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Control of plant diseases is largely dependent on use 
of agrochemicals. However, there are widening gaps 
between our knowledge on plant diseases gained from 
genetic/mechanistic studies and rapid translation of the 
knowledge into target-oriented development of effec-
tive agrochemicals. Here we propose that the time is 
ripe for computer-aided drug discovery/design (CADD) 
in molecular plant pathology. CADD has played a 
pivotal role in development of medically important 
molecules over the last three decades. Now, explosive 
increase in information on genome sequences and 
three dimensional structures of biological molecules, 
in combination with advances in computational and 
informational technologies, opens up exciting possibili-
ties for application of CADD in discovery and develop-
ment of agrochemicals. In this review, we outline two 
categories of the drug discovery strategies: structure- 
and ligand-based CADD, and relevant computational 
approaches that are being employed in modern drug 
discovery. In order to help readers to dive into CADD, 
we explain concepts of homology modelling, molecular 
docking, virtual screening, and de novo ligand design 
in structure-based CADD, and pharmacophore model-
ling, ligand-based virtual screening, quantitative struc-
ture activity relationship modelling and de novo ligand 
design for ligand-based CADD. We also provide the im-
portant resources available to carry out CADD. Finally, 
we present a case study showing how CADD approach 
can be implemented in reality for identification of po-

tent chemical compounds against the important plant 
pathogens, Pseudomonas syringae and Colletotrichum 
gloeosporioides.
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Control of plant diseases is one of the challenges that hu-
manity as a whole faces in ensuring that current and future 
populations are adequately fed (Strange and Scott, 2005). 
To address such a challenge, a number of different ap-
proaches have been used separately or in combination to 
prevent or control the plant diseases. Growers, however, 
often rely heavily on pesticides and other agrochemicals, 
although great efforts have been put into development 
and deployment of crop plants that are resistant to plant 
pathogen(s) (Chandler et al., 2011). Over the last few de-
cades, molecular plant pathologists have strived to pinpoint 
molecular attributes of pathogens that confer ability to 
cause disease on their host plant, hoping to provide targets 
for molecular breeding and discovery of agrochemicals 
(Boyd et al., 2013; Hentschel et al., 2000).

During the last two decades, the ccomputer aided drug 
designing (CADD) has become a critical part of the devel-
opment of novel drugs in pharmaceutical industries (Adam, 
2005; Taylor, 2015). However, CADD has not been exten-
sively used toward design/development of chemicals that 
can control diseases of crop plants. Only a handful of stud-
ies have been conducted using CADD in plant pathology 
(Kandakatla and Ramakrishnan, 2014; Pathak et al., 2016; 
Soundararajan et al., 2011; Zhou et al., 2015). For example, 
Yang et al. (2002) successfully screened the novel 2-het-
eroaryl-4-chromanones with antifungal activity against the 
rice blast fungus using CADD approach. Xue et al. (2014) 
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modeled the structure of Tps1 (trehalose-6-phosphate syn-
thase 1) as potential drug target in Magnaporthe oryzae 
and reported the potential chemical inhibitor by screening 
400,000 chemical compounds from Molecular Libraries 
Small Molecule Repository. Liu et al. (2012) reported the 
modelled structures of Gnt-R like regulators from Xan-
thomonas axonopodis pv. Citri (Xac) and its binding sites. 
The homology modeling of 14α-demethylase from Ustila-
go maydis and the screening of synthetic XF-113 and ZST-
4 fungicide lead compounds as novel 14α-demethylase 
inhibitors were reported by Han et al (2010). Dehury et 
al. (2013) reported the modelled structure of race-specific 

bacterial blight disease resistance protein (xa5) against 
Xanthomonas oryzae. Doucet-Personeni et al. (2001) re-
ported the rational design of acetylcholinesterase inhibi-
tors (insecticides) by combing the common features of 
organophosphate and carbamate compounds (tacrine and 
trifluoromethyl ketones). In another work, structures of hy-
dacidin and hydantocidin (pro-herbicides) were combined 
to design the hybrid adenylosuccinate synthetase inhibi-
tors as a novel herbicides by Hanessian et al (1999). The 
identification of indenone and salicylamide analogue as tri-
hydroxy naphthalene reductase and scytalone dehydratase 
respectively is the most prominent example of CADD ap-

Fig. 1. A schematic diagram of a 
typical computer aided drug dis-
covery process for agrochemicals, 
starting from target identifica-
tion to hit-to-lead exploration. A 
general pipeline for the structure 
based drug designing (SBDD) 
and ligand based drug designing 
(LBDD) approaches was depicted 
in work flow format. Important 
concepts explained in more detail 
in other figures were indicated in 
parentheses.
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proach in the design of new agrochemicals (Walter, 2002).
Despite such examples, use of CADD in plant pathology 

has been significantly lagging behind. This was mainly 
due to 1) lack of information and training on CADD for 
researchers in plant pathology-related disciplines and 2) in-
sufficiency of data for accurate modelling and simulation. 
Recent advances in genomics and bioinformatics, together 
with explosive increase in genome sequence information, 
enabled researchers to rapidly identify and test large num-
ber of candidate genes and their translational products that 
are responsible for pathogenesis of plant pathogens (Cairns 
et al., 2016; Imam et al., 2016;). Some of these candidates 
include proteins that are secreted into apoplasm or cy-
toplasm of plants to subvert defense mechanisms and to 
manipulate metabolism of host plants in favor of pathogens 
(Deslandes and Rivas, 2012; Franceschetti et al., 2017). In 
addition, data regarding three-dimensional (3D) structure 
of such virulence/pathogenicity proteins based on NMR 
or X-ray crystallography are rapidly increasing (currently 
PDB holds 128,962 biological macromolecular structures) 
(Rost and Sander, 1996; Schwede, 2013).

With burgeoning information and technologies, here we 

propose that the time is ripe for CADD in molecular plant 
pathology. Even with a personal computer connected to the 
internet, CADD can be carried out for efficient develop-
ment of new agrochemicals having novel targets. From this 
perspective, here we outline basic concepts and overview 
of CADD (Fig. 1), without going into too much detail, to 
encourage and guide molecular plant pathologists who 
want to see translation of their works into chemical control 
of the diseases. To that end, we provide list of resources 
that are useful and currently available in drug designing 
pipeline (Table 1). Last but not least, we provide a case 
study of CADD targeting pathogenicity factors from select-
ed plant pathogens for demonstration purpose. For those 
who are complete novice to CADD, terminologies that are 
going to be used throughout this review are listed and ex-
plained in Table 2.

What is CADD and Why Do We Want to Use It?

Drugs are the chemical compounds/molecules that can 
either activate or inhibit biomolecules, which in turn, pro-
mote health and survivability of human. In ancient times, 

Table 1. List of the important resources used in CADD 
Application (database/tool) Resource Availability (Commercial/Free)

Chemical compound database Pubchem Free access
DrugBank Free access
Maybridge Limited free access

Structure drawing / editing tool ACD Chemsketch Academic free access
Marvin Sketch Academic free access
JChem Academic free access

Visualization tool Rasmol Free access
Jmol Free access
Pymol Academic free access

Compound property prediction Molinspiration Free access
Molsoft Free access

Protein modelling tools Modeller Free access
SwissPDBViewer Free access
Swissmodel Free access

File format converter tool OpenBabel Academic free access
Virtual screening and docking softwares FlexX Commercial

AutoDock Academic free access
GLIDE Commercial
PyRX Academic free access

Pharmacophore softwares HipHop Commercial
HypoGen Commercial
PHASE Commercial

QSAR tool Easy QSAR Academic free access
Molecular dynamics software Desmond Academic free access
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the usage of plant extracts has been the source of treatment 
for various disease and many people believed that plants 
might possess protective means against infections disease 
as it continues to survive with high bacterial density in an 
environment (Al-Hussaini and Mahasneh, 2009; Cos et 
al., 2006). In late 1800s, with the key developments in the 
basic sciences such as identification of bacteria and virus, 
in-depth knowledge on the chemical substance in the plants 
has become essential in the treatment of disease (Katiyar et 
al., 2012). Further advancements in the technologies such 
as X-ray crystallography, NMR spectroscopy and structural 
genomics have improved the determination of the exact 
chemical composition of the compounds and selection of 
potential drug targets (Hughes et al., 2011; Weigelt, 2010). 
This gradual advancement in understanding the molecular 
basis of compound structure and drug targets has channel-
ized the drug discovery pipeline with optimization and test-
ing steps (Duffy et al., 2012). Such traditional drug discov-
ery process includes screening, separation, characterization, 
and synthesis of the molecules with desired therapeutic 

activity on cultured cells or animals.
Among the steps in the traditional drug discovery pipe-

line, screening of large number molecules for the desired 
activity was one of the major bottlenecks. Although this 
brute force approach has the advantage in that it does not 
require prior knowledge of molecules, chances of finding 
novel drugs are generally very low (low hit rate), mak-
ing it time-consuming and cost-ineffective (Kapetanovic, 
2008; Sliwoski et al., 2013). This is the point at which 
CADD comes into play. CADD can be defined as the 
design/discovery of molecules that has strong binding 
affinity to biomolecular target in a computer-modeling-
dependent manner. The fundamental goal of CADD is to 
predict which molecules among many will bind to a target 
and if so how strongly they will, using knowledge and 
information on molecular mechanics and dynamics. The 
CADD serves as an alternative strategy to experimental 
screening techniques, greatly reducing the cost, time, and 
workload for drug development. For example, researchers 
can significantly decrease the number of compounds that 

Table 2. Terminology in CADD
Terms Definition/Description

Drug (or) ligand The small chemical compound that can bind to protein or enzyme and can treat the disease 
or a small chemical compound that binds to macromolecules as signals to start (catalyse) 
the reaction.

Receptor (or) Target A biological molecule (mostly macromolecules such as protein and DNA) that can receive a 
chemical signal (ligand) to catalyse a reaction or function.

Drug designing A process of finding a small chemical compound that can bind to macromolecules and 
works as a drug. 

Chemo informatics A branch of science that deals with the study of small chemical compounds information 
such as properties, structures and functions. 

SBDD (Structure based drug designing) A drug designing approach that works only with availability of protein (receptor) 3D struc-
ture. In this process the search for small chemical compounds are carried.

LBDD (Ligand based drug designing) A drug designing approach that works on the availability of small chemical compound 
(ligand) structure. 

Clefts/Cavities/Binding pockets The space or gap regions in the protein structure. These regions are essential for the binding 
of small chemical compounds that acts as signal or drug molecule.

Homology modelling Building the 3D structure of protein (target) based on the availability of experimentally (X-
ray or NMR) derived 3D structures of another related (template) protein that shares the 
similarity.

Docking This is a process of analysing the binding interactions of ligand and receptor molecules.

Virtual screening A computational process in which a large number of ligand (small) molecules are screened 
(analysed) to possess the best docking interactions with the receptor molecule.

Ligand conformation The orientation of the ligand molecule bound in the receptor binding site.

Pharmacophore The 3D representation of chemical features such as H-bond acceptors, H-bond donors, and 
hydrophobic regions possessed by the ligand compound or receptor binding site.

QSAR Quantitative structure activity relationship: a mathematical model used to define the rela-
tionship between the physico-chemical properties and biological activity of compounds.
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need to be screened without compromising lead discovery, 
because CADD allows them to skip many compounds that 
are predicted to be inactive (virtual screening). In addition, 
CADD can be used for other stages of drug discovery in-
cluding hit-to-lead optimization of affinity and selectivity. 
There are two major types of CADD: structure-based drug 
design (SBDD) and ligand-based drug design (LBDD). We 
will briefly introduce key concepts of each type of CADD 
in the following section. In general, the availability of 3D 

structure information of targets (often proteins) is the key 
to determining which approaches should be taken.

Target Identification

Target identification is the foremost step in drug discovery 
pipeline. The properties such as essentiality (role in patho-
physiology), specificity (most specific to particular disease/
host), druggability (function modification through the bind-

Table 3. List of few reported potential drug targets from plant pathogens 

Drug target Function Target pathogen Reference

Mur Enzymes Peptidoglycan synthesis Bacterial pathogens El Zoeiby et al., 2003
Pectate lyase Cell wall degrading enzymes Bacterial and fungal pathogens Herron et al., 2000
Ergosterol biosynthesis  

pathway
Generation of a major constituent of 

the plasma membrane
Fungal pathogens Siegel, 1981

Lanosterol 14α-demethylase Steroid biosynthesis Fungal pathogens Sagatova et al., 2015
β-tubulin (TUB2) Microtubule assembly Fungal pathogens Wride et al., 2014
Threonyl-tRNA synthetases Protein translation and cell viability Phytophthora sojae Gao et al., 2012
Dihydrofolate reductase Nucleotide precursor biosynthesis Phytophthora spp.,  Ustilago spp.,  

Puccinia spp.
Jain et al., 2017

Trehalose-6-phosphate  
synthase 1 (Tps-1)

Trehalose synthesis – energy and 
carbon storage

Magnaporthe oryzae Xue et al., 2014

Asparagine synthase (Asn1p) Pathogenecity Magnaporthe grisea
Botrytis cinerea
Fusarium graminearum
Colletotrichum spp. 
Ustilago maydis 

Ramakrishnan et al., 2016
Dunn et al., 2009

Isocitrate lyase Virulence Leptosphaeria maculans
Magnaporthe grisea
Stagonospora nodorum
Colletotrichum lagenarium
Rhodococcus fascians
Xanthomonas campestris

Dunn et al., 2009
Dean et al., 2012

MAPK signalling and calcium 
signalling pathways

Invasive hyphal growth, Morpho-
genesis, Biogenesis of the cell 
wall, Dimorphism, and the stress 
response

Magnaporthe grisea
Botrytis cinerea 
Fusarium oxysporum
Blumeria graminis
Colletotrichum spp. 
Ustilago maydis
Melampsora lini

Dean et al., 2012
Chen and Dickman, 2004
Takano et al., 2000

Type III secretion system Pathogenicity Pseudomonas syringae
Ralstonia solanacearum
Xanthomonas axonopodis

Mansfield et al., 2012 
Jovanovic et al., 2011 
Boucher et al., 1985

Type IV secretion system Transport into the host  Agrobacterium tumefaciens Pitzschke and Hirt, 2010
Rpf gene products Regulation of pathogenicity factors Xanthomonas oryzae

Xanthomonas campestris
Xanthomonas axonopodis

Mole et al., 2007
Boch and Bonas, 2010
Mansfield et al., 2012 

HrpN Pathogenicity Erwinia amylovora
Ralstonia solanacearum

Bocsanczy et al., 2008
Boucher et al., 1985
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ing of small molecules) and selectivity (well defined active 
site allowing differential binding of small molecules) of a 
macromolecule are considered as important features for the 
selection of ideal target. The selection and choice of ideal 
macromolecule as drug targets by considering the essential 
criterion will influence the outcome of the drug discovery 
process (Chandra, 2011). Based on the above mentioned 
criteria, certain macromolecules that could serve as po-
tential drug targets in plant pathogens are summarized in 
Table 3.

Structure-Based Drug Design/Discovery (SBDD)

Availability of 3D structure and prior knowledge on 
biological function(s) of target protein are pre-requisites 
for SBDD approach. Based on the structure of the target 
protein, SBDD allows design of candidate drugs that are 
predicted to bind to the target with high affinity and selec-
tivity (Kalyaanamoorthy and Chen, 2011). Assumption that 
underlies and justifies SBDD approach is that a molecule’s 
potential to have desired biological effects for a specific 
protein relies on its degree of ability to interact with bind-
ing sites on that protein.

Homology modelling. If there is no 3D structure informa-
tion of the target, it may be possible to create homology 
model (this is called homology modelling) based on prima-
ry sequence similarity of the target to homologous proteins, 
of which 3D structure is empirically known (Fig. 2A). The 
3D structure, whether it is experimental or predicted struc-
ture, of target protein provides information about chemical 
environment of the active site(s), enabling researchers to 
identify ligand(s) (drug or agrochemicals) that can bind to 
the active site with high affinity and selectivity. One thing 
that researchers should bear in mind is that, since homol-
ogy modelling builds the 3D structures of proteins based 
on template sequences, the accuracy of the built model 
depends on the choice of template, alignment accuracy and 
refinement of the model (Rost, 1999). Generally, the mod-
els built with the templates exhibiting over 70% identities 
are considered to be accurate enough for drug discovery 
applications (Cavasotto and Phatak, 2009).

Molecular docking. Once the model providing chemical 
environment of active sites is built, protein-ligand interac-
tions can be explored through molecular docking, a method 
that predicts energetically stable orientation of ligand when 
it is bound to target protein (Fig. 2B). Degree of stability 
of interaction between molecules is the key factor to deter-
mining biological consequences of the interaction (Durrant 

and McCammon, 2010). Molecular docking reports two 
important information: 1) correct conformation of a ligand-
target (or ligand-receptor) complex and 2) its binding affin-
ity which represents an approximation of the binding free 
energy (mathematical methods called scoring functions are 
used to estimate binding interaction of the protein-ligand 
complex). More than 30 molecular docking programs are 
currently available (Huang and Zou, 2010; Ferreira et al., 
2015). 

Structure-based virtual screening (SBVS). The search 
for new chemical compounds as lead molecules is a critical 
step during the process of drug discovery. Once the target 
is selected, the small molecules database are selected for 
virtual screening and their binding interactions with the se-
lected drug target are explored. The top ranked compounds 
with desired binding interactions are selected as lead com-
pounds for the further steps. Virtual screening is a compu-
tational method that evaluates large libraries of compounds 
and subsequently identifies putative hits (leads) through 
comparison of 3D structures of ligands with the putative 
active site of the target (Fig. 2C). In structure-based virtual 
screening, affinity of the ligand to the target protein is esti-
mated using molecular docking followed by application of 
scoring function. Virtual screening is extensively automat-
ed and fast method in identifying the candidate compounds 
from a large dataset based on their rank in docking interac-
tions (McInnes, 2007). This allows researchers to focus 
their resources and efforts on testing compounds likely to 
have desired activity.

De novo ligand design (DnLD). Using 3D structure infor-
mation of the target, ligand can be designed de novo. DnLD 
can be carried out in both structure-based and ligand-based 
drug design. These de novo methods are usually carried 
with the placement of pseudo-molecular probe molecule 
and then addition of functional groups to satisfy the spatial 
constraints of target binding site. Also, the molecule will 
be grown fragment by fragment to occupy the active site 
of target molecules. Please see de novo ligand design in the 
next section.

Ligand-Based Drug Designing (LBDD)

In many cases, 3D structure of target protein or its homolog 
is not available for SBDD approach. This is true in particu-
lar for proteins that are present in cell surface or membrane 
due to their inherent difficulties in protein crystallization. 
In some cases, the use of unreliable homologous proteins 
(for example, low sequence identity) for homology model-
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ling can result in high rate of false positive hits. In such 
situations, researcher can take LBDD. LBDD relies on 
knowledge of structural and chemical characteristics that 
molecules must have for binding to the target of interest 
(Geppert et al., 2010). What LBDD actually does is to 

build a model (so called, pharmacophore model) based on 
the knowledge of such molecules binding to the target and, 
in turn use this model for design of new drug candidates. 
Alternatively, LBDD can construct predictive, quantitative 
structure-activity relationship (QSAR).

Fig. 2. The most prominent steps in the SBDD and LBDD approaches. (A) Homology modelling and validation. The target-template 
alignment leads to the modelling of 3D structure of target protein and this model is validated by Ramachandran plot (using PRO-
CHECK). (B) Docking process. The small molecule/ligand (chemical compound, stick representation) and the macromolecule/receptor 
(protein, molecular surface representation) are allowed to interact with each other (using docking software). (C) The general outline of 
virtual screening in SBDD and LBDD approach. In SBDD, large numbers of ligand are screened against the known receptor. In LBDD, 
the chemical entities of single ligand is used to screen hit compounds and/or screened against various protein targets of interest. 
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Pharmacophore modelling. Pharmacophore is an abstract 
description of minimum, steric and electronic features that 
are required for interaction of target protein with ligand(s). 
Inference of pharmacophore using knowledge on a set of 
ligands (training set) that can bind to the target is called 
pharmacophore modelling (Fig. 3A). The process in the de-
velopment of pharmacophore model involves the alignment 
of multiple ligands (training set), which can determine the 
essential chemical features that are responsible for their 
bioactivity. The alignment of these multiple ligands can be 
achieved by superimposing a set of active molecules. Such 
superimposed molecules are then transformed into abstract 
representation of different features. Pharmacophore model 
explains why molecules of structural diversity can bind 
to the common sites and have the same biological effects 

(Yang, 2010).

Ligand-based virtual screening (LBVS). Once pharma-
cophore model is built, then researchers can make predic-
tion about whether candidate ligands are likely to bind to 
the target through comparison to the pharmacophore mod-
el. Such process is called ligand-based virtual screening 
(Fig. 2C). This approach is known to work best in scanning 
through candidate compounds with desired chemical fea-
tures from a large, diverse set of chemical libraries (Oprea 
and Matter, 2004). In a way, LBVS works as a chemical 
database filters, and therefore can drastically reduce the 
number of chemical compounds for in vivo and in vitro 
studies. 

Fig. 3. The important steps of LBDD approach. (A) Pharmacophore designing and database screening. An example of pharmacophoric 
features: hydrogen bond donor, magenta; hydrophobic, cyan; ring aromatic, orange; the compound from Maybridge database matching 
the pharmacophoric features and the compound docking interactions. (B) Important molecular descriptors of QSAR that are vital in pre-
dicting the biological activity of compounds.
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Quantitative structure-activity relationship (QSAR). 
Hansch and Fujita introduced QSAR method based on 
the ground works of Hammett and Taft (Hansch and Fu-
jita, 1964; Hansch, 1969). Quantitative structure–activity 
relationship (QSAR) models are regression or classifica-
tion models used to predict activities of new chemical 
compounds based on their physico-chemical properties. 
In general, QSAR is a regression model where it relates a 
set of ‘predictor’ variables (X) such as physico-chemical 
properties and molecular descriptors to the potency of the 
‘response’ variable (Y) such as biological activity of the 
compound. The QSAR summarizes the relationship of mo-
lecular descriptors (chemical structures) that describe the 
unique physico-chemical properties of compound sets of 
interest with their respective biological activity (Bordás et 
al., 2003; Goodford, 1985).Using this relationship, QSAR 
model is used to predict the activity of new compounds. 
The predictive ability of the QSAR model is dependent on 
the descriptors that were employed in the model generation 
(Fig. 3B). 

de novo ligand design (DnLD). This method is gener-
ally known as fragment-based drug designing approach in 
which the novel ligand is built from the scratch using the 
creativity of the researchers to a very large extent. Owing 
to the advantage of tailoring the new compounds, DnLD 
has been effectively employed in both SBDD and LBDD 
approaches. In case of SBDD, the chemical features of 
active site in the target are considered to design the novel 
compounds, whereas in LBDD, the chemical features de-
rived from pharmacophore or QSAR are used for novel 
compound design (Dey and Caflisch, 2008; Yang, 2010). 
However, the true behaviour of the chemical compound 
is in many cases uncertain and thus such lack of empirical 
evidence is a pitfall of this approach. The combinations 
of various modifications are made possible with the exis-
tence of chemical drawing tools, and the optimizations of 
the structure are performed with the energy minimization 
tools. Further, the knowledge on accurate modification that 
is essential for the ligand in the binding site can be revealed 
through docking programs (Böhm, 1996). The refinement 
of ligand molecules is generally an iterative process in 
which the emergence of optimal ligand with good binding 
stability and interactions results from convergence criteria. 

Drug Discovery – A Case Study

In this section, we provide examples of CADD for plant 
pathogens. Below we demonstrate how candidate agro-
chemicals targeting a bacterial pathogen, Pseudomonas sy-

ringae and a fungal pathogen, Colletotrichum gloeospori-
oides can be discovered using concepts and tools of CADD 
(Fig. 4).

Homology modelling and validation. For Pseudomonas 
syringae, through literature survey, we selected two en-
zymes, MurD and MurE ligases, which are involved in bio-
synthesis of bacterial peptidoglycan, as potential targets for 
rational drug designing approach (Bratkovič et al., 2008; 
Feil et al., 2005). For Colletotrichum gloeosporioides, the 
pelB gene encoding pectate lyase was selected as a target, 
since it is an important cell-wall-degrading enzyme for 
pathogenesis (Yakoby et al., 2000). Since the experimental 
3D structures of these selected targets are unavailable in the 
PDB database, we employed theoretical protein modeling 
strategy. Using the homology modelling tool, Modeler9v9 
(Eswar et al., 2006), the homology models of pectate lyase 
B protein sequence from C. gloeosporioides, and of MurD 
and MurE protein sequences from P. syringae were built 
by employing the target-template sequence alignment files 
(Fig. 4A). The X-ray crystal structures of cedar pollen al-
lergen from Juniperus ashei (PDBID: 1pxz_A Chain) was 
used as potential template for modelling pectate lyase B 
protein from C. gloeosporioides. While the crystal struc-
tures of MurD (PDBID: 5a5f_A chain) and MurE (PDBID: 
1E8C_A chain) from E. coli are used as potential template 
from PDB database (Berman et al., 2000) for modelling the 
structures of MurD and MurE proteins from P. syringae. 
Among the generated models, one with the least RMSD 
(root-mean-square deviation of atomic positions: measure 
of the average distance between the atoms of superimposed 
proteins) value and final energy-minimized model was 
used for further analysis. The phi and psi angles represent-
ing the stereo-chemical parameters of the model (Fig. 4B), 
the compatibility of a generated 3D structure with its own 
amino acid sequence, and the regions of the modelled 
structure that can be rejected at the 95% and 99% confi-
dence intervals were determined through PROCHECK 
(Laskowski et al., 1993), Verify3D (Eisenberg et al., 1997), 
and ERRAT (Colovos and Yeates, 1993), respectively, at 
SAVES structural analysis server (https://services.mbi.ucla.
edu/SAVES/).

Candidate ligand selection (lead compounds) and virtu-
al screening. Instead of scanning all available chemical da-
tabases, here we employed heuristic approach starting from 
compounds with known activity. Penicillin (anti-bacterial) 
and curcumin (anti-fungal) (Fig. 4C) are known inhibitors 
of MurD and MurE ligases and pectate lyase, respectively 
(Cho et al., 2006; Tomašić et al., 2012). Their structures 
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were used to generate the various compounds modified 
with the combinations of halogen elements (Br, Cl, F and I) 
using ACD Chemsketch (Version 11, Advanced Chemis-
try Development, Inc., Toronto, ON, Canada, http://www.
acdlabs.com/), resulting in 291 and 52 compounds that are 
similar in their structure to penicillin and curcumin, respec-
tively. These new molecules were subjected to energy min-
imization by using CHARMm force field (Vanommeslae-
ghe et al., 2010) and collectively retrieved as 3D structures 
in SDF (structure data file) format for virtual screening 

against pectate lyase, MurD and MurE. Virtual screening 
of these 291 and 52 compounds by using FlexX module 
of LeadIT suite (Rarey et al., 1996) revealed their binding 
efficiencies through docking in the predicted binding pock-
ets of modelled proteins. The compounds (2S,5R,6R)-3,3-
dimethyl-7-oxo-6-[(2-pyridin-4-ylacetyl)amino]-4-thia-1- 
azabicyclo [3.2.0]heptane-2-carboxylic acid (hereafter 
compound-1) similar to penicillin and (1E,6E)-1,7-bis(3,4-
dihydroxy-5-methoxyphenyl)hepta-1,6-diene-3,5-dione 
(hereafter compound-2) similar to curcumin with the best 

Fig. 4. The CADD protocol employed in the case study. Softwares, databases and servers used in the case study are given in dotted 
boxes, while the process is shown in solid boxes. (A) Homology models of pectate lyase, MurD and MurE (left to right). (B) Model vali-
dation using Ramachandran plot for each model. (C) Ligand selection (heuristic approach): structure of penicillin (anti-bacterial agent) 
and curcumin (anti-fungal agent) are shown. (D) Pharmacophore generation. Pharmacophoric features including hydrogen bond accep-
tor (green), hydrogen bond donor (magenta), hydrophobic (cyan), and ring aromatic (orange), ionizable positive charge (red) are shown 
here. (E) 3D database screening. Some of the compounds from Maybridge database matching the pharmacophore are shown. (F) Virtual 
screening and docking interactions. Docking interactions of Maybridge database compounds with the models are illustrated. (G) Identifi-
cation of lead molecule: the compound showing best docking interaction with the modelled protein, CD01278 was selected.
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docking score (binding energy) were used for the pharma-
cophore modelling. Note that here we have employed both 
SBDD and LBDD approaches.

Pharmacophore modelling and database screening. The 
pharmachophore model was generated against the com-
pound-1 and compound-2 by using auto pharmachophore 
generation option in Discovery Studio 2.5 (Accelrys Soft-
ware Inc., San Diego, USA), which considers the chemical 
feature types and resulted ten pharmachophore models (hy-
potheses). The best pharmachophore model was selected 
based on the high correlation coefficient and lower RMSD 
(Fig. 4D). The Search 3D Database protocol with default 
search option implemented in Discovery studio was used 
for screening against Maybridge database (http://www.
maybridge.com/) with various filters such as estimated ac-
tivity and Lipinski’s rule of five (≤ 5 hydrogen bond donors;  
≤ 10 hydrogen bond acceptors; molecular mass < 500 dal 
and log P (octanol-water partition coefficient) < 5) (Lipin-
ski et al., 1997). The final hit compounds from Maybridge 
database having good fit scores (> 3) for the compound-1 
pharmacophore are PD00533, CD01374, CD04888 and 
CD01278. While the final hit compounds for compound-2 
pharmacophore are CD01278, S10124, HTS05738 and 
BTB01629 (Fig. 4E) (The IUPAC name of these com-
pounds are given in Supplementary Table 1). These com-
pounds are further used for docking studies against the 
modelled proteins and found that the compound CD01278 
(Fig. 4G) exhibited better binding energies with the three 
protein models, which significantly implies that this com-
pound might serve as potential lead molecule to control the 
disease caused by both the P. syringae and C. gloeospori-
oides.

Success and Limitations of CADD

The advent of robust technologies in the computational 
methods such as combinatorial chemistry and highthrough-
put screening methods has accelerated the modern drug 
discovery process to screen large number of chemical 
compounds, compared to the conventional drug design-
ing process that is time-taking, laborious and costly (trial 
and error), and has high risk of failure (Talele et al., 2010). 
These in silico methods opened the possibility of synthesiz-
ing and/or testing novel compounds as drugs. Moreover, 
the optimization process of lead chemical compounds 
has allowed medicinal chemists to synthesize the novel 
compounds with reduced risk of toxicity. Although the 
conventional methods can successfully yield candidate 
compounds, the high molecular weight, lipophilicity, toxic-

ity, low absorption, distribution, metabolism excretion and 
non-specific binding may result in negative consequences 
in clinical trials. In this aspect, CADD is highly effective, 
since predictive power of CADD facilitates selection of 
more promising lead candidates by minimizing time being 
wasted on dead end compounds. 

Despite all these advantages of CADD, its limitations 
should be noted. Most prominently, accurate simulation 
of complexity that biological systems have is not possible 
even with state of art techniques and high computational 
power. Such limitation is the biggest challenge in CADD 
and pertains to uncertainties associated with high flexibility 
of target, conformational changes of proteins, and scarce of 
experimental data for absorption, distribution, metabolism, 
and toxicity of compounds (Baig et al., 2016; Singh, 2014).

Conclusion

CADD combines knowledges from diverse disciplines 
such as chemo-informatics, and genomics with computa-
tional algorithms and technologies to enable discovery of 
new knowledge – discovery/development of new drugs. In 
this review, we outlined key concepts of CADD and pro-
vided application of CADD to discovery/development of 
potential lead agrochemicals targeting proteins from plant 
pathogens. Considering current pace at which virulence/
pathogenicity factors are uncovered with aid of genom-
ics, CADD will be playing important roles in narrowing 
widening gaps between our understanding of pathogenesis 
mechanisms at the molecular level and translation of such 
knowledge into development of disease control measures 
and management strategies.

One of the barriers for CADD in gaining considerable 
momentum in areas other than pharmaceutical industry is 
probably accessibility of CADD to researchers from other 
disciplines. Despite increasing efforts, many of CADD 
tools still lack user-friendly interface, and configuration of 
overwhelming number of parameters is a daunting task. 
Therefore, successful use of those tools naturally requires 
a great deal of expertise. Fortunately, recent design of 
CADD tools is putting more emphasis on creating tools 
and algorithms that are accessible to wider range of re-
searchers. Furthermore, it should be noted that there are no 
fundamentally better techniques, even though wide variety 
of computational tools are used. From these perspectives, 
we would like to strongly encourage researchers in molecu-
lar plant pathology to adopt these robust technologies in 
order to combat important crop diseases, using our review 
as a guide. Tools and strategies that we have used for P. sy-
ringae and C. gloeosporioides will be a good starting point 
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toward that end. 
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