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Abstract
In this paper we consider the task of image reconstruction in positron emission tomography (PET)
with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a
rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram
coordinate system which is a native data format for PET systems with panel detectors. A rebinning
algorithm averages over the redundant four-dimensional set of PET data to produce a three-
dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of
data. This process enables one to reconstruct PET images more quickly than reconstructing directly
from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm.
We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection
(FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our
image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction
by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be
used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the
planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered
backprojection and exact reconstruction with the PFDR algorithm require complete projections
which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the
rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector
coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments
using both simulated data and measured data from a positron emission mammography/tomography
(PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D
FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact
reconstruction) and planogram filtered backprojection image reconstruction algorithms. We show
that the PFDRX algorithm produces images that are nearly as accurate as images reconstructed with
the planogram filtered backprojection algorithm and more accurate than images reconstructed with
the PFDR+FBP algorithm. Both the PFDR+FBP and PFDRX algorithms provide a dramatic
improvement in computation time over the planogram filtered backprojection algorithm.

1. Introduction
Positron emission tomography (PET) is a medical imaging method that utilizes positron-
emissing pharmaceuticals to assess the physiology and patho-physiology of patients by
mapping the distribution of the tracer in their body (Wernick and Aarsvold 2004, Bendriem
and Townsend 1998, Natterer 1986, Natterer and Wübbeling 2001). This task is accomplished
by detecting the anti-colinear annihilation photons with specialized systems. The virtual line
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connecting a given pair of detector elements is called a line of response (LOR). The number
of coincidences measured by a given pair of detector elements can be modeled by the Radon
transform which is a line integral of the concentration of the radiotracer along the LOR
determined by the given detector element pair.

This work is motivated by a new positron emission mammography/tomography (PEM/PET)
system (Raylman et al 2006,2007,2008) developed at West Virginia University. The system
comprises two pairs of parallel planar detectors. Only the panels parallel to each other are in
coincidence. Each detector plane has an effective size of 2L = 195.3 mm by 2H = 144.9 mm
which is composed of a 94 by 70 array of detector pixels with a distance of Td = 2.1 mm between
the centers of two adjacent detector pixels. The distance between two opposing detector heads
is 2R = 264 mm. The detector gantry is capable of rotation (in step-and-shoot mode) to acquire
data at all azimuthal angles.

High quality, rapid image reconstruction algorithms for this system are desired for the detection
and quantitation of small lesions (less than 5 mm). If a lesion is detected, an image-guided
biopsy is performed while the patient remains on the imaging table. An efficient image
reconstruction algorithm is desired to minimize the time the patient must remain on the imaging
table.

Image reconstruction algorithms can be developed by analytic inversion of the Radon transform
which is parameterized into sets of projections. A projection (figure 1) is the 2D set of LORs
that intersect the image for a fixed direction (fixed polar and azimuthal angle).

Sufficient conditions for image reconstruction from the PET projection data have been
characterized by Orlov (1976). Suppose we plot the angular orientation of all the measured
projections on a unit sphere (known as the Orlov sphere) and denote this set by Ω. The Orlov
condition states that the measured data are sufficient if there is no great circle on the unit sphere
that does not intersect Ω. If a proper subset of Ω satisfies the Orlov condition then the problem
is over determined, i.e. there is redundancy in the measurements. Figure 2 displays two Orlov
sphere examples.

Image noise is related to the number of measured coincident photon pairs. To optimize the
signal-to-noise ratio (SNR), one should use as much of the data as possible. The
parameterization of LORs in three-dimensional Euclidean space (i.e. the acquired data set) is
a four-dimensional set. Image reconstruction in PET is an overdetermined problem because a
four-dimensional data set is used to determine a three-dimensional object (the source of
redundancy in the Orlov condition). We will refer to the data whose LORs have a co-polar
angle of zero as the direct data and the remaining data as the oblique data. The Orlov sphere
of the direct data is shown in the left plot of figure 2. One could reconstruct the image by only
using the (three-dimensional) direct data instead of the entire (four-dimensional) set of data,
but this reconstruction scheme results in a suboptimal SNR.

Many fully 3D reconstruction algorithms have been developed for PET imaging. These
algorithms reconstruct the image directly from the entire 4D set of measured data. Examples
of such algorithms are 3D filtered backprojection (Colsher 1980) and OSEM (Hundson and
Larkin 1994). Brasse et al (2004) have developed a 3D filtered backprojection algorithm in
the planogram coordinate system.

A rebinning algorithm averages over the oblique (redundant) data and outputs a three-
dimensional direct data set. Standard 2D reconstruction algorithms can then be used to
reconstruct the image, slice-by-slice, from this rebinned direct data. Image reconstruction with
rebinning algorithms is more computationally efficient than exact analytic reconstruction
methods such as 3D filtered backprojection. Another advantage of rebinning algorithms over
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3D filtered backprojection algorithms is their ability to use data associated with truncated
projections. A truncated projection is a projection in which some of the LORs in the projection
are not measured (figure 1) due to the finite size of the detectors. Filtered backprojection
algorithms must either throw out data associated with a truncated projection or include an extra
step to compensate for the missing data such as the implementation of a reprojection algorithm
(Kinahan and Rogers 1989).

The PFDR (Champley et al 2008) and Kao (Kao et al 2004) algorithms are the only rebinning
algorithms that have been developed specifically for PET scanners with parallel planar
detectors. Several rebinning algorithms have been developed for cylindrical PET scanners such
as Fourier rebinning (FORE) (Defrise et al 1997), exact Fourier rebinning (FOREX) (Defrise
et al 1997) and Fourier rebinning based on John’s equation (FORE-J) (Defrise and Liu
1999). Single slice rebinning (SSRB) (Daube-Witherspoon and Muehllehner 1987) is a general
rebinning algorithm that can be applied to any PET geometry, but is less accurate than the
PFDR and FORE algorithms.

The content of this paper is concerned with further advancements to the planogram frequency–
distance rebinning (PFDR) algorithm (Champley et al 2008) which is an approximate rebinning
algorithm derived in the planogram coordinate system. This rebinning algorithm is based on
the frequency-distance relationship (Champley et al 2008, Bernardi et al 2007). The planogram
coordinate system is a native coordinate system for PET scanners with parallel planar detectors.
In the original PFDR paper (Champley et al 2008) the authors developed the PFDR algorithm
and provided numerical experiments using both simulated data and data from the PEM/PET
system described above. The numerical experiments provided a qualitative and quantitative
comparison of images reconstructed with the 2D FBP algorithm from data rebinned with the
PFDR and SSRB algorithms. Computation times for the PFDR algorithm were also stated.

This paper is organized as follows: in the next section we describe the planogram coordinate
system which is the cross product of two linogram coordinate systems (Edholm and Herman
1987). Section 3 briefly describes the 2D filtered backprojection algorithm in linogram
coordinates for variable number of views (rotations of the detector gantry). The main results
of this paper are contained in section 4, where we show that if we reconstruct our image by
implementing the PFDR algorithm followed by the linogram filtered backprojection algorithm
from section 3, the result can be expressed as a filtered version of the true image. An explicit
formula for this filter is derived. This filter can be used to appropriately modify the ramp filter
in the linogram filtered backprojection algorithm to achieve exact reconstruction or explicitly
characterize the errors in images reconstructed from the PFDR algorithm followed by filtered
backprojection. This method for exact reconstruction requires complete projections which must
be completed with a reprojection algorithm. We also show how the filter used in the Brasse
algorithm (Brasse et al 2004) is related to the filter we derive for exact reconstruction. In section
5 we develop the PFDR algorithm in detector coordinates. Expressing the PFDR algorithm in
detector coordinates also enables us to provide a comparative analysis of the PFDR and Kao
algorithms. Numerical experiments using both simulated and measured data from the PEM/
PET scanner are outlined in section 6. We finish with some concluding remarks in section 7.

1.1. Notation
In the following discussion, we will refer to the support of a function, , as the set

The inner product will be denoted by 〈·, ·〉. The complement of a set A will be denoted by
Ac. The indicator function of a set A will be denoted by
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Binary subscripts mark variables for which we have taken the Fourier transform. For example,

if , then the Fourier transform of h in the second variable is

This notation was introduced in Brasse et al (2004) and is necessary because in the following
it will be difficult to identify the variables for which we have taken the Fourier transform based
on the arguments.

We will use the following theorem throughout this paper. For a proof see Folland (1999).

Theorem 1.1—Let  be real-valued and A be a nonsingular matrix and B =
(AT)−1. Then

Moreover, if A is a rotation, then

2. The planogram transform
Let f (x, y, z) denote the concentration of the PET radiotracer with

where a < min(R, L) and c ≤ H. In practice, it is often the case that c > H, but since none of the
coincident photon pairs are measured for annihilations beyond the axial extent of the scanner,
we may assume without loss of generality that c ≤ H.

The signals measured by the interaction of annihilation photons in the detector module are
decoded by the electronics, and the estimated interaction position is given in detector (s, t)
coordinates (figure 3). We will parameterize the PET data in planogram coordinates which can
be expressed as a linear transformation of detector coordinates (figure 3) by

(1)

(2)

Champley et al. Page 4

Inverse Probl. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The PET data can be modeled by the planogram transform (Brasse et al 2004) given by

(3)

which is the 3D extension of the linogram transform:

developed by Edholm (Edholm and Herman 1987). The variables (v0,v1) describe the angular
orientation of the LOR, so g(·, v0, ·, v1) is a 2D parallel beam projection. Observe that the
planogram transform (3) is a parameterization of line integrals of f weighted by

(4)

Given supp(f) ⊆ Sf, the support of g is contained in the butterfly-shaped set given by

Due to the finite size of the detectors, the planogram transform cannot be measured for all
. The measured domain is the diamond cross diamond shape given by

We define the measured planogram transform by

After observing the intersection of Sg and M, we see that there is no truncation in the u0 and
u1 directions for

(5)

In other words for ∣v0∣ ≤ vm0 and ∣v1∣ ≤ vm1, the 2D projections given by gm(·, v0, ·, v1) are not
truncated. Now we define the restricted domain by

and the restricted planogram by
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2.1. Gantry rotations
Complete 3D tomographic reconstruction is not possible with one detector orientation of the
PEM/PET scanner since we do not have projection data over all azimuthal angles (i.e. Orlov’s
condition (Orlov 1976) is not met). To acquire full tomographic data, the PEM/PET scanner
is rotated around the scanner axis (z-axis). If the detector gantry is rotated azimuthally
counterclockwise by ψ, the planogram data are given by

A more convenient way to express gψ is

We will use the convention g = gψ=0 and f = f−ψ=0. One can show that

From this last relation, we see that the sampling of the data is quite different for each view; the
transformation of the sampling lattice is a nonlinear mapping.

Note that due to the dependence of vm0 on a, the number of detector positions necessary (for
this particular geometry and rotation direction) for tomographic reconstruction (to satisfy the
Orlov condition) depends on a. Specifically, for a given a, one needs

detector positions, where φm0 ≡ tan−1(vm0); or equivalently

If we write the equation for vm0 in terms of a, we have

which is a decreasing function for 0 ≤ , so

Champley et al. Page 6

Inverse Probl. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

For example, using a = 60 mm, we will need three gantry positions (Nψ = 6 detector positions),
spaced  apart to fulfill Orlov’s condition. Thus, in this case we will have Nψ = 6 sets
of data:

3. Linogram filtered backprojection algorithm from multiple views
After application of the PFDR algorithm, we are left with a stack of data in linogram coordinates
for each detector position. In this section we explore image reconstruction with the linogram
filtered backprojection algorithm from multiple views, i.e. data from multiple gantry rotations.
For a detailed analysis of the specific case where only two detector positions are used, see
Magnusson (1993). The rotational linogram transform is given by

We now state the projection-slice theorem for the general linogram transform.

Proposition 3.1

Let  and gψ be defined as above. Then we have that

Proof

For ψ = 0, we have , see Magnusson (1993). For ψ ≠ 0, the result
follows by application of theorem 1.1 to the last relation.

The image, f, can be recovered from one detector orientation if the detector is of infinite length,
as suggested by the following theorem.

Proposition 3.2

Let  and gψ be given as above. Then

Proof
We have
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Now let

(7)

Then ∣r∣ dr dφ = ∣U∣ dU dv and by taking the dot product of (7) with , we have

Therefore,

The next theorem generalizes the above result to the case of detectors of finite length and is
the basis for multiview linogram filtered backprojection algorithm.

Proposition 3.3

Let  and supp(f) ⊆ Sf. Also let Nψ defined as in (6) and  for k = 0, 1, …,
Nψ − 1. Then

where the sum is over all the gantry rotations and

is the number of gantry rotations that have measured LORs in this particular direction.

The proof follows easily from theorem 3.2.

4. Exact reconstruction and characterization of error of the PFDR
The PFDR algorithm (Champley et al 2008) provides a method to reconstruct an approximation
of the distribution of the radiotracer, f, with any 2D reconstruction algorithm. In this section
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we provide additional analysis of the PFDR algorithm including a method for exact
reconstruction and an error analysis of reconstructing images with the PFDR algorithm
followed by the filtered backprojection algorithm outlined in the previous section.

For notational convenience, we define a linear operator  by

For  and supp(f) ⊆ Sf, the PFDR algorithm rebins the planogram data into a stack
of linograms according to

In the above we have the PFDR algorithm applied to the measured data, but the same procedure
can be applied to the restricted data. The parameter v1max controls the maximum co-polar
acceptance angle to be rebinned. The term N(−V0/U0,z; v1max) is used to normalize the varying
number of contributions from each of the oblique projections resulting from the finite size of
the detectors. Note that if v1max ≤ vm1, then N(−V0/U0,z; v1max) = 2v1max and in this case PFDR
algorithm is given by

The next theorem establishes a connection with the K operator and the backprojection operator.
The backprojection operator is the (formal) adjoint of the planogram transform which is given
by

Theorem 4.1

Let . Then

(8)

Proof
We have
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Thus, the K operator computes the backprojection over v1 and the substitution V0 = −yU0
followed by an inverse Fourier transform in U0 variable computes the backprojection over
v0. The rebinned measured data with v1max = H/R are related to the backprojection operation
of the measured data by the relation

As a numerical algorithm, the K operator applied to measured data is actually
 and not . The distinction is subtle, but in the discrete

case the calculation of  requires 1D interpolations in Fourier space. This
can be implemented accurately and efficiently with the CHIRPZ algorithm (Magnusson
1993). Calculating the backprojection over v0 by numerical integration gives slightly better
results (data for comparison not shown).

The next theorem is the basis for the PFDR algorithm for restricted data and will be used in
the subsequent analysis.

Theorem 4.2

Let , supp(f) ⊆ Sf, and let gm0 be the restricted planogram as defined above. Then

(9)

(10)

For a proof see Champley et al (2008).

A rebinning algorithm such as PFDR enables one to (approximately) reconstruct an image
slice-by-slice with a 2D reconstruction algorithm. The next theorem derives the result of
reconstructing our image from the rebinned data with the 2D filtered backprojection algorithm
(theorem 3.3). We will refer to the discrete implementation of this theorem as the PFDR
+FBP algorithm.

Theorem 4.3

Let  and supp(f) ⊆ Sf with . Let
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where  for k = 0, 1, …, Nψ − 1. Then  contains a partition of
the set of projections over all azimuthal angles. Define

where gm0 is defined as in section 1. Then

Proof
Let

Then with the help of theorem 4.2 we have

The last equality follows from theorem 1.1.
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Thus, the PFDR+FBP algorithm reconstructs a filtered version of the true object, where the
(shift-variant) 3D filter is given in frequency space by

(11)

When we restrict the integration of v1 to ∣v1∣ ≤ v1max ≤ vm1, we have  and
this filter is independent of yψk = y cos ψk − x sin ψk and z (i.e. the filter is stationary) and is
equal to

(12)

where

This filter is illustrated in figure 4 and explicitly derived in proposition 4.6. The filter is equal
to one except inside a cone aligned in the axial direction. The aperture of this cone is given by
the parameter v1max.

When v1max → 0, fPFDR = f as shown in theorem 3.3.

The following theorem can be used to implement an efficient reprojection algorithm in the
planogram coordinate system (Brasse et al 2004) by employing only FFT operations, similar
to the 3D Fourier reprojection (3D-FRP) algorithm (Matej and Lewitt 2001) derived in
sinogram coordinates. We will refer to this method of reprojection as the planogram Fourier
reprojection (PFRP) algorithm. The theorem is also used in the proof of theorem 4.5.

Theorem 4.4

Let , supp(f) ⊆ Sf, and let gm0 be the restricted planogram as defined above. Then
for ∣v1∣ ≤ vm1 we have

For a proof see Brasse et al (2004).

The next theorem establishes a connection between the direct data  and the

rebinned date .

Theorem 4.5

Let  with supp(f) ⊆ Sf and v1max ≤ vm1 be given. Define
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just as we have above. Then for ∣v0∣ ≤ vm0 we have that

(13)

(14)

Proof

Since v1max ≤ vm1,  for ∣v1 ≤ v1max. Now we use theorem 4.2 with the
substitutions V0 = −yU0 and u1 = z + v1y to establish the relation

and thus

By taking the Fourier transform of the variables (y, z) of both sides of the above equality we
have that

Making the substitution v0 = Y/U0 we have

The filter  is explicitly derived in the next proposition.

Proposition 4.6
Define
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Then

Furthermore, when ∣v0∣ ≤ vm0

is a continuous function on .

The proof of the above proposition is straight-forward and thus will be omitted for the sake of
brevity. Now we are ready to state our theorem for exact reconstruction with the PFDR
algorithm which is the main result of this paper. We will refer to the discrete implementation
of this theorem as the PFDRX algorithm.

Theorem 4.7
Under the hypotheses of theorem 4.5 we have that

where

Proof
The proof immediately follows from theorems 4.5 and 3.3.

Thus one can obtain exact reconstruction by the use of the PFDR algorithm followed by a
modified linogram filtered backprojection, where the usual ramp filter, ∣U0∣, is replaced by
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Theorem 4.7 enables one to obtain an exact reconstruction from the set of nontruncated
projections. Often the support of f extends to the ends of our axial field of view. In this case
vm1 = 0. The PFDRX algorithm along with 3D FBP algorithms may use a reprojection algorithm
to complete the unmeasured projections (Kinahan and Rogers 1989) to extend vm1. A
reprojection algorithm takes an initial estimate of the image and re-projects the data onto virtual
detectors to estimate the missing data. Brasse et al (2004) suggest using theorem 4.4 as a means
of efficient reprojection. Reprojection could also be used to extend vm0.

4.1. Connection to the planogram filtered backprojection algorithm developed
by Brasse et al—There is a lot of similarity between the PFDRX algorithm and the
planogram filtered backprojection algorithm developed by Brasse et al (2004). The PFDRX
algorithm reconstructs the exact image by first rebinning the algorithm into a stack of linograms
(which is equivalent to a backprojection over v1), filtering the stack of rebinned linograms, and
then backprojecting over v0. The planogram filtered backprojection algorithm filters the data
and then performs 2D backprojection over both v0 and v1. The filter used by the planogram
filtered backprojection algorithm is given by

where

Note that for 

The PFDRX algorithm is computationally more efficient than the planogram filtered
backprojection algorithm by implementing a more efficient method of backprojecting over
v1 and filtering a three-dimensional set instead of a four-dimensional set of data. The next
section outlines a method to further improve the computational complexity of the PFDR
algorithm where applied to the measured data.

5. PFDR algorithm in detector coordinates
In this section we derive the PFDR algorithm in detector coordinates to improve the
computational efficiency. The relations between the detector coordinates and planogram
coordinates are given by equations (1) and (2) and drawn in figure 3. Define the PET data
transform in detector coordinates by
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Similar to the planogram transform, we define the measured and restricted data in detector
coordinates by

respectively.

Now let

Then we have that

for the detector coordinates (sA,sB,tA,tB) and the planogram coordinates (u0,v0,u1,v1). The
planogram coordinate and detector coordinate transforms are related by

Then by theorem 1.1 we have that

(15)

The basis for the PFDR algorithm lies in the relation

which holds for . By the above relationship and (15), we have that

(16)

Now let (XA,XB) be such that
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and thus

Then from (16) we arrive at the PFDR relation in detector coordinates

(17)

Thus, the PFDR algorithm in detector coordinates is given by

(18)

Suppose that we wish to perform the PFDR algorithm on the measured data set and we have
Ns detector pixels in the transaxial direction and Nt in the axial direction. The transformation
from detector coordinates (sA,sB) to linogram coordinates (u0,v0) transforms the data set from
a square block to a diamond-shaped block (ML) with zeros placed within the data set in a
checkerboard pattern as shown in figure 5. In other words the sampling in linogram coordinates
is on an interlaced lattice. Thus, in detector coordinates we have a data set of  elements and
in linogram coordinates we have a data set of size (2Ns − 1)2. For fixed (tA,tB) an FFT of the

data set q(·,·,tA,t) requires  operations and an FFT of the data set g(·, ·,u1,v1) requires
(2Ns − 1)2log((2Ns − 1)2) operations. Computation of the FFT in detector coordinates provides
a computational complexity gain by a factor of about 4. Also note that in the absence of zero
padding in the FFT, the PFDR algorithm must rebin (2Ns − 1)2 different frequencies in
planogram coordinates and only  in detector coordinates. Therefore, we expect that
implementing the PFDR algorithm applied to the measured data set in detector coordinates
requires about four times fewer operations than the PFDR algorithm in planogram coordinates.

5.1. Comparison of PFDR and the Kao rebinning algorithm

By letting z = u1 and  in equation (17) we have

This relation, which we call the PFDR relation, is only an equality in the case of ideal data
(Champley et al 2008). In the case of measured or restricted data this relation is merely
approximate. The Kao rebinning algorithm (Kao et al 2004) is described in our notation by
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Thus, one can perform exact rebinning on the entire set of measured data with the Kao
algorithm. Unfortunately in practice this algorithm (Kao et al 2004) distorts the data and
increases noise levels. This increase in noise level is likely due to the use of finite difference
methods to approximate derivatives in the correction term.

With nontruncated projections, i.e. with ∣v0∣ ≤ vm0 and ∣vm1∣ ≤ vm1, one can perform exact
reconstruction with the PFDRX algorithm by theorem 4.7. However, we must note that this
does not imply that we have developed a method for exact rebinning. Consider equation (14).

Since , we may not filter the rebinned data . In
theorem 4.7, exact reconstruction is performed by filtering the rebinned data by

The ∣U0∣ term prevents this filter from blowing up near U0 = 0 and thus provides a stable filter.

6. Numerical experiments
In this section we describe the numerical experiments that were performed to test the PFDR
+FBP and PFDRX algorithms. We start by discussing the implementation details of the PFRP,
PFDR+FBP, PFDRX and Brasse algorithms. The next two subsections discuss the experiments
performed on simulated and measured data, respectively.

6.1. Implementation details
The PFDR algorithm was implemented in detector coordinates (18). The FFTW library (Frigo
and Johnson 2005) was used to compute the FFTs. The accuracy of the PFDR algorithm
depends on the amount of zero padding used. For our experiments, we used FFTs of size 144
× 144 for the 94 × 94 array of data. By definition, the PFDRX algorithm can only be applied
to the restricted data set, gm0 for ∣v1∣ ≤ vm1. In the PFDR+FBP algorithm one can rebin the
measured data set, gm, or just the restricted data set, gm0, but in either case the FBP algorithm
only uses the projections such that ∣v0∣ ≤ vm0. We found that using only the restricted data set
in the rebinning step of the PFDR+FBP algorithm resulted in images in lower contrast as
compared to images where the measured data set was rebinned. For this paper we only
evaluated the PFDR+FBP algorithm applied to the measured data set.

The restricted data set for vm0 = tan(15°) represents about 59% of the data. This loss of data is
certain to result in a reduction in the SNR, but for parallax considerations (Wernick and
Aarsvold 2004) in the PEM/PET scanner this data is discarded anyway (Raylman et al 2008).

The planogram Fourier reprojection (PFRP) algorithm was implemented as follows. First we
calculated an initial estimate of our image. One can use only the direct data for this initial
estimate, but we found that better results could be achieved by reconstructing the initial estimate
with the PFDR+FBP algorithm with a small polar acceptance angle of 5°. This method seemed
to provide a nice compromise between accuracy and noise. For each data set, gψ, we then
computed f−ψ. Then we calculated samples of  with the FFT algorithm. Now for
each v1 and z we calculated the product
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Then for each v0 we used the CHIRPZ (Magnusson 1993) algorithm to calculate a Fourier
transform in the y dimension to output frequency samples spaced by Tv0X units, where Tv0 is
the sampling distance in the v0 variable. Thus, we have calculated

To prevent aliasing, one should multiply  by

where  is the Nyquist frequency of our image and Ty is the sampling distance in the y
dimension. Finally we calculate an inverse 2D FFT algorithm to get gψ(u0,v0,u1,v1) which is
our reprojected data.

To minimize ringing artifacts introduced by Gibb’s phenomenon, the filters were modified
slightly. For the PFDRX and Brasse algorithms, we filtered the rebinned data by

respectively, and for the PFDR+FBP, we filtered the rebinned data by

where Tu0 and Tu1 are the sampling rates for u0 and u1, respectively. The terms (1
−(2Tu0U0)8) and (1 − (2Tu1Z)8) are used to apodize the digital filters and were optimized
empirically.

The axial support of the rebinned data extends past the axial field of view. The PFDRX
algorithm filters along this dimension, so to avoid ringing artifacts caused by Gibb’s
phenomenon, we calculated  for all ∣z∣ ≤ c + av1max. This maximum value
for z was chosen by empirical observations.

From theorem 4.4, we have

for ∣v0∣ ≤ vm0 and ∣v1∣ ≤ vm1. This relationship is known as the zeroth-order Radon consistency
condition (Natterer 1986), and we use this to enforce the total number of counts in the
reconstructed image to be the same as the number of counts averaged over all the 2D
projections.

To account for the effects of detector sensitivity due to the solid angle of a detector pair as seen
from the point at the center of the scanner, we multiplied the data by
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Note that

where θ is the co-polar angle and φ in the azimuthal angle. Along with the planogram correction
(reciprocal of (4)), the data were weighted by an overall factor of

The reconstruction software was written in C++ and run on a 3.06 GHz Intel Core 2 Duo
processor. The images were all reconstructed from six sets of data: {gψ : ψ = 0°, 30°, 60°, 90°,
120°, 150°}. Since the PFDR+FBP, PFDRX and Brasse reconstruction algorithms process each
set of data independently, parallelizing the reconstruction algorithms is a trivial matter. One
can parallelize the data onto up to six processors to speed the computation. We parallelized the
data onto the two processors on our machine. Image reconstruction times for each of the
algorithms (with v1max = tan(15°)) we tested are shown in table 1 for images of voxel side
length 2.1/2 mm (image is 141 × 115 × 115) and table 2 for images of voxel side length 2.1/4
mm (image is 281 × 233 × 233). All images shown below have voxels of side length 2.1/4 mm.
When the reconstructions were serialized onto one processor, the computation times were
almost exactly twice as long. Thus, we expect the reconstruction time to be reduced to a third
of what was reported in tables 1 and 2 when the reconstruction is parallelized onto six
processors.

6.2. Simulated data
Simulated data enables controlled experiments with known ground-truth to provide
quantitative analysis (accuracy and noise properties) of image reconstruction algorithms.
Digital phantoms were reconstructed with the PFDR+FBP, PFDRX and Brasse algorithms.
We implemented analytic ray-tracing algorithms to simulate data from the PEM/PET scanner
whose specifications were described in the introduction. Each LOR was weighted by the solid
angle that the detector crystal pair subtends to provide a rough estimate of the detector
sensitivity. Physical effects such as detector response, scatter, attenuation, etc were not
incorporated in our simulation. Where noted, Poisson noise was applied to the simulated data.

Our phantom (figure 6) consists of a warm background with hot and cold cylindrical regions
(contrast between hot cylinders and background is 2:1 and cold regions have no activity). The
small cylinders have a diameter and height of 2.4 mm, and the large cylinders have a diameter
of 9.6 mm and a height of 3.6 mm. The phantom extends to the top edge of the axial field of
view. This is similar to breast imaging where the breast extends to the top edge of the axial
field of view where it meets the chest wall.

The support of our phantom is contained within a cylinder of radius 60 mm. Thus, from equation
(5) we have that vm0 = 0.2691 ≈ tan(15°). To fulfill the Orlov conditions, we need Nψ = 6
detector positions (see equation (6)) at rotation angles ψ = 0°, 30°, 60°, 90°, 120°, 150°. Since
the phantom extends to ends of the axial extent of the scanner, vm1 = 0.

Champley et al. Page 20

Inverse Probl. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7 displays noiseless reconstructions with v1max = tan(15°), and figure 8 displays plots
of profiles through these images. Figure 9 displays noiseless reconstructions with

 and figure 10 displays plots of profiles through these images. Note that
the maximum oblique LOR measured has a value of . Reconstructions with noisy data are
shown in figure 13. Approximately 777 million coincidences were used in the reconstruction
algorithms. This count level is higher than what one should expect from the PEM/PET scanner,
but was chosen to illustrate the differences between the three reconstruction algorithms.

The root mean squared error (RMSE) of the large hot and cold cylinders reconstructed with
the noiseless data is plotted in figures 11 and 12 for v1max = tan(15°) and v1max = tan(29°),
respectively.

The relative L2 error of images reconstructed from the noisy data is shown in table 3. The

relative L2 error is defined by , where f is the true image and  is the reconstructed image.

Noise properties were evaluated in the images reconstructed from noisy data. The signal-to-
noise ratio (SNR) was measured by calculating the ratio of the mean to the standard deviation
in regions of interest in the warm background of the phantom. We chose regions of interest
that were localized within one axial slice of the image to evaluate how the SNR varies axially.
The SNR is plotted versus the axial (z) position of the region of interest in figure 14.

The contrast recovery coefficients (CRC) for the 2.4 mm hot cylinders of images reconstructed
from simulated noisy data are plotted in figure 14.

The root mean squared error (RMSE) of the large hot and cold cylinders reconstructed from
noisy data is plotted in figure 15.

6.3. PEM/PET data
We collected data from our PEM/PET scanner (Raylman et al 2006,2007,2008) to demonstrate
the quality of images reconstructed with the PFDR+FBP and PFDRX algorithms from real
data. The micro-Derenzo cold rod phantom was placed on its side (long axis of the cold rods
aligned in the transaxial direction) and scanned with the PEM/PET scanner. A total of about
66 million counts were collected and images were reconstructed with v1max = tan(15°). These
images are shown in figure 16.

7. Discussion and conclusion
We have developed a theoretically exact and numerically stable method for analytic image
reconstruction with the PFDR algorithm that is more computationally efficient than filtered
backprojection. We refer to this as the PFDRX algorithm (theorem 4.7). After one completes
the 2D projection data by a reprojection algorithm, the PFDRX algorithm can be implemented
in three steps. First one applies the PFDR algorithm to the four-dimensional set of restricted
data to rebin the data into a three dimensional set that consists of a stack of linogram data. Next
one applies a 2D filter to the rebinned data. Finally one back-projects the rebinned data over
v0 to form the image.

In this paper we have also developed more supporting theory to the PFDR rebinning algorithm.
Theorem 4.3 characterizes the error in images reconstructed by first rebinning the data with
the PFDR algorithm and then with the 2D filtered backprojection in linogram coordinates. We
refer to this reconstruction procedure as the PFDR+FBP algorithm. In section 5 we derived the
PFDR algorithm in detector coordinates. We expect that implementing the PFDR algorithm in
detector coordinates requires about four times fewer operations than the PFDR algorithm in
planogram coordinates when used to rebin the measured data.
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This work is the first to present the implementation of the Fourier reprojection algorithm in
planogram coordinates based on theorem 4.4. This method was first suggested as a means of
reprojection by Brasse et al (2004). Similar efficient reprojection algorithms in sinogram
coordinates can be implemented with 3D-FRP (Matej and Lewitt 2001) or FOREPROJ (Liu
et al 1999).

A comparative analysis of the PFDR+FBP, PFDRX and Brasse (filtered backprojection
algorithm in planogram coordinates) algorithms has been evaluated with simulated noise-free
and noisy data. From figures 7-10, we see that in the case of noise-free data that the Brasse
algorithm seems to provide the most qualitatively accurate images, followed by the PFDRX
algorithm and then the PFDR+FBP algorithm. The three algorithms rank in the opposite order
when it comes to computation speed as shown in tables 1 and 2. The three algorithms provide
a tradeoff between accuracy and noise as illustrated in figure 17. The PFDR+FBP and PFDRX
algorithms provide a dramatic reduction in computation time (tables 1 and 2) for a small
reduction in accuracy (table 3 and figure 15) versus the Brasse algorithm.

Figures 7-10 also illustrate how the accuracy of the PFDR+FBP algorithm seems to degrade
with increased axial acceptance angle, while the accuracy of the PFDRX and Brasse algorithms
remain essentially the same when applied to the noise-free data.

Reconstructions with simulated noisy data are shown in figure 13. One can still note the
distortions present in the images reconstructed with the PFDR+FBP algorithm. Differences in
noise texture between the three algorithms can also be seen at the edges of the field of view
along the axial direction. The apparent reduced noise level at the edges of the field of view in
the PFDRX and Brasse algorithms is likely due to the use of data estimation via reprojection.
Overall, the noise levels seem to be the largest in the images reconstructed with the PFDRX
algorithm. This apparent increase in noise is verified quantitatively in figure 14. The slight
increase in noise is likely due to the fact that one must correct for approximations made in the
rebinning step by implementing a sharper filter.

Table 3 provides a quantitative measure of the global error of the PFDR+FBP, PFDRX and
Brasse algorithms applied to noisy data. These measurements indicate that the PFDRX
algorithm provides more quantitative accuracy than the PFDR+FBP algorithm, but less
accuracy than the Brasse algorithm. To measure the quantitative accuracy in specific regions
of interest, we plotted the RMSE error in the large hot and cold cylinders in figure 15. These
metrics further support the assertion of the order of the rank in accuracy of the three algorithms
tested.

Significant differences cannot be seen in the measurements of the contrast recovery coefficients
of the small hot cylinders among the three reconstruction algorithms. Although these plots do
indicate that the Brasse algorithm provides the best contrast and the PFDR+FBP provides the
worst contrast, for a fixed z, the data differ by less than 10%.

Reconstructions of PEM/PET measured data agree with our findings with simulated data. The
images reconstructed from the PEM/PET data with the PFDRX algorithm displays better
contrast (more accuracy) than the images reconstructed with the PFDR+FBP algorithm (figure
16).
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Figure 1.
Sketch of a (left) nontruncated projection and a (right) truncated projection.
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Figure 2.
Examples of sets of projections (shown in black) plotted on the Orlov sphere. Both Ω0 and
Ω1 represent sufficient data, but Ω1 ⊃ Ω0 contains additional redundant data.
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Figure 3.
Parameterization of the LORs in the planogram coordinate system.
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Figure 4.

Axial slices of the filter  given by (12) with v1max =
0.5.
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Figure 5.
Detector coordinate samples (left). Linogram samples (right). The ×s mark the samples and
the dots mark zeros in the data. Here we have shown 36 samples which would require a data
size of 11 × 12 = 121 in linogram coordinates.
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Figure 6.
Phantom used for numerical experiments. Axial slice at z = 2.4 (left). Sagittal slice at x =
−36.686 (center). Coronal slice at y = 0 (right). The black lines profiles in figures 8 and 10.
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Figure 7.
Reconstructions using the PFDR+FBP, PFDRX and Brasse algorithms with v1max = tan(15°)
from simulated noiseless data. Axial slices are on the top row, and coronal slices are on the
bottom row.
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Figure 8.
Profiles of images reconstructed from the PFDR+FBP, PFDRX and Brasse algorithms with
v1max = tan(15°) from simulated noiseless data. Figure 6 shows the location of these profiles.
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Figure 9.
Reconstructions using the PFDR+FBP, PFDRX and Brasse algorithms with v1max = tan(29°)
from simulated noiseless data. Axial slices are on the top row, and coronal slices are on the
bottom row.
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Figure 10.
Profiles of images reconstructed from the PFDR+FBP, PFDRX and Brasse algorithms with
v1max = tan(29°) from simulated noiseless data. Figure 6 shows the location of these profiles.
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Figure 11.
Root mean squared error (RMSE) for large hot (left) and cold (right) disks of images
reconstructed from simulated noiseless data with v1max = tan(15°).
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Figure 12.
Root mean squared error (RMSE) for large hot (left) and cold (right) disks of images
reconstructed from simulated noiseless data with v1max = tan(29°).
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Figure 13.
Reconstructions using the PFDR+FBP, PFDRX and Brasse algorithms with v1max = tan(15°)
from simulated noisy data. Axial slices are on the top row and coronal slices are on the bottom
row.

Champley et al. Page 36

Inverse Probl. Author manuscript; available in PMC 2010 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 14.
Signal-to-noise and contrast recovery coefficient measurements of images reconstructed from
simulated noisy data with v1max = tan(15°). Signal-to-noise ratio (SNR) in the background
versus depth (left). The contrast recovery coefficient (CRC) of the hot 2.4 mm cylinders versus
depth (right).
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Figure 15.
Root mean squared error (RMSE) for large hot (left) and cold (right) disks of images
reconstructed from simulated noisy data with v1max = tan(15°).
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Figure 16.
The micro-Derenzo cold rod phantom was placed on its side in the PEM/PET scanner to provide
challenging axial variation for a rebinning algorithm. This phantom has cylindrical rods of
diameters 1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 mm with no activity. Images were reconstructed with
the PFDR+FBP and PFDRX algorithms (v1max = tan(15°)). Above we show the result of
averaging multiple coronal slices together.
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Figure 17.
Tradeoff between accuracy and speed of computation between the PFDR+FBP, PFDRX and
Brasse algorithms.
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Table 1

Image reconstruction computation times (s) with v1max =tan(15°) and voxel side length of d/2, where d = 2.1 mm
is the detector sampling distance.

Algorithm Total Reconstruction Reprojection Initial estimate

PFDR+FBP 116 116 – –

PFDRX 373 179 127 67

Brasse 2274 2080 127 67
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Table 2

Image reconstruction computation times (s) with v1max =tan(15°) and voxel side length of d/4, where d = 2.1 mm
is the detector sampling distance.

Algorithm Total Reconstruction Reprojection Initial estimate

PFDR+FBP 231 231 – –

PFDRX 540 346 127 67

Brasse 8832 8638 127 67
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Table 3

Relative L2 error of images reconstructed from simulated noisy data with v1max = tan(15°).

Algorithm Relative L2 error

PFDR+FBP 0.2219

PFDRX 0.1931

Brasse 0.1736
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