
Softw Syst Model (2018) 17:1311–1337
https://doi.org/10.1007/s10270-016-0556-7

REGULAR PAPER

On the automated translational execution of the action language
for foundational UML

Federico Ciccozzi1

Received: 11 March 2016 / Revised: 15 July 2016 / Accepted: 28 August 2016 / Published online: 26 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract To manage the rapidly growing complexity of
software development, abstraction and automation have been
recognised as powerful means. Among the techniques push-
ing for them,model-driven engineering has gained increasing
attention from industry for, among others, the possibility to
automatically generate code from models. To generate fully
executable code, models should describe complex behav-
iours. While pragmatically this is achieved by employing
programming languages for defining actions within models,
the abstraction gapbetweenmodelling andprogramming lan-
guages can undermine consistency betweenmodels and code
as well as analysability and reusability of models. In light of
this, model-aware action languages should be preferred. This
is the case of the Action Language for Foundational UML
(ALF). In this paper, we provide a solution for the fully
automated translational execution of ALF towards C++.
Additionally, we give an insight on how to simplify the tran-
sition from the use of programming languages for modelling
fine-grained behaviours to model-aware action languages in
industrialMDE.The solution presented in this paper has been
assessed on industrial applications to verify its applicability
to complex systems as well as its scalability.

Keywords Model-driven engineering · Translational
execution · Code generation · UML · ALF

Communicated by Dr. Timothy Lethbridge.

B Federico Ciccozzi
federico.ciccozzi@mdh.se

1 Department of Innovation, Design, and Engineering (IDT),
MRTC, Mälardalen University, 72123 P.O. Box 883,
Västerås, Sweden

1 Introduction

Software pervades our everyday life in many ways and
its complexity is continuously increasing, thus demanding
both methodological and technical enhancements of exist-
ing engineering approaches. Already from the early 50s,
when software became too complex to be defined in terms of
machine languages by hand, the need for simplification by
abstraction led to the creation of a plethora of programming
languages [51]. During the 90s, it became clear that the very
fast growth of software’s complexity would lead to the need
of defining even more powerful and flexible development
approaches [20]. Once again the need of further abstrac-
tion arose [29]. On one hand, abstraction can effectively
help in mitigating software’s complexity. On the other hand,
it introduces additional artefacts and development phases
(e.g. design, transition from design to implementation) and
thereby the need of ensuring consistency among them. That
is to say, while taming the complexity of the software to be
developed, abstraction may make the engineering process
more intricate [5]. A common way to mitigate the complex-
ity of an engineering process, especially when dealing with
software systems, is boosting automation in the various engi-
neering phases.

In the profusion of software engineering techniques advo-
cating abstraction and automation as compelling needs for
effective development,model-driven engineering (MDE) has
stood out and got a foothold as a promising way to (i) tackle
the difficulty of third-generation languages to effectively
mitigate software’s complexity and express domain-specific
concepts, and (ii) alleviate the complexity of the engineer-
ing process by providing means for automation. To manage
software’s complexity, MDE aims at promoting models as
primary artefacts in the development.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0556-7&domain=pdf
http://orcid.org/0000-0002-0401-1036

1312 F. Ciccozzi

MDE advocates automation by means of transformations
between models at several development stages for model-
based analysis, model simulation, code generation and even
back-propagation from code to models [10], to mention a
few [44]. Generally, in order for the adoption of MDE to
be profitable from an industrial point of view, it has been
empirically assessed that automated code generation cannot
be neglected [21]. One of the crucial characteristics for a
modelling language to suffice as input for full-fledged code
generation is the ability to provide means for specifying fine-
grained behaviours.Most often, this is done by inserting code
written in common programming languages (e.g. C++, Java)
as behavioural descriptions in the model.

On one hand, this represents a pragmatic way to address
the problem in industrial settings since it enables the reuse of
legacy models with fine-grained behaviours defined through
programming languages. On the other hand, this practice can
bring more drawbacks than benefits when it comes to con-
sistency, analysability, reusability, just to mention a few, as
explained in the remainder of the paper. These drawbacks can
be tamed through promoting the use of model-aware action
languages, based on the modelling languages themselves,
as the preferred way for defining fine-grained behaviours
when modelling a software system. This is the case of the
Action Language for Foundational UML (ALF) [36] defined
by the Object Management Group (OMG) to act as the sur-
face notation for specifying executable behaviours within a
wider model that is primarily represented using the graph-
ical notations of the Unified Modelling Language (UML)1.
ALF naturally leverages the UML metamodelling elements
and thereby can boost consistency-by-construction and ease
model-based activities (e.g. analysis [12], simulation [14]).

In this paper, we provide a first of its kind solution for
the automatic translational execution (see Sect. 2) of ALF
to C++. While in our preliminary results [9] we introduced
the idea and showed that such a translation was possible,
in this contribution we provide a fully functioning solution
for translating (i) all the ALF concepts needed for defining
complex behaviours and (ii) a portion of those needed for
structural definitions. Moreover, we provide a solution for
both memory management and type deduction. A detailed
description of the contribution in relation to our preliminary
results is provided in Sect. 3.

Since the use of programming languages within models
is rooted in UML-based industrial MDE, we do not advo-
cate a radical and sudden shift to ALF which would not be
feasible in industry. To support this, in the paper we indicate
how our translator from ALF to C++ can be exploited as a
complement to existing MDE processes that generate exe-
cutable C++ from UML with C++ as action code. Doing so,
legacy models (or parts of them) can be reused and the adop-

1 http://www.uml.org/.

tion of completely UML-compliant model-driven approach
by designing new models (or parts of them) entirely using
UML and ALF can be gradual. The final goal would be to
model using UML (and profiles) and ALF only.

The translation mappings have been tested through trans-
formation unit testing [50], while functional correctness of
the generated C++ code has been assessed through monitor-
ing and logging routines on instrumented code. Among the
applications used for validation and evaluation purposes, the
self-orienting carrier robot system is used in the paper as run-
ning example for showing the translation process. Moreover,
the Asynchronous Transfer Mode (ATM) Adaptation Layer
2 (AAL2) subsystem, defined within Ericsson Nikola Tesla
in Zagreb (Croatia) under the supervision of Ericsson AB in
Kista (Sweden), has been exploited also to assess scalability
and applicability to real industrial systems.

The remainder of this paper is organised as follows. In
Sect. 2, we describe the core concepts that set the scope of
our problem and solution. A snapshot of the related works,
the details of the presented contribution and how it ismeant to
advance the current state of the art and practice are presented
in Sect. 3. In Sect. 4, we provide a high-level description
of the solution, while the complete list of mappings from
ALF syntax elements to C++ is given in Sect. 5. In Sect. 6,
we show the application of the transformation process to a
running example. Details on validation and evaluation of the
solution are described in Sect. 7, while Sect. 8 proposes a
discussion of core aspects related to problem and solution.
The paper is concludedwith a short summary of the presented
work as well as possible and planned future enhancements
in Sect. 9.

2 ALF: why and how?

The central concept of MDE is the model, an abstrac-
tion of a real problem conforming to a metamodel, which
describes the set of concepts and wellformedness rules that a
model shall follow. In the abundance of general-purpose and
domain-specific modelling languages, UML has emerged
and established itself as de facto standard in industrialmodel-
based development of software systems [22], and, more
generally, empirically proven to be the most widely used
architectural description language [31]. The propensity for
adopting UML is partially motivated by its versatility, which
enables (i) its usage as general-purpose language and (ii)
the possibility to customise it through the so-called profiling
mechanisms [1] to give it domain specificity.

Although helping in raising the level of abstraction,
initially UML was not sufficiently powerful to describe
executable programs as traditional third-generation program-
ming languages were, and therefore it had to rely on them
to achieve executable artefacts. This was, and still is, done

123

http://www.uml.org/

Promoting ALF for UML behavioural modelling 1313

either by employing these languages for describing behav-
iours within the models or by producing structural code
skeletons to be completed by hand with specific behaviours.
With UML 1.5, an action semantics for UML was intro-
duced. Moreover, the standardisation of (i) the Foundational
Subset For Executable UML Models (fUML), which gives
a precise execution semantics to a subset of UML limited to
composite structures, classes and activities (applicationmod-
els designed with fUML are executable by definition) [48],
and (ii) a textual action language, ALF, to express complex
execution behaviours, has made UML a full-fledged imple-
mentation quality language [45].

ALF is a textual surface representation for UML mod-
elling elements, whose execution semantics is given by
mapping ALF’s concrete syntax to the abstract syntax of
fUML. The primary goal of ALF is to act as the surface
notation for specifying executable behaviours within amodel
represented using the usual graphical notations of UML.
Additionally, ALF comes with an extended notation that can
be used to represent structural modelling elements too. That
is to say, it is possible to describe aUMLmodel entirely using
ALF. Anyhow, ALF’s syntax covers only the limited subset
of UML structural modelling concepts accounted in fUML.
While ALF maps to fUML in order to provide its execution
semantics, its use is not limited to the context of models con-
forming to the fUML subset. ALF has been designed with
Java-like syntax, but incorporates UML’s textual syntax too.

In Listing 1, we can see an example of ALF code where
ALF concepts (expressions and statements) are intertwined
with UML concepts (classes, attributes, methods—see UML
model in “Appendix A”).

1 if (Robot.right.X == 0){
2 Robot.right.X = Robot.forward.X;
3 Robot.left.vecRotateLeft();
4 }

Listing 1 Extract of generated C++ header and impl. file

Nonetheless, approaches employing programming lan-
guages for action code still dominate industrial MDE for
pragmatic reasons; anyhow, the many issues brought about
by this practice are undeniable. An example: how to main-
tain, or even simply check, consistency at modelling level
when the abstraction gap between modelling and program-
ming languages hinders action code from being naturally
aware of surrounding modelling concepts? Another issue is
represented by the fact that, by using programming languages
for defining action code, modellers may infer assumptions on
the target language or platform (e.g. memory management,
parallelism, communication mechanisms), which undermine
reusability of models, especially if the target language or
platform change. These are crucial reasons for which the
use of model-aware action languages like ALF, based on

the modelling languages themselves, should be preferred to
programming languageswhenmodellingfine-grainedbehav-
iours.

With the standardisation of ALF, we noticed an increas-
ing industrial interest in graduallymoving towards legitimate
action languages. Anyhow, such an adoption would not be
painless nor immediate since the use of programming lan-
guages within models is rooted in UML-based industrial
MDE. This is due to the fact that pragmatism and attention to
costs, core priorities in industry, are in harmony with max-
imised reuse (in this case reuse of legacy models). This is
why we provide a solution which can support and boost this
adoption process by giving the possibility to exploit ALF
as a complement to existing UML-based code generators.
This means that MDE processes generating executable C++
from UML with C++ as action code could progressively
move towards a completely UML-compliant model-driven
approach by designing new models (or new parts of existing
ones) entirely using UML and ALF.

According to its specification, ALF has three prescribed
ways to achieve semantic conformance, meaning how exe-
cution semantics is implemented, summarised as follows:

– Interpretive execution: ALF is directly interpreted and
executed;

– Compilative execution: ALF is translated into a UML
model conforming to the fUML subset and executed on
the actual target platform according to the semantics
specified in the fUML specification;

– Translational execution: ALF, as well as any surround-
ing UML concept in the model, is translated into an
executable for a non-UML target platform and executed
on it.

We focus on the translational execution for producing C++
code. The proposed solution has been developed within the
industrial consortium specifically devoted to Papyrus [17]
that has recently been approved by the Eclipse Foundation2,
in tight collaboration with Ericsson. Technically, the solution
is developed as a set of plug-ins on top of Papyrus.

Automation in MDE is usually achieved through model
transformations, which provide the links between domain
abstractions, including those between models and source
code, and represent a fundamental aspect in automating
development. A model transformation converts source mod-
els into target artefacts (i.e.models or text) related to the same
system by means of a transformation specification [13]. We
exploit model-to-text transformations, which we define in
terms of the Xtend3 language. Xtend is regarded as a flexible
dialect of Java, which is transparently compiled into readable

2 https://www.eclipse.org/org/workinggroups/papyrusic_charter.php.
3 https://eclipse.org/xtend/.

123

https://www.eclipse.org/org/workinggroups/papyrusic_charter.php
https://eclipse.org/xtend/

1314 F. Ciccozzi

Java 5 compatible source code and can seamlessly exploit
existing Java libraries. We used Xtend since, compiling to
Java and therefore interpreted by the JVM, it resulted in being
much faster of other transformation languages.

An alternative to model transformations could have been
the exploitation of compile-timemetaprogramming by defin-
ing macros for ALF (an example for the Scala language is
described in [6]). Although a valuable add-on to the ALF
language itself, macros would not allow us to treat ALF
(and surrounding UML) as models within EMF and Papyrus,
which is one of the core prerequisites for our solution to
be fully compliant with the latest official implementation of
ALF.

It is noteworthy to clarify that in this work we focus on the
problems related to automated generation of 100%code from
models. We aim at generating full-fledged executable code
from UML, and action code written in ALF, which is com-
parable to what is currently generated exploiting UML, and
C++ for action code; thereby, a comparison with handwritten
and manually tuned optimised code is out of scope.

3 Advancing the state of the art and practice

In this section we provide a snapshot of the state of the art
and practice and we describe how this paper is intended to
contribute to it.

3.1 Related work

Initially, UML was not sufficiently powerful and precise to
produce executable code as traditional third-generation pro-
gramming languages were. For this reason, UML had to
rely on either existing programming languages or adapted
dialects for being able to generate full-fledged code. As
soon as UML embarked on life, several solutions for trans-
lation execution of UML models were proposed and, some
of them, commercialised. Many (e.g. [15]) have exploited
UML and its profiles to generate code skeletons, but did not
focus ongenerating full-fledged code.Commercial tools such
as Enterprise Architect [47], IBM Rational Rhapsody [23]
and IBM Rational Software Architect [24] have histori-
cally exploited programming languages to define behaviours
within UMLmodels and generate full-fledged code. Asmen-
tioned previously in the paper, this practice brings a set
of drawbacks, such as intricate model validation, analysis
and consistency checking. Moreover, by expressing action
code through programming languages, the developer infers
assumptions on the target platform (e.g. memory manage-
ment, parallelism, communication mechanism), which may
hinder the generation of code for different targets from the
same input models.

Concerning proper action languages, some of the existing
ones are inspired by the action semantics of UML, but none
of them is conformant to the standardised execution seman-
tics defined through fUML. Chronologically, the Shlaer–
Mellor Action Language (SMALL) [39] was the first of its
kind and was specified to exploit a data flow-based execution
similarly to fUML; the language was never implemented.
In the context of the object-oriented analysis (OOA) tool
for executable UML, the Action Specification Language
(ASL) [28] was defined and it represented a fairly capa-
ble action language at the time. The OOA tool provided
some limited code generation features, which were further
enhanced with its descendent, MentorGraphics’s Bridge-
Point [32]. This tool provided a powerful action language,
namely the Object Action Language (OAL) [33], which can
be seen as a proprietary dialect of the predecessor of ALF,
the UML Action Language (UAL). UAL was adopted and
customised [30] by IBM too, as part of the their Rational
Software Architect tool [24].

Another proprietary language is the Platform-independent
Action Language (PAL), which was not based on the formal
execution semantics of UML. The PathMATE tool exploited
it to provide assisted code generation based on models and
marking [37]. PAL was extended with concepts from the
Object Constraint Language (OCL)4 by Motogna et al. [35].
OCL was exploited again by Jiang et al. [26], who presented
the OCL4X action language, where OCL was enriched with
meta-actions for changing the system state. +CAL [38] was
presented as an action language based on the action semantics
of UML, but, focusing specifically on distributed real-time
embedded systems, it did not provide the needed degree of
generality that should be peculiar of an action language. A
Java-inspired attempt is represented by the Action Language
for Business Logic (ABL) [19]. The action language ismeant
to be converted to actions defined with the action semantics
of UML, but includes elements that are not part of it. An
investigation and evaluation of some UML action languages
is provided in [2]

Since its standardisation, UML has triggered several
initiatives for defining actions, mostly towards model sim-
ulation and code generation. This has been achieved through
the exploitation of programming languages, the customi-
sation of the UML action semantics, etc. Nonetheless, to
the best of our knowledge, none of the approaches docu-
mented in the literature provide a solution for the automatic
generation of full-fledged code from the de facto standard
action language for UML, ALF. One could argue that mod-
ern object-oriented languages, such as Scala5 and Xtend,
for which code generators exist [4,41], might be employed
instead of ALF. Although similar from an expressive power

4 http://www.omg.org/spec/OCL/2.4/.
5 http://www.scala-lang.org/.

123

http://www.omg.org/spec/OCL/2.4/
http://www.scala-lang.org/

Promoting ALF for UML behavioural modelling 1315

perspective, none of those languages exhibit the awareness
of surrounding model elements that ALF provides.

In the literature, interpretive approaches can be found too.
Among them, none provides a solution for the execution
of UML models on the actual target platform, but rather
focus on middleware-based execution for simulation [49]
and model-based analysis [3]. Moreover, only one of the
approaches [49] employs ALF. While very useful at design
level for early analysis, interpretive solutions, usually based
on resource-demanding middleware (or even on the mod-
elling environment itself), need to be complemented with a
generative approach producing executable code to be run on
resource-constrained targets (e.g. embedded systems).

The literature offers only three compilative approaches,
with no continuity in time (they are spread over a 10-year
span) [42,43,46]. In [42], the authors propose a front end for
GCC and enhance dead code elimination optimisation and
blockmerging. The other two solutions are hybrid, since they
compileUMLmodels to a format that is interpreted by ad hoc
virtual machines. Moreover, none of the approaches entail
ALF. The three approaches leverage very limited subsets of
UML and exploit only graphical behavioural diagrams (e.g.
state machines and activities).

Since our goal was to provide a non-breaking solution
to boost the adoption of ALF in UML-based MDE even in
industrial settings, we chose to go for translational execution.
This is justified by the state of the practice in industry where
executable code in terms of a third-generation programming
language (e.g. C++) is crucial to be able to reuse existing
domain-specific runtime layers and optimised compilers.

3.2 Paper contributions

In this paper, we provide the first of its kind solution for the
fully automated translational execution of ALF. To the best
of our knowledge, there is no documented attempt in the
literature addressing the problem of generating full-fledged
executable code from (UML and) ALF, except for our pre-
liminary effort in this direction [9]. More specifically, we
provide the following.
Translation of behaviours. We provide translation of ALF
concepts within the syntactical minimum conformance (as
described in the ALF specification), that is to say the subset
of ALF that is used for writing textual action language snip-
pets as behaviours within a larger graphical UMLmodel and
that includes all the capabilities available in a traditional, pro-
cedural programming language. In our previous work [9], we
provided a solution limited to a small subset of the minimum
conformance considering a first implementation (metamodel
in Papyrus) of ALF which did not fully reflect the spec-
ification. In this solution, we employ the implementation
based on the latest ALF specification (v1.0.1); this resulted
in a completely new transformation process, which does

not leverage anything of its limited predecessor. As afore-
mentioned, fine-grained behaviours have historically been
modelled exploiting programming languages. Since a break-
ing solution “forcing” the sudden adoption of ALF would
not be feasible in industrial settings, we show how ALF
and our translational execution can be exploited as a com-
plement to existing code generators; the motivations behind
such a feature were introduced in [8]. More specifically, we
show how to generate C++ from models whose structure is
defined through UML and fine-grained behaviours by action
code written in ALF. To the best of our knowledge, there
is no documented attempt in the translation of ALF to any
general-purpose programming language, including C++.
Translation of units. We provide a translation of part of
the concepts, addressed as ALF units, that are used to textu-
ally describe structural portions of a UMLmodel (within the
fUML subset). More precisely, we provide support for the
translation of: namespace, package, class (passive), oper-
ation, property. By providing this option, we allow the
developer to, besides defining actions within a graphical
UML model, even define the structural parts of the model in
terms ofALF to get corresponding executable C++ generated
entirely fromanALFmodel. In our previouswork,we did not
addressALF units. Solutions for the translation of these same
structural portions from UML and its profiles (not ALF) to
general-purpose programming languages exist [7]. However,
these solutions are usually based on the UML metamodel,
while we provide a solution tailored for the ALF metamodel
in order to enable the possibility to describe a fully functional
model entirely leveraging ALF and its abstract syntax.
Memory management. ALF does not enforce a specific
memory management mechanisms, providing the possibil-
ity to create and destroy objects explicitly, or to constrain
an object’s life cycle to the so-called execution locus. Since
there was not a straightforward way to bridge memory man-
agement mechanisms in ALF and C++, we investigated the
set of possible solutions for managing memory in C++ (i.e.
garbage collection, smart pointers, manual memory manage-
ment) and opted for memory management based on smart
pointers6. Although there is a noteworthy body of the litera-
ture addressing issues related to memory management when
building compilers, none deals explicitly with UML’s action
languages in general nor their translation in particular. In
our previous work, we provided hard-coded manual memory
management relying on static object instantiation only.
Type deduction. We provide a type deduction mechanism
as part of the transformation process. This mechanism is
exploited for simplifying the type setting of objects by deduc-
ing at a glance types without having to continuously navigate
theALF syntax tree. For instance, inALF, access tomembers
achieved through a dot operator (‘.’) can result, in C++, into

6 http://www.cplusplus.com/reference/memory/shared_ptr/.

123

http://www.cplusplus.com/reference/memory/shared_ptr/

1316 F. Ciccozzi

dot, arrow (‘->’) or semicolon (‘::’) operators depending on
the type of objects as well as thememorymanagement mech-
anism. In order to correctly generate access to members, we
need type deduction mechanisms.More specifically, the core
functionalities provided by the type scope mechanism are
four: (1) create, edit and retrieve scopes following their hier-
archical structure in the ALF blocks, (2) create, overwrite
and retrieve sub-scopes associated with an ALF element,
(3) search of names already declared within current scope,
its parent scope and related imported namespaces and (4)
add, overwrite and retrieve the type of an element (e.g. type
associated with a variable name) from the current scope, its
parent/child scopes, as well as imported namespaces. With-
out these functionalities, the deduction of typeswould require
continuous redundant model navigations. In our previous
work, we did not provide this kind of support.

The generation process is fully automated, and, fed with
a valid (UML-)ALF model, it generates valid full-fledged
C++. The transformation has been tested and evaluated to
assess its applicability to complex models of industrial size
also in terms of performance (e.g. scalability).

4 Translational execution of ALF

In this section, we present our solution showing the trans-
formation process, its steps and the involved artefacts. The
structure of the implementation in terms of Java (Xtend)
packages resembles the structure of the ALF specifica-
tion [36] describing the ALF elements that they translate.
This can help for investigating the transformation code.
Moreover, additional packages, such as those handling type
deduction and the ones taking care of memory manage-
ment, are separated and leveraged through a set of APIs
by the translation packages. This is particularly useful in
case additional or alternative mechanisms for, e.g. memory
management need to be introduced, or when another simi-
lar target language is considered (e.g. Java). Note that the
entire transformation process is defined in terms of model
transformations. By exploiting the implementation of ALF
in terms of metamodelling concepts in Papyrus, the process
does not need any parsing activity and operates on the ALF
code in terms of its model representation. The transformation
process takes into account two possible design scenarios:

Scenario 1 – structural and behavioural details are both
given in terms of anALFmodel, through units and blocks
(sequences of statements), respectively;

Scenario 2 – the software system is modelled using UML
(or UML profiles) for defining structural elements. Fine-
grained behaviours are defined through UML opaque
behaviours with bodies programmed with ALF. In this

scenario, legacy behaviours can be defined in terms of
other languages.

In the following sections, we describe how the translation of
structural and behavioural concepts is carried out in each sce-
nario. Since mechanisms for type deduction and generation
of memory management code are exploited by the transla-
tion, we describe them first.

4.1 Type deduction

For type deduction purposes, we defined a structure, called
TypeDeduction, in terms of Java objects to be natu-
rally compliant to Xtend and thereby directly exploitable by
the transformation process. We use TypeDeduction for
defining scopes (e.g. a method scope) and variables to them
(e.g. a loop variable) and effectively deducing types during
the translation of both structural and behavioural modelling
elements. In Fig. 1, we depict a graphical representation of
TypeDeduction to help the reader to grasp the interde-
pendencies among its constituents.
The core object of TypeDeduction is the TypeScope
interface, which defines a set of methods for supporting type
deduction.More specifically,TypeScopemakes it possible
to create and search type scopes for storing and retrieving
information about, for example, types returned by expres-
sions, class types, variable definitions and types in the scope
of a class or a namespace; specific APIs have been defined
for this purpose. Through them, a realisation of TypeScope
can search in the tree-based type hierarchy until the specific
variable or object is found. Through TypeScope, it is also
possible to derive the final type of a fully qualified name as
well as of the tokens composing it. An example is given in
Sect. 6.

Fig. 1 Graphical representation of TypeDeduction

123

Promoting ALF for UML behavioural modelling 1317

A realisation of TypeScope points always to its direct
parent scope through the reference parent; this is used
for the scopes to reflect the structural hierarchy from
namespaces down tomethods and vice versa.TypeScope is
realised by TypeDeduction’s main object, Namespace,
which corresponds to an ALF package or namespace.
Namespace can have a list of Import interfaces, which
correspond to ALF import elements. Import extends
TypeScope and provides methods for searching the entire
imported element scope.Additionally,Namespace canown
a list of Class objects corresponding to ALF classes. In
turn, Class can have a set of MemberVariable and
MemberMethod elements, corresponding to ALF class
attributes and operations, respectively. MemberMethod
owns always an ALF_Block object, which contains the
unmodified body of the related method defined in ALF.

TypeScope is realised even by TypeDeduction-
Scope, which is exploited byClass and MemberMethod
to manage their respective scopes and when deducing types
within an ALF Block. TypeDeductionScope builds the
scope of a specific class or method in terms of the set of ALF
syntax elements7 (ALF_SyntaxElement) and their types
(Type).

The core functionalities provided by TypeScope in
terms of APIs can be summarised as follows:

– Scope hierarchy management: scopes are built following
their hierarchical structure in the ALF blocks, and APIs
are provided for creating, editing and retrieving this infor-
mation. An example of such is the retrieval of the parent
or child scope of the current scope;

– Sub-scope management: sub-scopes associated with an
ALF element can be created, overwritten and retrieved;

– Name declarations check: already declared names can be
sought within current scope, its parent scope and related
imported namespaces;

– Element type management: the type of an element (e.g.
type associated with a variable name) can be added,
overwritten and retrieved from the current scope, its par-
ent/child scopes, as well as imported namespaces.

Note that TypeDeduction is completely transparent to
the developer who simply runs the transformation process
and obtains the automatically generated C++ code related
to the design model. Moreover, TypeDeduction does not
represent an intermediate model or representation between
ALF andC++,meaning that the possibility to back-propagate
information provided by a compiler for, for example, model-
level debugging at model level is not jeopardised.

7 Note that any node of an ALF syntax tree is referred to as syntax
element.

4.2 Memory management through smart pointers

Due to the platform-independent nature of ALF, an issue
to be taken care of when translating it towards a specific
platform or programming language is, among others, the
management of memory. ALF does not enforce a specific
memory management mechanisms, providing the possibil-
ity to create and destroy objects explicitly, or to constrain
an object’s life cycle to the so-called execution locus” (in
C++ it would look like a sort of global object) unless they
are not explicitly destroyed. Moreover, even if all the links
to an object are explicitly destroyed, in ALF those objects
can be retrieved anytime using class extent expressions; in
C++, these object would become “unreachable” objects and
thereby produce memory leaks. Since there was not a uni-
vocal way to bridge memory management mechanisms in
ALF and C++, we had to decide upon one. Our goal was
to generate C++ code free from memory overflows/leaks for
it to be runnable on a large spectrum of systems, includ-
ing safety-critical ones where memory-related issues are not
tolerable [40]. Moreover, since we aimed at providing a solu-
tion for industrial usage too, we were restricted to memory
management mechanisms for C++ included in the standard
specification. When seeking a solution, we considered three
main aspects: propensity of generated code towards memory
overflows/leaks, complexity of the solution at transformation
level and performance of the generated code. We identified
three suitable possibilities to solve the memory issue:

– Allocate basic typedvariables on the stack andmore com-
plex objects on the heap. This solution would result in
decent code performance, and it would be fairly easy to
implement. The issuewith it resides in the fact that it does
not ensure prevention from stack overflows since alloca-
tions of basic typed variables may require more space
than available on the call stack.

– Allocate everything on the heap through smart pointers.
This solution would give good code performance and
would not be extremely difficult to implement.Moreover,
it would prevent from stack overflows andmemory leaks,
since none of the objects are allocated on it.

– Perform a smart allocation based, for example, on the
scope of use and the size of the objects. On one hand,
this solution would provide the best code performance
and prevent from stack overflows. On the other hand, it
would be very complex to implement and maintain since
it would require (i) an analytical engine to determine
object-specific allocations and (ii) a way to automatically
generate destructors to handle memory deallocation of
user-defined objects.

Since our main focus was to provide a sound solution for
memory management that was not too costly to maintain and

123

1318 F. Ciccozzi

complement with alternative solutions, we decided to exploit
allocation on the heap through smart pointers. This kind of
pointer defines a reference counter for each allocated object.
Once the reference counter hits zero, the related object is
released from memory. On one hand, this solution might be
costly when dealing with frequent acquisition-release cycles
of time-demanding objects. On the other hand, othermemory
management mechanisms may cause pausing of the whole
program execution for the memory to be examined, replaced
or freed.

Smart pointers are used to manage objects of non-
primitive type (i.e. classes and their instances) in the
following way. A non-primitive type T is wrapped as
shared_ptr< T>, which represents a smart pointer to
an object of type T. When instantiating the object (i.e. class
instance), the construct make_shared<T> is exploited to
initialise the smart pointer referencing to the specific object
and taking care of memory management.

There are two issues of using smart pointers that can be
seen as disadvantages: standardisation and performance [34].
With C++ 11, smart pointers became part of the standard,
which is in itself good, but their exploitation can be sen-
sitive in restricted domains, where libraries and frameworks
need specific approval.When it comes to performance, smart
pointers add two counting variables to manage the memory
needed by an object. This represents a tiny overhead in mem-
ory usage, usually outplayed by the security that is provided
by smart pointers; very fewmodern embedded systemswould
not be able to afford such a small overhead. In case of hard
real-time applications whose criticality resides in their time-
liness, a deeper analysis should be conducted to assess how
smart pointers may affect deterioration from a timing per-
spective.

4.3 Translation of structure

In scenario 1, ALF is used to describe both structure and
behaviours of the system under development. The trans-
formation process navigates the ALF structural description
and translates ALF units, that is to say declarations of
namespaces, packages, classes, properties, methods8, to C++
code, and at the same time it creates their scopes by means of
TypeDeduction for efficient type deduction when trans-
lating ALF behaviours represented by ALF blocks. More
specifically, TypeDeductionwill be used to deduce types
of variables and expressions for, for example, selection of the
right member access operator and insertion of smart pointer
constructs.

In scenario 2, the structural description is defined using
UML and transformed by specific transformations (not part

8 Note that in the paper we use interchangeably method, operation and
function as synonyms.

of this contribution). In this scenario, the transformation
process only takes care of translating ALF behaviours as
described in the next section. Nevertheless, the structural def-
inition in terms of UML is exploited by the transformation
for type deduction reasons (creating a TypeDeduction
similar to scenario 1) since it gives behaviours the context
needed for the transformation to correctly translate them.

4.4 Translation of behaviours

When producing structural C++, either by our transforma-
tion process (scenario 1) or by an external code generator
(scenario 2), for each UML/ALF operation our code genera-
tor checks whether there is a fine-grained behaviour defined
in terms of an ALF block. If yes, the generator can perform
either of the following three actions depending on how the
opaque behaviour is defined:

Action 1 – Behaviour defined in C++ (scenario 2): the gen-
erator does not manipulate the action code, but
it rather copies it to the corresponding method
implementation in the resulting .cpp file;

Action 2 – Behaviour defined in ALF (both scenarios): the
generator triggers the model-to-text transforma-
tion implementing the translation from ALF to
C++ and puts the resulting C++ code in the cor-
responding method implementation in the .cpp
file. Within ALF code, the modeller can define
in-line code snippets in other programming lan-
guages (as described later in next sections). If
the in-line code is written in the language tar-
geted by the transformation, then it is copied to
the resulting code, while ignored otherwise;

Action 3 – Behaviour defined in other languages (scenario
2): the generator does not take any specific
action. This particular case could be handled by
triggering an ad hoc transformation for the spe-
cific language (if available) as in action 2, or by
performing an action similarly to 1, in case of
deployment of different functions (and classes)
to different hardware nodes runningdifferent tar-
get languages.

The transformation process is able to navigate the model,
identify ALF blocks and translate them directly to C++. For
several reasons, among which correctly generating access
to members in C++ and efficiently deducing the type of
variables and expressions, type deduction mechanisms are
exploited on-the-fly as part of the transformation.

In scenario 2, problems can arise if naming conventions
across legacy C++ action code and the C++ code generated
byour translator are not aligned; issues can even arise ifmem-
ory management is handled in different (incompatible) ways

123

Promoting ALF for UML behavioural modelling 1319

by C++ action code (hard-coded memory management) and
our code generation process. These issues can be mitigated
by adapting memory management mechanisms as well as
naming conventions that are considered in the transformation
itself. That is to say, in order to bridge differences in naming
conventions between the code generated by third-party gen-
erators to interact with the one generated by our generator,
appropriate APIs (not provided but our transformation) for
marshalling/unmarshalling of labels. The effort of providing
such an API depends on the level of misalignment in naming
conventions and is hard to foresee.

In our solution, since we exploited an open-source code
generator for the UML structural portions provided by the
author in his previous research work [11], we did not need to
provide glue code. When it comes to memory management,
an additional reason for which we opted for C+11 standard
smart pointers is that they are compatible with other stan-
dard memory management mechanism. That is to say, C++
code generated by our translator can interact with legacyC++
exploiting other standardmemorymanagementmechanisms.

5 Mapping ALF concepts to C++

Our solution provides a novel (first of its kind) translation of
the ALF syntactical minimum conformance to C++ except
for the following. LinkOperationExpression, used
in ALF to create or destroy the links of an association, is
not included since associations are not part of the minimum
conformance. BitStringUnaryExpression, used in
ALF for unary operations on the type BitString, is not
included since the type BitString is not conceived in C++.
ClassExtentExpression, used in ALF to obtain the
objects in the extent of a class, is not included since it is not
possible to search all instances of a particular class in C++.
Sending instances of a signal in FeatureInvocation
Expression is not supported since signals are not part of
the minimum conformance. Moreover, it provides the trans-
lation of a subset of ALF units, not included in the minimum
conformance, for allowing the modeller to define an appli-
cation using ALF only. In the following, we provide the
technology-agnostic description of the supported mappings
between ALF abstract syntax elements and corresponding
C++ concepts reflecting the order in which ALF syntax ele-
ments are described in the official ALF specification (i.e.
expressions, statements, units). Since exemplifying all the
possible cases of use each syntax element is not possible
(they are infinite), we aim at providing a set of representative
examples for the reader to be able to reproduce the mappings
with the transformation technology of her choice.

Note that, whenever the type of an element (e.g. qual-
ified name, return values) influences the translation from
ALF to C++, we exploit our type deductions mechanism for

identifying types; in the next sections we highlight the most
interesting cases. However, alternative ways to deduce types
could be exploited and the mappings described in the fol-
lowing sections are not dependent on the specific deduction
mechanism.

5.1 Expressions

Expressions are behavioural units that evaluate to collections
of values. In this section, we describe the mappings between
the covered types of expression from ALF to C++.

5.1.1 Qualified names

QualifiedName is used to identify a UML named ele-
ment, which may or not be a member of one or more
namespaces. To avoid unpredictable C++ code, we did not
cover the PotentiallyAmbiguousQualifiedName
concept. The remaining concepts are mapped as follows.
A qualified name is constituted of non-empty set of bind-
ings, either NameBinding or PositionalTemplate
Binding (or a combination of the two). Bindings are sepa-
rated by colons (‘::’), in case of ColonQualifiedName,
or dots (‘.’), in case of DotQualifiedName.

Separation in terms of colons or dots is not univo-
cal in C++ since it depends on the types of the objects
represented by NameBinding. More specifically, if the
preceding NameBinding represents a class object, colons
and dots are mapped to C++’s arrow operator ‘->’ (Case
1, 2, 4); if it represents a property of primitive type,
colons or dots are kept in C++ too (Case 3). Regarding
PositionalTemplateBinding, since we use smart
pointers, the translation is done by wrapping the most inter-
nal NameBinding in the shared_ptr<T> construct if
the name represents a non-primitive type T (Case 5).

The possibility to distinguish among the various cases
is given by our type deduction mechanism. More specifi-
cally, before translating QualifiedName, we navigates
all the bindings composing it and identify the type of each of
them. On one hand, in Case 2, type deduction identifies that
classA is declared in a parent scope as an instance object of
class ClassA; for this reason, the dot ‘.’ operator in ALF is
replaced by the arrow ‘->’ operator in C++ (the same applies
to Case 1, 4). On the other hand, in Case 3, property
is defined in a parent scope as integer, and thereby the
dot ‘.’ operator is kept in the resulting C++. In Case 5,
PositionalTemplateBinding is done on ClassA
and ClassB, which are both identified as class types in their
parent scope by the deduction mechanism; the translation is
done by wrapping them in the shared_ptr<> construct
(Table 1).

123

1320 F. Ciccozzi

Table 1 Mapping of QualifiedName

Case ALF code C++ code

1 pkg::ClassA::property pkg::ClassA->property

2 classA.property classA->property

3 property.toString() property.toString()

4 classA.op() classA->op()

5 ClassA <ClassB> shared_ptr<pkg::ClassA<shared_ptr<pkg::ClassB>>>

5.1.2 Literal expressions (Primary expressions)

LiteralExpression is composed of a single primitive
literal. Since we aim at providing a translator which pro-
vides predictable C++ code, we did not account the primitive
UnboundedValueLiteralExpression since there is
no standard way to translate it to a safe unbounded type in
C++. Note that we do not forbid the use of unsupported
ALF concepts at modelling level (e.g. through OCL con-
straints) since models are not only used for code generation
purposes. Nevertheless, warnings are issuedwhen generating
code from models containing unsupported ALF concepts.

Concerning the other types, BooleanLiteral
Expression, StringLiteralExpression and
NaturalLiteralExpression, they have a natural cor-
responding in C++. For instance, a BooleanLiteral
Expression in ALF can either be represented by true
or false values of a boolean (bool) in C++.

5.1.3 Name expressions (Primary expressions)

This syntax element represents the value denoted by a
QualifiedName. The mapping to C++ is given by the
corresponding qualified name (see Sect. 5.1.1).

5.1.4 ‘This’ expressions and Parenthesized expressions
(Primary expressions)

ThisExpression consists of the keyword this, and it is
translated to the same keyword in C++. Parenthesized
Expression represents an expression contained by paren-
theses; parentheses are simply reproduced in C++, but the
contained expression must be properly translated according
depending on the expression type.

5.1.5 Property access expressions (Primary expressions)

PropertyAccessExpression is used to access the
value of a property owned by the instance of a classifier. The
expression is defined in terms of a feature reference, pointing
to a target primary expression and to a name of a property
of the type of the target primary expression. The transla-

tion is done by translating the primary expression according
to its specific type and relating it to the name of the prop-
erty to be accessed. In ALF, primary expression and names
(NameBinding) are separated by the dot ‘.’ operator, while
in C++ this depends on the type of the object to be accessed;
this is solved in the same way as for QualifiedName (see
Sect. 5.1.1).

5.1.6 Invocation expressions (Primary expressions)

This expression represents an invocation to a behaviour and
a Tuple, which represents the arguments for the para-
meters of the invocation. An invocation can be of the
following types: BehaviorInvocationExpression,
FeatureInvocationExpression and SuperInvo
cationExpression. Tuple and invocation types are
described in the following four sections.

5.1.7 Tuple

A Tuple is a list of expressions that describe the arguments
for an invocation. They can be positional or named tuples; we
provide a translation for positional tuples, since the current
specification of C++ does not provide the concepts needed
for representing named tuples. A Tuple is translated by
iterating on the list of expressions it represents, singularly
translate each of them and concatenate their translation using
the comma separator ‘,’. The concatenation is put within the
parentheses of the translated InvocationExpression.
Single expressions are translated according to their type
(Table 2).

5.1.8 Behaviour invocation expressions (Primary
expressions)

It is the simplest type of invocation, and it is represented
by a QualifiedName representing the behaviour to be
invoked. The translation follows the same rules as the ones
defined for QualifiedName (see Sect. 5.1.1). Note that in
order for a behaviour called from a model library to be cor-
rectly translated, a C++ library corresponding to the model
library should be in place. In case C++ library and model

123

Promoting ALF for UML behavioural modelling 1321

Table 2 Mapping of Tuple
ALF code C++ code

(par1, “string”, new ClassA(), (par1, “string”, make_shared<pkg::ClassA>(),

classA.op2(), {1,2}) classA->op2(), {1,2})

Table 3 Mapping of FeatureInvocationExpression

Case ALF code C++ code

1 property.op() property.op()

2 classA.op() classA->op()

3 classA.op().op2() classA->op().op2()

4 classA.op1().op2() classA->op1()->op2()

Table 4 Mapping of SuperInvocationExpression

ALF code C++ code

super.op() pkg::ClassA->op()

library do not share the same naming convention, a wrapper
(external to this code generator) should be provide to bridge
the differences.

5.1.9 Feature invocation expressions (Primary expressions)

This expression has a feature reference as its target, and
thereby translated following the rules defined for Property
AccessExpression (see Sect. 5.1.5), and a final
NameBinding representing an operation call. In Case 1,
an operation call on a property of primitive type keeps the
same syntax in C++. In Case 2, an operation call on a class
object is translated by separating the final NameBinding
and the accessed property by the arrow operator ‘->’. Case
3 and 4 represented cascaded feature invocation. In Case 3,
the return value of op() is of primitive type; thereby, it is
accessed by the final NameBinding op2() through the dot
operator ‘.’. In Case 4, the return value of op1() is a class
object; thereby, it is accessed by the final NameBinding
op2() through the arrow operator ‘->’ (Table 3).

5.1.10 Super invocation expressions (Primary expressions)

This invocation is used to invoke an operation of a super-
class of the current class. Its syntax is similar to Feature
InvocationExpression, but, instead of a feature ref-
erence, it has the keyword super as target. The mapping
is the same as for FeatureInvocationExpression
except for the keyword super, which is instead substituted
by the QualifiedName of the superclass (Table 4).

5.1.11 Instance creation expressions (Primary expressions)

InstanceCreationExpression represents the cre-
ation of a new instance of a class or data type. It consists
of the keyword new followed by a name (possibly qualified)
representing the constructor method and a tuple represent-
ing eventual parameters for it. The new instance to be
created is wrapped in a smart pointer through the con-
struct make_shared<> (Case 1). In case the constructor
is retrieved through a PositionalTemplateBinding,
the most internal NameBinding is wrapped in a
shared_ptr<T> if it represents non-primitive type T
(Case 2). Through our type deduction mechanism, we iden-
tify the type of the instance to be created as a class type and
wrap it in the make_shared<> construct for initialising
a smart pointer for it (Table 5).

5.1.12 Sequence construction expressions (Primary
expressions)

SequenceConstructionExpression groups values
into a sequence of a specified type. It is represented by
a list of expressions enclosed in curly braces and pre-
ceded by the specific type and the multiplicity brackets.
A SequenceConstructionExpression that begins
with the keyword new indicates an InstanceCreation
Expression for which a sequence of values is constructed
too (Cases 2 and 3). In Case 1, we can see the construction
of a sequence of integers and in Case 2 the construction
a new array of strings. The mapping is pretty straight-
forward, except the fact that arrays are mapped to C++’s
‘vector’. A more complex case is depicted in Case 3,
where a sequence of class objects is constructed by directly
creating a new object of the class as first element of the
sequence. In this situation, the NameBinding representing
the sequence is wrapped into a shared_ptr<>, while the
NameBinding representing the newclass object iswrapped
into a make_shared<>.

Through our type deduction mechanism, we can identify
class types (Case 3) and wrap them in the shared_ptr<>

construct for leveraging smart pointers (Table 6).

5.1.13 Sequence access expressions (Primary expressions)

SequenceAccessExpression is exploited to retrieve
the element in a specified position of a sequence. It is

123

1322 F. Ciccozzi

Table 5 Mapping for InstanceCreationExpression

Case ALF code C++ code

1 new ClassA(params) make_shared<ClassA>(params)

2 new ClassA<ClassB>() make_shared<pkg::ClassA<shared_ptr<pkg::ClassB>>>()

Table 6 Mapping of
SequenceConstruction
Expression

Case ALF code C++ code

1 Integer[]{1, 2, 3} vector<int>({1, 2, 3})

2 new String[]{“a”, “bc”, “df”} vector<string>({“a”, “bc”, “df”})

3 ClassA[]{new ClassA(), null} vector<shared_ptr<pkg::ClassA>>{

make_shared<pkg::ClassA>(), null}

composed of two expressions, one identifying the sequence
followed by one evaluating to an integer representing the
index of the element to be retrieved and enclosed in
brackets. The two expressions are transformed individu-
ally depending on the expression type. The structure of
SequenceAccessExpression coincides in ALF and
C++.

5.1.14 Increment and decrement expressions

This type of expressions uses the increment operator ‘++’
or the decrement operator ‘−−’ in a prefix (operator
before operand) or postfix (operator after operand) form for
increasing or decreasing an integer operand represented by
either a feature reference (FeatureLeftHandSide) or
a qualified name (NameLeftHandSide), and an index
expression. If the operand is represented by a feature ref-
erence, the translation is done according to what is defined
for PropertyAccessExpression (see Sect. 5.1.5),
while, if represented by a qualified name, it is done as for
QualifiedName (see Sect. 5.1.1). The expression provid-
ing the index, if any, is translated depending on the expression
type.

5.1.15 Boolean unary expressions (Unary expressions)

BooleanUnaryExpression is a unary expression com-
posed of: an operand expressionwhich evaluates to a boolean
value and the negation operator ‘!’. Its translation is done by
properly translating the expression representing the operand,
according to the specific expression type, which is preceded
by the negation operator ‘!’.

5.1.16 Numeric unary expressions (Unary expressions)

NumericUnaryExpression is a unary expression com-
posed of: an operand expressionwhich evaluates to a boolean
value and a numeric operator ‘+’ or ‘−’. Its translation is

Table 7 Mapping of CastExpression

ALF code C++ code

(any)classA.property (auto_cast)classA->property

done by properly translating the expression representing the
operand, according to the specific expression type, which is
preceded by the numeric operator.

5.1.17 Cast expressions (Unary expressions)

CastExpression is used to cast an operand expression
to the type given by a QualifiedName. The translation
is done by translating the operand expression according to
the specific expression type and the type according to the
rules defined for QualifiedName (see Sect. 5.1.1) (Case
1). In the specific case in which the type to cast to is defined
as any, the type is meant to be derived dynamically at run-
time. In this case, any is translated to auto_cast (Case
2). Type deduction mechanisms support the translation in
distinguishing the two cases. Since cast operations are not
safe by definition, it is up to the modeller to ensure that the
conversion is safe (Table 7).

5.1.18 Binary expressions

Abinary expression is composed of two operand expressions
separated by a binary operator. Its translation is done by prop-
erly translating the expressions representing the operands,
according to the specific expression types, and separating
them by the specific binary operator. Type deduction mech-
anisms are exploited for deriving the type of the operands.
ArithmeticExpression is characterised by an arith-
metic operator (+,−, ∗, /,%). Note that arithmetic operator
symbols as well as their associativity and precedence rules
coincide in ALF and C++.

123

Promoting ALF for UML behavioural modelling 1323

Table 8 Mapping of ClassificationExpression

Case ALF code C++ code

1 classA.classB instanceof ClassA dynamic_cast<ClassA∗>(classA->classB) ! = 0

2 classA.classB hastype ClassA typeid(ClassA)== typeid(classA->classB)

Table 9 Mapping of
AssignmentExpression

Case ALF code C++ code

1 classA.classB = new ClassB() classA->classB = make_shared<pkg::ClassB>()

2 classB = new ClassB() classB = make_shared<pkg::ClassB>()

3 classB[i] = new ClassB() classB[i−1] = make_shared<pkg::ClassB>()

4 i + = classA.prop i + = classA->prop

ShiftExpression is characterised by a shift operator
(<< signed left shift,>> signed right shift,>>> unsigned
right shift). While signed left and signed right shift operator
symbols as well as their associativity and precedence rules
coincide in ALF and C++, unsigned right shift (>>>) is not
available in the C++ specification; hence, we do not enforce
its translation.
RelationalExpression is characterised by a relational
operator (<,>,<=,>=). Relational operator symbols as
well as their precedence rules in ALF and C++ coincide.
ClassificationExpression is a peculiar type of
binary expression where, instead of the second operand
expression, there is a QualifiedName. Classifica-
tionExpression is used to check the result of the
operand expression against a certain type represented by
QualifiedName. Operand and type are separated by
a classification operator (instanceof, hastype). The
operand expression is translated according to the expres-
sion type, while the type according to the mapping for
QualifiedName (see Sect. 5.1.1). Since the two opera-
tors do not have a direct correspondent in C++, we provide
the following mappings. In the case of instanceof, the
expression checks whether the result of the operand expres-
sion has the same dynamic type of the given type represented
by QualifiedName or a direct or indirect subclass of it.
In order to reproduce this behaviour, we dynamically cast the
operand to a pointer representing the type we want to check
the operand’s type with through the dynamic_cast<>

operator, and then we check that the result of the casting is
not zero (Case 1). In the case the hastype, the expres-
sion checks whether the result of the operand expression
has the same dynamic type of the given type represented by
QualifiedName. In order to reproduce this behaviour, we
extract the type identifiers of the operand and the given type
using C++’s typeid() function and compare them through
the equality operator ‘==’ (Case 2) (Table 8).

EqualityExpression, LogicalExpression and
ConditionalLogicalExpression coincide in ALF
and C++.

5.1.19 Conditional test expressions

ConditionalTestExpression has three operand
expressions. The first represents a boolean, and depending
on its value, the expression selects either the second or the
third operand as result. The mapping is done by translating
the three operand expressions according to their expres-
sion type and separate them with the symbols ‘?’, between
first (boolean) and second operand, and ‘:’ between second
and third operand. Conditional test operator symbol ‘?’ and
its associativity and precedence rules coincide in ALF and
C++.

5.1.20 Assignment expressions

AssignmentExpression represents the assignment of
a value represented by a right-hand side expression to
a left-hand side which can be either a feature reference
(FeatureLeftHandSide) or a qualified name (Name
LeftHandSide) and can have an index expression. If the
left-hand side is represented by a feature reference (Case
1), the translation is done according to what defined for
PropertyAccessExpression (see Sect. 5.1.5), while,
if represented by a qualified name (Case 2), it is done as for
QualifiedName (see Sect. 5.1.1). The expression provid-
ing the index, if any (Case 3), is translated depending on
the mapping rules for indexing (see Sect. 5.1.21). A simple
assignment is done through the assignment operator ‘=’. A
compound assignment compounds a binary operator with the
assignment operator (Case 4) (Table 9).

123

1324 F. Ciccozzi

Table 10 Indexing conversion

Case ALF code C++ code

1 classA[2] classA[1]

2 classA[i] classA[i−1]

5.1.21 Indexing

Since in ALF indexing starts from 1 while in C++ it starts
from 0, we need to explicitly make the conversion as follows
(Table 10):

– if the index expression is represented by a numeric literal,
then we subtract 1 to it (Case 1);

– if the index expression is not a numerical literal, we trans-
late the expression and concatenate ‘−1’ to it (Case 2).

5.2 Statements

Statements are segments of behaviour that, when executed,
produce an effect rather than values. A sequence of state-
ments (block) is a list of ALF statements placed side by side
in a linear order. These sequences may be included in UML
models for specifying behaviours (scenario 2). In this sec-
tion, we describe the mappings between the covered types of
statement from ALF to C++.

5.2.1 In-line statements

InLineStatement allows the modeller to embed code in
a language other than ALF in an ALF block. No translation
is needed in this case since in-line code, if defined in terms of
the target language entailed by the transformation, is simply
copied as it is in the output code. In our case, we provide sup-
port for C++ in-line code, while ignore in-line code defined
in other languages.

5.2.2 Block statements

BlockStatement represents a block to be executed and
can be seen as the container of statements sequence enclosed

in curly braces. The concept of block is equally conceived in
C++. Before translating a block, the type deduction mech-
anism creates a sub-scope representing the block’s scope
within the current scope.

5.2.3 Local name declaration statements

LocalNameDeclaration is a statement which is
employed for defining a local name together with its type
and initialisation value. It is composed by a name declaration,
which can include a multiplicity indicator, and an initialisa-
tion expression which can either initialise a sequence, a new
instance or be another expression which evaluates to the type
of the name to be declared. The syntax of the name declara-
tion has two variants:

– ‘let name : Type’, inherited from UML (Case 1);
– ‘Type name’, specific to ALF (Case 2).

Both cases are translated to C++ in the form ‘Type name’. If
the initialisation expression defines the initialisation of a new
sequence (Case 1), then the expression is translated accord-
ing to the rules defined for SequenceCreationExp-
ression (see Sect. 5.1.12). In case it defines the initial-
isation of a new instance (Case 2), the translation follows
the rules for InstanceCreationExpression (see
Sect. 5.1.11). For the other types of initialisation expressions,
the translation is done by the rules defined for the specific
expression type (e.g. ArithmeticExpression in Case
3) (Table 11).

5.2.4 Expression statements

It is an Expression followed by a semicolon, and it trans-
lated according to the rules defined for the specific expression
type with a semicolon at the end.

5.2.5 If statements

IfStatement represents the conditional execution of a
non-empty set of blocks. It is composed by an ordered set
of sequential non-final clauses each of which having a con-

Table 11 Mapping of
LocalNameDeclaration

Case ALF code C++ code

1 let classA : ClassA[] =
ClassA[]{new ClassA(),
null};

vector<shared_ptr<pkg::ClassA>> classA =
vector<shared_ptr<pkg::ClassA>>({vector<
make_shared<pkg::ClassA>(), null});

2 ClassA classA = new
ClassA();

shared_ptr<pkg::ClassA> classA = make_
shared<pkg::ClassA>();

3 Integer num =
classA.prop + 5;

int num = classA->prop + 5;

123

Promoting ALF for UML behavioural modelling 1325

Table 12 Mapping of
IfStatement

ALF code C++ code

if(a < b){
let x : Integer = 3;
x = x + classA.op();

} else if(b < a){
ClassA classA = new ClassA();

} else {
;

}

if(a < b){
int x = 3;
x = x + classA->op();

} else if(b < a){
shared_ptr<pkg::ClassA> classA =
make_shared<pkg::ClassA>();

} else {
;

}

Table 13 Mapping of
SwitchStatement

ALF code C++ code

switch(x){
case 1 : case null :

x = x + classA.op();
case classB.op() :

ClassA classA = new ClassA();
default :

;
}

if(x == 1 || x == null){
x = x + k;

} else if(x == classB->op()){
shared_ptr<ClassA> classA =

make_shared<ClassA>();
} else {
;

}

dition in terms of a condition expression evaluating to a
boolean and a body represented by a block. IfStatement
can have a final clause with a block to be executed in case
none of the non-final clauses can be executed. Its transla-
tion to C++ is done by iterating on the non-final clauses
in their order and for each of them transforming the con-
dition expression according to the specific expression type
and the statements sequence representing the block (each of
the statements will be translated according to the specific
type of statement). Sequential non-final clauses are concate-
nated through the ‘else’ keywords both in ALF and in C++.
The final clause is translated by translating the related block
and concatenating it to the last non-final clause through the
keyword ‘else’. Before translating IfStatement, the
type deduction mechanism creates a sub-scope representing
the IfStatement block’s scope within the current scope
(Table 12).

5.2.6 Switch statements

SwitchStatement executes one of a set of blocks
depending on the value of an expression. The body of the
SwitchStatement is made of a list of clauses; each
clause consists of a set of case labels and a block. Each case
label contains an expression that must evaluate to a single
value of a type conforming to the one of the switch expres-
sion. As for IfStatement, a switch statement can have a
final clause. Case labels are represented by expressions that
are dynamically evaluated. In C++, case labels can only be
represented by constant expressions; for this reason, we map
SwitchStatement to C++’s if-statement. More specifi-

cally, we iterate on the set of case labels, which are properly
transformed into conditional expressions of if and else
if; the final clause is translated into an else without con-
ditional expression. The clauses are translated as follows.
An equality condition expression is created to resemble the
switch’s cases. Note that multiple cases are translated by
creating the related conditional expressions and then using
them as operands for a conditional-OR (||) expression. The
blocks representing case bodies are translated too. Before
translating each clause, the type deduction mechanism cre-
ates a sub-scope representing the clause block’s scope within
the current scope (Table 13).

5.2.7 While and Do statements

WhileStatement andDoStatement are iteration loops
which evaluate a condition expression (returning a boolean),
and until it becomes false, it executes a block. The translation
is done by transforming the condition expression according
to its type and statements sequence representing the block.
The structure of while-statement and do-statement in ALF
and C++ coincide. Before translating WhileStatement
or DoStatement, the type deduction mechanism creates a
sub-scope representing the specific block’s scope within the
current scope.

5.2.8 For statements

ForStatement iterates the execution of a block while
assigning a loop variable to successive values of a sequence
until it reaches the end of the sequence. The translation is

123

1326 F. Ciccozzi

Table 14 Mapping of
ForStatement

CaseALF code C++ code

1 for(loopVar in classA.getItems()){
x = x + loopVar.op();

}

for(auto &loopVar : classA->getItems()){
x = x + loopVar->op();

}

2 for(Integer i in intList){
x = x + i;

}

for(auto &i : intList){
x = x + i;

}

3 for(k in x..classA.op()){
x = x + loopVar.op();

}

for(int k = x; k <= classA->op(); ++k){
x = x + k;

}

done by transforming the loop variable according to its type
and then transforming the block. When translating the loop
variable, not all the cases have a direct translation to C++.
The loop variable can be defined as a name label that assumes
values within a sequence returned by an expression (Case 1);
the loop variable can be declared explicitly (Case 2). These
two cases are mapped to the C++’s range-based for-loop.
More specifically, the translation to C++ is done by dynam-
ically typing a reference variable named as the name label
through the auto. In these two cases, the loop variable is
added to the scope of ForStatement through the type
deduction mechanism in order to enable its use within the
block. Alternatively, the loop variable can be defined as a
name label assuming values within a range of integer values
with delimiting values represented by two expressions (Case
3). In this case, ForStatement is mapped to a standard
for-loop in C++, where the first expression defines the initial
value of the loop variable, and the second expression rep-
resents the final value. Before translating ForStatement,
the type deductionmechanism creates a sub-scope represent-
ing the ForStatement block’s scope within the current
scope (Table 14).

5.2.9 Break statements

BreakStatement is represented by the keyword ‘break’
followed by a semicolon, and it is used to stop the execution
of an enclosing SwitchStatement, ForStatement,
DoStatement and WhileStatement. The translation
to C++ is straightforward since the same construct is used in
C++ for the same purposes.

5.2.10 Return statements

If an operation is expected to return a value, Return
Statement is used to determine that value and exit the
operation. It is composed of the keyword ‘return’, which
is translated to the same keyword in C++, followed by an
expression evaluating to the return value, which is translated
according to the specific expression type.

5.3 Units

Units enable the definition of structural elements (mostly in
the fUML subset) textually using ALF. In this section, we
describe the mappings between the covered types of unit to
C++.

5.3.1 Namespaces

NamespaceDefinition defines the context for a set
of owned members. It can be defined as either a pack-
age, through PackageDefinition (see Sect. 5.3.2),
or a classifier, through ClassifierDefinition (see
Sect. 5.3.3). The visibility of the name of an owned member
outside the owner namespace’s scope is defined by a vis-
ibility indicator (‘public’, ‘private’, ‘protected’)
on the declaration of the owned member. Visibility indicator
values coincide in ALF and C++ for properties and methods,
but not for classes, which in C++ do not have any visibility
indicator.

5.3.2 Packages

PackageDefinition is a type of namespace aiming at
simply grouping owned members. In our solution, mem-
bers owned by a package can only be classifiers of type
Class. The notion of package in ALF is mapped the C++’s
namespace. The translation of PackageDefinition is
done by recreating the package structure, but using the
keyword ‘namespace’. Owned members are translated
according to the mappings in the next section. Note that the
translation of PackageDefinition produces effects on
both the C++ header and implementation files (Table 15).

5.3.3 Classes (Classifiers)

ClassDefinition represents a classifierwhose instances
are objects and defines a scope for owned properties and oper-
ations. The translation of ClassDefinition is done by
recreating the class declaration in C++, that is to say a stub
declaration and a forward declaration of the class, and ignor-

123

Promoting ALF for UML behavioural modelling 1327

Table 15 Mapping of
PackageDefinition

ALF code C++ header file C++ impl. file

packageMyPackage{ namespaceMyPackage{ namespaceMyPackage{

} } }

Table 16 Mapping of
ClassDefinition

ALF code C++ header file

public class ClassA{} class ClassA;class ClassA{}

Table 17 Mapping of
PropertyDefinition

ALF code C++ header file

private classB : ClassB[]; private: vector<shared_ptr<ClassB>> classB;

Table 18 Mapping of
OperationDefinition

ALF code C++ header file C++ impl. file

protected op(in b : Integer)
: ClassB{
x = x + b;
return new ClassB();

}

protected:
shared_ptr<ClassB>
op(int b);

shared_ptr<ClassB>
op(int b){
x = x + b;
return make_shared<

ClassB>();
}

ing the visibility indicator. Owned members are translated
according to the mappings in the next sections. In this case,
the translation of ClassDefinition only affects theC++
header file (Table 16).

5.3.4 Properties (Features)

PropertyDefinition is used to define a structural fea-
ture of a classifier; in our case, it is used to define attributes of
a class. It is composed of a visibility indicator, a type in the
form of a QualifiedName, a name in the form of a string
and eventually an initialiser expression. The translation is
done by reproducing the visibility indicator, transforming the
type according to the mapping for QualifiedName (see
Sect. 5.1.1) and transforming the initialiser expression, if any,
according to the specific expression type. Type deduction is
exploited to properly translate the QualifiedName repre-
senting the property type; in the example below, the type of
classB is identified as an array of ClassB objects which
is translated to a vector of smart pointers to ClassB
(wrapped in the shared_ptr<> construct). The trans-
lation of PropertyDefinition only affects the C++
header file (Table 17).

5.3.5 Operations (Features)

OperationDefinition represents a behavioural fea-
ture of a class. We do not support abstract operations, nor
redefinition or overloading. OperationDefinition is
composed of a visibility indicator, a name in the form of a

string, a set of formal parameters with direction (we only
support ‘in’ direction), an eventual return parameter and
a block. The translation is done by reproducing the visi-
bility indicator and the operation name, transforming the
parameters list (including eventual return parameter) and
finally transforming the block according to the rules defined
for BlockStatement (see Sect. 5.2.2). The translation
of parameters is done by considering ‘in’ parameters and
properly translating their type according to the rules defined
for QualifiedName (see Sect. 5.1.1). If the operation does
not conceive a return parameter in ALF, the obligatory return
parameter in C++ is set to ‘void’. This is not the case of
constructors, that is to saywhenOperationDefinition
is annotated with @Create; as in ALF, a return parame-
ter is not expected in C++ either. Note that the translation
of OperationDefinition produces effects on both
the C++ header (operation declaration) and implementation
(operation implementation) files (Table 18).

6 A running example: Self-orienting carrier robot
system

The systemwe exploit for running our solution is represented
by a carrier robot self-orienting in a closed environment. The
task of this terrestrial robot consists of travelling between
checkpoints in a delimited and known environment and simu-
lating item retrieval and delivery. The application is intended
to give the robot the ability to orient itself around obstacles
of simple shapes; obstacles are created in different places,

123

1328 F. Ciccozzi

but within the environment’s delimitations. Similarly, a set
of pickup spots and one drop-off spot are created too.

When the robot is initialised, it is placed in the drop-off
spot and starts its mission. The robot has then to fetch items
from the pickup spots and release them within the drop-off
area. The robot moves towards pickup spots and constantly
updates its direction until it intersects with the target item.
Once the item is picked up, the robot moves towards the
drop-off zone and then releases it. The robot has 3 possible
directions: forward, right and left. It sorts directions prioritis-
ing the one leading to the closest pickup spot, and it moves in
a direction as long as it does not intersect with any obstacle.
If no direction can be taken, then the robot turns back. The
application stops its execution when the robot has picked up
and released all the items.

The system is conceived as object-oriented as follows.
Robot is the main class and exploits two classes, Vector and
Hitbox, for moving in the environment and identifying sen-
sitive spots (its body, pickup and drop-off spots, obstacles),
respectively. More specifically, the classes are defined as fol-
lows:

– Vector: used to define vectorial movements. It contains
two properties, X and Y, defining 2-dimension coordi-
nates, one constructor (Vector(..)), and three methods,
vecRotateLeft(), vecRotateRight() and eq(..), which are
exploited by the robot to perform movements;

– Hitbox: used to describe sensitive spots such as pickup
and drop-off areas as well as position and size of obsta-
cles, and the robot’s body size. Positions are identified
through pos of type Vector, while sizes through the prop-
erties height andwidth. TheHitbox(..)method represents
the class constructor and the intersects With(..) method
allows the robot to check whether the movement trajec-
tory intersects an obstacle.

– Robot: represents themain class and contains a number of
properties and the methods used by the robot to carry out
itsmission.More specifically,Robot(..) is the constructor,
fetch(..) and fetchList(..) are used to retrieve single items
and the initial items list, respectively, while the remaining
methods allow the robot to move and orient itself in the
environment.

In the next section, we use the robot system for showing the
translation process.

6.1 Translation of structure

In scenario 1, the structure of the system is supposed to be
described in terms of ALF units. In Listing 2, we depict an
extract of the description of the self-orienting robot in ALF;
the complete ALF description of the robot is available for
download (see “Appendix B”).

1 package Robot
2 {
3 public class Vector
4 {
5 public X : Integer;
6 public Y : Integer;
7 [...]
8 public vecRotateLeft()
9 {

10 [...]
11 }
12 [...]
13 }
14 public class Robot
15 {
16 private left : Vector;
17 private forward : Vector;
18 private right : Vector;
19 [...]
20 protected name : String;
21 private obstacles : Hitbox[0..*];
22 [...]
23 @Create public Robot(in body :

Hitbox, in obs : Hitbox[0..*], in
namn : String)

24 {
25 [...]
26 }
27 [...]
28 }
29 [...]
30 }

Listing 2 Extract from ALF description of the Robot

The translation of the structure produces an instance of the
type deduction structure in terms of structural elements and
related scopes to be used in the next step for the translation
of behaviours. Moreover, it transforms structural elements
defined in terms of ALF units to corresponding C++ con-
cepts. These two tasks are intertwined in the transformation.

Considering theALFcode inListing2,TypeDeduction
would consist of a top Namespace scope, called Robot,
and representing the related ALF package (line 1 in Listing
2). The ALF classes Vector and Robot defined in the pack-
age are transformed into two Class scope objects, Vector
and Robot, which will be contained by the Namespace.
The Class Vector scope will in turn contain two Member
Variable objects,X and Y, corresponding to the properties
defined in the Vector ALF class. Moreover, it will contain
a MemberMethod object corresponding to the vecRo-
tateLeft() operation. The Class Robot scope will contain
five MemberVariable objects, left, forward, right, name,
obstacles and one MemberMethod object, Robot. The bod-
ies of methods vecRotateLeft() and Robot(..) defined in ALF
are stored asALF_Blockobjects as part of their correspond-
ing MemberMethod (i.e. vecRotateLeft() and Robot(..),
respectively) scope, waiting to be transformed in the next
transformation step. Type scopes are created in cascade fol-

123

Promoting ALF for UML behavioural modelling 1329

lowing the hierarchical structure. For instance,ClassVector
scope will contain the types of the MemberVariable
objects, X and Y, and the scope of the MemberMethod
vecRotateLeft(). The type scope implementation of vecRo-
tateLeft()will have a reference to the type scope of its parent,
Vector.

The translation of units starts from the Package
Definition package Robot which is mapped to the
C++’s namespace Robot. PackageDefinition is
translated by recreating the package structure, where owned
members are translated according to their type. The trans-
lation of PackageDefinition produces the same effect
on both the C++ header and implementation (Listing 3) files.

1 namespace Robot
2 {
3 [...]
4 }

Listing 3 Extract of generated C++ header and impl. file

Members of the package areClassDefinitionpublic
classVector andClassDefinitionpublic class
Robot. They are translated to C++’s classes ignoring the vis-
ibility indicator. The translation of ClassDefinition
only affects the C++ header file (Listing 4).

1 class Vector;
2 class Robot;
3 class Vector{
4 [...]
5 };
6 class Robot{
7 [...]
8 };

Listing 4 Extract of generated C++ header file

When translating a ClassDefinition object, its owned
members are translated too. Let us consider two of the mem-
bers owned by ClassDefinition public class
Robot starting from PropertyDefinition private
obstacles. The visibility indicator is reproduced as well as
the property name. The type of obstacles is set to be an
array of instances of class Hitbox (not shown in Listing
2). The type Hitbox is sought in the type deduction struc-
ture and found to be a class type, thus needing wrapping
as smart pointer through the shared_ptr<> construct.
Moreover, since obstacles is an array, the smart pointer is in
turn wrapped in the vector<> construct. The translation
of PropertyDefinition only affects the C++ header
file (Listing 5).

1 private: vector$<$shared_ptr$<$ALF2CPP{:}{:}
2 Robot{:}{:}Hitbox$>>$ obstacles;

Listing 5 Extract of generated C++ header file

Let us now consider OperationDefinition public
Robot(..). The translation is done by reproducing the visibil-
ity indicator and the operation name and transforming the
parameters list; the translation of the block is not part of the
structural translation. Regarding translation of parameters,
let us consider ‘in’ obs. The type of obs is set to be an array
of instances of classHitbox. The typeHitbox is sought in the
type deduction structure and found to be a class type and is
thus wrapped in the shared_ptr<> construct. Moreover,
sinceobs is an array, the smart pointer is in turnwrapped in the
vector<> construct. Since OperationDefinition
Robot(..) is annotated with @Create, it is a constructor and
thereby a return parameter is not expected in C++. The trans-
lation of OperationDefinition Robot(..) produces
effects on both the C++ header (Listing 6) and implemen-
tation (Listing 7) files.

1 public: Robot(shared_ptr<ALF2CPP{:}{:}
2 Robot{:}{:}Hitbox> body,
3 vector<shared_ptr<ALF2CPP{:}{:}Robot{:}{:}
4 Hitbox>> obs, string namn);

Listing 6 Extract of generated C++ header file

1 Robot{:}{:}Robot(shared_ptr<ALF2CPP{:}{:}
2 Robot{:}{:}Hitbox> body,
3 vector<shared_ptr<ALF2CPP{:}{:}Robot{:}{:}
4 Hitbox>> obs, string namn){
5 }

Listing 7 Extract of generated C++ impl. file

In scenario 2, the structure of the system is defined in terms
of a UML class diagram (see “Appendix A”). As aforemen-
tioned, in this scenario the transformation does not perform
any structural translation, but only builds the type deduc-
tion structure reflecting the UML class diagram in order
to enable the translation of behaviours. The type deduc-
tion structure which is generated recalls the one shown for
scenario 1.

6.2 Translation of behaviours

In both scenarios 1 and 2, the behaviours are defined in terms
of ALF blocks describing operation bodies. Let us consider
the ALF code in Listing 8, which represents a portion of
the updateDirection(..) operation owned by class Robot. The
OperationDefinition representing the ALF unit for
updateDirection(..) is translated similarly towhat is shown in
the previous section. The block representing the operation’s
body is translated as follows.

123

1330 F. Ciccozzi

1 private updateDirection(in target : Vector)
: Boolean{

2 let movePrio : Vector[] = Vector[]{new
Vector(this.forward.X,
this.forward.Y), new
Vector(this.left.X, this.left.Y), new
Vector(this.right.X, this.right.Y)};

3 [...]
4 while(this.getDirectionWeight(movePrio[1],

target) <
this.getDirectionWeight(movePrio[2],
target)){

5 movePrio[1] = movePrio[2];
6 [...]
7 }
8 [...]
9 for(dir in movePrio){
10 Integer direction = 0;
11 if(dir.Eq(this.forward)){
12 [...]
13 }
14 else if(dir.Eq(this.left)){
15 [...]
16 }
17 else{
18 [...]
19 }
20 [...]
21 switch (direction){
22 case 1: case

this.setDirection(direction):
23 [...];
24 case 2:
25 [...]
26 [...]
27 default:
28 [...]
29 }
30 [...]
31 }
32 [...]
33 }

Listing 8 Extract from ALF description of the
updateDirection(..) operation

The first statement we encounter in Listing 8 (line 2) is
LocalNameDeclaration movePrio. The translation is
done following the standard C++ form ‘Type name’ (Listing
9). The type of movePrio is set to be an array of instances of
class Vector. The type Vector is sought in the type deduction
structure and found to be a class type and is thus wrapped in
the shared_ptr<> construct. Moreover, since movePrio
is an array, the smart pointer is in turn wrapped in the
vector<> construct. The initialisation expression defines
the construction of a sequence of objects of type Vector. Its
translation is done by reconstructing the sequence in C++.
The elements in the sequence are represented byALF expres-
sions of type InstanceCreationExpression, that is
to say new instances of type Vector. Since Vector is a class
type, the transformation wraps it in the make_shared<>

construct for initialising a smart pointer for it. Parameters
of InstanceCreationExpression objects are rep-
resented by PropertyAccessExpression elements.
Let us consider this.forward.X. Since this represents an
object of type Robot, the access to property forward is done
in C++ through the arrow ‘->’ operator; since forward is of
typeVector, even the access of propertyX is done through the
arrow ‘->’ operator. The translation of the other parameters
is achieved in the same way.

1 vector<shared_ptr<ALF2CPP{:}{:}Robot{:}{:}
2 Vector>> movePrio =
3 vector<shared_ptr<ALF2CPP{:}{:}Robot{:}{:}
4 Vector>>({make_shared<
5 ALF2CPP{:}{:}Robot{:}{:}Vector>(this->
6 forward->X,this->forward->Y),
7 make_shared<ALF2CPP{:}{:}Robot{:}{:}
8 Vector>(this->left->X,this->left->Y),
9 make_shared<ALF2CPP{:}{:}Robot{:}{:}

10 Vector>(this->right->X,this->right->Y)});

Listing 9 Extract of generated C++ impl. file for
updateDirection(..) operation

Afterwards, we encounter a WhileStatement (line
4 in Listing 8). Before translating WhileStatement,
the type deduction mechanism creates a sub-scope repre-
senting the WhileStatement block’s scope within the
current scope. The structure of a while-statement in C++
resembles the one in ALF; therefore, the transformation
reproduces it. Then, it transforms the condition expression
according to its type and the statements sequence represent-
ing the block (Listing 10). The condition expression is of
type RelationalExpression having two Feature
InvocationExpression as operands and ‘<’ as rela-
tional binary operator. For translating Relational
Expression, the transformation needs to translate the
two operands, while the operator remains the same. Let
us consider the first operand, FeatureInvocation
Expression this .getDirection(movePrio[1], target).
Since it represents an operation call on a class object
(this, of type Robot), it is translated by separating the final
NameBinding, getDirectionWeight(movePrio[1],target),
and the accessed property, this, by the arrow operator ‘-
>’. The translation of the second operand is done in the same
way.

Regarding the block representing the body of While
Statement, let us consider the first statement, being the
ExpressionStatement movePrio[1] = movePrio[2];
representing an AssignmentExpression (line 5 in List-
ing 8). Both left- and right-hand sides are represented by
indexed feature references. The interesting thing to notice
here is the difference in indexing between ALF and C++.
Since in ALF indexing starts from 1 while in C++ it starts
from 0, and the index expression is represented by a numeric

123

Promoting ALF for UML behavioural modelling 1331

literal, then we subtract 1 to it; the resulting assignment in
C++ is movePrio[0] = movePrio[1];.

1 while ((this->getDirectionWeight
2 (movePrio[0],target) <
3 this->getDirectionWeight(movePrio[1],
4 target))){
5 (movePrio[0] = movePrio[1]);
6 [...];
7 }

Listing 10 Extract of generated C++ impl. file for
updateDirection(..) operation

The next statement is a ForStatement (line 9 in Listing
8). Before translating ForStatement, the type deduc-
tion mechanism creates a sub-scope representing the For
Statement block’s scope within the current scope. The
loop variable is defined a name label (dir) that assumes val-
ues within a sequence represented by the QualifiedName
movePrio. The C++’s range-based for-loop is used in this
case (Listing 11). More specifically, the transformation cre-
ates a reference to the variable loop (&dir) and type it as
auto (for dynamic typing). The variable is also added to sub-
scope representing the ForStatement block’s scope in
order to enable its use in the block. At this point, the transfor-
mation translates the block of theForStatement. The first
statement is represented by LocalNameDeclaration
direction (line 10 inListing 8). The translation is done follow-
ing the standard C++ form ‘Type name’. The type of direc-
tion is set to be a primitive Integer, thus corresponding
to int in C++. The initialisation expression defines a sim-
ple AssignmentExpression to a NaturalLiteral
Expression (= 0), which is reproduced in C++.

1 for (auto &dir : movePrio){
2 int direction = 0;
3 [...]
4 }

Listing 11 Extract of generated C++ impl. file for
updateDirection(..) operation

As part of the previous ForStatement’s block, the
transformation encounters an IfStatement (line 11 in
Listing 8). Before translating IfStatement, the type
deduction mechanism creates a sub-scope representing the
IfStatement block’s scope within the current scope. The
structure of an if-statement in C++ resembles the one in
ALF; therefore, the transformation reproduces it by prop-
erly translating its clauses (Listing 12).More specifically, the
transformation iterates on the non-final clauses in their order,
and for each of them, it transforms the condition expression
according to the specific expression type and the state-
ments sequence representing the block. Let us consider the

first non-final clause if(dir.Eq(this.forward)). The condi-
tion expression is represented by a FeatureInvocation
Expression. Since it represents anoperation call on a class
object (dir, of type Vector), it is translated by separating the
final NameBinding,Eq(this.forward)), and the accessed
property dir by the arrow operator ‘->’. Then, the clause
block is translated. The second non-final clause is translated
in the same way. The final clause is transformed by translat-
ing the related block and concatenating it to the last non-final
clause through the keyword ‘else’.

1 if (dir->Eq(this->forward)){
2 [...]
3 }
4 else if (dir->Eq(this->left)){
5 [...]
6 }
7 else{
8 [...]
9 }

Listing 12 Extract of generated C++ impl. file for
updateDirection(..) operation

In the ForStatement’s block, the transformation encoun-
ters a SwitchStatement too. The translation is done
by iterating on the set of case labels and transform them
into condition expressions of ‘if’ and ‘else if’; the
final clause is translated into an else without condition
expression (Listing 13). Before translating each clause, the
type deduction mechanism creates a sub-scope represent-
ing the clause block’s scope within the current scope (as
for the IfStatement). The blocks representing case bod-
ies are translated too. Let us consider the first (multiple)
case label, ‘case 1: case this.setDirection(direction):’.
The second part of the combined case label is represented
by a non-constant expression; this is not allowed in the
switch statement in C++, and that is the reason why we map
SwitchStatement to C++’s if-statement. The translation
of the multiple case label is done by creating the related con-
dition expressions and then using them as operands for a
conditional-OR ‘||’ expression.

1 if ((direction == 1) || (direction ==
this->setDirection(direction))){

2 [...]
3 }
4 else if ((direction == 2)){
5 [...]
6 }
7 [...]
8 else{
9 [...]

10 }

Listing 13 Extract of generated C++ impl. file for
updateDirection(..) operation

123

1332 F. Ciccozzi

7 Validation

The outcome of the transformation mappings between ALF
and C++ has been syntactically examined through trans-
formation unit testing [50] exploiting the JUnit facilities
provided in Eclipse. More specifically, for testing the trans-
lation of ALF syntax elements to C++ we defined a set of
test cases consisting of a pair<ALF_file, C++_file>, where
ALF_file represented the ALF statements we wanted to test
and C++_file the corresponding code (manually written) we
expected the transformation to produce as valid translation
of ALF. The test cases were run by the JUnit engine that, for
each pair<ALF_file, C++_file>, runs the transformation on
ALF_file to generate corresponding C++ code. Actual (gen-
erated C++) and expected (C++_file) results were parsed
and compared to check whether they indeed matched. To
enhance the accuracy of the comparison, actual and expected
C++ code snippets were reformatted by removing new lines,
spaces and tabs. On one hand, this mechanism helped us
uncover several bugs in the transformation. On the other
hand, it could not prevent the possibility of false positives.
Since this testing approach is sensitive to variable naming,
we ensured that manually written expected C++ followed the
same naming conventions as the translation process.

A similar mechanism was used to test type deduction.
In this case, test cases were written as a pair <ALF_file,
Scope_file>, where Scope_file represented the expected
(manuallywritten) result in the formof a scopefile containing
scopes, variable definitions and their deduced types. When
the test cases were run, scope hierarchy, variables and related
deduced types from ALF_file were generated in a resulting
scope file. Actual and expected scope files were parsed and
compared to check whether they matched. Individual test
cases have been defined and run for each of the translatable
ALF syntax elements. Totally, 77 test cases distributed across
175 files have been defined and successfully run. Combined
test cases were defined and run for testing the ability of the
transformation to successfully translate complex combina-
tions of syntax elements (i.e. complex ALF blocks).

The solution we provide in this paper has been val-
idated exploiting several applications. Among them, the
self-orienting carrier robot example was employed in the
paper for showing the translation process considering its suit-
able balance between simplicity and veracity. Nevertheless,
for a deeper validation of the functional correctness of the
generated C++ code as well as an evaluation of the scala-
bility of the transformation process9, we exploited industrial
models of various verbosity. More specifically, we leveraged
the Asynchronous Transfer Mode (ATM) Adaptation Layer
2 (AAL2) subsystem, originally developed to adapt voice
for transmission over ATM and currently used in telecom-
9 Scalability of the transformation in terms of its execution time was
regarded as a core priority by our industrial partners.

Table 19 Transformation performance

ALF LoC # Number runs Avg. transform time

130 100 19.3 ms

1015 100 99.5 ms

10455 100 989.2 ms

109335 100 10.9785 s

munications as part of connectivity platform systems. The
complete AAL2 subsystem is composed by several hundred
thousands of component instances, multiple levels of hier-
archical composition of components, and several hundred
thousands lines of action code defined in ALF. The AAL2
subsystem models, defined within Ericsson Nikola Tesla in
Zagreb (Croatia) under the supervision of Ericsson AB in
Kista (Sweden), on which the solution was applied, con-
sisted of amaximumof 3000 component instances and 15000
port instances decomposed in a maximum of 10 hierarchi-
cal composition levels [27]. The generated C++ code could
successfully be compiled and run on an Ericsson’s node in
simulated environment (at Ericsson Nikola Tesla). The func-
tional correctness of the generated code was assessed by
observing and reporting from the code execution through
monitoring and logging routines, respectively; generated
code was manually instrumented to produce a log with data
and control flows for checking functional correctness. When
it comes to the user experience of using ALF instead of C++
for defining behaviours in the AAL2 UML models, indus-
trial modellers found it very intuitive thanks to its Java-like
syntax and appreciated the naturalness by which it seam-
lessly integrates with UML. Clearly some domain-specific
C++ constructs could not be used and a workaround using
ALF concepts had to be found; this was balanced out by the
fact that having to use ALF to remodel the system made
them uncover potential improvements to the behavioural
code.

In Table 19, we show a summary of the results we gathered
by running the translation process. The transformation, run
on four versions of the AAL2 model from the smallest com-
posed of 130 lines of ALF code to the biggest composed of
109335 lines, was always able to generate full-fledged valid
C++. Generated C++ displayed same data and control flows
of the legacy code (also generated C++), measured thanks to
monitoring routines defined as specific processes extending
the kernel of the operating system. Moreover, we computed
the average time that the transformation took to complete its
task, on a number of runs. As it can be seen in the table, the
transformation displays a linear behaviour and completes its
task in a reasonable amount of time considering its idiosyn-
cratic intricacy.

123

Promoting ALF for UML behavioural modelling 1333

8 Discussion

The translation process we presented in this paper allows to
generate full-fledged C++ from a software system defined in
terms of ALF (andUML). Although tested and evaluated, the
validity of the transformation does not induce the validity of
the generated C++. In other words, the transformation pro-
duces code which effectively represents what is defined in
the model; if the model is not valid, then the transformation
is not able to produce valid C++. Generally, while syntac-
tical correspondence between ALF and generated code can
be controlled and ensured by the transformation since the
validity of ALF models syntax is ensured by the Papyrus
environment with a set of validation features, the same can-
not be said for the execution semantic correspondence. We
have performed several tests to check that generated C++
resembles the execution semantics of the correspondingALF
model, as specified by the underlying fUML. Even though
we did not identify pitfalls in this semantic correspondence,
in order to provide more tangible evidences, automated com-
parisons of execution traces gathered from the execution of
ALF and the generated C++ should be performed. Any-
how, it would be hard to prove semantic equivalence [18]
between the two languages once and for all, since differ-
ent implementations of them, executed on different platform
configurations, would most likely show variations in their
behaviours.

Theuse of action languages for specifying complexbehav-
iours within UML is not new, several approaches can be
found in the literature as described in Sect. 3. A UML-based
modelling approach leveraging a programming language for
the definition of fine-grained behaviours makes code gener-
ation easier since action code is simply copied, as it is, in
the resulting code. The main issue is that this habit does not
allow the modeller to have full control on the correctness of
the modelled behaviours. Additionally, using programming
languages for action code, models are bound to a specific
platform (or set of platforms) already at functional modelling
level. By employing an action language like ALF, action
code is empowered with full knowledge of the surround-
ing model elements [45,48]. This triggers several benefits,
among which simplified model-based analysis, model sim-
ulation and consistency checking at modelling level, to
mention a few. Regarding the reusability of models, since
ALF is not bound to any specific target platform, code genera-
tors can target different variations (providing some degree of
reusability for code generators too) of one language (e.g. dif-
ferent memory management mechanisms depending on the
user’s selection) or different languages, from the samemodel.
This means that ideally from the same UML–ALF model it
should be possible to provide generators that produce, e.g.
C++, Java or even C, for different platforms and account-
ing different variations. While in this paper we touched upon

a gradual adoption of ALF-compliant modelling by mixing
ALF and C++ for the definition of fine-grained behaviours,
it should be clear that developers get to enjoy full platform
independence only if the sole ALF is used for fine-grained
behaviours, with no opaque behaviours defined in other lan-
guages (such as C++ in our example).

With the standardisation of ALF, we have noticed an
increasing industrial interest in gradually moving towards
its adoption. Clearly, this adoption will not be easy nor fast,
since the use of programming languages within models is
entrenched in those industrial processes exploiting MDE
through UML. Providing this translational solution for ALF,
we aim at boosting this process by giving the possibility to
exploit our transformation as a complement to existing trans-
formations.We believe that using our transformation process
as a complement to powerful transformations for structural
and deployment aspects represents the most attractive way
to exploit it. Suppose that, instead of using UML for struc-
tural modelling, we would like to employ a specific UML
profile and a specific transformation generating structural
C++ code from it. Our solution for translating ALF to C++
would not be affected by the distinctive differences between
UML and its profile and thereby could be employed with-
out major changes; this has been validated by employing the
transformation process on models defined by means of the
CHESS-ML profile in [7]. Moreover, once a stable version
of the C++ code generator for the UML-RT profile within the
Papyrus Industrial Consortium initiativewill be available, we
will run an experiment to assess its interplay with our code
generator for ALF.

Overall, code generators for UML-based MDE already
leveraging transformations from UML (and profiles) with
C++ as action language to executable C++ can benefit from
reusing legacy components while exploiting a fully model-
driven approach designing new components entirely using
UML and ALF. An interesting direction that stems from the
contribution presented in this work is to look into reverse
engineering of C++ code (legacy or generated) to ALF for
consistency assurance; existing works in this kind of support
for UML can be found in the literature [16].

Our solution is also meant to further stimulate inter-
ested developers and companies in adopting MDE and
UML. At its birth, UML was mainly regarded as a way to
describe purposes, support analysis, design and document
since its semantics was more ambiguous and weaker than
well-established programming languages. For these reasons,
the initial interest of developers and companies in MDE,
and specifically in UML, partially dissipated. With its later
embodiment and eventually the standardisation of its execu-
tion semantics (fUML) and action language (ALF), UMLhas
become a full-fledged implementation quality language [45].
By providing automation in the translational execution of its
recently standardised action language, we aim at giving our

123

1334 F. Ciccozzi

contribution the power to smooth the way for practitioners
in adopting MDE and UML.

Our effort in translational execution is justified by the
state of the practice in industry which is pervaded by code
generation for many reasons, among which reusability of
existing runtime layers and optimised compilation of high-
level code (e.g. C++). With that said, to minimise semantic
pollution typical of translational approaches and due to the
distinctive differences between modelling and programming
languages, our longer term goal is to address direct compi-
lation of ALF (and UML). On one hand, doing so, semantic
discrepancies and the consequent need of compromises typ-
ical of languages translation could be minimised. On the
other hand, the way towards an industry-quality compiler
for ALF (and UML) is far from unhindered, since abstrac-
tion and expressive power of these languages must somehow
be tamed. Moreover, already existing domain- or company-
specific optimisations for specific programming languages
and compilers shall be reproduced too. The latter would
also entail the need for certification of the eventual ALF
compiler/interpreter in specific domains (e.g. safety-critical
applications). Looking at the historyofwell-established com-
pilers, this would not be a swift task, but its outcome could
bring a long list of benefits.

9 Conclusion

In this work, we presented a solution for the translational
execution of ALF towards C++ defined in terms of model-
to-text transformations. More specifically, we provided (i) a
translation within the syntactical minimum conformance (as
described in the ALF specification), used for writing textual
action language snippets as behaviours within larger UML
models, (ii) a translation of a set of ALF units (namespace,
package, class (passive), operation, property), (iii) a memory
management mechanism based on smart pointers and (iv) a
type deduction mechanism.

In this paper,we focused on theminimumconformance, as
defined in the ALF specification, that includes all the capa-
bilities available in a traditional, procedural programming
language. Doing so, we were able to ‘program’ fully fledged

UML–ALF models even in industrial settings. Nevertheless,
the minimum conformance has a drawback. Constructs that
make the language powerful such as the possibility to nav-
igate and filter collections using OCL-like expressions are
not available. We have already started looking into possible
solutions for the inclusion of OCL-like expressions in our
translator [25].

An interesting enhancement of the translation process
would be the possibility for the developer to configure the
transformation throughparameters in order to reach a specific
result. An example of this could be the possibility to exploit
different mechanisms for memory management and let the
developer select the one to use when launching the transfor-
mation. The transformation process has been designed in a
way that should enable partial reuse of the code generator
when targeting another object-oriented language. We have
planned to add Java as target language for our code genera-
tor. Doing so, we would be able to measure the actual effort
needed for such an enhancement. Moreover, we have already
started an effort towards direct compilation ofUMLandALF,
without intermediate translations to programming languages
such asC++, to see towhich extentwe can preserve execution
semantics of ALF in the generated executables.

Acknowledgements This research is supported by the Knowledge
Foundation through the SMARTCore project (http://www.es.mdh.se/
projects/377-SMARTCore). The author would like to thank SMART-
Core’s industrial partners: Ericsson AB, ABB Corporate Research and
Alten Sweden AB. Moreover, the author would like to thank Thomas
Åkerlund and Knightec AB, for the essential contribution to the imple-
mentation of the translational execution.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

10 Appendix A UML class diagram describing the
structure of the self-orienting carrier robot
system

See Fig. 2.

123

http://www.es.mdh.se/projects/377-SMARTCore
http://www.es.mdh.se/projects/377-SMARTCore
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Promoting ALF for UML behavioural modelling 1335

Fig. 2 UML class diagram for the self-orienting carrier robot system

11 Appendix B Guidelines for running the solution

For the interested reader, a working prototype of the solution
is available at http://www.mrtc.mdh.se/ALF2CPP/. More
specifically:

– Plug-ins implementing the transformation from ALF
only to C++ (scenario 1) can be found under http://www.
mrtc.mdh.se/ALF2CPP/ALF_ONLY_to_CPP/.TheALF
model of the self-orienting carrier robot can be found
at http://www.mrtc.mdh.se/ALF2CPP/ALF_ONLY_to_
CPP/model.

– Plug-ins implementing the transformation from ALF
blocks within a UML model to C++ (scenario 2)
can be found under http://www.mrtc.mdh.se/ALF2CPP/
ALF_in_UML_to_CPP/. The UML model of the self-
orienting carrier robot containing ALF behaviours can
be found at http://www.mrtc.mdh.se/ALF2CPP/ALF_
in_UML_to_CPP/model.

Fig. 3 Eclipse installation details

In order to run the solution, choose the scenario you prefer,
download related plug-ins and example model from the spe-
cific links given above. The plug-ins should be imported in
your Eclipse workspace. Once the plug-ins are imported, run
a new Eclipse (runtime) configuration from the one hosting
the plug-ins. In the runtime Eclipse instance you can now
import the example model. At this point, you can run the
transformation as follows:

– Scenario 1 (fromRobot.alf toC++): right-clickon the
robot model Robot.alf and select the action ‘Trans-
form to C++’. In the same project containing Robot.alf, a
new folder ‘src-gen’ will be created and will contain the
generated C++ files.

– Scenario 2 (from Robot papyrus model to C++): right-
click on the Robot.uml (or uml in the Robot papyrus
model) and select the action ‘Transform to C++’. In this
case, no files are generated, but the translatedALF blocks
in C++ are printed out in the Console of the Eclipse
instance hosting the plug-ins (not the runtime Eclipse
instance where the model is imported).

The installation details of the latest Eclipse configuration
on which the solution has been run are shown in Fig. 3.

References

1. Abouzahra,A., Bézivin, J., Del Fabro,M.D. and Jouault, F.: A prac-
tical approach to bridging domain specific languages with UML
profiles. In Proceedings of the Best Practices for Model Driven
Software Development at OOPSLA, volume 5. Citeseer (2005)

2. Badreddin, O., Lethbridge, T.C. and Forward, A.: Investigation and
evaluation of uml action languages. InModel-Driven Engineering
and Software Development (MODELSWARD), 2014 2nd Interna-
tional Conference on, pages 264–273. IEEE (2014)

3. Berardinelli, L., Langer, P. and Mayerhofer, T.: Combining fUML
and profiles for non-functional analysis based on model execution
traces. In Procs of QoSA (2013)

4. Bettini, L.: Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing Ltd, Olton (2013)

5. Brooks, F.: No silver bullet. April (1987)
6. Burmako, E.: Scala macros: let our powers combine!: on how rich

syntax and static types work with metaprogramming. In Proceed-
ings of the 4th Workshop on Scala, page 3. ACM (2013)

123

http://www.mrtc.mdh.se/ALF2CPP/
http://www.mrtc.mdh.se/ALF2CPP/ALF_ONLY_to_CPP/
http://www.mrtc.mdh.se/ALF2CPP/ALF_ONLY_to_CPP/
http://www.mrtc.mdh.se/ALF2CPP/ALF_ONLY_to_CPP/model
http://www.mrtc.mdh.se/ALF2CPP/ALF_ONLY_to_CPP/model
http://www.mrtc.mdh.se/ALF2CPP/ALF_in_UML_to_CPP/
http://www.mrtc.mdh.se/ALF2CPP/ALF_in_UML_to_CPP/
http://www.mrtc.mdh.se/ALF2CPP/ALF_in_UML_to_CPP/model
http://www.mrtc.mdh.se/ALF2CPP/ALF_in_UML_to_CPP/model

1336 F. Ciccozzi

7. Cicchetti, A., Ciccozzi, F., Mazzini, S., Puri, S., Panunzio, M.,
Zovi, A. and Vardanega, T.: Chess: a model-driven engineering
tool environment for aiding the development of complex industrial
systems. In Automated Software Engineering (ASE), 2012 Pro-
ceedings of the 27th IEEE/ACM International Conference on, pp.
362–365. IEEE (2012)

8. Ciccozzi, F.: Dethroning programming languages as endorsed
means for fine-grained uml behaviour modelling in open source
mde. In Workshop on Open Source Software for Model Driven
Engineering, September (2015)

9. Ciccozzi, F., Cicchetti, A. and Sjödin, M.: Towards Translational
Execution of Action Language for Foundational UML. In 39th
Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2013, Santander, Spain, September 4-6, 2013,
pp 153–160 (2013)

10. Ciccozzi, F., Cicchetti,A., Sjödin,M.:Round-trip support for extra-
functional property management in model-driven engineering of
embedded systems. Inf. Softw. Technol. 55(6), 1085–1100 (2013)

11. Ciccozzi, F., Cicchetti, A. and Sjödin, M.: On the Generation of
Full-fledged Code from UML Profiles and ALF for Complex Sys-
tems. In 12th International Conference on Information Technology
: New Generations, February (2015)

12. Ciccozzi, F., Saadatmand, M., Cicchetti, A. and Sjödin, M.: An
Automated Round-trip Support Towards Deployment Assessment
in Component-based Embedded Systems. In Proceedings of the
16th International ACM Sigsoft Symposium on Component-based
Software Engineering, CBSE ’13, pages 179–188. ACM (2013)

13. Czarnecki, K. andHelsen, S.: Feature-based survey of model trans-
formation approaches. IBM Systems Journal, pp 621–645 (2006)

14. Feljan, J., Ciccozzi, F., Carlson, J. and Crnkovic, I.: Enhanc-
ing model-based architecture optimization with monitored system
runs. In 41st Euromicro Conference on Software Engineering and
Advanced Applications, August 2015. copyright IEEE

15. Fredj, M., Radermacher, A., Gerard, S. and Terrier, F.: eC3M:
Optimized model-based code generation for embedded distributed
software systems. In Procs of NOTERE, pages 279–284 (2010)

16. Garzón, M.A., Lethbridge, T.C., Aljamaan, H. and Badreddin,
O.: Reverse engineering of object-oriented code into umple using
an incremental and rule-based approach. In Proceedings of 24th
Annual International Conference on Computer Science and Soft-
ware Engineering, pages 91–105. IBM Corp. (2014)

17. Gérard, S., Dumoulin, C., Tessier, P., Selic, B.: Papyrus: A UML2
Tool for Domain-Specific Language Modeling, pp. 361–368.
In Model-Based Engineering of Embedded, Real-Time Systems
(2007)

18. Giese, H., Glesner, S., Leitner, J., Schäfer, W. and Wagner, R.:
Towards verified model transformations. In Proc. of the 3rd
International Workshop on Model Development, Validation and
Verification (MoDeV 2a), Genova, Italy, pages 78–93. Citeseer
(2006)

19. Heitz, C., Thiemann, P.: and T. WÃũlfle. Integration of an Action
Language Via UMLAction Semantics. In: Draheim, D., Weber, G.
(eds.) Trends inEnterpriseApplicationArchitecture. LectureNotes
in Computer Science, vol. 4473, pp. 172–186. Springer, Berlin
(2007)

20. Hudak, P.: Building Domain-specific Embedded Languages. ACM
Comput. Surv., 28(4es), Dec. (1996)

21. Hutchinson, J., Whittle, J., Rouncefield, M. and Kristoffersen, S.:
Empirical assessment of MDE in industry. In Proceedings of the
33rd International Conference on Software Engineering, pages
471–480. ACM (2011)

22. Hutchinson, J., Whittle, J., Rouncefield, M. and Kristoffersen, S.:
Empirical Assessment of MDE in Industry. In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11,
pages 471–480. ACM (2011)

23. IBM. Rational Rhapsody. http://www-01.ibm.com/software/
awdtools/rhapsody/ (2012)

24. IBM. Rational Software Architect. http://www.ibm.com/
developerworks/rational/products/rsa/ (2013)

25. Janevska, M.: From the Object Constraint Language Stan-
dard Library to C+. http://www.idt.mdh.se/utbildning/exjobb/
files/TR1396 (2015). Master thesis

26. Jiang, K., Zhang, L., Miyake, S.: OCL4X: An Action Semantics
Language for UML Model Execution. In Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st Annual.
International 1, 633–636 (July 2007)

27. Katanic, N. and Perse, M.: Application of CHESS Methodology:
A Telecom Use Case Study. In Proceedings of International Con-
ference on Software, Telecommunications and Computer Networks
(SoftCOM) (2012)

28. Kennedy Carter Ltd. UML ASL Reference Guide. http://www.
ooatool.com/docs/ASL03 (2003)

29. Krueger, C.W.: Software reuse. ACMComputing Surveys (CSUR)
24(2), 131–183 (1992)

30. Mohlin,M.:Using theUMLActionLanguage inRational Software
Architect. http://www.modelint.com/downloads/small (2011)

31. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.:What
Industry Needs from Architectural Languages: A Survey. IEEE
Trans. Software Eng. 39(6), 869–891 (2013)

32. Mentor Graphics. BridgePoint. http://www.mentor.com/products/
sm/bridgepoint

33. Mentor Graphics. Object Action Language Reference. http://
www.mentor.com/products/sm/techpubs/object-action-language-
reference-manual-38098 (2013)

34. Meyers, S.: Effective C++: 55 specific ways to improve your pro-
grams and designs. Pearson Education (2005)

35. Motogna, S., Pârv, B., Lazar, I., Czibula, I., Lazar, C.: Exten-
sion of an OCL-based Executable UML Components Action
Language. Studia Universitatis Babes-Bolyai, Informatica 53(2),
15–26 (2008)

36. OMG. Action Language for Foundational UML. http://www.omg.
org/spec/ALF/1.0.1/

37. PathFinder Solutions. Platform Independent Action Language
(PAL). http://www.ooatool.com/docs/PAL04, 2004

38. Perseil, I. and Pautet, L.: A Concrete Syntax for UML 2.1 Action
SemanticsUsing+CAL. InEngineering ofComplexComputer Sys-
tems, 2008. ICECCS2008. 13th IEEE InternationalConference on,
pages 217–221, March (2008)

39. Project Technology Inc. Shlaer-Mellor Action Language. http://
www.modelint.com/downloads/small (1997)

40. Rierson, L.: Developing safety-critical software: a practical guide
for aviation software and DO-178c compliance. CRC Press, Boca
Raton (2013)

41. Rompf, T. and Odersky, M.: Lightweight modular staging: a prag-
matic approach to runtime code generation and compiled DSLs. In
Acm Sigplan Notices, volume 46, pages 127–136. ACM (2010)

42. Schattkowsky, T., Engels, G. and Förster, A.: A Model-Based
Approach for Platform-Independent Binary Components with Pre-
cise Timing and Fine-Grained Concurrency. In Procs of HICSS
(2007)

43. Schattkowsky, T., Mueller, W. and Rettberg, A.: A model-based
approach for executable specifications on reconfigurable hardware.
In Procs of DATE (2005)

44. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engi-
neering. Computer 39(2), 25–31 (2006)

45. Selic, B.: The LessWell KnownUML. FormalMethods forModel-
Driven Engineering. volume 7320 of Lecture Notes in Computer
Science, pp. 1–20. Springer, Berlin Heidelberg (2012)

46. Smaoui, A. C., Mraidha, C. and Boulet, P.: An Optimized Compi-
lation of UML State Machines. In Procs of ISORC (2012)

123

http://www-01.ibm.com/software/awdtools/rhapsody/
http://www-01.ibm.com/software/awdtools/rhapsody/
http://www.ibm.com/developerworks/rational/products/rsa/
http://www.ibm.com/developerworks/rational/products/rsa/
http://www.idt.mdh.se/utbildning/exjobb/files/TR1396
http://www.idt.mdh.se/utbildning/exjobb/files/TR1396
http://www.ooatool.com/docs/ASL03
http://www.ooatool.com/docs/ASL03
http://www.modelint.com/downloads/small
http://www.mentor.com/products/sm/bridgepoint
http://www.mentor.com/products/sm/bridgepoint
http://www.mentor.com/products/sm/techpubs/object-action-language-reference-manual-38098
http://www.mentor.com/products/sm/techpubs/object-action-language-reference-manual-38098
http://www.mentor.com/products/sm/techpubs/object-action-language-reference-manual-38098
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/ALF/1.0.1/
http://www.ooatool.com/docs/PAL04
http://www.modelint.com/downloads/small
http://www.modelint.com/downloads/small

Promoting ALF for UML behavioural modelling 1337

47. Sparx-Systems. Enterprise Architect. http://www.sparxsystems.
com.au/ (2012)

48. Tatibouët, J., Cuccuru, A., Gérard, S. and Terrier, F.: Formalizing
ExecutionSemantics ofUMLProfileswith fUMLModels. InProcs
of MODELS, pages 133–148 (2014)

49. Tatibouët, J., Cuccuru, A., Gérard, S. and Terrier, F.: Formalizing
ExecutionSemantics ofUMLProfileswith fUMLModels. InProcs
of MoDELS (2014)

50. Tiso, A., Reggio, G. and Leotta, M.: Unit Testing of Model to
Text Transformations. In AMT 2014–Analysis of Model Transfor-
mations Workshop Proceedings, page 14 (2014)

51. Van Emden, M.H., Kowalski, R.A.: The Semantics of Predicate
Logic As a Programming Language. J. ACM 23(4), 733–742
(1976)

Federico Ciccozzi is Assistant
Professor at Mälardalen Univer-
sity, Sweden, School of Inno-
vation, Design and Engineer-
ing where he received his PhD
degree in 2014. His research
focuses on the definition of
metamodels and model trans-
formations for several automa-
tion aspects in the model-driven
development of component-based
embedded real-time systems,
such as code generation, preser-
vation of system properties and
back-propagation, to mention a

few. Moreover, he carries out research in the area of multi-paradigm
modelling, model versioning, (co)evolution and synchronisation, as

well as application of model-driven and component-based techniques
to (multi-)robot systems. He has co-authored over 40 publications in
journals and international conferences and workshops in these areas.
He has been serving the community as conference track and workshop
organiser, expert panelist, program committee member and reviewer
for conferences, workshops and international journals. In his research
activity, he has collaborated with several companies and research insti-
tutions such as Ericsson, ABB, Alten, Thales and CEA list. He is a
member of the IEEE. More information is available at http://www.es.
mdh.se/staff/266-Federico_Ciccozzi.

123

http://www.sparxsystems.com.au/
http://www.sparxsystems.com.au/
http://www.es.mdh.se/staff/266-Federico_Ciccozzi
http://www.es.mdh.se/staff/266-Federico_Ciccozzi

	On the automated translational execution of the action language for foundational UML
	Abstract
	1 Introduction
	2 ALF: why and how?
	3 Advancing the state of the art and practice
	3.1 Related work
	3.2 Paper contributions

	4 Translational execution of ALF
	4.1 Type deduction
	4.2 Memory management through smart pointers
	4.3 Translation of structure
	4.4 Translation of behaviours

	5 Mapping ALF concepts to C++
	5.1 Expressions
	5.1.1 Qualified names
	5.1.2 Literal expressions (Primary expressions)
	5.1.3 Name expressions (Primary expressions)
	5.1.4 `This' expressions and Parenthesized expressions (Primary expressions)
	5.1.5 Property access expressions (Primary expressions)
	5.1.6 Invocation expressions (Primary expressions)
	5.1.7 Tuple
	5.1.8 Behaviour invocation expressions (Primary expressions)
	5.1.9 Feature invocation expressions (Primary expressions)
	5.1.10 Super invocation expressions (Primary expressions)
	5.1.11 Instance creation expressions (Primary expressions)
	5.1.12 Sequence construction expressions (Primary expressions)
	5.1.13 Sequence access expressions (Primary expressions)
	5.1.14 Increment and decrement expressions
	5.1.15 Boolean unary expressions (Unary expressions)
	5.1.16 Numeric unary expressions (Unary expressions)
	5.1.17 Cast expressions (Unary expressions)
	5.1.18 Binary expressions
	5.1.19 Conditional test expressions
	5.1.20 Assignment expressions
	5.1.21 Indexing

	5.2 Statements
	5.2.1 In-line statements
	5.2.2 Block statements
	5.2.3 Local name declaration statements
	5.2.4 Expression statements
	5.2.5 If statements
	5.2.6 Switch statements
	5.2.7 While and Do statements
	5.2.8 For statements
	5.2.9 Break statements
	5.2.10 Return statements

	5.3 Units
	5.3.1 Namespaces
	5.3.2 Packages
	5.3.3 Classes (Classifiers)
	5.3.4 Properties (Features)
	5.3.5 Operations (Features)

	6 A running example: Self-orienting carrier robot system
	6.1 Translation of structure
	6.2 Translation of behaviours

	7 Validation
	8 Discussion
	9 Conclusion
	Acknowledgements
	10 Appendix A UML class diagram describing the structure of the self-orienting carrier robot system
	11 Appendix B Guidelines for running the solution
	References

