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Abstract

We propose a new latent Boolean feature model for complex networks that captures different types 

of node interactions and network communities. The model is based on a new concept in graph 

theory, termed the Boolean intersection representation of a graph, which generalizes the notion of 

an intersection representation. We mostly focus on one form of Boolean intersection, termed 

cointersection, and describe how to use this representation to deduce node feature sets and their 

communities. We derive several general bounds on the minimum number of features used in 

cointersection representations and discuss graph families for which exact cointersection 

characterizations are possible. Our results also include algorithms for finding optimal and 

approximate cointersection representations of a graph.

I. Introduction

A. Background

An important task in network analysis is to understand the mechanism behind the formation 

of a given complex network. Latent feature models for networks seek to explain the 

observed pairwise connections among the nodes in a network by associating to each node a 

set of features and by setting rules based on which pairs of nodes are connected according to 

their features. Inference of latent network features not only allows for the discovery of 

community structures in networks via association with features but also aids in predicting 

unobserved connections. As such, feature inference is invaluable in the study of social 

networks, protein complexes and gene regulatory modules.

Probabilistic latent feature models for networks are usually studied via machine learning 

techniques; known problems and analytic approaches include the Binary Matrix 

Factorization model [1], the Mixed-Membership Stochastic Block model [2], the Infinite 

Latent Feature/Attribute model [3], [4], the Multiplicative Attribute Graph model [5], the 

Attribute Graph Affiliation model [6], and the Cluster Affiliation model (or BIGCLAM) [7]. 

In contrast, almost nothing is known about deterministic, combinatorial latent feature 

models.
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In the recent work of Tsourakakis [8], a probabilistic latent feature model for networks was 

proposed that implicitly uses the notion of intersection representations of graphs [9], [10], 

[11] and builds upon the overlapping community detection approach of Bonchi et al. [12]. 

More specifically, in this model one fixes the total number of features and tries to assign to 

each vertex a subset of features in a way that maximizes a certain score. Here, the score of a 

specific feature assignment is the count of unordered pairs of vertices (u, υ) that satisfies the 

so-called Intersection Condition, which states that u and υ are adjacent if and only if they 

share at least one common feature. In particular, if one insists on a perfect score, i.e., a score 

equal to 
n
2 , then the minimum number of features required reduces to the intersection 

number of the graph [9]. An assignment of sets of features to vertices that achieves the 

perfect score is known as an intersection representation of a graph (see Fig. 1)1. If in the 

Intersection Condition one insisted on u and υ sharing at least p ≥ 1 common features, 

achieving a perfect score would require a minimum number of features equal to the p-

intersection number of the graph [10], [11]. Intersection representations elucidate 

overlapping community structures via a simple generative principle: one feature - one 

community. As an illustrative example, each feature in Fig. 1 may describe one community; 

the triangle forms one community defined by feature a1, and the remaining two edges are 

defined by features a2 and a3, respectively. Note that all communities are cliques, and that 

they may overlap (intersect).

B. Our Contribution

We propose to extend the combinatorial variant of the model studied by Bonchi et al. [12] 

and by Tsourakakis [8] to a much more general setting by using Boolean functions of 

features that can express more complicated interactions among nodes (vertices). For 

instance, suppose that there are three different types of features, namely ‘Family member’, 

‘City’, and ‘Hobby’. The Boolean function f (x1, x2, x3) = x1∨(x2∧x3) can be used to express 

the connection rule that two people are Facebook friends if and only if either they are family 

members or they have lived in at least one common city and shared at least one common 

hobby. As such, it asserts that the ‘Family’ feature is more relevant than either of the ‘City’ 

or ‘Hobby’ features. More generally, we can use any Boolean function f = f (x1, …, xr) 

together with a vector p = (p1, …, pr), pi ≥ 1, to describe a connectivity rule based on r 
different types of features in which the requirement ‘sharing at least one common feature of 

type i’ is replaced by the requirement ‘sharing at least pi common features of type i’.

In the scope of this paper, we mostly focus on a basic building block of Boolean functions, 

namely the AND function of two variables f (x1, x2) = x1 ∧ x2. It is straightforward to see 

that the Boolean OR function leads to results identical to those obtained for the simple 

intersection problem, and results obtained for AND functions allow one to easily extend all 

the proposed approaches to the case of Boolean functions that include both AND and OR 

operations. For simplicity, we also consider (p1, p2) = (1, 1). To illustrate the latent feature 

model arising in this setup, we consider the example in Fig 2. The network has five nodes, 

1The intersection representation of graph arises in numerous problems such as the keyword conflict problem, the traffic phasing 
problem, and the competition graphs from food webs, to name a few, and has been extensively studied in the literature (see, for 
instance [13], [14]).
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which represent five different people. Each person is assigned two distinct sets of features, 

one representing the hobbies that the person has and the other representing the cities that the 

person has lived in. For instance, let  = {a1, a2} be such that a1 stands for fishing and a2 

stands for playing soccer, and let ℬ = {b1, b2} be such that b1 stands for Hanoi and b2 stands 

for Champaign. Then Person 4 is assigned two sets of features, namely {a2} and {b1, b2}, 

which states that this person has soccer as a hobby and has lived in both Hanoi and 

Champaign (to avoid notational clutter, we use {a2 | b1, b2} to denote pairs of sets). Suppose 

that two people are connected if and only if they share at least one common hobby AND 

they have lived in at least one common city. For instance, Person 3 and Person 4 are 

connected because they have soccer as a common hobby and they both have lived in Hanoi. 

However, Person 3 and Person 5 are not connected, even though they both like playing 

soccer, because they have not lived in the same city.

Given the nodes’ corresponding sets of features and the rules as of how to connect two 

nodes, it is clear how the graph emerges. The problem of interest is the opposite: under the 

assumption that the graph is given and that each node is assigned two subsets of features 

from  and ℬ, where  and ℬ are two disjoint sets of features, and that two nodes are 

connected if and only if they share at least one feature from  and at least one feature from 

ℬ, how can we infer the latent features assigned to the nodes? Usually, the latent features are 

abstracted as elements from a discrete set, and the mapping between the elements and the 

real features is determined based on available data.

Our first aim is to determine the smallest possible number of features min(| | + |ℬ|) needed 

to explain a given graph. We refer to this quantity as the cointersection number of a graph. 

Note that the notions of cointersection number and cointersection representation of graphs 

have not been studied before in the literature. We then proceed to establish general lower and 

upper bounds on the cointersection number of a graph via its intersection number. In 

addition, we derive several explicit bounds for various families of graphs, including stars, 

paths, cycles, ring lattices, Newman-Watts small-world graphs, multipartite graphs, and 

graphs with bounded degrees (Section III and Section IV). In particular, we describe an 

interesting connection between the cointersection representations of certain complete 

multipartite graphs and affine planes. We provide an exact algorithm to find an optimal 

cointersection representation of a graph by using SAT solvers (Section V-B). In addition, we 

develop a randomized algorithm to find an approximate cointersection representation of a 

graph in Section V-C. Finally, we extend the bounds on the cointersection number for the 

case when a general Boolean function is used instead of the AND function (Section VI). 

Open problems are discussed in Section VII.

C. Applications of the Cointersection Model

Apart from its principal application in network community detection, the cointersection 

model may be used in other applications, such as resource allocation. In such applications, 

having multilple options for the assignments is desired, as it allows more flexibility in the 

system design. We outline another pertinent problem in this area below.
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Key distribution for sensor networks—Suppose that n wireless sensors are deployed 

in the field, each of which is preset with a set of secret keys from a key pool and a set of 

time slots of being ON (each sensor alternatively switches between ON and OFF to save 

energy). Two sensors can establish secure communication if and only if they share a 

common ON-time slot and a common secret key. If a certain topology of secure 

communication among the sensors needs to be imposed, i.e. given the target communication 

graph, one would want to find an assignment of keys and time slots to all sensors that uses a 

minimum number of keys and timeslots. One can even fix either the number of time slots or 

keys and minimize the value of the other parameter. Clearly, a feasible assignment is a 

cointersection representation of the given graph. Note that using one common key for all 

sensors (as would be the case for a communication graph that is complete) imposes security 

risks for the whole network: even if only one sensor is compromised, all communications 

may be exposed.

The application of a random intersection representation in key distribution for distributed 

sensor network was originally studied in the highly cited work of Eschenauer and Gligor 

[15].

II. Preliminaries

We start by formally introducing our new latent feature model and describing its relevant 

properties.

A. The Cointersection Model

Definition 1—Let  and ℬ be two disjoint nonempty subsets of features of cardinalities α 
and β, respectively. An (α | β)-cointersection representation (CIR) for a graph  = ( , ℰ) is 

a family ℛ = {(Aυ | Bυ) : υ ∈ }, where Aυ ⊆ , Bυ ⊆ ℬ, that satisfies the so-called 

Cointersection Condition:

(u, υ) ∈ ℰ Au ∩ Aυ ≠ ∅  and Bu ∩ Bυ ≠ ∅ .

Let θc( ) = minℛ(| | + |ℬ|), where the minimum is taken over all cointersection 

representations ℛ of . Then θc( ) is called the cointersection number of . A 

cointersection representation that uses exactly θc( ) features is called optimal.

It is clear that the cointersection number of a graph is precisely the smallest number of 

features used to describe the network in the Boolean AND model (see Section VI).

Fig. 2 depicts a (2 | 2)-CIR. We can verify easily that for this graph, θc = 4, and hence, this 

representation is optimal. If we refer to the set of nodes that have a particular common 

feature as a community, then the community structure induced by this representation is 

illustrated in Fig. 3. Note that in this setting communities are no longer restricted to be 

cliques, which is a more realistic modeling assumption. Furthermore, u and υ are adjacent if 

and only if they belong to the intersection of one community of type  and another 

community of type ℬ. Note that communities may also be defined by pairs of features, in 

which case they form cliques and represent intersections of individual feature communities.
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B. The Intersection Number and the p-Intersection Number

In this subsection, we review the concepts and some well-known results on the intersection 

number and its generalization, the p-intersection number.

Clearly, an (α | 1)-CIR of a graph is equivalent to an intersection representation of the same 

graph that uses α features [9]. An intersection representation of a graph is equivalent to an 

edge clique cover, i.e. a set of complete subgraphs (cliques) of a graph that covers every 

edge at least once. The intersection number of a graph , denoted by θ1( ), is the smallest 

number of features used in an intersection representation of the graph, or the size of a 

smallest edge clique cover of that graph. The p-intersection number of a graph, denoted by 

θp( ), is the smallest possible number of features to assign to the vertices such that two 

vertices are adjacent if and only if they share at least p common features (see, e.g. [10], [11], 

[16]). We list below a couple of well-known results on the intersection number and the p-

intersection number of a graph.

Theorem 1—(Erdös, Goodman, and Pósa [9]). If  is any graph, then θ1( ) ≤ ⌊n2/4⌋.

Theorem 2—(Alon [17]). Let ℋ be a graph on n vertices with maximal degree at most d 
and minimal degree at least one, and let  = ℋ̅ be its complement. Then θ1( ) ≤ 2e2(d + 1)2 

loge n.

Theorem 3—(Eaton, Gould, and Rödl [16]). For p ≥ 2 and any graph  on n vertices, 
θp(𝒢)

p
≥ θ1(𝒢).

Theorem 4—(Eaton, Gould, and Rödl [16]). Let  be a graph on n vertices with maximum 

vertex degree d and p > 1 be an integer, then θp( ) ≤ 3epd2(d + 1)1/pn1/p.

III. Lower and Upper Bounds on the cointersection Numbers of Graphs

We now turn our attention to deriving upper bounds on the cointersection numbers θc of 

arbitrary graphs, and explicit bounds on θc for bipartite graphs, chordal graphs, and graphs 

with bounded vertex degrees.

Lemma 1

For any graph , one has θc( ) ≤ 1 + θ1( ).

Proof—Given an optimal intersection representation of , which uses θ1 features, we may 

create a (θ1 | 1)-CIR of  as follows. If in the intersection representation of  the vertex υ is 

assigned the set of features {a1, …, ar}, then in the corresponding cointersection 

representation of , we assign to υ the sets of features {a1, …, ar | b}, where b ∉ {a1, …, 

aθ1( )}. It is easy to verify that this feature assignment is indeed a (θ1 | 1)-CIR of .

Lemma 1 immediately implies some explicit upper bounds on the cointersection number of 

graphs. For instance, the following upper bound for complement of a sparse graph is an 

obvious corollary of Lemma 1 and [17, Theorem 1.4]: if  is a graph on n vertices with 
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maximum degree at most n − 1 and minimum degree at least n − d then θc( ) ≤ 1 + 2e2(d 
+ 1)2 ln n. Another immediate consequence of Lemma 1 and [18, Corollary 3.2] is that if 

is a chordal graph on n vertices with largest clique of size r then θc( ) ≤ 1+θ1( ) ≤ n−r+2.

We show next that a graph of bounded degree has a cointersection representation that uses 

𝒪( n) features. Our probabilistic proof is based on the analysis in [16, Theorem 11].

Theorem 5

Let  be a graph on n vertices, with edge set ℰ and maximum vertex degree Δ( ) ≤ d. Then 

θc(𝒢) ≤ 16d5/2 n.

Proof—Let  and ℬ be two disjoint sets of features of the same cardinality α = β = 

8d5/2n1/2. Our goal is to show the existence of an (α | β)-CIR of .

We independently assign to every edge e of  a randomly chosen pair of features {a(e) | 

b(e)}, where a(e) ∈  and b(e) ∈ ℬ. For each vertex υ ∈ , let

Aυ = {a(e):e = (u, υ) ∈ ℰ}, (1)

Bυ = {b(e):e = (u, υ) ∈ ℰ} . (2)

We aim to show that with a positive probability, the feature assignment {(Aυ | Bυ) : υ ∈ } 

co-represents . Clearly, if e = (u, υ) ∈ ℰ then by (1) and (2), we have a(e) ∈ Au ∩ Aυ and 

b(e) ∈ Bu ∩ Bυ. Therefore, Au ∩ Aυ ≠ ∅ and Bu ∩ Bυ ≠ ∅. In order for the Cointersection 

Condition to be satisfied, we need to show that with a positive probability, for every (u, υ) ∉ 
ℰ, either Au ∩ Aυ = ∅ or Bu ∩ Bυ = ∅. To this end, we make use of the Lovász Local 

Lemma [19].

The classical Lovász Local Lemma may be stated as follows. Suppose that there are m bad 
events E1, E2, …, Em, each occurring with probability at most P. Moreover, each event is 

dependent on at most D other events. If PD ≤ 1/4 then

Prob( ∩i = 1
m Ei) > 0 .

In other words, with a positive probability, we can avoid all bad events simultaneously.

We define our set of bad events as follows. For each (u, υ) ∉ ℰ, we let Eu,υ denote the event 

that Au ∩ Aυ ≠ ∅ and Bu ∩ Bυ ≠ ∅. For each event Eu,υ, we need to find an upper bounds 

on the probability that it happens and the number of other events that it may depend on.

First, we estimate the probability that each Eu,υ occurs. Since Δ( ) ≤ d, each vertex υ ∈  is 

incident to at most d edges. Therefore, by (1) and (2), |Aυ| ≤ d and |Bυ| ≤ d, for every υ ∈ . 

To obtain an upper bound on the probability that Au ∩ Aυ ≠ ∅, we may assume that |Au| and 
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|Aυ| are as large as possible, i.e. |Au| = |Aυ| = d. Moreover, since u and υ do not have any 

incident edges in common, their sets of -features are independent. Therefore, we can treat 

Au and Aυ as two arbitrary subsets of [α] of sizes d. Then we have

Prob(Au ∩ Aυ ≠ ∅ ) ≤
d( α

d − 1)

(α
d

)
= d2

α − d + 1 .

Similarly,

Prob(Bu ∩ Bυ ≠ ∅ ) ≤
d( β

d − 1)

(β
d

)
= d2

β − d + 1 .

Thus, we deduce that for (u, υ) ∉ ℰ,

Prob(Eu, υ) = Prob(Au ∩ Aυ ≠ ∅ ) × Prob(Bu ∩ Bυ ≠ ∅ ) ≤ P = d4

(α − d + 1)(β − d + 1) . (3)

Second, we evaluate the number of other events that a certain event Eu,υ is dependent of. If 

(u, υ) ∉ ℰ and (w, x) ∉ ℰ then the two events Eu,υ and Ew,x are dependent if and only if 

either there exist z ∈ {u, υ} and z′ ∈ {w, x} such that (z, z′) ∈ ℰ or |{u, υ,w, x}| ≤ 3. For 

each (u, υ) ∉ ℰ, there are at most 2dn pairs {w, x} that meet the first criteria and at most 2n 
pairs that meet the second. Therefore, each event Eu,υ is dependent of at most D = 2n(d + 1) 

other events.

By Lovás Local Lemma, it remains to prove that PD ≤ 1/4. Recall that we assumed that α = 

β = 8d5/2n1/2. Hence, we need to show that

(8d5/2n1/2 − d + 1)2 ≥ 8d4(d + 1)n . (4)

This claim may be established as follows:

(8d5/2n1/2 − d + 1)2 ≥ (8d5/2n1/2 − 2 2d)2 = 8d2(2 2d3/2n1/2 − 1)2 = 8d2(8d3n − 4 2d3/2n1/2 + 1)

≥ 8d2((d3n + d2n) + (7d3n − d2n − 4 2d3/2n1/2)) = 8d2 d2(d + 1)n + ((7d − 1)d1/2n1/2 − 4 2)d3/2n1/2

> 8d4(d + 1)n .

The last inequality is due to the fact that for n ≥ d ≥ 1, we have (7d − 1)d1/2n1/2 ≥ 6 > 4 2. 

This completes the proof.
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For triangle-free d-regular graphs  on n vertices, by Corollary 1, θc(𝒢) ≥ 2 θ1(𝒢) = 2d n. 

Therefore, in this case, the upper bound given by Theorem 5 is optimal up to a constant 

factor depending on d.

Recall that θ2( ) denotes the 2-intersection number of . As already pointed out, Eaton et 

al. [16] showed that θ2( ) ≤ 1+θ1( ) for a general graph and θ2(𝒢) ≤ 3epd2(d + 1)1/2 n for a 

graph of bounded degree d. The former bound is the same as the upper bound for θc( ) in 

Lemma 1 and the latter is essentially the same as the upper bound for θc( ) in Theorem 5. 

However, θc( ) and θ2( ) can be vastly different for certain families of graphs. For instance, 

we establish in Proposition 3 in Section IV that for a complete balanced bipartite graph with 

edge set , while θc( ) = | |, θ2( ) is quadratic in | | (see Chung and West [11] for the 

latter claim).

Next, we show that the cointersection number of a bipartite graph is at most its order. Since 

the intersection representation of a bipartite graph is equal to its size, the bound stated in 

Lemma 2 improves the bound stated in Lemma 1 when the graph has more edges than 

vertices.

Lemma 2

θc( ) ≤ | | if  = ( , ℰ) is a bipartite graph.

Proof—As  is a bipartite graph, we can partition the set of vertices into two parts, say U = 

{1, 2, …, n1} and V = {n1 + 1, n1 + 2, …, n}, for some 1 ≤ n1 < n, so that ℰ ⊆ {(u, υ) : u ∈ 
U, υ ∈ V}. Set  = {au : u ∈ U} and ℬ = {bυ : υ ∈ V}. We assign to each u ∈ U two sets of 

features, namely Au = {au} and Bu = {bυ : (u, υ) ∈ ℰ}. Similarly, we assign to each υ ∈ V 
two sets of features, namely Aυ = {au : (u, υ) ∈ ℰ} and Bυ = {bυ}. Then it is straightforward 

to verify that ℛ = {(Aυ, Bυ) : υ ∈ } is an (n1, n − n1)-CIR of . As this cointersection 

representation uses n features in total, the proof follows.

We prove next a lower bound on θc via θ1.

Lemma 3

If ℛ is an (α | β)-CIR of  then αβ ≥ θ1( ). As a consequence, θc( ) ≥ minαβ≥θ1( )(α + 

β).

Proof—Suppose we have a cointersection representation ℛ = {(Aυ | Bυ) : υ ∈ } of 

with two disjoint sets of features  and ℬ, where | | = α and |ℬ| = β. For each pair (a, b) ∈ 
 × ℬ, the set of vertices a,b = {υ ∈ V : a ∈ Aυ, b ∈ Bυ} forms a clique of . Moreover, it 

is obvious that any edge of  must be covered by one such clique. Therefore,  = { a,b : (a, 
b) ∈  × ℬ} is an edge clique cover of . As θ1( ) is the number of cliques in a minimum 

edge clique cover of , we have

αβ = |𝒜 | |ℬ| = |𝒞 | ≥ θ1(𝒢) .

Therefore, θc( ) ≥ minαβ≥θ1( )(α + β).
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The following is immediate from Lemma 1 and Lemma 3.

Corollary 1

For any graph  we have

⌈2 θ1(𝒢)⌉ ≤ θc(𝒢) ≤ 1 + θ1(𝒢) . (5)

Note again that both θc and θ2 (the 2-intersection number) have quite similar lower bounds 

in terms of θ1. Indeed, based on the aforementioned bound 
θ2(𝒢)

2
≥ θ1(𝒢), one arrives at 

θ2(𝒢) ≥ 2θ1(𝒢). Corollary 1 gives us θc(𝒢) ≥ 2 θ1(𝒢). The two lower bounds for θ2 and θc 

differ from each other only by a multiplicative factor of 2.

IV. Tightness of the Bounds

We discuss next the tightness of the bounds on θc( ) for several families of graphs. In 

addition, we link the existence of cointersection representations of certain complete 

multipartite graphs that achieve the lower bound with the existence of specific affine planes.

A. Graphs with small θ1

The first result shows that for graphs with very small θ1, the upper bound θc( ) ≤ 1 + θ1( ) 

is actually tight.

Proposition 1—The upper bound θc( ) ≤ 1 + θ1( ) stated in Lemma 1 is tight when θ1( ) 

≤ 3.

Proof: It is obvious that when θ1( ) ≤ 3, the left-hand side and the right-hand side of (5) are 

coincide.

B. Stars, Paths, and Cycles

Next, we demonstrate that for some simple graphs, the lower bound αβ ≥ θ1( ) established 

in Lemma 3 is also sufficient for the existence of an (α | β)-CIR. As θ1 is known for these 

graphs, θc can be determined explicitly.

Proposition 2—If αβ ≥ θ1( ) then there exists an (α | β)-CIR of  when  is a star n, a 

path n, or a cycle n.
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Proof: Suppose that  ≡ n is a star graph on n vertices. Let  and ℬ be two disjoint 

subsets of features of sizes α and β, respectively. First, suppose that n has edges (1, 2), (1, 

3), …, (1, n). Since | ||ℬ| ≥ n − 1 = θ1( n), we can assign distinct pairs (a, b) ∈  × ℬ to 

the edges of n. For each vertex υ ∈ {2, …, n}, let Aυ = {a1,υ}, Bυ = {b1,υ}, where {a1,υ | 

b1,υ} are the features assigned to the edge (1, υ). Also, let A1 =  and B1 = ℬ. It is clear that 

this is an (α | β)-CIR of n.

Next, suppose that  ≡ n is a path on n vertices and that it has edges (υ, υ+1), 1 ≤ υ < n. 

Recall that θ1( n) = n−1. To simplify the notation, we assume that αβ = θ1( n) = n − 1. The 

case when we have strict inequality can be proved in the same manner. Furthermore, let  = 

{a1, …, aα}, and ℬ = {b1, …, bβ}.

We describe next an (α | β)-CIR of n. We first split n − 1 edges of n into α equal-sized 

groups, each consisting of precisely β consecutive edges. We then assign {a1 | b1}, {a1 | b2}, 

…, {a1 | bβ} as features to the first group of β edges in that order. For the next group of β 
edges, we assign the sequence of features {a2 | bβ}, {a2 | bβ−1}, …, {a2 | b1}. For the third 

group of β edges, we use the sequence {a3 | b1}, {a3 | b2}, …, {a3 | bβ}. Note that we used 

an increasing order for the indices of the sequence bj in the first group, and a decreasing 
order for the second group, and again an increasing order for the third group. We continue to 

assign features in this way until reaching the last group of edges. We illustrate this feature 

assignment for the edges of 13 in the figure below. Here, we set  = {1, 2, 3} and ℬ = {4, 

5, 6, 7}. We use {a(e) | b(e)} to denote the pair of features assigned to an edge e. Then we 

assign to each vertex υ ∈ n two feature sets Aυ = {a(e) : e is incident to υ} and Bυ = 

{b(e) : e is incident to υ}. For example, the features of the vertices of 13 are given in the 

figure below. We can verify that this is an (α | β)-CIR of n. Due to the way we assign 

features to the vertices, each vertex has precisely the feature pairs {a, b}, where a ∈  and b 
∈ ℬ assigned to the edges incident to that vertex. Moreover, different edges are assigned 

different feature pairs. Consequently, two distinct vertices share a common feature pair only 

if they share a common edge. The proof for cycles proceeds along the same lines as the 

proof for paths, except for one added modification. Recall that θ1( ) = n if  ≡ n is a cycle 

on n vertices. Suppose that αβ = n (the case αβ > n can be dealt with in the same manner). 

We split the n edges of n into α equal-sized groups, each consisting of β consecutive edges. 

As demonstrated for paths, the key idea is to assign features to edges so that different edges 

receive different pairs of features and moreover, the set of the feature pairs each vertex has 

consists precisely of the feature pairs assigned to its two adjacent edges. When α is even, we 

assign features to α groups of edges of n and then deduce the set of features assigned to 

each vertex in the same way we do for paths. When α is odd, this feature assignment may no 

longer work, because now the vertex 1 of the cycle would be assigned two sets of features 

1 = {a1, aα} and ℬ1 = {b1, bβ}; as a result, it would have four instead of two feature pairs, 

namely {a1 | b1}, {a1 | bβ}, {aα | b1}, {aα | bβ}. As a consequence, this vertex may share a 

common pair of features with some other vertices that are not adjacent to it. For instance, for 

n = 9 = 3×3, the currently discussed feature assignment for 9, demonstrated in Fig. 4, 

violates the Cointersection Condition.

We correct this issue as follows. Suppose that α ≥ 3 (the case α = 1 and β = n is trivial, due 

to Lemma 1). We assign features to the first α − 2 groups of edges of n in the same way as 
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for paths. For the (α − 1)th group, instead of assigning {aα−1 | bβ}, …, {aα−1 | b1}, we 

assign {aα−1 | bβ}, …, {aα−1 | b3}, {aα−1 | b1}, {aα−1 | b2} to the edges in this order. For the 

αth group, instead of assigning {aα | b1}, …, {aα | bβ}, we assign {aα | b2}, {aα | b3}, …, 

{aα | bβ}, {aα | b1} to the edges. In this way, we guarantee that the vertex 1 is also assigned 

two feature pairs as the others, and hence, two vertices share a common feature pair if and 

only if they are adjacent to the same edge. We illustrate this feature assignment in Fig. 5.

Corollary 2—If  is a star, a path, or a cycle, then ⌈2 θ1(𝒢)⌉ ≤ θc(𝒢) ≤ 2⌈ θ1(𝒢)⌉.

Proof: By Corollary 1, we have θc(𝒢) ≥ ⌈2 θ1(𝒢)⌉. Moreover, by Proposition 2, if  is a star, 

a path, or a cycle, then there exists a (⌈ θ1(𝒢)⌉ |⌈ θ1(𝒢)⌉)-CIR of , which uses 2⌈ θ1(𝒢)⌉

features in total. Hence, ⌈2 θ1(𝒢)⌉ ≤ θc(𝒢) ≤ 2⌈ θ1(𝒢)⌉, which establishes our assertion for 

stars, paths, and cycles.

C. Ring Lattices and Newman-Watts Random Graphs

A ring lattice ℒ(n, k) is a graph obtained by taking a cycle on n vertices and connecting each 

vertex to its neighbors at most k edges away, forming a 2k-regular graph (an ℒ(20, 2) is 

depicted in Fig. 6). The ring lattice is an essential component in the construction of the 

random graph in the Watts-Strogatz model [20]. In this model, a random graph is created by 

taking a ring lattice ℒ(n, k) and rewiring every existing edge (u, υ) to a random new edge 

(u, w) with probability q. Note that when q = 0 the resulting graph is the same as the ring 

lattice, and when q = 1, it resembles the classic Erdös-Rényi random graph G(n, q′) [21], in 

which every pair (u, υ) is an edge with probability q′ = nk / n
2  [21]. The random graphs in 

theWatts-Strogatz model have two important properties of a small-world graph: small typical 

path length and large typical clustering coefficient [20]. A more mathematically tractable 

variant of the model was proposed by Newman and Watts [22], where instead of rewiring 

lattice edges (nkq edges, on average), shortcuts are added to the lattice ring without 

removing any existing edges (nkq shortcuts are added, on average). This is referred to as the 

Newman-Watts model and a random graph in this family is denoted by ℒq(n, k).

We provide next an upper bound on the cointersection number of ring lattices, which in turn 

leads to a probabilistic upper bound on that of the random graph in the Newman-Watts 

model.

Theorem 6—If αβ′ ≥ n, α ≥ 4, β′ ≥ 2k + 1, and k ≥ 2, then there exists an (α | β ≜ β′ + 

(k − 1)(α − 1))-CIR of ℒ(n, k).

Proof: -assigning procedure for cycles in the following way. Suppose that αβ′ = n (the case 

αβ′ > n can be dealt with in the same manner). There are n (k + 1)-cliques, each of which 

consists of k + 1 consecutive vertices along the ring. Let Ci, i ∈ [n], be the (k+1)-clique 

formed by the vertex i and its k right-neighbors. We partition these n cliques into α groups, 

each of which consists of β′ consecutive cliques. Set  = {a1, …, aα}, and ℬ = {b1, …, 

bβ′+(k−1)(α−1)}.
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We assign pairs of features to cliques one by one and group by group, following similar rules 

as those used for cycles, with some additional changes. The cliques in the first group are 

assigned the features {a1 |b1}, …, {a1 |bβ′ } as in the case of cycles. From the second group to 

the second to last group, the following rules are applied. Transition Rule (the same as for 

cycles): the first clique in group i (2 ≤ i ≤ α − 1) is assigned the transitional pair of features 

{ai | bj}, where {ai−1 | bj} has been assigned to the last clique in the previous group. New 
Feature Rule (differs from the assignment rule for cycles): from the second clique to the kth 

clique in group i ≥ 2, we assign {ai | bβ′+(i−1)(k−1)+1}, …, {a1 | bβ′+i(k−1)}. Note that these k 
− 1 ℬ-features are new, as they have not been used in the previous steps. Greedy Rule: the 

features for the (k + 1)th clique to the βth clique in this group are assigned such that the 

smallest possible ℬ-feature is chosen for the each considered clique (the -feature is always 

ai), in a way that avoids obvious violation of the Cointersection Condition. If we are in the 

second to last group (i = α − 1), we also have to avoid assigning any of the features b1, …, 

bk−1 to the cliques that share at least one vertex with the cliques in the last group. Inverse 
Rule: for the last group, we apply the Transition Rule, but ignore the New Feature Rule. In 

fact, we apply the Greedy Rule from the second clique onwards, and only use the novel 

features bβ+(α−2)(k−1)+1, …, bβ′+(α−1)(k−1) for the last k−1 cliques.

It can be shown that the above procedure always produces a valid cointersection 

representation, which uses α+β′+(k−1)(α − 1) features. We omit the details of the proof.

Following the proof of Theorem 6, a cointersection representation of ℒ(20, 2) is depicted in 

Fig. 6 (α = 4 and β′ = 5).

Corollary 3—Given that 2 ≤ k ≤ (⌈ n⌉ − 1)/2, for all δ > 0, we have

𝙿𝚛 θc(ℒq(n, k)) ≥ 2⌈ n⌉ + (k − 1)(⌈ n⌉ − 1) + 2(1 + δ)μ ≤ exp ( − δ2μ/(2 + δ)),

where μ ≜ nkq. In particular, when q ≈ 1/ 2(1 + δ) n , θc ℒq(n, k) ≤ (2k + 1)⌈ n⌉ with 

probability at least 1 − exp − δ2k⌈ n⌉/(2(1 + δ)(2 + δ)) .

Proof: Set α = β′ = ⌈ n⌉. According to Theorem 6, there exists a cointersection 

representation for ℒ(n, k) using at most 2⌈ n⌉ + (k − 1)(⌈ n⌉ − 1) features.

For each added random edge e = (u, υ), we can extend the current representation by 

introducing a pair of new features {ae | be} and assign this pair to both u and υ. Let X be the 

random variable representing the number of random edges added to ℒ(n, k). Then X follows 

the binomial distribution B(nk, q). Moreover, μ = (X) = nkq. Applying the Chernoff bound, 

we deduce

𝙿𝚛 X ≥ (1 + δ)μ ≤ exp ( − δ2μ/(2 + δ)) .

The proof follows.
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Note that as θ1(ℒ(n, k) = n, by Corollary 5, θc(ℒ(n, k)) ≥ ⌈2 n⌉. Theorem 6, on the other 

hand, establishes that θc(ℒ(n, k)) ≤ (k + 1)⌈ n⌉, by setting α = β′ = ⌈ n⌉. The random graph 

ℒq(n, k) in the Newman-Watts model, which contains ℒ(n, k) as a subgraph, has the same 

lower bound and almost the same (probabilistic) upper bound, as stated in Corollary 3, for a 

specific regime of q. For both graphs, the established lower bound and the (probabilistic) 

upper bound differ by a linear factor in k.

D. Multipartite Graphs

Note that for a complete bipartite graph n,n, we have θ1( n,n) = n2, which is precisely the 

number of edges. We henceforth denote the set {1, 2, …, m} by [m].

Proposition 3—If n = ts then a (t, ts2)-CIR exists for n,n. As a consequence, 

θc(𝒦n, n) = 2n = 2 θ1(𝒦n, n).

Proof: The explanation that the second assertion follows from the first assertion is as 

follows. Let t = n and s = 1. Then an (n, n)-CIR of n,n exists which uses exactly 2n 
features. Combining this result with Corollary 1, we have

2n = 2 θ1(𝒦n, n) ≤ θc(𝒦n, n) ≤ 2n,

which implies that

θc(𝒦n, n) = 2n = 2 θ1(𝒦n, n) .

Note that this equality may also be deduced by combining Corollary 1 and Lemma 2.

We now prove the first assertion of the proposition. Let  = {a1, …, at} and ℬ = {b1, …, 

bts2}. Let R1, …, Rs be disjoint subsets of size ts of ℬ that partition ℬ. Moreover, let C1, …, 

Cts be disjoint subsets of size s of ℬ that partition ℬ. In addition, let |Ri ∩ Cj| = 1 for every i 
∈ [s] and j ∈ [ts]. For instance, if we arrange the ts2 elements of ℬ in a s × (ts) matrix, then 

we can simply let Ri be the set of ts elements in the ith row and let Cj be the set of s 
elements in the jth column.

We assign feature sets to each vertex in n,n as follows. Suppose that ( n,n) = {1, …, n}

∪{n + 1, …, 2n}, and let ℰ( n,n) = {(i, j) : 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n}. First, for a vertex i ∈ 
{1, …, n}, we write i = (ia − 1)s + ib − 1, where 1 ≤ ia ≤ t and 1 ≤ ib ≤ s. Then we assign Ai = 

{aia} and Bi = Rib. For a vertex i ∈ {n + 1, …, 2n}, we assign Ai =  = {a1, …, at} and Bi = 

Ci. Recall that n = ts, which is precisely the number of sets Cj’s that we have. For example, 

when n = 6, t = 2, and s = 3, then the sets Ri and Cj consist of elements in the 

correspondingly indexed rows and columns, respectively, of the matrix given below. The 

resulting (2, 18)-CIR of 6,6 constructed as described above is illustrated in Fig. 7.

We now proceed to verify that this feature assignment is indeed a cointersection 

representation of n,n.
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We first verify that the Cointersection Condition holds for non-edges of n,n. For 1 ≤ i ≠ i′ 
≤ n, either ia ≠ ia′  or ib ≠ ib′ . If ia ≠ ia′  then Ai ∩ Ai′ = {aia

} ∩ {aia′
} = ∅. If ib ≠ ib′  then 

Bi ∩ Bi′ = Rib
∩ Rib′

= ∅, because the sets Ri form a partition. In either case, we have Ai ∩ Ai′ 

= ∅ or Bi ∩ Bi′ = ∅ For n + 1 ≤ i ≠ i′ ≤ 2n, we always have Bi ∩ Bi′ = Ci ∩ Ci′ = ∅, since 

all the pairs of sets Ci are disjoint.

Next, we verify that the Cointersection Condition holds for edges of n,n. Indeed, for 1 ≤ i ≤ 

n and n + 1 ≤ j ≤ 2n, we have Ai ∩ Aj = {aia} ∩  = {aia} ≠ ∅, and moreover, Bi∩Bj = 

Rib∩Cj ≠ ∅, because we assume that |Ri∩Cj| = 1 for every i ∈ [s] and j ∈ [ts]. Thus, we 

constructed a (t, ts2)-CIR of n,n.

Before proceeding with our discussion, we review a few definitions from the theory of 

combinatorial designs (see, e.g. [23, VI.40]). Let n ≥ k ≥ 2. A 2-(n, k, 1) packing is a pair 

( , ), where  is a set of n elements (points) and  is a collection of subsets of size k of 

 (blocks), such that every pair of points occurs in at most one block in . A 2-(n, k, 1) 

packing ( , ) is resolvable if  can be partitioned into parallel classes, each comprising 

n/k blocks that partition . We provide an example for a 2-(9, 3, 1) resolvable packing 

below.

The following simple lemma describes a property of a 2-(k2, k, 1) resolvable packing that 

will be of importance in the proof of upcoming Theorem 7.

Lemma 4—Let ( , ) be a 2-(k2, k, 1) resolvable packing. If S ∈  and S′ ∈  are two 

blocks from different parallel classes, then |S ∩ S′| = 1.

Proof: By the definition of a packing, every pair of points is contained in exactly one block. 

Therefore, any two different blocks have at most one point in common. Hence, |S∩S′| ≤ 1. 

Suppose that S and S′ belong two different parallel classes  and ′, respectively. Note that 

each parallel class consists of precisely k = k2/k disjoint blocks. These k blocks together 

partition the set . Therefore, if S′ ∉  then it must intersect each block in  at at least one 

point, for otherwise

|S′ | = | ∪S ∈ 𝒞 S′ ∩ S | = ∑
S ∈ 𝒞

|S′ ∩ S | < ∑
S ∈ 𝒞

1 = k,

a contradiction. Hence, |S ∩ S′| ≥ 1. Thus, |S ∩ S′| = 1.

Theorem 7—If there exists a 2-(k2, k, 1)-resolvable packing with at least r ≥ 2 parallel 

classes then θc( n[r]) = 2n, where n = k2, and n[r] is the complete r-partite graph n, …, n.

Proof: Note that for r ≥ 2, n,n is an induced subgraph of n[r]. Therefore, by Proposition 

3, we have

θc(𝒦
n[r]) ≥ θc(𝒦n, n) = 2n .
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Hence, it remains to prove that we can co-represent n[r] by using 2n features if a certain 

resolvable packing exists.

Let us assume that a 2-(n = k2, k, 1)-resolvable packing ( , ) with at least r parallel 

classes, say 1, …, r, exists. Let  = {ax : x ∈ } and ℬ = {bx : x ∈ }. Then | | = |ℬ| = 

n. We assign to the vertices of n[r] features from  and ℬ as follows. Consider n vertices 

in the ℓth part Pℓ of the graph (ℓ ∈ [r]). We partition these n = k2 vertices into k groups, each 

of which consists of precisely k vertices. Let Gi
ℓ = {υi, j

ℓ : j ∈ [k]} denote the ith vertex group 

of Pℓ, for i ∈ [k] and ℓ ∈ [r]. The vertices in Pℓ are then assigned features according to the 

blocks in the ℓth parallel class 𝒞ℓ = {S1
ℓ, …, Sk

ℓ} in the following way. The vertex υi, j
ℓ  in the 

ith group Gi
ℓ has feature sets A

υi, j
ℓ = {ax: x ∈ Si

ℓ} and B
υi, j
ℓ = {bx: x ∈ S j

ℓ}.

We show next that the above feature assignment indeed satisfies the Cointersection 

Condition.

First, we verify this condition for the non-edges of n[r]. Consider each part Pℓ of the graph. 

If υi, j
ℓ  and υi, j′

ℓ , where j ≠ j′, are two distinct vertices that belong to the same group Gi
ℓ, then

|B
υi, j
ℓ ∩ B

υi, j′
ℓ | = |S j

ℓ ∩ S j′
ℓ | = 0 .

The reason is that when j ≠ j′, S j
ℓ and S j′

ℓ  are two distinct blocks in the same parallel class ℓ 

of the packing, and hence must be disjoint. If υi, j
ℓ  and υi′, j′

ℓ  belong to different groups Gi
ℓ and 

Gi′
ℓ, respectively, where i ≠ i′, then

|A
υi, j
ℓ ∩ A

υi′, j′
ℓ | = |Si

ℓ ∩ Si′
ℓ | = 0,

because Si
ℓ and Si′

ℓ are two distinct blocks in the same parallel class ℓ. Thus, every pair of 

vertices from the same part Pℓ (ℓ ∈ [r]) has either no -features or no ℬ-features in common.

Second, we verify the Cointersection Condition for the edges of n[r] that connect vertices 

in different parts. Suppose that υi, j
ℓ ∈ Pℓ and υi′, j′

ℓ′ ∈ Pℓ′, where Pℓ and Pℓ′ are different parts 

of the complete r-partite graph. Then we have

|A
υi, j
ℓ ∩ A

υi′, j′
ℓ′ | = |Si

ℓ ∩ Si′
ℓ′ | = 1 .
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The validity of the above claim follows from the observation that for ℓ ≠ ℓ′, the two blocks Si
ℓ

and Si′
ℓ′, which are from different parallel classes of the packing, must intersect at one point 

(according to Lemma 4). Similarly, we have

|B
υi, j
ℓ ∩ B

υi′, j′
ℓ′ | = |S j

ℓ ∩ S j′
ℓ′ | = 1 .

Therefore, the Cointersection Condition is satisfied for all edges of the graph. Thus, the 

assigned features form an (n, n)-CIR of n[r], which uses precisely 2n features, as desired.

Example 1—To illustrate the idea of Theorem 7, we consider 9,9,9,9 and the 2-(9, 3, 1) 

resolvable packing with four parallel classes 1, 2, 3, 4 given in Fig. 8. Note that by 

Theorem 7,

θc(𝒦9, 9, 9, 9) = θc(𝒦9, 9, 9) = θc(𝒦9, 9) = 2 θ1(𝒦9, 9) = 18 .

We omit the edges of the graph and provide a (9, 9)-CIR of 9,9,9,9 in Fig. 9. Note that in 

this figure, instead of ai and bj, we simply use i and j, respectively.

A 2-(n, k, 1) resolvable design (see, e.g. [23, II.7]) is equivalent to a 2-(n, k, 1) resolvable 

packing defined earlier, except that one requires that every pair of points appear in exactly 
one block. An affine plane of order k is a 2-(k2, k, 1) resolvable design. So far, only affine 

planes of orders that are prime powers are known (see, e.g. [23, VII.2.2]).

Corollary 4—If there exists an affine plane of order k then θc( n[r]) = 2n, for every r ≤ k 
+ 1, where n = k2. As a consequence, this equality holds when k is a prime power.

Proof: It is well known that a 2-(k2, k, 1) resolvable design has precisely k + 1 parallel 

classes. As an affine plane of order k is a 2-(k2, k, 1) resolvable design, which is also a 

packing, by Theorem 7, the first assertion of the corollary follows. The last assertion also 

holds because an affine plane of a prime power order always exists. The resolvable packing 

used in Example 1 is in fact an affine plane of order three.

In light of Corollary 4, it is apparently nontrivial to prove (theoretically or computationally) 

that θc( n[r]) > 2n, where n = k2, r = k + 1, when k is not a prime power. Indeed, such a 

proof (if any) would imply that an affine plane of order k does not exist. Note that the 

question whether an affine plane of an order which is not a prime power exists is still a 

widely open question in finite geometry. It is not even known whether an affine plane of 

order 12 or 15 exists (see, e.g. [23, VII.2.2]).

Corollary 5—θc( n,n,n) = 2n for every n = k2, where k ≥ 2 is not necessarily a prime 

power.

Proof: By Theorem 7, it suffices to construct a 2-(k2, k, 1) resolvable packing with three 

parallel classes for every k ≥ 2. Let  = [k2]. We can arrange these k2 points into a k × k 
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matrix. Then the k blocks containing the points along the rows of this matrix form the first 

parallel class. The k blocks containing the points along the columns of this matrix form the 

second parallel class. The k blocks containing the points along the direction of the main 

diagonal form the third parallel class. It is easy to verify that these blocks and the three 

parallel classes form a 2-(k2, k, 1) resolvable packing. For example, when k = 4, the three 

parallel classes of this packing are given in Fig. 10.

Until this point, we have focused on providing several examples of graphs which meet the 

lower bound on θc established in Lemma 3. However, as we establish in subsequent 

propositions, the lower bound many not always be achievable. Note that by Corollary 5, 

θc( n,n,n) = 2n for n = 4, 9, 16, … This is, in contrast, not true for n = 2, 3.

We first need to prove the following lemma, which states an important property of 

cointersection representations of triangle-free graphs (e.g. bipartite graphs) that meet the 

lower bound on θc in Lemma 3. Recall that if  = ( , ℰ) is a triangle-free graph, then θ1( ) 

= |ℰ|.

Lemma 5—If there exists an (α| β)-CIR of a triangle-free graph  = ( , ℰ) where αβ = |ℰ|, 

then

|Aυ | |Bυ | = deg(υ),

for every υ ∈ V. Moreover, if (u, υ) ∈ ℰ, then |Au ∩ Aυ| = |Bu ∩ Bυ| = 1.

Proof: Suppose that {(Aυ, Bυ) : υ ∈ } is an (α | β)-CIR of , where αβ = |ℰ|. For each 

edge (u, υ) ∈ ℰ, choose an arbitrary feature au,υ ∈ Au ∩ Aυ and an arbitrary feature bu,υ ∈ 
Bu ∩Bυ and assign the pair {au,υ | bu,υ} to this edge.

We claim that different edges must have different pairs of features. Indeed, if (u, υ) and (u′, 

υ′) are two different edges of  such that au,υ = au′,υ′ and bu,υ = bu′,υ′, then the four 

vertices u, υ, u′, υ′ have a pair of features in common, namely {au,υ | bu,υ}. This implies 

that any three distinct vertices among these four must form a triangle in , which contradicts 

our assumption that  is triangle-free. Thus, different edges must be assigned different pairs 

of features, as claimed. A consequence of this claim is that for every vertex υ ∈ , the 

number of pairs of features {a | b}, where a ∈ Aυ and b ∈ Bυ, must be greater than or equal 

to the number of edges incident to υ. In other words, |Aυ||Bυ| ≥ deg(υ), for every υ ∈ .

Moreover, by our assumption, the number of possible pairs of features {a | b}, where a ∈ 

and b ∈ ℬ, is αβ, which is the same as the number of edges. Therefore, each such pair of 

features must be used exactly once, as features of some edge. It is now clear that if (u, υ) ∈ 
ℰ, then |Au ∩ Aυ| = 1 and |Bu ∩ Bυ| = 1. For otherwise, we could replace the assigned 

features {au,υ| bu,υ} for (u, υ) by a different pair of features {a′ | b′}, where a′ ∈ Au ∩ Aυ 
and b′ ∈ Bu ∩ Bυ. But as proved earlier, {a′ | b′} must already have been used as a pair of 

features of some other edge (u′, υ′) ≠ (u, υ). That would imply a triangle formed by some 

three distinct vertices among u, υ, u′, and υ′, which, again, contradicts our assumption that 

 is triangle-free.
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Finally, suppose that |Aυ||Bυ| > deg(υ) for some υ ∈ . Then there must be a pair of 

features {a | b}, where a ∈ Aυ and b ∈ Bυ, that is not assigned to any edge incident to υ. 

However, as shown earlier, this pair of features {a | b} must be used as features of some 

edge, say (u, w), that is not incident to υ. Then u, υ, and w share the common features a ∈ 
 and b ∈ ℬ and hence must form a triangle in , which is impossible. Thus, |Aυ||Bυ| = 

deg(υ) for every υ ∈ , as stated.

Proposition 4—θc( n,n,n) > 2n for n = 2, 3. Hence, for the given graphs, the lower bound 

θc ≥ minαβ≥θ1 (α + β) established in Lemma 3 is not tight.

Proof: Since the graphs under consideration are small, one can determine their 

cointersection numbers by using the algorithm of Section V-B, resulting in θc( 2,2,2) = 5 

and θc( 3,3,3) = 8. This fact may also be proved theoretically, based on the previously 

derived results for the induced subgraphs 2,2 and 3,3. The details of the proof are omitted 

due to lack of space.

Proposition 5—Let 𝒦n, n
M  be a bipartite matrix obtained from n,n by removing a 

maximum matching. Then

2n − 1 ≤ θc(𝒦n, n
M ) ≤ 2n .

The lower bound is attained when n = 2, 3. If n − 1 is an odd prime, then θc(𝒦n, n
M ) = 2n.

Proof: Let 𝒦n, n
M = (𝒱, ℰ) and let U = {u1, …, un} and V = {υ1, …, υn} be two parts of 

such that ℰ = {(ui, υj) : 1 ≤ i ≠ j ≤ n}. By Lemma 2 we have

θc(𝒦n, n
M ) ≤ 2n . (6)

Note that

θ1(𝒦n, n
M ) = |ℰ(𝒦n, n

M ) | = n2 − n = (n − 1)n .

Therefore, by Lemma 3,

θc(𝒦n, n
M ) ≥ min

αβ ≥ n(n − 1)
(α + β) = (n − 1) + n = 2n − 1 . (7)

When n = 2, 3, the above lower bound on θc is attained. Examples of (n − 1, n)-CIRs of 

𝒦n, n
M  when n = 2, 3 are given in Fig. 11.
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It remains to show that if n − 1 is an odd prime then θc(𝒦n, n
M ) ≠ 2n − 1. Suppose, by 

contradiction, that θc(𝒦n, n
M ) = 2n − 1. Then there must exist an (n − 1, n)-CIR of 𝒦n, n

M . Let 

= {a1, …, an−1} and ℬ = {b1, …, bn}. Note that every vertex of this graph has degree n − 1. 

By Lemma 5, for every vertex υ,

|Aυ | |Bυ | = deg(υ) = n − 1 .

As n−1 is a prime number, we deduce that either |Aυ| = 1 and |Bυ| = n − 1 or |Aυ| = n − 1 and 

|Bυ| = 1. We consider the following three cases, distinguished by the number of vertices that 

have only one -feature, and aim to obtain a contradiction in each case.

Case 1—|Aυ| = n − 1 and |Bυ| = 1 for all υ ∈  = U ∪ V. Since Aui =  for all i ∈ [n] and 

there are no edges between these vertices ui elements, Bui ∩Buj = ∅ whenever i ≠ j. 
Similarly, Bυi ∩ Bυj whenever i ≠ j. However, as u1 is adjacent to υ2, …, υn, these vertices 

must have the same ℬ-feature as u1. We arrive at a contradiction.

Case 2—There exists one vertex, say ui, satisfying |Aui| = 1, while other vertices in the 

same part have Auj = , j ≠ i. By Lemma 5, |Bui| = n−1 and |Buj| = 1 for j ≠ i. Moreover, as 

ui is not adjacent to uj for j ≠ i, Bui ∩Buj = ∅. As |ℬ| = n and |Bui| = n − 1, this implies that 

Buj = ℬ \ Bui for all j ≠ i. Since Auj =  for all j ≠ i as well, the corresponding elements uj 

must be all adjacent, which is not true. We arrive at a contradiction.

Case 3—There exist two vertices, which we without loss of generality label as ui and uj, 

that are in the same part of the graph, and which satisfy |Aui| = |Auj| = 1. Then by Lemma 5, |

Bui| = |Buj| = n − 1. Since n > 2, Bui ∩Buj ≠ ∅. Therefore, Aui ∩ Auj = ∅. Without loss of 

generality, let Aui = {ai} and Auj = {aj}. For any h ∈ [n] \ {i, j}, since υh is connected to both 

ui and uj, we deduce that {ai, aj} is a subset of both Aυh. As |Aυh| ∈ {1, n − 1}, we deduce 

that Aυh = , for all h ≠ i, j. Then |Bυh| = 1 and Bυh ∩ Bυk = ∅ for every h ≠ k, h, k ∈ [n] \ 

{i, j}. We can set Bυh = {bh} and Bυk = {bk}. As n − 1 is an odd prime, n ≥ 4. Therefore, we 

can choose h and k such that h, k, i, j are distinct.

Since υh and υk are not adjacent to υi, and moreover, since Aυh = Aυk = , we deduce that 

Bυi ∩ {bh, bk} = ∅. Therefore, |Bυi| ≤ n − 2. Since |Bυh| ∈ {1, n−1}, we deduce that |Bυi| = 

1. Similarly, |Bυj| = 1. We can set Bυi = {bi} and Bυj = {bj}. For any r ≠ i, j, since ur is 

adjacent to υi and υj, the set {bi, bj} is a subset of Bur. Therefore, |Bur| = n − 1, and hence, |

Aur| = 1, for all r ∈ [n]. By the pigeon hole principle, among the n vertices u1, …, un, there 

must be two distinct vertices, say ur and us, that satisfy Aur = Aus. Moreover, as |Bur| = |Bus| 

= n − 1, we must have Bur ∩Bus ≠ ∅ as well. We obtain a contradiction, since the 

Cointersection Condition is violated.

Thus, if n − 1 is an odd prime then θc(𝒦n, n
M ) ≠ 2n − 1. Therefore, due to (6) and (7), we have 

θc(𝒦n, n
M ) = 2n.

Dau and Milenkovic Page 19

IEEE ACM Trans Netw. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An obvious corollary of Proposition 5 is that there exists infinitely many bipartite graphs 

where the lower bound θc ≥ minαβ≥θ1 (α + β) established in Lemma 3 is not attained.

V. Algorithms for the Cointersection Model

In what follows, we develop two algorithms for finding (exact and approximate) 

cointersection representations of a graph. The first algorithm is based on a transformation to 

instances of the Satisfiability Problem (SAT) and outputs an optimal cointersection 

representation, which uses exactly θc features. The second algorithm is based on the well 

known simulated annealing approach, which produces an approximate cointersection 

representation of a graph. More specifically, this algorithm inputs , α, and β, and outputs 

feature assignments to all vertices of the graph so as to maximize, as much as possible, the 

score of the representation, i.e. the number of pairs (u, υ) that satisfy the Cointersection 

Condition.

A. Uniqueness of Optimal Cointersection Representations

Before presenting the two algorithms, we briefly discuss the question of uniqueness of an 

optimal cointersection representation of a graph. Throughout our analysis, we tacitly assume 

that α ≤ β for all (α, β)-CIRs.

Two cointersection representations are considered equivalent if one can be obtained from the 

other by possibly swapping the set of -features and the set of ℬ-features (only if | | = |ℬ|), 

and by permuting features within each set. A graph is said to be uniquely cointersectable if 

all of its optimal cointersection representations are equivalent. The issue of unique 

cointersection representations is of importance in practical applications, where different 

feature assignment algorithms may construct diverse solutions and where we would like to 

understand how many different solutions are possible. The related concept of uniquely 
intersectable graphs was studied in [24], [25]. It was proved in [25, Thm. 3.2] that every 

diamond-free graph is uniquely intersectable (more precisely, uniquely intersectable with 
respect to a multifamily). Note that a diamond is obtained by removing one edge in 4. The 

problem of finding a necessary and sufficient condition for a graph to be uniquely 

intersectable is widely open.

Some examples of uniquely cointersectable graphs include:

• Cliques n, n ≥ 2, which have a unique (1, 1)-CIR with all vertices having 

features {a1 | b1},

• n − e, n ≥ 2, where e = (u, υ) is an arbitrary edge. This graph has a unique (1, 

2)-CIR in which u is assigned the pair of features {a1 | b1}, υ is assigned {a1 | 

b2}, while all other vertices (if any) are assigned the set {a1 | b1, b2}.

• The path 5 has a unique (2, 2)-CIR, where the vertices from 1 to 5 are 

respectively assigned the following sets of features: {a1 | b1}, {a1 | b1, b2}, {a1, 

a2 | b2}, {a2 | b1, b2}, and {a2 | b1},
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• The cycle 4 has a unique (2, 2)-CIR, where the vertices from 1 to 4 are 

respectively assigned the following sets of features: {a1, a2 | b1}, {a1 | b1, b2}, 

{a1, a2 | b2}, {a2 | b1, b2}.

A graph may not have a unique cointersection representation, even if we restrict ourselves to 

optimal (α, β) cointersection representations, where α and β are fixed, and α + β = θc. An 

example of two optimal (2, 3)-CIRs of the path 7 that are not equivalent is presented in 

Fig. 12. In fact, we prove in Corollary 6 that every path n, n ≥ 4, except 5, is not uniquely 

cointersectable. A similar result also holds for cycles, but we omit the proof due to lack of 

space. In fact, most paths have at least exponentially many nonequivalent optimal 

cointersection representations (Theorem 8). Note that a path or a cycle, which is obviously 

diamond free, is always uniquely intersectable. These results suggest that uniquely 

cointersectable graphs are even scarcer than uniquely intersectable ones. The problem of 

finding a necessary and/or sufficient condition for a graph to be uniquely cointersectable is 

also open.

Theorem 8—Every path n with n ≥ 6 has at least (⌈ n − 1⌉ − 1)! nonequivalent optimal 

cointersection representations.

Proof: The main idea behind the proof is to construct a list of at least (⌈ n − 1⌉ − 1)! optimal 

cointersection representations of n, and then show that for every pair of representations, 

there exist two vertices whose sets of assigned features intersect in a nonequivalent manner.

Two nonequivalent optimal (2, 3)-cointersection representations of 7 are shown in Fig. 12. 

If we delete the last vertex and edge in the paths, we obtain two nonequivalent 

representations for 6.

Now suppose that n ≥ 8 and that we have an optimal (α, β)-CIR of n. If β ≥ α + 2, then (α 
+ 1)(β − 1) > αβ, and hence by Proposition 2, there is another optimal (α+1, β − 1)-CIR of 

n. We can repeat this argument to obtain an optimal representation with α ≤ β ≤ α + 1 

(Note that this argument also reveals that for paths, there always exists a balanced optimal 

cointersection representation). By Lemma 3, α(α + 1) ≥ αβ ≥ θ1( n) = n − 1 ≥ 7. Hence, β 
≥ α ≥ 3. We also have β ≥ ⌈ n − 1⌉.

We describe next a list of (β − 1)! (α, β)-cointersection representations of n and proceed to 

prove that the representations are pairwise nonequivalent. Each of these representations 

corresponds to a particular permutation σ of the set {1, 2, …, β − 1}, denoted by ℛσ. 

Following the proof of Proposition 2 for paths, we partition the set of n − 1 edges into α 
groups of β consecutive edges each, except for possibly the last group, which may contain 

less than β edges if αβ > n − 1. In all representations, we assign β pairs of features {a1, b1}, 

{a1, b2}, …, {a1, bβ} to the first group of β consecutive edges in that order. In the 

representation ℛσ, we continue to assign β pairs of features {a2, bβ}, {a2, bσ(β−1)}, {a2, 

bσ(β−2)}, …, {a1, bσ(1)} to the next group of β consecutive edges in that order. Similarly, the 

third group of edges is assigned pairs of features (a3, bσ(1)), (a3, bσ(2)), …, in ℛσ, and so 

forth. In general, the rule is to assign different features ai to different groups of edges, and to 

assign the features bj in such a way that the last edge of one group is assigned the same bj as 
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the first edge of the following group. This process is continued until all edges are assigned 

one pair of features each. Upon completion of this procedure, each vertex is assigned the 

union of the sets of features assigned to its adjacent edges. According to the argument used 

in the proof of Proposition 2 for paths, each ℛσ represents an (α, β)-cointersection 

representation of n.

It remains to prove that for two different permutations σ and σ′ of {1, 2, …, β − 1}, there 

exist two distinct vertices u and υ whose sets of assigned features intersect differently in the 

two representations. More specifically, u lies within the first group of vertices and υ lies 

within the second group of vertices. Let j ∈ [β − 1] be the largest index satisfying z ≜ σ(j) ≠ 

t ≜ σ′(j). Then y ≜ σ(j + 1) = σ′(j + 1). Note that if j = β − 1, one may set y = β. Without 

loss of generality, let us also assume that t > z. We select υ (see Fig. 13 and Fig. 14) to be 

the vertex adjacent to the two consecutive edges in the second group which are assigned 

features {a2, by} and {a2, bz} in ℛσ. In ℛσ′, υ is adjacent to two edges with assigned 

features {a2, by} and {a2, bt}. As α ≥ 3, both groups have β edges and vertices u and υ as 

described above always exist.

We consider two cases which correspond to different choices of u. It suffices to show that in 

both cases, u and υ have a different number of common features in ℛσ and ℛσ′.

Case 1—t = z + 1. We select u (see Fig. 13) as the vertex adjacent to the two consecutive 

edges in the first group that are assigned features {a1, bt} and {a1, bt+1} in both ℛσ and 

ℛσ′. Note that t ≤ β − 1, and hence t+1 ≤ β. Since y ∉ {z, t}, we consider the following two 

sub-cases. If y < z or y > t + 1, then in ℛσ the vertices u and υ do not share any features, 

while in ℛσ′, they do share one common feature, namely bt. If y = t+1, then in ℛσ the 

vertices u and υ share precisely one feature, namely bt+1, while in ℛσ′, they share two 

features, bt and bt+1.

Case 2—t > z + 1. We select u (see Fig. 14) as the vertex adjacent to the two consecutive 

edges in the first group that are assigned {a1, bz} and {a1, bz+1} in both ℛσ and ℛσ′. If y < 

z or y > z + 1 then in ℛσ the vertices u and υ share one feature, namely bz, while in ℛσ′, 

they do not share any features. If y = z + 1, then in ℛσ, the vertices u and υ share precisely 

two features, namely bz and bz+1, while in ℛσ′, they share only one feature, namely bz+1.

This completes the proof.

Corollary 6—None of the paths n, n ≥ 4, except for 5, is uniquely cointersectable.

Proof: By Proposition 2, 4 has a (1, 3)-CIR as well as a (2, 2)-CIR, both of which are 

optimal. Hence, 4 is not uniquely cointersectable. For n ≥ 6, according to Theorem 8, n 

has at least 2 = (⌈ 6 − 1⌉ − 1)! nonequivalent optimal cointersection representations, and is 

hence not uniquely cointersectable.

B. Feature Assignments via SAT Solvers

For arbitrary α and β, it is an NP-complete problem to determine if an (α, β)-CIR exists; 

indeed, when α = 1, the problem becomes whether there exists an intersection representation 
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that uses β features, which is known to be NP-complete [26]. We discuss below a means of 

determining the cointersection number in a constructive manner, which also results in 

feature assignments for the vertices. The idea is to restate the cointersection problem as a 

Satisfiability Problem (SAT).

Given α, β, and a graph  on n vertices, we construct an instance of a SAT problem that is 

satisfiable if and only if there exists an (α, β)-CIR of . An optimal pair (α, β), therefore, 

can be determined via a simple binary search. We use the variables xu,a and yu,b, for u ∈ [n], 

a ∈ [α], b ∈ [β], where xu,a = 1 and yu,b = 1 mean that the vertex u is assigned a feature a ∈ 
 = [α] and a feature b ∈ ℬ = [β], respectively. For each edge (u, υ), we want the formula

∨a ∈ [α] (xu, a ∧ xυ, a) ∧ ∨b ∈ [β] (yu, b ∧ yυ, b) (8)

to be satisfiable, which is equivalent to the requirement that u and υ have some common 

features a ∈  and b ∈ ℬ. To turn this formula into a conjunctive form, we introduce the 

variable Au,υ,a and add one more requirement that Au,υ,a ↔ (xu,a ∧ xυ,a), which stands for

(Au, υ, a ∨ xu, a) ∧ (Au, υ, a ∨ xυ, a) ∧ (Au, υ, a ∨ xu, a ∨ xυ, a) . (9)

Similarly, we include Bu,υ,b ↔ (yu,b ∧ yυ,b), which stands for

(Bu, υ, b ∨ yu, b) ∧ (Bu, υ, b ∨ yυ, b) ∧ (Bu, υ, b ∨ yu, b ∨ yυ, b) . (10)

One may hence rewrite (8) as

( ∨a ∈ [α] Au, υ, a) ∧ ( ∨b ∈ [β] Bu, υ, b) . (11)

If (u, υ) is not an edge, we introduce the variables Cu,υ and Du,υ and the following clauses

Cu, υ ∨ Du, υ, (12)

Cu, υ ∨ xu, a ∨ xυ, a,  for every a ∈ [α], (13)

Du, υ ∨ yu, b ∨ yυ, b,  for every b ∈ [β] . (14)

These clauses impose the condition that u and υ either have no common feature in  = [α] 

or have no common feature in ℬ = [β]. Using (9)–(14), we can now create an instance of 
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SAT in the conjunctive normal form (CNF), which may be solved by Minisat [27]. The 

interested reader is referred to [28] for a related discussion on intersection representations.

C. A Simulated Annealing Algorithm for Approximate Cointersection Representation 
Inference

It is important to have approximate cointersection representations of a graph, especially 

when the graph is constructed from a real world data set, where data is usually noisy and an 

exact representation is, therefore, not necessary. Moreover, for large graphs, an approximate 

representation may still provide insight into the structure of the data, without over-

representing the graphs with too many features. In this subsection, we present a randomized 

algorithm based on simulated annealing that produces an approximate (α, β)-cointersection 

representation of a graph, for any fixed pair (α, β) given as an input. We also illustrate an 

applications of the algorithm to a real world network and discuss the structure of 

overlapping communities induced by the output representation which coincides with the 

ground truth.

The randomized algorithm (Fig. 15) first assigns to each vertex υ ∈  a random set of -

features, namely Aυ, and a random set of ℬ-features, namely Bυ, both of which should be 

nonempty. This is referred to as the feature assignment ℒ. Subsequently, it enters a loop of 

N rounds, where N is set to b n log2(n) with some constant b. In each round, it chooses a 

random vertex u and generates two random sets Au′ ⊆ 𝒜 and Bu′ ⊆ ℬ. Let ℒ′ be the feature 

assignment obtained from ℒ by replacing Aυ by Au′  and Bu by Bu′ . The score s of any feature 

assignment ℒ is defined as the number of edges/non-edges of the graphs that match ℒ, 

according to the Cointersection Condition. If s(ℒ′) > s(ℒ) then we set ℒ ≔ ℒ′. Otherwise, 

we do it with probability ec(s(ℒ′)−s(ℒ)). We usually set c to be a constant, for example, c = 10 

in our subsequent examples. For a more detailed discussion of the role of c in the 

convergence speed of the underlying Markov chain, the reader may refer to the work of 

Tsourakakis [8] on intersection representation of graphs. At any time, ℒmax records the 

feature assignment with maximum score seen so far.

Example 2—We consider the social network of friendships among 34 members of an 

university-based Karate club, introduced by Zachary [29]. Each individual is represented by 

a node in the network and two nodes are joined by an edge if and only if the two 

corresponding individuals were consistently observed to interact outside the normal activity 

time of the club (Fig. 16). As a result of a dispute between the instructor (Node 1) and the 

club president (Node 34), the members of the clubs were split into two groups, one 

supporting the president and the other supporting the instructor. This fission naturally 

induced two communities inside the club, corresponding to the aforementioned groups. As 

some form of “the ground truth” community structure is known, this data set has become a 

well known benchmark for community detection algorithms.

Applying the randomized algorithm to this network, with α = β = 2, a community structure 

is revealed as illustrated in Fig. 16. The set of nodes with feature a1 corresponds to the 

supporters of the instructor (Node 1), while the set of nodes with feature a2 corresponds to 

the supporters of the club president (Node 34). Each of these two sets is further divided into 
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overlapping sub-communities, marked by different colors, where the overlapping nodes, 

marked with a mix of two colors, correspond to the club president and the instructor. Thus, 

in this case, the algorithm produces an “error-free” result if we look at communities defined 

via features a1 and a2.

As demonstrated in the example, the feature set  is more relevant in identifying the two-

part community structure of the Karate network. However, the feature set ℬ reveals 

additional two overlapping sub-communities within each part, and hence, refines the 

structure of the network. Furthermore, the feature set that clusters the graph vertices into 

clusters with the smaller number of cross-edges may be seen as the dominant feature set, 

while the feature set with larger number of cross-edges may represent the feature set of 

lesser importance. While there is no distinction between the two feature sets in our model, 

this example suggests that the two feature sets may correspond to different structural aspects 

and be of different relevance to the community structure of the network.

Remark 1—Note that if we set α = 1 then the randomized algorithm coincides with the 

algorithm developed in Tsourakakis’s work [8] for intersection representation. In Example 2, 

if we set α = 1 and β = 2, then the algorithm also outputs two communities that correspond 

perfectly to the ground truth.

Example 3—We ran the simulated annealing algorithm on the Newman-Watts small-world 

graphs of small and medium sizes (see Section IV-C for the definition). The three standard 

criteria to measure the quality of the output representation include precision, recall, and the 

F-score, defined as follows.

precision = number of correct edges induced by the CIR
total number of edges induced by the CIR ,

recall = number of correct edges induced by the CIR
total number of edges in the graph ,

F − score = 2 × precision × recall
precision + recall .

The closer these are to one, the better the representation. We observe that the algorithm 

performs better for larger k and smaller q, which means more regularity and less 

randomness. This is not a surprise, as one would expect that the cointersection number θc is 

large for random graphs (this was known to be true for the intersection number θ1), and 

hence, it is more likely for the simulated annealing algorithm to yield a low quality 

approximate representation. Indeed, on the one hand, if we use significantly fewer features 

than needed, then the approximate representation would contain lots of unfit edges/non-

edges. On the other hand, if we use close to θc features, the search space becomes so large 

that the likelihood of reaching a good solution is reduced. It is also clear that one can trade 

the running time, by increasing the number of rounds N in the algorithm, for better quality 
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of the output, i.e. higher F-score, precision, and recall. However, note that a low F-score 

output can still provide useful information about the community structure of the network. 

For instance, for the Karate-club network in Example 2, the F-score is only 0.57. 

Nevertheless, the output representation already gives us the ground-truth partition of the 

network. In Table I, we choose k ≈ 2 log2(n) > log2(n), as assumed in [20]. In all cases, α = 

β ∈ {5, 10, 15}. The number of rounds N = b n log2(n), where b ∈ {500, 1000}.

VI. Extension to General Boolean Functions

We extend the bounds developed for the cointersection model in Section III, which is based 

on the AND Boolean function, to cater to models based on more general Boolean functions.

Let f = f (x1, x2, …, xr) be a Boolean function in the full disjunctive normal form. In other 

words, the corresponding logical formula of the Boolean function is a disjunction (∨) of one 

or more conjunctions (∧) of one or more literals, where each variables appears exactly once 

in every clause. Some examples are f (x1, x2, x3) = x1 ∨ (x2 ∧ x3) and f (x1, x2, x3, x4) = (x1 

∧ x2) ∨ (¬x1 ∧ x3 ∧ x4). We first discuss the meanings of the AND (∧) operator, the OR (∨) 

operator, and the NEGATION (¬) operator, and then proceed to describe the model 

corresponding to a general Boolean function in its full disjunctive normal form.

The AND function f(x1, x2) = x1 ∧ x2

Let 1 and 2 be two pairwise disjoint nonempty sets of features of cardinalities α1 and 

α2, respectively. In an (α1 | α2)-AND-intersection representation of a graph  = ( , ℰ), 

each vertex υ ∈  is assigned two sets Aυ
i ⊆ 𝒜i, i ∈ [2], such that for every u ≠ υ, u, υ ∈ , 

it holds that (u, υ) ∈ ℰ if and only if Au
1 ∩ Aυ

1 ≠ ∅ and Au
2 ∩ Aυ

2 ≠ ∅. The AND-intersection 

number of  is the smallest number of features used, i.e. α1 + α2, in any (α1 | α2)-AND-

intersection representation of the graph. The AND-intersection number of  is precisely the 

cointersection number of the graph.

The OR function f(x1, x2) = x1 ∨ x2

Let 1 and 2 be two pairwise disjoint nonempty sets of features of cardinalities α1 and 

α2, respectively. In an (α1 | α2)-OR-intersection representation of a graph  = ( , ℰ), each 

vertex υ ∈  is assigned two sets Aυ
i ⊆ 𝒜i, i ∈ [r], such that for every u ≠ υ, u, υ ∈ , it 

holds that (u, υ) ∈ ℰ if and only if Au
1 ∩ Aυ

1 ≠ ∅ or Au
2 ∩ Aυ

2 ≠ ∅. The OR-intersection 

number of  is the smallest number of features used, i.e. α1 + α2, in any (α1 | α2)-OR-

intersection representation of the graph. Note that as 1 and 2 are disjoint, we can simply 

let  = 1 ∪ 2, α = α1 + α2, and for each vertex υ, let Aυ = Aυ
1 ∪ Aυ

2. Then an (α1 | α2)-

OR-intersection representation of  simply corresponds to a way to assign to each vertex υ a 

set Aυ ⊆  of features such that for every u ≠ υ, u, υ ∈ , it holds that (u, υ) ∈ ℰ if and 

only if Au ∩ Aυ ≠ ∅. This is precisely the definition of an intersection representation of . 

Thus, the OR-intersection number of a graph is the same as its intersection number, as long 

as the intersection number is at least two.
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NEGATION function f (x) = ¬x

Let  be a nonempty set of features of cardinality α. In an (α)-NEGATION-intersection 

representation, each vertex υ ∈  is assigned a set Aυ ⊆  such that for every u ≠ υ, u, υ ∈ 
, it holds that (u, υ) ∈ ℰ if and only if Au ∩ Aυ = ∅. The NEGATION-intersection 

number of  is the smallest number of features α used in any (α)-NEGATION-intersection 

representation of . It is immediate that this number is the same as the intersection number 

of the complement of .

Suppose we have a general Boolean function f = f (x1, x2, …, xr) written in the full 

disjunctive normal form, which involves three operators ∨, ∧, and ¬. Let 1, 2, …, r be 

disjoint sets of features of cardinalities α1, α2, …, αr, respectively. In an (α1 | α2 | ⋯ | αr)-f-

intersection representation of , each vertex υ ∈  is assigned r sets Aυ
i ⊆ 𝒜i, i ∈ [r], such 

that for every u ≠ υ, u, υ ∈ , it holds that (u, υ) ∈  if and only if the intersections of the 

sets Au
i  and the sets Aυ

i  follow the rule set by the propositional formula of f. For example, 

when f (x1, x2, x3) = x1 ∨ (x2 ∧ x3), it is required that (u, υ) ∈ ℰ if and only if the following 

statement is satisfied.

(Au
1 ∩ Aυ

1 ≠ ∅ ) ∨ (Au
2 ∩ Aυ

2 ≠ ∅ ) ∧ (Au
3 ∩ Aυ

3 ≠ ∅ ) .

In words, u and υ are adjacent if and only if they share either an 1-label or both an 2-

label and an 3-label. For another example, take f (x1, x2, x3, x4) = (x1 ∧ x2) ∨ (¬x1 ∧ x3 ∧ 
x4). Then in a corresponding representation of , two vertices are adjacent if and only if 

either of the following two cases happens: (1) they share both an 1-label and an 2-label; 

or (2) they do not share any 1-label, but they share both an 3-label and an 4-label. The 

f-intersection number of  is defined to be the smallest number of features used, namely 

∑i = 1
r αi, in any (α1 | α2 | ⋯ | αr)-f-intersection representation of the graph.

It is not immediately clear that the negation function has sufficiently strong relevance as the 

AND and OR functions in the context of social network analysis. Hence, we focus on 

Boolean functions that involve ∨ and ∧ operations only and provide the following 

proposition generalizing Lemma 3.

Proposition 6—Let f = f (x1, x2, …, xr) be a Boolean function in the full disjunctive 

normal consisting only of ∨ and ∧. Let gf = gf (α1, α2, …, αr) be an integer-valued function 

on r non-negative integral variables α1, α2, …, αr, obtained from f by replacing xi by αi (i ∈ 
[r]), ∨ by +, and ∧ by ×. Then the f-intersection number of a graph  is bounded from below 

by the optimal value of the objective function of the integer programming problem given 

below:

(IP) minimize ∑
i = 1

r
αi

subject to g f (α1, α2, …, αr) ≥ θ1(𝒢),

ℤ ∋ αi ≥ 1, ∀i ∈ [r] .
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Proof: Suppose that we have an (α1 | α2 | ⋯ | αr)-f-intersection representation of the graph 

 with the corresponding sets of labels 1, 2, …, r. For any clause xi1 ∧ xi2 ∧ ⋯ ∧ xis 
of f, a tuple (ai1, ai2, …, air) where aij ∈ ij corresponds to a clique in , which consists of 

all vertices υ ∈  that have ai1, ai2, …, air in their feature sets. Note that there are in total gf 

(α1, α2, …, αr) such cliques. As each edge of  must belong to one of these cliques, these 

cliques form an edge clique cover of . Therefore, gf (α1, α2, …, αr) ≥ θ1 ( ).

If we ignore the condition that αi ∈ ℤ in the integer programming problem (IP) stated in 

Proposition 6, we obtain a real-valued programming problem, referred to as (P). An optimal 

solution to (P) also provides a lower bound on the f-intersection number of the graph. 

Generally, we can find necessary conditions for a solution of (P) to exist by using either the 

method of Lagrange multipliers or the Karush-Kuhn-Tucker (KKT) conditions. We illustrate 

this observation with the following example.

Example 4—Let f (x1, x2, x3) = x1 ∨ (x2 ∧ x3). Using the notation in Proposition 6, gf (α1, 

α2, α3) = α1 + α2α3. Then the optimal value of the objective function of the following 

programming problem serves as a lower bound for the f-intersection number of a graph :

(P) minimize α1 + α2 + α3
subject to α1 + α2α3 ≥ θ1(𝒢),

ℝ ∋ αi ≥ 1, ∀i ∈ [3] .

In order to use the method of Lagrange multipliers, we first introduce the slack variables βi, i 
∈ [4], to convert the inequality constraints into equality constraints as follows. The 

constraint αi ≥ 1 is converted into the new constraint αi − βi
2 − 1 = 0, for each i ∈ [3], and the 

constraint α1 + α2α3 ≥ θ1 is converted into the new constraint α1 + α2α3 − β4
2 − θ1 = 0. Let 

λi, i ∈ [4], be the Lagrange multipliers. We formulate the Lagrangian

ℒ(α1, α2, α3, β1, β2, β3, β4, λ1, λ2, λ3, λ4) = ∑
i = 1

3
αi + ∑

i = 1

3
λi(αi − βi

2 − 1) + λ4(α1 + α2α3 − β4
2 − θ1) .

The method of Lagrange multipliers states that if we examine all stationary points of the 

Lagrangian, at which ∇ℒ = 0, where ∇ℒ = ∂ℒ
∂α1

, …, ∂ℒ
∂α3

, ∂ℒ
∂β1

, …, ∂ℒ
∂β4

, ∂ℒ
∂λ1

, …, ∂ℒ
∂λ4

, then the 

one that leads to the minimum objective value ∑i = 1
3 αi is an optimal solution to (P). 

Therefore, using this method, we arrive at the following system ∇ℒ = 0 of equations:

Dau and Milenkovic Page 28

IEEE ACM Trans Netw. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 + λ1 + λ4 = 0,
1 + λ2 + λ4α3 = 0,
1 + λ3 + λ4α2 = 0,
λiβi = 0, i ∈ [4],

αi − βi
2 − 1 = 0, i ∈ [3],

α1 + α2α3 − β4
2 − θ1 = 0 .

(15a), (15b), (15c), (15d), (15e), (15f)

A straightforward way to obtain all the solutions of the system (15) is by examining all 16 

cases, each of which captures whether λi = 0 or βi = 0, i ∈ [4] (from (15d)). We can ignore 

certain cases due to symmetry. As a consequence, we find that the objective function 

∑i = 1
3 αi is minimized when α1 = 1 and α2 = α3 = θ1 − 1, which gives us the lower bound 

1 + 2 θ1 − 1 on the f-intersection number of .

Another example we considered is f = (x1∧x2)∨(x1∧x3)∨(x2∧x3). Again, applying the 

method of Lagrange multipliers and Proposition 6, it may be shown that the f-intersection 

number of  is at least 3θ1.

An upper bound on the f-intersection number of a graph of bounded degree, where f only 

involves the ∨ and ∧ operations, may be obtained in the same way as that for the 

cointersection number, in Theorem 5. We present this fact below.

Theorem 9—Let  be a graph on n vertices with Δ( ) ≤ d. Let f = f (x1, x2, …, xr) be a 

Boolean function in the full disjunctive normal consisting of only ∨ and ∧. Let s be the 

largest number of literals that appear in any clause of f. Then the f-intersection number of 

is at most c(d, r, s)n1/s+r − s, where c(d, r, s) is a function of d, r, and s.

Proof: We can assume that no clause ′ of f is a sub-clause of another clause  (i.e., that all 

of the literals of ′ also appear in ), as otherwise we can always remove ′ and obtain an 

equivalent formula of f.

Now let  be a clause of f with s literals, referred to as the leading clause. Relabeling the 

indices if necessary, we can assume that 𝒞 = ∧i = 1
s xi. Let A1, …, Ar be r pairwise disjoint 

sets of features such that αi ≜ |Ai| = c′(d, r, s)n1/s for i ∈ [s], while αj ≜ |Aj| = 1 for all j > s, j 
∈ [r]. Here c′(d, r, s) is a function of d, r, and s, which will be determined later. Similar to 

the proof of Theorem 5, we show that there exists an (α1 | α2 | ⋯ | αr)-f-intersection 

representation of  by invoking the Lovász Local Lemma [30]. As a consequence, the f-
intersection number of  is at most c(d, r, s)n1/s+r − s, where c(d, r, s) ≜ sc′(d, r, s).

We independently assign to every edge e of  a randomly chosen set of features {a1(e), 

a2(e), …, as(e)}. Note that we do not assign to e any label aj ∈ j, for j > s. For every vertex 

υ ∈  and for every i ∈ [r], let
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Aυ
i = {ai(e):e = (u, υ) ∈ ℰ} .

Then Aυ
j = ∅ for j > s. Hence, Au

j ∩ Aυ
j ≠ ∅ for every u ≠ υ and j > s. Moreover, we know 

that for any clause ′ ≠ , there must exist a j > s such that ′ contains xj, for otherwise, ′ 
would be a sub-clause of . Therefore, this feature assignment is an f-intersection 

representation of  if and only if for every u ≠ υ, u, υ ∈ ℰ, it holds that

(u, υ) ∈ 𝒱 Au
i ∩ Aυ

i ≠ ∅ ,  for all i ∈ [s] . (16)

In other words, we can focus only on the leading clause 𝒞 = ∨i = 1
s xi and ignore all other 

clauses of f.

It is clear that (16) is satisfied for all pairs (u, υ) ∈ ℰ. We now define for each pair (u, υ) ∉ ℰ 
a bad event Eu,υ where Au

i ∩ Aυ
i ≠ ∅ for all i ∈ [s]. The goal is to show that there exists a 

function c′(d, r, s) of d, r, and s, so that PD ≤ 1/4, where Prob(Eu,υ) ≤ P and each bad event 

is dependent on at most D other bad events. Then by the Lovász Local Lemma [30], we may 

conclude that there exists a way to assign features to the edges of  that leads to an f-
intersection representation of . Just as in the proof of Theorem 5, we have

Prob(Eu, υ) = ∏
i = 1

s
Prob(Au

i ∩ Aυ
i ≠ ∅ ) ≤ P ≜ d2

αi − d + 1

s
= d2s

(c′(d, r, s)n1/s − d + 1)s
.

We also have D = 2n(d + 1). It is straightforward to verify that for c′(d, r, s) ≜ (8d2s+2)1/s + d 
− 1, we have PD ≤ 1/4.

VII. Discussion

We established a new Boolean feature model to study the complex community structure in 

networks. This model allows for the discovery of overlapping and hierarchical communities, 

thanks to the use of different feature sets, each of which may play a different role in 

highlighting the overall network structure. The newly developed concept of Boolean 

intersection representation, in particular, cointersection representation, generalizes the well-

known intersection representation (a.k.a. edge clique cover) in the literature of graph theory. 

We obtained tight lower and upper bounds on the cointersection numbers of numerous 

families of graphs, and also showed that a graph as simple as a path can have exponentially 

many optimal cointersection representations. We also developed an exact algorithm and a 

heuristic algorithm for finding optimal and approximate cointersection representations of a 

graph. The latter was evaluated on the standard Karate-club network and on the Newman-

Watts small-world graphs. A number of problems remain open for future research.
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Problem 1

Find a generic upper bound on the cointersection number θc, similar to the one on the 

intersection number (Theorem 1). The evidence suggests that θc ( ) ≤ n for all G.

Problem 2

Find matching lower bounds and upper bounds for the cointersection numbers of random 

graphs in various models: Erdös-Rényi, Newman-Watts, Watts-Strogatz, and the preferential 

attachment model. The upper bound obtained in this work for the random Newman-Watts 

graphs can most likely be tightened.

Problem 3

Develop more scalable algorithms for exact and approximate cointersection/Boolean 

intersection representations of large-sized graphs. The objective is to test the new model 

with large-scale real-world networks. The current algorithms only run well on small graphs: 

at most 20 vertices for the exact SAT-based algorithm and a few thousand vertices for the 

simulated annealing algorithm. It would be interesting to see if the data reduction technique 

developed for the intersection number by Gramm et al. [31] could be extended to the 

cointersection number.

Problem 4

Extend the current model to include continuous features. The notion of continuous features 

has been studied before in the literature, e.g. in the context of interval graphs and unit disk 

graphs. For instance, an interval graph (see, for example, [32]) is a graph where each vertex 

is assigned an interval on the real line and an edge exists between any two vertices if and 

only if the two corresponding intervals intersect. It is of interest to study the generalizations 

of these graphs under the general Boolean intersection model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of an intersection representation of a graph from [8]. Vertices are assigned 

subsets from the feature set  = {a1, a2, a3} so that two vertices are adjacent if and only if 

they share at least one common feature. In this case, the intersection number is three.
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Fig. 2. 
Each node is assigned a set of features from  = {a1, a2} and a set of features from ℬ = {b1, 

b2}. Two nodes are connected by an edge if and only if they share at most one feature from 

 and one feature from ℬ.
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Fig. 3. 
The community structure induced by the features in a cointersection representation of the 

graph. The vertices are grouped into different communities, each of which corresponds to an 

-feature (solid closed curve) or a ℬ-feature (dashed closed curve). The pair (u, v) is an 

edge if and only if both u and v belong to a common -community and a common ℬ-

community. In other words, every edge lies inside both a solid curve and a dashed curve.
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Fig. 4. 
An example where the discussed feature assignment for paths does not apply for the case of 

a cycle, say 9. Two vertices 1 and 4 share a pair of common features {1 | 6}, even though 

they are not adjacent. Here we set  = {1, 2, 3} and ℬ = {4, 5, 6}.
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Fig. 5. 
An example of a (3 | 3)-cointersection representation of 9. Here we set  = {1, 2, 3} and ℬ 
= {4, 5, 6}.
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Fig. 6. 
A (4 | 8)-cointersection representation of the ring lattice ℒ(20, 2). Here  = {a1, …, a4}, ℬ 
= {b1, …, b8}. The pair of features assigned to each 3-clique Ci is given at vertex i. The 

feature sets assigned to each vertex are unions of those assigned to all three cliques 

containing that vertex. The bold vertices correspond to the first clique in each group, where 

the Transition Rule applies. The bold ℬ-features signal where the Novel-Feature or the 

Inverse Rule applies. Adding random shortcuts (dashed) produces a Newman-Watts random 

graph.
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Fig. 7. 
A (2, 18)-CIR of 6,6. The sets R1, R2, and R3 are pairwise disjoint. The sets C1, …, C6 are 

also pairwise disjoint. Each pair of sets Ri and Cj has an intersection of size one. Both Ri’s 

and Cj’s are subsets of [b1, …, b18].
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Fig. 8. 
A 2-(9, 3, 1) resolvable packing with four parallel classes.
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Fig. 9. 
An optimal (9, 9)-CIR of 9,9,9,9 via a 2-(9, 3, 1) resolvable packing with four classes. In 

fact, this is a 2-(9, 3, 1) resolvable design, which is also an affine plane of order 9.
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Fig. 10. 
A 2-(16, 4, 1) resolvable packing with three parallel classes.

Dau and Milenkovic Page 43

IEEE ACM Trans Netw. Author manuscript; available in PMC 2018 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 

A (1, 2)-CIR of 𝒦2, 2
M  (left) and a (2, 3)-CIR of 𝒦3, 3

M  (right).
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Fig. 12. 
An illustration of two nonequivalent, optimal (2, 3)-CIRs of the path 7. In the first (top) 

representation, vertex 1 and vertex 5 do not share any features, while in the second (bottom) 

representation, they do share one feature, b1.
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Fig. 13. 
(Case 1) The feature sets of u and v with respect to ℛσ and ℛσ′.
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Fig. 14. 
(Case 2) The feature sets of u and v with respect to ℛσ and ℛσ′.
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Fig. 15. 
A simulated annealing algorithm for determining approximate cointersection representations 

of graphs. The score s(ℒ) counts the number of edges/non-edges of  that match the feature 

assignment ℒ according to the Cointersection Condition.
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Fig. 16. 
The social network of friendships in a Karate club. The members of the club were naturally 

divided into two groups, the one on the left supporting the president (Node 34), and the one 

on the right supporting the instructor (Node 1). Given α = β = 2 as input parameters, the 

randomized algorithm recovered a community structure, with two disjoint communities 

which correspond exactly to the two groups of supporters as discussed. But the algorithm 

provided more information, as within each community two further overlapping sub-

communities, marked by different colors, where identified. The only overlapping was in 

terms of Node 34 and Node 1, marked with a mix of two colors, correspond to the club 

president and the instructor. This suggests that there were two sub communities within each 

community held together by the president and the instructor.
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TABLE I

Performance of the simulated annealing algorithm on the Newman-Watts random graphs. Each entry from the 

second column onward contains four measurements, which correspond to four different choices of q from 

{0.1, 0.4, 0.7, 1.0}.

(n, k) F-score Precision Recall CPU (sec.)

(100, 14) .9|.8|.77|.79 .94|.92|.84|.77 .86|.71|.71|.8 ≤ 7

(200, 16) .87|.75|.67|.65 .92|.89|.88|.9 .83|.65|.54|.5 ≤ 18

(500, 18) .78|.69|.61|.56 .89|.84|.86|.84 .71|.58|.47|.42 ≤ 92

(1000, 20) .71|.62|.56|.46 .74|.74|.75|.76 .68|.54|.45|.33 ≤ 912

(2000, 22) .59|.5|.45|.41 .71|.7|.7|.7 .5|.4|.33|.29 ≤ 6880
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