem statement. Instead of (3.8), the current paper uses a method due to Lui and
West [50] to address this problem.

The main insight of Lui and West [50] is to replace (3.8) by,

Orr1=abr+(1 — a)@kﬂrk (3.10)
where,
Ok=E[ OlI] @.11)
wi ~ N(O, (1 = a*)V) (3.12)
Vi 2 E[(6k — 0k) I Ii] (3.13)

Here, 6 and V| are computed from the corresponding particle averages at time k. In this
case, process noise has been added on the right hand side, but the shrinkage of the particles
towards the ensemble mean re-establishes invariance of the first two moments. Specifically,
for any choice of 0 <a < 1, it can be verified that the choice of process noise variance
Cov[w] = (1 — @)V ensures that, E[61|li] = E[A/1k] and Var[fs1/li] = Var[6ili]. If the
statistics of 6y were Gaussian, there would be no loss of information in the resulting particle
representation of 6y.+1. However, in the more typical situation where the statistics of gy are
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non-Gaussian, only the first two moments remain unaffected and higher-order moments
degrade accordingly. The method of Liu and West is used in the current paper to deal with
the issue of constant parameters. It has been found to work well within the boundaries of the
current studies.

A question that arises in practice is how to choose the shrinkage parameter a in (3.10).
Guidelines are given in [50]. However, our experience indicates that the parameter a is best
found by simulation experiments. A simple approach is systematically to decrease the
shrinkage parameter a from unity until particle impoverishment is no longer observed in
representative simulations. The value of a is then not increased past this point since the
propagated distribution would degrade unnecessarily.

To model positive-valued physical parameters p > 0, the current paper will make use of log-
Normal variates of the form p = e where 6 ~ N(u, ¢2). Consider the constant dynamics py+1
= pk. To modify the dynamics of a log-Normal variate py in the Liu-West sense, it is best to
modify its Normal part as,

Ok=log(pi) (3.14)

Ocs1=ab+(1 — @)+ (3.15)
— Ok+1

Dri1=e (3.16)

As desired, this approach ensures that the propagated variate pyx+1 remains positive-valued.
In addition, this approach extends the Lui-West zero-information loss property for Normal
variates to include log-Normal variates.

4 |PS ALGORITHM

The IPS algorithm is a method for on-line implicit dual control that achieves its performance
advantages by successively improving on a given policy [15][12]. The improvement is due
to a policy iteration approach defined by determining the present control that optimizes the
cost at the current stage plus the future cost-to-go as evaluated on a specified nominal
policy. In this manner, the future is seen through the costs incurred by the nominal policy.
The notion of policy iteration is made precise by the following definition.

DEFINITION 4.1

A policy TP =[P (1), . ..,u'P*'(1,._, )]s said to be a policy iteration with respect to

policy iteration with respect to policy IT"P=[u " (Io). ..., u;? (I,_)]if at every k and Iy they
are related as,

P ()=
min,, E [ (e, ey Wi+, (e )+ VL @i, 1P (1), w,-)|1k] fork=0,...,N -2
lnin“N—l E lgN(xN)_FgN—l (Xy_ps Uy (l\'—l )s Wy )|IN—1 J fork=N -1 (4.1)
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The policy iteration formula (4.1) is conveniently implemented using the H-block
computational architecture shown in Figure 4.1. The H block is named after its resemblence
to the letter “H” created by its two connections at the top and bottom. The policy IT™P is
supplied from the bottom, and the policy IT"P*1 is computed internally and output at the top.
Specifically, the information state Iy is read in at the top left, and the control uy is read out at
the top right. The information states corresponding to future simulated trajectories are read
out at the bottom left, and the correspoinding future controls are read in from the bottom
right. The future simulated trajectories are generated as part of the computation performed
inside the H block which uses Monte Carlo simulation combined with control search to find
the current uy from condition (4.1). A specific example showing the inside workings of an
H-block is given in Section 5.

In general, the policy generated by a policy iteration sees a performance improvement with
respect to the policy that generated it. This result is made more precise in the following
result, taken from [12] without proof.

THEOREM 4.1—Assume that policy IT"P*1 is defined by an iteration in policy space with
respect to control policy IT"P. Then the following inequality holds for all I, k=0, ..., N — 1,

TP @) < TP (4.2)

Simply stated, this means that the policy coming out the top of an H-block performs better
than the policy supplied from below.

H-blocks can be vertically cascaded successively to generate a family of new policies with
monotonically improving performance. This notion is summarized in the following result
taken from [15] without proof.

THEOREM 4.2—Given any admissible starting policy IT*C let the sequence of control
policies IT0, IT™1, ..., IT™N be defined by successive iterations in policy space. Let the total
expected cost associated with each policy IT"P be defined as J*P, p =0, ..., N. Then,

JEO= N < N1 < <yt < g0 (4.3)

Here, J™0 denotes the cost of using the nominal policy IT™0 by itself. It is worth noting that
the N’th policy iterate achieves the Closed-Loop Optimal cost regardless of the choice of the
initial policy IT*C.

The multiple policy iterates of Theorem 4.2 can be implemented by vertically cascading H-
blocks. This implementation is shown in Figure 4.2. Except for the bottom-most H-block
HO, all H-blocks are identical and can be implemented by exactly replicating the software.
The HO block is special in that it only outputs a nominal policy of the designer’s choosing.
At any given time k the CLO Policy is achieved by cascading N — k H-Blocks.

When computing the p-IPS policy via an H-block cascade, the maximum number of calls is
made to the last H-block when calculating the first control. This number is given
approximately as [15],
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2eM (N - 1\°
B(p.0)=22D ( )

\27p

p (4.4)

where M is the number of Monte Carlo trajectories used for control search in a single H-
block. The larger the number of policy iterates p, the more computation. This indicates that
the p-IPS policy for p =1, ..., N trades-off the amount of computation with degree of
optimality obtained.

The IPS algorithm can be applied to completely deterministic problems by considering the
special case where all random variables attain their mean values with probability one. This
gives rise to a novel method for deterministic optimization that has been developed and
demonstrated in [16]. In practice, the implementation of a policy iteration can be
computationally intensive. To date, real-time computational constraints have limited
implementions to only a single policy iteration for stochastic problems [15] and two policy
iterations for determinstic problems [16]. This situation is expected to improve as computers
get faster and more capable in the future.

5 DUAL CONTROL MECHANIZATION

5.1 H-Block Architecture

The policy iteration formula (4.1) is implemented using a computational structure denoted as
an H-block. The H-block structure is useful because it evaluates the expectation in (4.1)
using Monte Carlo simulation. The H-block is designed to receive IT"P controls from the
bottom, and pass out IT"P*1 controls from the top. For visualization, an H-block is depicted
in Figure 5.1 for a relay problem having two possible control values u = +1, —1. The inside
of the H-block provides the necessary computations to determine policy IT"P*1 from IT°P
using policy iteration. The H-block structure of Figure 5.1 modifies an earlier H-block [15]
to accommodate particle filtering and Monte Carlo control search.

The computations inside an H-block are described as follows. First, the information state Iy
is passed into the H-block through the top left connection. The equivalent representation of

I is the particle set Qk{x{:} that approximates the conditional density p(x|lx). This particle set
Q is duplicated inside the H-block to define the set Q7' used for nonlinear filtering, and the
set QF used for Monte Carlo simulation of future trajectories needed for evaluating the

expected cost-to-go. The simulations begin by drawing a particle xi from QF to initialize the

current state, and by setting Q,? « Q to initialize the particle filter for the new simulation
run.

The trajectory is then propagated in closed-loop simulation by generating realizations of
future process noise, future noisy measurements, and future controls (as requested from the
H block below). The simulation is closed-loop in the sense that future measurements and

controls are used for propagating the state trajectory x7, ¢ =k, ..., N and updating the

particle filter set Q% € =k, ..., N for nonlinear estimation along the simulated trajectory. The
simulation continues until the last time k = N at which time the cost over the simulated

trajectory is computed. Monte Carlo simulations are then repeated over M particles xi drawn

from the particle set QZ, and for each of the two possible controls u, = 1 and u, = —1. When
these 2M trajectories are completed, the cost-to-go is computed for each value of uy and the
control providing the smaller expected cost is reported out the top right of the H-block.
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The H-block in Figure 5.1 applies to relay control, but is straightforward to extend to an
arbitrary (finite) number of control values by generalizing the Monte Carlo search to handle
multiple alternatives [37] [53].

5.2 Computational Considerations

The H-block implementation of Figure 5.1 will best approximate a theoretical policy
iteration in the limit as M, and the number of partices s, become large. Systematic methods
for choosing s and M remain as a subject for future investigation. However, some guidelines
are provided based on experimental experience to date.

The value for s is best determined by testing the particle filter in separate simulations that
evaluate estimation performance in isolation. Once s is established in this manner, its full
value should be used in the H-block implementation. Attempts to lower s beyond this value
have typically been met with significantly degraded stochastic control performance.

A natural upper bound for M is to choose it equal to the number of particles, i.e M =s, since
the Monte Carlo simulations are based on the current particle set Q. However, such a
choice has been found by experiment usually to be excessive. In appears that large
reductions in computation can be made by reducing M to a small fraction of s. The choices
made here for all simulations are s = 5000 and M = 5000/25 = 200, which represents a factor
of 25 reduction. Since computational time is proportional to M, this represents a factor of 25
speed-up. Further improvements are possible by using intelligent logic to stop the random
search early when further iterations are not warranted. Details of the stopping logic are given
in the next subsection. It has been found that the stopping logic terminates the search after
an average of 82 simulations, relative to a maximum value of M = 200, which represents
another factor of 2 speed-up. This gives an overall factor of approximately 2 - 25 =50 in
total speed-up.

The price for this speed-up is that the effectiveness of the policy iteration is reduced.
However, simulation results in Section 8 show that even with this level of approximation,
performance improvements can be maintained relative to nominal control policies.

5.3 Control Search Stopping Rule

For the purpose of improving computational efficiency, a special stopping rule is introduced
into the control search. In the H-block of Figure 5.1, the determination of control uy at each
time k requires a search to minimize the expected cost,

}l:lllBE[Lk(’)] (5.1)

where i = 1 corresponds to the choice ug = 1, and i = 2 corresponds to the choice uy = —1.

The two expectations in (5.1) are not known exactly, but are each approximated in the H-
block using a Monte Carlo simulation over M trajectories,

M
T LN
ELLK(@)] = Ti(iy=57 ) L0, i=1.2
n=1 (5.2)
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The H-block of Figure 5.1 fixes the value of M. However, if the stopping rule is used, the
value of n is increased until some point n = m when a stopping rule is satisfied, or when n =
M is reached, whichever comes first. The stopping rule is,

ld(m)|+6T > a T a(m) (5.3)
where,

d(m) £ Tx(2) - Te(1) (5.4)

m

72 ()= D@ - L) - o :
O'd(m)—muzl( +(2) = L;(1) — d(m)) 55

Here, 6] > 0 and « are parameters chosen by the user. If (5.3) is satisfied, the search is
stopped, and the stopping rule indicates that a sufficiently large value of m has been
obtained to ensure that the probability of making an error of more than 4J units of expected
cost, has a probability less than y. For example, the choice o = 2 gives a confidence of y =
0.0227. The values of 6J > 0 and « are specified by the user.

The desired properties of the stopping rule (5.3) are proved in Appendix C. The proof
assumes normality of the MC estimates, so the rule should not be invoked until m is already
sufficiently large to justify using asymptotic statistics (a value of m = 40 is used in the
software). Recursive expressions for d(m) and ag(m) are utilized to simplify the
implementation.

The usefulness of the stopping rule (5.3) is briefly explained. Intuitively, the quantity og(m)
in (5.5) decreases asymptotically with m, and at some point satisfies the stopping rule (5.3).
Consider the two extreme cases where |5(m)| » 8J (Case 1) and |d(m)| < 6J (Case II). In
Case I, 4J can be neglected so that the stopping rule (5.3) is approximated as,

\d(m) = aG4(m) (5.6)
When (5.6) is satisfied, the situation looks like Figure 5.2. The peaks are sufficiently

separated relative to the uncertainty to confidently decide a winner, and the search can stop.

In Case 11, 5(m) can be neglected so that the stopping rule (5.3) is approximated as,
6J > aoy(m) (5.7)

When (5.7) is satisfied, the situation looks like Figure 5.3. The peaks are closely spaced
relative to the allowable error 6J, indicating that the controls essentially perform the same,
and distinguishing further between their performance is not worth the effort. Cases lying
between Cases | and 11, benefit from both of these interpretations but in a more complex
fashion.
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In addition to stopping rule (5.3), a strict upper bound M is enforced on n. This means that
simulations are stopped when n = M regardless of whether or not condition (5.3) is satisfied.

6 PENDULUM MODEL

6.1 Physical Model

A pendulum is studied because it represents one of the most basic physical systems. A
pendulum is shown in Figure 6.1. The pendulum has unknown length I, unknown mass m,
and unknown force influence coefficient b. The pendulum is assumed to obey the linear
differential equations [41],

_ mg
+—p=b
mor=mp=ou ©.1)

where g is the acceleration of gravity, and p denotes the horizontal displacement. Dividing
both sides by m gives,

518 b
S =24
L Ip m’ (6.2)

The quantity b is assumed to have an unknown sign in the sense that it equals +1 or —1 with
equal probability.

Define the quantities

w2 g/l (6.3)
., b
p= m (6.4)

The quantity w is denoted as the pendulum frequency, while g is denoted as the pendulum
input coefficient. It is seen that w is a function of the pendulum’s length I, while g is a
function of its mass m and high-frequency gain b. Substituting (6.3) and (6.4) into (6.2)
gives,

p+w2p:ﬁu (6.5

The distribution for w is chosen as log-Normal with mean « and variance X,

w~LGNG. ), ) 66

The log-Normal variate « can be formed as [25],
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w=¢é* (6.7)

where z ~ N(g, s?) and,

o2=log(1+22)
—

(6.8)

1,
p=log(@) - 5 (6.9)

The use of log-Normal rather than Normal ensures that the variable w stays non-negative
which is desired to ensure a physically meaningful oscillation frequency. The distribution
for the input coefficient g is chosen as the two-component Gaussian mixture,

B~ SNG@. ) )+ SNB. ) ) (6.10)

This choice is consistent with the definition of # = b/m in (6.4), where a Gaussian
distribution N(5, Xz) is assumed for the reciprocal mass m~1, and a Bernoulli distribution is
assumed on the force influence coeffient b.

Letting v = p, the dynamics of the pendulum can be put into state-space form as,

w =0 (6.11)
B =0 (6.12)
I.) l:l 05 l p +[ 0 lll
v -w- 0 v B (6.13)
e
y=[1,0]
v (6.14)

Vectorizing the physical position and velocity states as,

f={"

(6.15)
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equations (6.13) and (6.14) are conveniently expressed in matrix form as,

S:A& Bu (6.16)
y=C¢ 6.17)
where,
;\"[ 0 1 1
~* 0 (6.18)
- i 0 -~
B= ; C=[1,0]
I B i (6.19)

6.2 Discretization

Assuming piecewise constant controls, the deterministic system (6.18),(6.19) can be exactly
discretized with a sampling period of T seconds as,

Eri1=A&+Buy (6.20)

Vie=Cé& (6.21)

where,

~ COS(J)T sinwl’ 1
Ao = |

—wsinwT  coswT (6.22)

T = - B(L—cnsuﬂ'v ~
B:(foé”dr)Bz{ lgu ];C=C=[l,0] (6.23)

Equations (6.20) and (6.21) will form the starting point for a stochastic control model.

6.3 Stochastic Control Model

A stochastic control model is defined by adding white process noise wy and white
measurement noise vy to the discretized model (6.20),(6.21), and then augmenting the state
vector with the constant parameters (6.11)(6.12) to give,
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W1 =Wk
Br+1=Pk
ki1 =ARE+Brug+Tpwy

Vi=Cé&p+vy

f

A= .
—wisinwrl  coswrT

COSQ)kT sLmug.T ‘

(1—cosw. T)
k )
rk:Bl\': I “k }

ﬁ sinwy T
IS

wi ~ N(O, W); v ~ N(O, V)
The prior on the initial state xg is specified as,

T
x0=[ wo. Bo. po. Vo]

wo ~ LGN(, ZM)
Bo~ SNB. ) )+SNB. ) )
po~N@. ) )

o~ NG, Y )
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where all scalar elements of the state vector are assumed to be statistically independent.
Defining the augmented state vector,

Xg=
Vi (6.36)
the model (6.24)—(6.27) can be written more compactly as a special case of the desired

nonlinear state-space form (2.1)(2.2), for which all of the earlier control and estimation
strategies are applicable.

7 CASE STUDY: Particle Filtering

7.1 Overview

In this section a particle filter is designed to perform nonlinear estimation for the pendulum
model. The noise covariances are specified according to (6.30) with the choices,

W=(.1)%; V=1 7.1)

The sampling time is T = 1 and the prior on the initial state xg is specified according to
(6.31)-(6.35) with the choices,

w=21(.25), Zw=(2n(.()5))2

7.2 Simulation Results

(7.2)
P=12 25~ 7.3)
p=0. - (7.4)
=0, ) =4 (7.5)
The value of the initial true state xo = [q, Bo, po, vol " is given as,,
wy=w"=2 (7.6)
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Bo=B"=9 (1.7)
po=1(m) (7.8)
vo=—.1(m/s) (7.9)

Since w*, p* are the true pendulum parameter values, they have been specially notated with
the superscript “*”.

The starting mean values of the particle filter are given as E[w] = 1.5677 and E[f] = —.
014172. The value for E[f] should be theoretically zero, but is non-zero in practice due to
the use of a finite number (i.e., s = 5000) of particles. The control input uy is chosen
randomly at each time instant with equally probable values of +1 or —1.

The particle filter is propagated with measurements over the 20 second horizon. The Lui-
West method is used with its roughening parameter chosen as a = .95. Results after 20
seconds are summarized in Table 7.1. For reporting purposes, the conditional-mean of the
particle filter is used as a point estimate. The conditional-mean plus and minus the 50 and 95
percentile bounds are shown superimposed on truth values for the w and g parameters in
Figure 7.1 and Figure 7.2, respectively. The final estimates are given as E[w|lq] = 2.0139
and E[f]lx0] = 9.4964. Pendulum position is shown in Figure 7.3. Position error is plotted
with 50 and 95 percentile confidence bounds in Figure 7.4. It is seen that the error lies
within the predicted error bounds.

8 CASE STUDY: Dual Control

8.1 Overview

Two dual control case studies are presented in this section. The goal in the first case is to
achieve a terminal position of 2 m after 6 stages, and the goal in the second case is to
achieve a terminal position of 4 m after 4 stages. Both cases are challenging due to the large
initial uncertainty and limited control authority. However, the second case is more
challenging because a larger excursion must be achieved despite having less time to learn
the parameters and to elicit the desired controlled behavior.

The noise and prior statistics are same as used earlier in the particle filtering study, and are
specified as (6.30)-(6.35) with the choices (7.1)-(7.5). The controls u are restricted to be of
the relay type, having values of either 1 or — 1. The sampling time is chosenas T =1s. A
digital controller is used, where the control inputs uy are constant over each sampling period
of 1 second. The control search parameters are set at M =200, m =40, 0J =2, a =2. The
particle filter for this problem uses s = 5000 particles, and is identical to the one used earlier
in Section 7.

Two histograms are shown to help understand the control challenge. The pendulum period is
shown in Figure 8.1. From this histogram, it can be seen that about half the pendulum
realizations have a period with less than a single cycle contained within the 4 second
controlled time-horizon. However, most pendulum realizations have a period with at least
one cycle contained within a 6 second time horizon. With less than a single cycle observed,
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it is more challenging to learn and control the pendulum frequency over the 4 second
horizon.

Set-point goals for pendulum control are taken as 2 meters and 4 meters in the two case
studies, respectively. The DC gain of the pendulum is given by f/w 2, and has a histogram
shown in Figure 8.2. If the maximum control of u = +1 is applied as a unit step function
until a steady-state condition is reached, most simulated pendulum realizations would
achieve the 2 meter excursion, while only two thirds would achieve the 4 meter excursion.
Clearly, the 4 meter excursion is very challenging, particularly for a controller that will not
have time to reach a steady-state condition.

8.2 Case 1: Six-Stage Horizon

For the first study, there are N = 6 stages in the horizon. The cost is given by the terminal
expression

L=g6(x6)=(p6 — 2)° .1)

The 1-1PS policy with respect to the HCE policy is denoted as the 1-IPS(HCE) policy. In
this study, the performance of the HCE policy is compared to that of the 1-IPS(HCE) policy.

The HCE policy is first used to control the pendulum model. The HCE policy for the current
example is provided in Appendix A. Performance is assessed by running 10, 000 Monte
Carlo simulations. The final expected cost is found to be 11.087 with a 1-sigma uncertainty
of £0.20596 in the MC estimate.

The 1-IPS(HCE) policy is implemented based on the H-block configuration of Figure 5.1,
using HCE as the nominal policy. Again, the particle filter is mechanized using s = 5000
particles. Performance is assessed by running 1, 000 MC simulations. The final cost is
8.8968 with a 1-sigma uncertainty of £0.43626 in the MC estimate. This represents an
improvement compared to the the HCE policy. For convenience, results are summarized in
Table 8.2

It is useful to expand the cost J into mean and variance components as follows,

J=E[(p6 - 2"J=E | ((m, = 2)+(ps — m,))’ |
=E[(m, = 2)*1+E[(ps — m,)*]
=(m, — 2)*+07
=controller bias+controller variance (8.2)

where my = E[pg] and o>=E[ (ps — m,)*]. Equation (8.2) indicates that the cost J can be
decomposed into two terms. The first term (m; — 2)2 depends on how well the controlled
mean mj matches the desired goal of 2. This term is denoted as controller bias. The second

term o-f corresponds to the controlled dispersion of pg about its own mean mj. This term is
denoted as controller variance with its square-root o3 denoted as the controller variability.
Ideally, it is desirable for a controller to keep both the controller bias and variance terms
small.

Results from Case 1 can be interpreted in light of the decomposition (8.2). Specifically, the
1-IPS(HCE) policy has essentially the same controller bias as the HCE policy (m; = 1.59
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compared to my = 1.61), but improves on the cost by reducing the controller variability from
03=3.31t003=2.96.

8.3 Case 2: Four-Stage Horizon

For Case 2, the problem is made more challenging by modifying the terminal cost (8.1) to
become,

L=g4(x4)=(ps — 4)? (8.3)

Here, the horizon has been shortened from N = 6 to N = 4 stages, and the desired excursion
increased from 2 to 4 meters. This is more challenging because the pendulum behavior must
be learned more quickly, and controlled to swing further in a shorter time. The noise and
prior statistics (7.1)-(7.5) are left unchanged.

The HCE policy is tested first using 10, 000 Monte Carlo simulations. The final cost is
18.794 with a 1-sigma uncertainty of £0.34604 in the MC estimate. This cost is greater than
for Case 1, reflecting the more challenging control problem.

The 1-IPS(HCE) policy is tested next using 1, 000 Monte Carlo simulations. The final cost
is 16.536 with a 1-sigma uncertainty of £1.0265 in the MC estimate. This represents an
improvement compared to the HCE policy.

The OLF policy for the current example is defined in Appendix B, calculated using so F =
200 particles. The OLF policy is tested using 10, 000 Monte Carlo simulations. The final
cost is 15.874 with a 1-sigma uncertainty of +0.25783 in the MC estimate. This cost is better
than even the 1-IPS(HCE) policy for this problem. This motivates developing a 1-IPS policy
with respect to the OLF policy.

The 1-IPS policy with respect to the OLF policy is denoted as the 1-IPS(OLF) policy. The 1-
IPS(OLF) policy is tested using 1, 000 Monte Carlo simulations. The final cost is 14.8726
with a 1-sigma uncertainty of +1.1062 in the MC estimate. This represents an improvement
compared to the OLF policy. For convenience, results are summarized in Table 8.3

As in Case 1, it is useful to expand the expected cost into mean and variance components,
J=E[ga(xa)]=(m, — 4)*+0, (8.9
where now,
m,=E[pa); o>=E[(ps - m,)’] (8.5

Results from Case 2 are compared graphically in Figure 8.3 and can be interpreted in light of
the decomposition (8.5). The goal of 4 is shown as the dash-dot line. For each control

policy, the mean position m; (solid) at the final time is shown along with its 1 standard
deviation o3 (upper and lower dashed line). The improvement relative to HCE from using 1-
IPS(HCE) is due primarily to a reduction in controller variability o3 from 4.30 to 4.04.
Interestingly, the OLF policy has a control bias larger than the 1-IPS(HCE), but is still able
to improve on overall cost by having a reduced control variability o3 of 3.81 compared to
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4.04. The 1-IPS(OLF) improves on this by keeping the control variability essentially the
same at a3 = 3.85, but by increasing the mean value m; from 2.84 to 3.77 which reduces
controller bias by being closer to the desired goal of 4. As shown in Figure 8.3, the 1-
IPS(OLF) policy attains the goal with the least bias, and is essentially tie for the smallest
variability, giving it the best overall cost J.

All simulations were performed in Matlab 7.0.4 on a 3 GHz Pentium-4 PC computer (1875
chipset), with 2 GB memory, and an 8 MHz front-side bus. The average time taken to
calculate a single HCE control was .05 s, compared to 20 s for 1-IPS(HCE). This implies
that policy iteration with respect to HCE took 20/.05=400 times longer to calculate than a
single HCE control. Similarly, the average time taken to calculate a single OLF control was .
08 s, compared to 20 s for 1-IPS(OLF). This implies that policy iteration with respect to
OLF took 20/.08 ~ 260 times longer to calculate than a single OLF control. As pointed out
in Section 5.2, the current implementation benefits from a considerable computational
reduction in going from M = s = 5000 to M = 200 (a 25 times speed-up), and in using a
stopping rule with parameters 6J = 2, a = 2 (approximately factor of 2 speed-up). It is
conceivable that improved performance can be achieved at the expense of longer run times
by increasing M and using less conservative search parameters (i.e., smaller 6J and larger «).
This remains as an area for future investigation.

9 CONCLUSIONS

A sampling-based method is introduced for developing implicit dual controllers. The
approach combines particle filtering for nonlinear estimation with the IPS algorithm for
approximating the SDP equations of Bellman. This provides a complete sampling approach
to the problem. Simulation methods effectively handle all the underlying estimation and
control calculations as part of an integrated H-block data structure. Suggestions are given for
reducing the H-block computational loads in practical implementations. The method is
applied to a numerical example based on a pendulum having unknown parameters, random
initial conditions, and unknown sign of its dc gain. The method is shown systematically to
improve on standard stochastic control policies. This improvement is due to the active
learning features of the synthesized control laws, in contrast to the nominal starting policies
(HCE and OLF) that are known to be passive.

Future research efforts will consider applications having more than two control input values,
methods to reduce computation while retaining or even improving performance, and parallel
processing architectures. As computers become faster over the next decade, it may become
feasible to consider cascaded H-block architectures (multiple policy iterates) for improved
performance. Long term goals are to improve current approaches to pharmacokinetic control
and drug administration problems [57], that are traditionally handled using non-dual
stochastic control approaches (e.g., HCE in [58], and OLF in [17][43]).
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A APPENDIX: HCE Control

Given the current mean state Xi, the HCE control at time k for a terminal cost problem is
calculated by assuming all random variables attain their mean values, and minimizing the
cost,

ming, (x
i g (y) (A1)

SC\NZE[XNLY](:SC\](, {W,‘ZO, \’,‘ZO, izk, ey N - l}] (A.2)
where the controls being optimized over are given by the open-loop sequence,

T
Ur=[ug, g1, - - -5y ] (A.3)

u,={+1,-1}, n=k,....N—-1 (A.4)

It can be shown that the terminal cost can be written in matrix form as,

— 2 — — —_~ —~ —
gv (%) £ (pa — C&,) =UL DL CTCOLUY, — 2ACD U+ AT A (A5)

Int J Adapt Control Signal Process. Author manuscript; available in PMC 2011 March 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bayard and Schumitzky Page 27

A% A@y); B £ B(Bi, @) (A.6)
B & (V1B AR, B); By £ AV (A7)
D
X=| Br |5 A% pa— Vidk
Sk (A.8)
pa = Desired position at stage N (A.9)

The cost (A.5) is computed for each of the 2N~k enumerated control sequences Uy. The one
with smallest cost is denoted as the optimal sequence U;,

U;: = arg nll]ingNCx’T’V)
k

(A.10)
U;:[Il:,llz+l,....H;_l]r (A.11)
The first component u; of U;; is defined as the HCE control at time k,
uy F=uy (A.12)
B APPENDIX: OLF Control
The OLF control at time k for a terminal cost problem is calculated by minimizing the
expected cost,
ntl/iknE[g"’(x”Wk] (B.1)
where the controls being optimized over are given by the open-loop sequence,
Ur=[u, ttg1, .- - - ,uy_l]T (B.2)
u,=1{+1,-1}, n=k,...,.N—-1 (B.3)
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and where the terminal expected cost is given as,

Elgy(x)lk] £ E[(pa — C&)* (B.4)

pa = Desired position at stage N (B.5)

For OLF control determination, the cost (B.4) is evaluated using a Monte Carlo
approximation,

1 SoLr =
> oa-cely’
=1 (B.6)

E[gy(xy)lli] =~

Sorr

A particle filter is used to evaluate the realizations in (B.6), where sg g is the number of

SoLe

particles (assumed sufficiently large). Specifically, the current particle state Qix) j=1 at
time Kk is propagated without measurement (i.e., open-loop) from time k to time N for each of
the 2N~k enumerated control sequences Uy. The one with smallest cost is denoted as the

optimal sequence U7,

U £ arg nzl;inE [gy (o) k]
k

(B.7)
Up=lup, vy o1 ®8)
The first component i, of U; is defined as the OLF control at time k,
ZI,?LF:H;: (B.9)
C APPENDIX: Properties of Stopping Rule
This Appendix discusses properties of the control search stopping rule given by (5.3).
Define a decision variable d as,
d=Jr(2) — J(1) (C.1)
where,
J(D)=E[Li(D)], i=1,2 (c.2)
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Let the Monte Carlo estimate d of d be defined as,

d(m)=Jx(2) - Ti(1) 3

. 1 m
Jk(i)z—ZL;;(i), i=1,2
m n=1 (C.4)

where m MC trajectories are used in the calculation. The decision variable d is estimated by
d with asymptotically Normal statistics,

p(d)m measurements)=N ((’l\(m), a’?,(m)) (C.5)

The following discussion will assume asymptotic statistics, where cr:;(m) is tentatively
assumed known. Let a stopping rule 7 based on d be defined according to (5.3) as,

Tom 2 { StOP ifld(m)|+67 > aoa(m)
continue otherwise (C.6)

Let a control decision rule P based on d be defined as,

1 ford(m)>0

w=P(m) £ -
-1 ford(m) <0 (c.7)

Let an event & be defined as,

& = {Event that acontrol is applied having an associated expected cost (C.8)

greater than 6J units larger than the optimal} (C.9)

LEMMA C.1

Let the search process be terminated using stopping rule 7, at which time the control is
determined by decision rule P. Then

pEID,T) <y (C.10)

where,
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y=.1587 for a=1 (c.11)
v=.0227 for a=2 (C.12)
¥=.0013 for =3 (C.13)

Proof

PEID. T)=p (EID. T, d(m)>0) p (d(m)>0)
+p (EID. T, d(m) < 0) p(d(m) < 0)

(C.14)

=p(d < ~6J1D.d(m)+5] > acy(m), d(m)>0) p (d(m)>0)
+p(d 2 61D, ~d(m)+5] > acg(m), d(m) < 0) p (d(m) < 0) (C.15)
< Y(aog)p(d(m)>0)+y(aca) (1 - p(d(m)>0)) (C.16)
=y(aoy) (€.17)

where y (aayq) is the probability in the one-sided tail of a Gaussian variate at a standard
deviations o4 away from its mean. Values for y are tabulated in (C.11) (C.12) (C.13). The
first term in (C.15) follows from Figure C.1 and evaluation of the stopping rule 7 (in (C.6))
on the condition d (m) > 0. A similar diagram and argument can be made for the second term
using the condition d (m) < 0. Equation (C.16) follows from (C.15) by noting from Figure C.
1 that the indicated tail area can be overbounded by 7.

In practice, the value for (r:;(m) is not known exactly. Instead, a value is estimated using the
unbiased formula (5.5), and substituted into all relevant expressions.
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Figure 3.1.

Stochastic control framework based on particle filtering.
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Figure 4.1.
H-Block implementation of a policy iteration.
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*1
p-1 u, p-1 (I o )

Figure 4.2.
H-Block cascade implementation of multiple policy iterations.
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I
i

Figure 5.1.
H-block implementation for implicit dual control. Relay type control for simplicity u = 1.
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|d(m)

Figure 5.2.
Situation for stopping rule when |d(m)] > J.
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oJ

Figure 5.3. .
Situation for stopping rule when |d(m)| < dJ.
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L

Figure 6.1.
Pendulum model.
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omega (freq) estimate (red") and truth (biue)

Figure 7.1.
Convergence of pendulum frequency estimate  to its true value of w* = 2 (rad/sec),
including 50 (broken line) and 95 (solid) percentile bounds.
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beta (inv-mass) estimate (red") and truth (vlue)

Figure 7.2.
Convergence of || to its true value of |f*| = 9 including 50 (broken line) and 95 (solid)
percentile bounds.
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Figure 7.3.

True pendulum position (m).
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red). bound: 50% (green-dash)

Figure 7.4.
Position estimation error p — p (m) with 50 (broken line) and 95 (solid) percent confidence
bounds.
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Histogram of pendulum period (sec)

Figure 8.1.
Histogram of pendulum period z = 27/w (S).
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Figure 8.2.
Histogram of pendulum dc gain.
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Figure 8.3.

Comparison of Case 2 controller performance results in achieving the goal of 4 (dash-dot
line). For each control policy, the mean position m; (solid) at the final time is shown along
with its £1 standard deviation o3 (upper and lower dashed line).
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Figure C.1. R
Probability of d conditioned on d (m) > 0.
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