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Abstract: Suppose we observe n independent and identically distributed observations of a finite dimensional
bounded random variable. This article is concerned with the construction of an efficient targeted minimum
loss-based estimator (TMLE) of a pathwise differentiable target parameter of the data distribution based on
a realistic statistical model. The only smoothness condition we will enforce on the statistical model is that
the nuisance parameters of the data distribution that are needed to evaluate the canonical gradient of the
pathwise derivative of the target parameter are multivariate real valued cadlag functions (right-continuous
and left-hand limits, (G. Neuhaus. On weak convergence of stochastic processes with multidimensional time
parameter. Ann Stat 1971;42:1285–1295.) and have a finite supremum and (sectional) variation norm. Each
nuisance parameter is defined as a minimizer of the expectation of a loss function over over all functions
it its parameter space. For each nuisance parameter, we propose a new minimum loss based estimator that
minimizes the loss-specific empirical risk over the functions in its parameter space under the additional con-
straint that the variation norm of the function is bounded by a set constant. The constant is selected with
cross-validation. We show such an MLE can be represented as the minimizer of the empirical risk over lin-
ear combinations of indicator basis functions under the constraint that the sum of the absolute value of the
coefficients is bounded by the constant: i.e., the variation norm corresponds with this L1-norm of the vector
of coefficients. We will refer to this estimator as the highly adaptive Lasso (HAL)-estimator. We prove that
for all models the HAL-estimator converges to the true nuisance parameter value at a rate that is faster than
n–1/4 w.r.t. square-root of the loss-based dissimilarity. We also show that if this HAL-estimator is included
in the library of an ensemble super-learner, then the super-learner will at minimal achieve the rate of con-
vergence of the HAL, but, by previous results, it will actually be asymptotically equivalent with the oracle
(i.e., in some sense best) estimator in the library. Subsequently, we establish that a one-step TMLE using
such a super-learner as initial estimator for each of the nuisance parameters is asymptotically efficient at any
data generating distribution in the model, under weak structural conditions on the target parameter map-
ping and model and a strong positivity assumption (e.g., the canonical gradient is uniformly bounded). We
demonstrate our general theorem by constructing such a one-step TMLE of the average causal effect in a
nonparametric model, and establishing that it is asymptotically efficient.

Keywords: asymptotic linear estimator, canonical gradient, cross-validated targeted minimum loss estim-
ation (CV-TMLE), Donsker class, efficient influence curve, efficient estimator, empirical process, entropy,
highly adaptive Lasso, influence curve, one-step TMLE, super-learning, targeted minimum loss estimation
(TMLE)

1 Introduction
We consider the general statistical estimation problem defined by a statistical model for the data distribution,
a Euclidean valued target parameter mapping defined on the statistical model, and observing n independent
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and identically distributed draws from the data distribution. Our goal is to construct a generally asymptot-
ically efficient substitution estimator of the target parameter. An estimator is asymptotically efficient if and
only if it is asymptotically linear with influence curve equal to the canonical gradient (also called the effi-
cient influence curve) of the pathwise derivative of the target parameter [1]. For realistic statistical models
construction of efficient estimators requires using highly data adaptive estimators of the relevant parts of the
data distribution the efficient influence curve depends upon. We will refer to these relevant parts of the data
distribution as nuisance parameters.

One can construct an asymptotically efficient estimator with the following two general methods. Firstly,
the one-step estimator is defined by adding to an initial plug-in estimator of the target parameter an empirical
mean of an estimator of the efficient influence curve at this same initial estimator [1]. In the special case that
the efficient influence curve can be represented as an estimating function, one can represent this methodo-
logy as the first step of the Newton-Raphson algorithm for solving the estimating equation defined by setting
the empirical mean of the efficient influence curve equal to zero. Such general estimating equation method-
ology for construction of efficient estimators has been developed for censored and causal inference models
in the literature (e.g., [2, 3]). Secondly, the TMLE defines a least favorable parametric submodel through an
initial estimator of the relevant parts (nuisance parameters) of the data distribution, and updates the initial
estimator with the MLE over this least favorable parametric submodel. The one-step TMLE of the target para-
meter is now the resulting plug-in estimator [4–6]. In this article we focus on the one-step TMLE since it is a
more robust estimator by respecting the global constraints of the statistical model, which becomes evident
when comparing the one-step estimator and TMLE in simulations for which the information is low for the
target parameter (e.g., even resulting in one-step estimators of probabilities that are outside the (0, 1) range)
(e.g., [7–9]). Nonetheless, the results in this article have immediate analogues for the one-step estimator and
estimating equation method.

The asymptotic linearity and efficiency of the TMLE and one-step estimator relies on a second order
remainder to be oP(n–1/2), which typically requires that the nuisance parameters are estimated at a rate faster
than n–1/4 w.r.t. an L2(P0)-norm (e.g., see our example in Section 7). To make the TMLE highly data adaptive
and thereby efficient for large statistical models we have recommended to estimate the nuisance parameters
with a super-learner based on a large library of candidate estimators [10–13]. Due to the oracle inequality
for the cross-validation selector, the super-learner will be asymptotically equivalent with the oracle selected
estimator w.r.t. loss-based dissimilarity, even when the number of candidate estimators in the library grows
polynomial in sample size. The loss-based dissimilarity (e.g., Kullback-Leibler divergence or loss-based dis-
similarity for the squared error loss) behaves as a square of an L2(P0)-norm (see, for example Lemma 4 in
our example). Therefore, in order to control the second order remainder, our goal should be to construct a
candidate estimator in the library of the super-learner which will converge at a faster rate than n–1/4 w.r.t.
square-root of the loss-based dissimilarity.

In this article, for each nuisance parameter, we propose a newminimum loss based estimator thatminim-
izes the loss-specific empirical risk over its parameter space under the additional constraint that the variation
norm is bounded by a set constant. The constant is selected with cross-validation. We show that these MLEs
can be represented as the minimizer of the empirical risk over linear combinations of indicator basis func-
tions under the constraint that the sum of the absolute value of the coefficients is bounded by the constant:
i.e., the variation norm corresponds with this L1-norm of the vector of coefficients. We will refer to this estim-
ator as the highly adaptive Lasso (HAL)-estimator. We prove that the HAL-estimator converges at a rate that is
for all models faster than n–1/4 w.r.t. square-root of the loss-based dissimilarity. This even holds if the model
only assumes that the true nuisance parameters have a finite variation norm. As a corollary of the general
oracle inequality for cross-validation, we will then show that the super-learner including this HAL-estimator
it its library is guaranteed to converge to its true counterparts at the same rate as this HAL-estimator (and thus
faster than n–1/4). By also including a large variety of other estimators in the library of the super-learner, the
super-learner will also have excellent practical performance for finite samples relative to competing estim-
ators [14]. Based on this fundamental result for the HAL-estimator and the super-learner, we proceed in this
article with proving a general theorem for asymptotic efficiency of the one-step TMLE for arbitrary statistical
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models. In this article we will use a one-step cross-validated-TMLE (CV-TMLE), which avoids the Donsker-
class entropy condition on the nuisance parameter space, in order to further minimize the conditions for
asymptotic efficiency [5, 15]. In our accompanying technical report [16] we present the analogue results for
the one-step TMLE. Beyond establishing these fundamental theoretical general results, we will also discuss
the practical implementation of the HAL-estimator and corresponding TMLE.

2 Example: Treatment specific mean in nonparametric model
Before we start the main part of this article, in this section we will first introduce an example, and use this
example to provide the reader with a guide through the different sections.

2.1 Defining the statistical estimation problem

Let O = (W,A,Y) ∼ P0 be a d-dimensional random variable consisting of a (d – 2)-dimensional vector of
baseline covariates W, binary treatment A ∈ {0, 1} and binary outcome Y ∈ {0, 1}. We observe n i.i.d. copies
O1, . . . ,On of O ∼ P0. Let Q̄(P)(W) = EP(Y | A = 1,W) and Ḡ(P)(W) = EP(A | W). Let Q2(P) be the marginal
cumulative probability distribution of W, and Q = (Q1 = Q̄,Q2). Let the statistical model be of the form
M = {P : G(P) ∈ G,Q(P) ∈ Q}, where G is a possibly restricted set, and Q is nonparametric. The only key
assumption we will enforce onQ and G is that for each P ∈ M,W ↦ Q̄(P)(W) andW ↦ Ḡ(P)(W) are cadlag
functions inW on a set [0, 4P] ⊂ IRd–2 [17], and that the variation norm of these functions Q̄(P) and Ḡ(P) are
bounded. The definition of variation normwill be presented in the next section. Suppose that G assumes that
Ḡ only depends onW through a subset of covariates of dimension d2 ≤ d – 2: if d2 = d – 2, then this does not
represent an assumption.

Our target parameter J : M → IR is defined by J(P) =
∫
Q̄(w)dQ2(w) ≡ J1(Q1 = Q̄,Q2). For notational

convenience, we will useJ for both mappingsJ andJ1. It is well known thatJ is pathwise differentiable so
that for each 1-dimensional parametric submodel {P: : :} ⊂ M through P with score S at : = 0, we have

d
d:J(P:)

∣∣∣∣
:=0

= PD(P)S =
∫
o
D(P)(o)S(o)dP(o),

for some D(P) ∈ L2(P), where L2(P) is the Hilbert space of functions of O with mean zero endowed with inner
product 〈 f , g〉P = Pfg. Here we use the notation Pf ≡

∫
f (o)dP(o). Such an object D(P) is called a gradient at

P of the pathwise derivative. The unique gradient that is also an element of the tangent space T(P) is defined
as the canonical gradient. The tangent space T(P) at P is defined as the closure of the linear span of the
set of scores of the class of 1-dimensional parametric submodels we consider. In this example the canonical
gradient D∗(P) = D∗(Q(P),G(P)) at P is given by:

D∗(Q,G)(O) =
A

Ḡ(W)
(Y – Q̄(W)) + Q̄(W) –J(Q).

Let D∗
1 (Q,G) = A/Ḡ(W)(Y – Q̄(W)) and D∗

2 (Q) = Q̄(W) –J(Q) and note that D∗(Q,G) = D∗
1 (Q,G) + D∗

2 (Q).
An estimator 8n of 80 = J(P0) is asymptotically efficient (among the class of all regular estimators) if

and only if it is asymptotically linear with influence curve equal to the canonical gradient D∗(P0) [1]:

8n – 80 = PnD∗(P0) + oP(n–1/2),

where Pn is the empirical probability distribution of O1, . . . ,On. Therefore, the canonical gradient is also
called the efficient influence curve.
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We have that

J(P) –J(P0) = (P – P0)D∗(Q,G) + R20((Q̄, Ḡ), (Q̄0, Ḡ0)), (1)

where Q = Q(P), G = G(P), and the second order remainder R20() is defined as follows:

R20((Q̄, Ḡ), (Q̄0, Ḡ0)) ≡
∫ Ḡ(w) – Ḡ0(w)

Ḡ(w)
(Q̄(w) – Q̄0(w))dP0(w).

Of course, PD∗(Q,G) = 0.
We define the following two log-likelihood loss functions for Q̄,Q2 and Ḡ, respectively:

L11(Q̄)(O) = –A
{
Y log Q̄(W) + (1 – Y) log(1 – Q̄(W))

}
;

L12(Q2)(O) = – log dQ2(W);
L2(Ḡ)(O) = –

{
A log Ḡ(W) + (1 – A) log(1 – Ḡ(W))

}
.

We also define the corresponding Kullback-Leibler dissimilarities d10,1(Q̄, Q̄0) = P0{L11(Q̄) – L11(Q̄0)},
d10,2(Q2,Q20) = P0{L12(Q2) – L12(Q20)}, and d20(Ḡ, Ḡ0) = P0{L2(Ḡ) – L2(Ḡ0)}. Here Q2 represents an easy
to estimate parameter which we will estimate with the empirical probability distribution Q2n = Q̂2(Pn) of
W1, . . . ,Wn.

Let the submodelM($) ⊂ M be defined by the extra restriction that $ < Q̄(W) < 1 – $ and Ḡ(W) > $
P0-a.e. If we would replace the log-likelihood loss L11(Q̄) (which becomes unbounded if Q̄ approximates 0 or
1) by a squared error loss (Y – Q̄(W))2A, then one can remove the restriction $ < Q̄(W) < 1 – $ in the definition
ofM($). Given a sequence $n → 0 as n → ∞, we can define a sequence of modelsMn =M($n) which grows
from below toM as n → ∞. By assumption, there exists an N0 = N(P0) < ∞ so that for n > N0 we have
P0 ∈ Mn.

Let Qn = Q1n × Q2n and Gn be the corresponding parameter spaces for Q = (Q̄,Q2) and Ḡ, respectively,
and specifically,Q1n = {Q̄ : $n < Q̄ < 1 – $n}, whileQ2n = Q2.

2.2 One step CV-TMLE

Let ˆ̄Q : Mnonp → Q1n and ˆ̄G : Mnonp → Gn be initial estimators of Q̄0, Ḡ0, respectively, whereMnonp
denotes a nonparametric model so that the estimator is defined for all realizations of the empirical prob-
ability distribution. Let Q̂ : Mnonp → Qn be the estimator Q̂(Pn) = ( ˆ̄Q(Pn), Q̂2(Pn)) of Q0 = (Q̄0,Q20). For a
given cross-validation scheme Bn ∈ {0, 1}n, let P1n,Bn ,P

0
n,Bn be the empirical probability distributions of the

validation sample {Oi : Bn(i) = 1} and training sample {Oi : Bn(i) = 0}, respectively. It is assumed that the
proportion of observations in the validation sample (i.e.,

∑
i Bn(i)/n) is between $ and 1–$ for some 0 < $ < 1.

Let Qn,Bn = (Q̄n,Bn ,Q2n,Bn ) = Q̂(P0n,Bn ) and Ḡn,Bn = ˆ̄G(P0n,Bn ) be the estimators applied to the training sample
P0n,Bn . Given a (Q̄, Ḡ), consider the uniform least favorable submodel (van der Laan and Gruber, 2015)

LogitQ̄:1 = LogitQ̄ + :1HḠ

through Q̄ at :1 = 0, where HḠ(W) = 1/Ḡ(W). We indeed have d
d:1 L11(Q̄:1 ) = D∗

1 (Q̄:1 , Ḡ) for all :1. Given a
Q = (Q̄,Q2), consider also the local least favorable submodel

dQlfm
2,:2 (W) = dQ2(W)(1 + :2D∗

2 (Q)(W))
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through Q2 at :2 = 0. Indeed, d
d:2 L12(Q

lfm
2,:2 )

∣∣∣
:2=0

= D∗
2 (Q̄,Q2). This local least favorable submodel implies the

following uniform least favorable submodel (van der Laan and Gruber, 2015): for :2 ≥ 0

dQ2,:2 = dQ2 exp
(∫ :2

0
D∗
2 (Q̄,Q2,x)dx

)
.

This universal least favorable submodel implies a recursive construction of Q2,: for all :-values, by starting
at : = 0 and moving upwards. For negative values of :2, we define

∫ :2
0 =

∫ 0
:2 . For all :2,

d
d:2 L12(Q2,:2 ) =

D∗
2 (Q̄,Q2,:2 ), which shows that this is indeed a universal least favorable submodel for Q2.

Let :1n = argmin:1 EBnP1n,BnL11(Q̄n,Bn,:1 ), and Q̄∗
n,Bn = Q̄n,Bn,:1n . The score equation for :1n shows that

EBnP1n,BnD
∗
1 (Q̄∗

n,Bn , Ḡn,Bn ) = 0. Let :2n = argmin:2 EBnP1n,BnL12(Q2n,Bn,:2 ) and Q∗
2n,Bn = Q2n,Bn,:2n . The score

equation for :2n shows that EBnP1n,BnD
∗
2 (Q̄∗

n,Bn ,Q
∗
2n,Bn ) = 0, which implies

EBnP1n,BnQ̄
∗
n,Bn = EBnQ∗

2n,BnQ̄
∗
n,Bn . (2)

The CV-TMLE of J(Q0) is defined as 8∗
n ≡ EBnJ(Q∗

n,Bn ), where Q
∗
n,Bn = (Q̄∗

n,Bn ,Q
∗
2n,Bn ). By eq. (2) this implies

that the CV-TMLE can also be represented as:

8∗
n = EBnP1n,BnQ̄

∗
n,Bn . (3)

Note that this latter representation proves that we never have to carry out the TMLE-update step for Q2n, but
that the CV-TMLE is a simple empiricalmean of Q̄∗

n,Bn over the validation sample, averaged across the different
splits Bn. We also conclude that this one-step CV-TMLE solves the crucial cross-validated efficient influence
curve equation

EBnP1n,BnD
∗(Q∗

n,Bn , Ḡn,Bn ) = 0. (4)

2.3 Guide for article based on this example

Section 3: Formulation of general estimation problem. The goal of this article is far beyond establish-
ing asymptotic efficiency of the CV-TMLE eq. (3) in this example. Therefore, we start in Section 3 by defining
a general model and general target parameter, essentially generalizing the above notation for this example.
Therefore, having read the above example, the presentation in Section 3 of a very general estimation problem
will be easier to follow. Our subsequent definition and results for the HAL-estimator, the HAL-super-learner,
and the CV-TMLE in the subsequent Sections 4-6 apply now to our general model and target parameter,
thereby establishing asymptotic efficiency of the CV-TMLE for an enormous large class of semi-parametric
statistical estimation problems, including our example as a special case.

Let’s now return to our example to point out the specific tasks that are solved in each section of this
article. By eqs (1) and (4), we have the following starting identity for the CV-TMLE:

EBnJ(Q∗
n,Bn ) –J(Q0) = EBn (P1n,Bn – P0)D

∗(Q∗
n,Bn , Ḡn,Bn )

+ EBnR20((Q̄∗
n,Bn , Ḡn,Bn ), (Q̄0, Ḡ0)). (5)

By the Cauchy-Schwarz inequality and bounding 1/Ḡn,Bn by 1/$n, we can bound the second order remainder
as follows:

| EBnR20((Q̄∗
n,Bn , Ḡn,Bn ), (Q̄0, Ḡ0)) |≤ 1

$n
EBn ∥ Q̄∗

n,Bn – Q̄0 ∥P0∥ Ḡn,Bn – Ḡ0 ∥P0 , (6)

where ∥ f ∥P0≡ (P0f 2)1/2. Suppose we can construct estimators ˆ̄Q and ˆ̄G of Q̄0 and Ḡ0 so that ∥ Q̄n – Q̄0 ∥P0=
OP(n–1/4–!1 ) and ∥ Ḡn – Ḡ0 ∥P0= OP(n–1/4–!2 ) for some !1 > 0, !2 > 0. Since the training sample is proportional
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to sample size n, this immediately implies ∥ Ḡn,Bn – Ḡ0 ∥P0= OP(n–1/4–!2 ) and ∥ Q̄n,Bn – Q̄0 ∥P0= OP(n–1/4–!1 ).
In addition, it is easy to show (as we will formally establish in general) that the rate of convergence of the
initial estimator Q̄n,Bn carries over to its targeted version so that ∥ Q̄∗

n,Bn – Q̄0 ∥P0= OP(n–1/4–!1 ). Thus, with
such initial estimators, we obtain

EBnR20((Q̄∗
n,Bn , Ḡn,Bn ), (Q̄0, Ḡ0)) = oP($–1n n–1/2–!1–!2 ). (7)

Thus, by selecting $n so that $–1n n–!1–!2 → 0, we obtain EBnR20((Q̄∗
n,Bn , Ḡn,Bn ), (Q̄0, Ḡ0)) = oP(n–1/2).

Section 4: Construction and analysis of anM-specificHAL-estimator that converges at a rate faster
than n–1/4. This challenge of constructing such estimators ˆ̄Q and ˆ̄G is addressed in Section 4. In the context
of our example, in Section 4 we define a minimum loss estimator (MLE) Q̄n,M = argmin∥Q̄∥v<M PnL11(Q̄) that
minimizes the empirical risk over all cadlag functions with variation norm smaller than M. In Section 4 we
then show that, ifM is chosen larger than the variation norm of Q̄0, d1/210,1(Q̄n,M, Q̄0) converges to zero at a faster
rate than n–1/4–!1 for some !1 = !1(d) > 0 (for each dimension d). We provide an explicit representation eq.
(17) of a cadlag function with finite variation normM as an infinite linear combination of indicator functions
for which the sum of the absolute value of the coefficients is bounded by M. As a consequence, it is shown
in Appendix D that thisM-specific minimum loss-based estimator can be approximated by (or can be exactly
defined as) a Lasso-generalized linear regression problem in which the sum of the absolute values of the
coefficients is bounded by M. Therefore, we will refer to Q̄n,M as the M-specific HAL-estimator. Our proof of
Lemma 1 in Section 4, which establishes the rate of convergence of the M-specific HAL-estimator, relies on
an empirical process result by [18] that expresses the upper bound for this rate of convergence in terms of the
entropy of the model spaceQ1 of Q̄. The representation eq. (17) demonstrates that the set of cadlag functions
that have variation norm smaller than a constant M is a difference of a“convex” hull of indicator functions,
and, as a consequence of a general convex hull result in [19] this proves that it is a Donsker class with a
specified upper bound on its entropy. In this way, we obtain an explicit entropy bound for our model space
Q1. Given this explicit upper bound for the entropy, the result in [18] establishes a rate of convergence of the
M-specific HAL-estimator faster than n–1/4–!1 for a specified !1 > 0. By selecting M larger than the unknown
variation norm of the true nuisance parameter value, we obtain an HAL-estimator that converges at a faster
rate than n–1/4.

Section 5: Construction and analysis of an HAL-super-learner. Instead of assuming that the the vari-
ation norm of Q̄0 is bounded by a knownM and use the correspondingM-specific HAL-estimator, in Section 5
we define a a collection of suchM-specific estimators for a set ofM-values for which themaximum value con-
verges to infinity as sample size converges to infinity. We then use cross-validation to data adaptively select
M. We now show that the resulting cross-validated selected estimator of Q̄0 will be asymptotically equivalent
with the oracle (i.e., best w.r.t. loss-based dissimilarity) choice. This follows from a previously established
oracle inequality for the cross-validation selector, as long as the supremum norm bound on the loss-function
at the candidate estimators does not grow too fast to infinity as a function of sample size (e.g., [11, 13]). By
using such a data adaptively selected M one obtains an estimator with better practical performance and it
avoids having to know an upper boundM. As a consequence, our statistical model does not need to assume
a universal boundM on the variation norm of the nuisance parameters, but it only needs to assume that each
nuisance parameter value has a finite variation norm. For the sake of finite sample performance, we want to
use a super-learner that uses cross-validation to select an estimator from a library of candidate estimators
that includes theseM-specific estimators as candidates, beyond other candidate estimators. In this way, the
choice of estimator will be adapted to what works well for the actual data set. Therefore, in Section 5, we
actually define such a general super-learner ˆ̄Q and Theorem 2 states that it will converge at least as fast as
the best choice in the library, and thus certainly as fast as the M-specific HAL-estimator using M equal to
the true variation norm of Q̄0. We refer to a super-learner whose library includes this collection ofM-specific
HAL-estimators as an HAL-super-learner. We will use an analogue HAL-super-learner of Ḡ0 (Theorem 6).
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The convergence results for this super-learner in terms of the Kullback-Leibler loss-based dissimilarities
also imply corresponding results for L2(P0)-convergence as needed to control the second order remainder eq.
(6): see Lemma 4.

Section 6: Construction and analysis of HAL-CV-TMLE. To control the remainder we need to under-
stand the behavior of the updated initial estimator Q̄∗

n,Bn instead of the initial estimator Q̄n,Bn itself. In our
example, since the updated estimator only involves a single updating step of the initial estimator, using a
cross-validated MLE selector of :, we can easily show that Q̄∗

n,Bn converges at same rate to Q̄0 as the initial
estimator Q̄n,Bn . In general, in Section 6 we define a one-step CV-TMLE for our general model and target para-
meter so that the targeted versions of the initial estimator of Q̄0 converges at the same rate as the initial
HAL-super-learner estimator Q̄n. (Since the initial estimator is an HAL-super-learner, we refer to this type of
CV-TMLE as an HAL-CV-TMLE.) This concerns a choice of least favorable submodel for which the CV-TMLE-
step separately updates each of the components of the initial estimator Q̂. We then show that with this choice
of least favorable submodel the CV-TMLE-step preserves the convergence rate of the initial estimator (Lemma
3). We also establish in Appendix D that the one-step CV-TMLE already solves the desired cross-validated
efficient influence curve equation (4) up till an oP(n–1/2)-term, so that an iterative CV-TMLE can be avoided
(Lemma 13 and Lemma 14). At that point, we have shown that the generalized analogue of eq. (7) indeed
holds with a specified !1 > 0, !2 > 0. In the final subsection of Section 6, Theorem 1 then establish the asymp-
totic efficiency of the HAL-CV-TMLE, which now also involves analyzing the cross-validated empirical process
term, specifically, showing that

EBn (P1n,Bn – P0)D
∗(Q∗

n,Bn , Ḡn,Bn ) = (Pn – P0)D∗(Q0, Ḡ0) + oP(n–1/2). (8)

This will hold under weak conditions, given that we have estimators Q∗
n,Bn ,Gn,Bn that converge at specified

rates to their true counterparts and that, for each split Bn, conditional on the training sample, the empirical
process is indexed by a finite dimensional (i.e., dimension of :) class of functions.

Section 7: Returning to our example. In Section 7we return to our example to present a formal Theorem
2 with specified conditions, involving an application of our general efficiency Theorem 1 in Section 6.
Appendix: Various technical results are presented in the Appendix.

3 Statistical formulation of the estimation problem
Let O1, . . . ,On be n independent and identically distributed copies of a d-dimensional random variable O
with probability distribution P0 that is known to be an element of a statistical modelM. Let J :M → IR be
a one-dimensional target parameter, so that 80 = J(P0) is the estimand of interest we aim to learn from the
n observations o1, . . . , on. We assume thatJ is pathwise differentiable at any P ∈ M with canonical gradient
D∗(P): for a specified rich class of one-dimensional submodels {P: : : ∈ (–$, $)} ⊂ M through P at : = 0 and
score S = d

d: log dP:/dP
∣∣∣
:=0

, we have

d
d:J(P:)

∣∣∣∣
:=0

= PD∗(P)S ≡
∫
o
D∗(P)(o)S(o)dP(o).

Our goal in this article is to construct a substitution estimator (i.e., a TMLEJ(P∗
n) for a targeted estimator

P∗
n of P0) that is asymptotically efficient under minimal conditions.

Relevant nuisance parameters Q,G and their loss functions: Let Q(P) be a nuisance parameter of P
so that J(P) = J1(Q(P)) for some J1, so that J(P) only depends on P through Q(P). Let Q = Q(M) = {Q(P) :
P ∈ M} be the parameter space of this parameter Q :M → Q. Suppose that Q(P) = (Qj(P) : j = 1, . . . , k1 + 1)
has k1 + 1 components, and Qj : M → Qj are variation independent parameters j = 1, . . . , k1 + 1. Let Qj =
Qj(M) be the parameter space of Qj. Thus, the parameter space of Q is a cartesian product Q =

∏k1+1
j=1 Qj.

In addition, suppose that for j = 1, . . . , k1 + 1, Qj(P0) = argminQj∈Qj P0L1j(Qj) for specified loss functions
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(O,Qj) ↦ L1j(Qj)(O). Let Q̄ = (Q1, . . . ,Qk1 ) represent parameters that require data adaptive estimation trading
off variance and bias (e.g., densities), whileQk1+1 represents an easy to estimate parameter for which we have
an empirical estimator Q̂k1+1 available with negligible bias. In our treatment specific mean example above
Q = (Q1 = Q̄,Q2), where the easy to estimate parameter Q2 was the probability distribution of W which is
naturally estimated with the empirical probability distribution. The parameter Q̄(P0) will be estimated with
our proposed loss-based HAL-super-learner. In the special case that each of the components of Q require
a super-learner type-estimator, we define Qk1+1 as empty (or equivalently, a known value), and in that case
Q = Q̄. We define corresponding loss-based dissimilarities d10j(Qj,Qj0) = P0L1j(Qj)–P0L1j(Qj0), j = 1, . . . , k1 +1.
We assume that d10(k1+1)(Q̂k1+1(Pn),Q(k1+1)0) = OP(rQ,k1+1(n)) for a known rate of convergence rQ,k1+1(n). Let

d10(Q,Q0) = (d10j(Qj,Qj0) : j = 1, . . . , k1 + 1) (9)

be the collection of these k1 + 1 loss-based dissimilarities. We use the notation d10(Q̄, Q̄0) = (d10j(Qj,Qj0) : j =
1, . . . , k1) for the vector of k1 loss-based dissimilarities for Q̄.

Suppose that D∗(P) only depends on P through Q(P) and an additional nuisance parameter G(P). In the
special case that D∗(P) only depends on P through Q(P), we define G as empty (or equivalently, as a known
value). Let G = (G1, . . . ,Gk2+1) be a collection of (k2 + 1)-variation independent parameters of G for some
integer k2 + 1 ≥ 1. Thus the parameter space of G is a cartesian product G =

∏k2+1
j=1 Gj, where Gj is the para-

meter space of Gj : M → Gj. Let Gj0 = argminG∈Gj P0L2j(Gj) for a loss function (O,Gj) ↦ L2j(Gj)(O), and
let d2j0(Gj,Gj0) = P0L2j(Gj) – P0L2j(Gj0) be the corresponding loss-based dissimilarity, j = 1, . . . , k2 + 1. Let
Gk2+1 represents an easy to estimate parameter for which we have a well behaved and understood estimator
Ĝk2+1 available. The parameter Ḡ(P0) will be estimated with our proposed HAL-super-learner. We assume
that d20(k2+1)(Ĝk2+1(Pn),G(k2+1)0) = OP(rG,k2+1(n)) for a known rate of convergence rG,k2+1(n). As above, let
d20(G,G0) = (d20j(Gj,Gj0) : j = 1, . . . , k2 + 1) be the collection of these loss-based dissimilarities, and let
d20(Ḡ, Ḡ0) = (d20j(Gj,Gj0) : j = 1, . . . , k2), where Ḡ = (G1, . . . ,Gk2 ). In the special case that each Gj requires a
super-learner based estimator, then we define Gk2+1 as empty, and G = Ḡ.

We also define

d0((Q,G), (Q0,G0)) = (d10j1 (Qj1 ,Qj10), d20j2 (Gj2 ,Gj20) : j1, j2) (10)

as the vector of k1 + k2 + 2 loss-based dissimilarities. We will also use the short-hand notation d0(P,P0) for
d0((Q,G), (Q0,G0)).

We define

L1(Q) = (L1j(Qj) : j = 1, . . . , k1 + 1) (11)

as the vector of k1 + 1-loss functions for Q = (Q1, . . . ,Qk1+1), and similarly we define

L2(G) = (L2j(Gj) : j = 1, . . . , k2 + 1). (12)

We will also use the notation L1(Q̄) = (L1(Qj) : j = 1, . . . , k1) and L2(Ḡ) = (L2j(Gj) : j = 1, . . . , k2). We will assume
that Q̄ ↦ L1(Q̄) is a convex function in the sense that, for any Q̄1 = (Qj1 : j = 1, . . . , k1), . . ., Q̄m = (Qjm : j =
1, . . . , k1), for each j = 1, . . . , k1

P0L1j

( m∑
k=1

!kQjk

)
≤

m∑
k=1

!kP0L1j(Qjk) (13)

when
∑

k !k = 1 and mink !k ≥ 0. Similarly, we assume Ḡ ↦ L2(Ḡ) is a convex function. Our results for
the TMLE generalize to non-convex loss functions, but the convexity of the loss functions allows a nicer
representation for the super-learner oracle inequality, and inmost applications a natural convex loss function
is available.



Mark van der Laan: A Generally Efficient Targeted Minimum Loss Based Estimator 9

We will abuse notation by also denoting J(P) and D∗(P) with J(Q) and D∗(Q,G), respectively. A special
case is that D∗(P) = D∗(Q(P)) does not depend on an additional nuisance parameter G: for example, if O ∈ IR,
M is nonparametric, and J(P) =

∫
p(o)2do is the integral of the square of the Lebesgue density p of P, then

the canonical gradient is given by D∗(P) = 2p2 – 2J(P), so that one would define Q(P) = p, and there is no G.
Second order remainder for target parameter: We define the second order remainder R2(P,P0) as

follows:

R2(P,P0) ≡ J(P) –J(P0) + P0D∗(P). (14)

We will also denote R2(P,P0) with R20((Q,G), (Q0,G0)) to indicate that it involves differences between Q and
Q0 and G and G0, beyond possibly some additional dependence on P0. In our experience, this remainder
R2(P,P0) can be represented as a sum of terms of the type

∫
(H1(P) – H1(P0))(H2(P) – H2(P0))f (P,P0)dP0(o) for

some functionalsH1,H2 and f , where, typically,H1(P) andH2(P) represent functions ofQ(P) orG(P). In certain
classes of problems we have that R2(P,P0) only involves cross-terms of the type

∫
(H1(Q) – H1(Q0))(H2(G) –

H2(G0))f (P,P0)dP0, so that R20((Q,G), (Q0,G0)) = 0 if either Q = Q0 or G = G0. In these cases, we say that the
efficient influence curve is double robust w.r.t. misspecification of Q0 and G0:

P0D∗(P) = J(P0) –J(P) if G(P) = G(P0) or Q(P) = Q(P0).

Given the above double robustness property of the canonical gradient (i.e, of the target parameter), if P solves
P0D∗(P) = 0, and either G(P) = G0 or Q(P) = Q0, then J(P) = J(P0). This allows for the construction of so
called double robust estimators of 80 that will be consistent if either the estimator of Q0 is consistent or the
estimator of G0 is consistent.

Support of data distribution: The support of P ∈ M is defined as a set OP ⊂ IRd so that P(OP) = 1. It is
assumed that for each P ∈ M,OP ⊂ [0, 4P] for some finite 4P ∈ IRd>0. We define

4 = sup
P∈M

4P, (15)

so that [0, 4P] ⊂ [0, 4] for all P ∈ M, where 4 = ∞ is allowed, in which case [0, 4] ≡ IRd≥0. That is, [0, 4] is an
upper bound of all the supports, and the modelM states that the support of the data structure O is known to
be contained in [0, 4].

Cadlag functions on [0, 4], supremum norm and variation norm: Suppose 4 is finite, and, in fact, if 4
is not finite, then we will apply the definitions below to a 4 = 4n that is finite and converges to 4. Let ID[0, 4] be
the Banach space of d-variate real valued cadlag functions (right-continuous with left-hand limits) [17]. For
a f ∈ ID[0, 4], let ∥ f ∥∞= supx∈[0,4] | f (x) | be the supremum norm. For a f ∈ ID[0, 4], we define the variation
norm of f [20] as

∥ f ∥v=| f (0) | +
∑

s⊂{1,...,d}

∫
(0s,4s]

| f (dxs, 0–s) | . (16)

For a subset s ⊂ {1, . . . , d}, xs = (xj : j ∈ s), x–s = (xj : j /∈ s), and the
∑

s in the above definition of the variation
norm is over all subsets of {1, . . . , d}. In addition, xs → f (xs, 0–s)) is the s-specific section of x → f (x) that sets
the coordinates in the compliment of s equal to 0. Note that ∥ f ∥v is the sum of variation norms of s-specific
sections of f (including f itself). Therefore, one might refer to this norm as the sectional variation norm, but,
for convenience, for the purpose of this article, we will just refer to it as variation norm. If ∥ f ∥v< ∞, then we
can, in fact, represent f as follows [20]:

f (x) = f (0) +
∑

s⊂{1,...,d}

∫
(0s,xs]

f (dus, 0–s), (17)
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where f (dus, 0–s) is the measure generated by the cadlag function us ↦ f (us, 0–s). For aM ∈ IR≥0, let

Fv,M = {f ∈ ID[0, 4] :∥ f ∥v< M}

denote the set of cadlag functions f : [0, 4] → IR with variation norm bounded byM.
Cartesian product of cadlag function spaces, and its component-wise operations: Let Dk[0, 4] be

the product Banach space of k-dimensional (f1, . . . , fk) where each fj ∈ ID[0, 4], j = 1, . . . , k. If f ∈ Dk[0, 4], then
we define ∥ f ∥∞= (∥ fj ∥∞: j = 1, . . . , k) as a vector whose j-th component equals the supremum norm of the
j-th component fj of f . Similarly we define a variation norm of f ∈ Dk[0, 4] as a vector

∥ f ∥v= (∥ fj ∥v: j = 1, . . . , k)

of variation norms. If f ∈ Dk[0, 4], then ∥ f ∥P0= (∥ fj ∥P0 : j = 1, . . . , k) is a vector whose components
are the L2(P0)-norms of the components of f . Generally speaking, in this paper any operation on a function
f ∈ Dk[0, 4], such as taking a norm ∥ f ∥P0 , an expectation P0f , operations on a pair of functions f , g ∈ Dk[0, 4],
such as f /g, f × g, max(f , g) or an inequality f < g, is carried out component wise: for example, max(f , g) =
(max(fj, gj) : j = 1, . . . , k) and infQ∈Q P0L1(Q) = (infQj∈Qj P0L1j(Qj) : j = 1, . . . , k1 + 1). In a similar manner, for
an M ∈ IRk>0, let Fv,M =

∏k
j=1Fv,Mj denote the cartesian product. This general notation allows us to present

results with minimal notation, avoiding the need to continuously having to enumerate all the components.
Our results will hold for general models and pathwise differentiable target parameters, as long as the

statistical model satisfies the following key smoothness assumption:

Assumption 1. (Smoothness Assumption) For each P ∈ M, Q̄ = Q̄(P) ∈ IDk1 [0, 4], Ḡ = Ḡ(P) ∈ IDk2 [0, 4],
D∗(P) = D∗(Q,G) ∈ ID[0, 4], L1(Q̄) ∈ IDk1 [0, 4], L2(Ḡ) ∈ IDk2 [0, 4], and Q̄, Ḡ, D∗(P), L1(Q̄), L2(Ḡ) have a finite
supremum and variation norm.

Definition of bounds on the statistical model: The properties of the super-learner and TMLE rely on
bounds on the modelM. Our estimators will also allow for unbounded models by using a sieve of models
for which its finite bounds slowly approximate the actual model bound as sample size converges to infinity.
These bounds will be defined now:

4 = 4(M) = sup
P∈M

4(P),

M1Q = M1Q(M) = sup
Q,Q0∈Q

∥ L1(Q̄) – L1(Q̄0) ∥∞,

M2Q = M2Q(M) = sup
P,P0∈M

∥ L1(Q̄) – L1(Q̄0) ∥P0
{d10(Q̄, Q̄0)}1/2

,

M1G = M1G(M) = sup
G,G0∈G

∥ L2(Ḡ) – L2(Ḡ0) ∥∞,

M2G = M2G(M) = sup
P,P0∈M

∥ L2(Ḡ) – L2(Ḡ0) ∥P0
{d20(Ḡ, Ḡ0)}1/2

,

MD∗ = MD∗ (M) = sup
P∈M

∥ D∗(P) ∥∞ . (18)

Note that M1Q,M2Q ∈ IRk1≥0 and M1G,M2G ∈ IRk2≥0 are defined as vectors of constants, a constant for each com-
ponent of Q̄ and Ḡ, respectively. The boundsM1Q,M2Q guarantee excellent properties of the cross-validation
selector based on the loss-function L1(Q̄)(e.g., [11, 13]). A bound onM2Q shows that the loss-based dissimilar-
ity d01(Q̄, Q̄0) behaves as a square of a difference between Q̄ and Q̄0. Similarly, the bounds M1G,M2G control
the behavior of the cross-validation selector based on the loss function L2(Ḡ).

Bounded and Unbounded Models:We will call the modelM bounded if it is a model for which 4 < ∞
(i.e., universally bounded support), M1Q, M2Q, M1G, M2G, MD∗ are finite. In words, in essence, a bounded
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model is a model for which the support and the supremum norm of Q̄(P), Ḡ(P), L1(Q̄), L2(Ḡ) and D∗(Q,G)
are uniformly (over the model) bounded. Any model that is not bounded will be called an unbounded
model.

Sequence of bounded submodels approximating the unbounded model: For an unbounded model
M, our initial estimators (Q̄n, Ḡn) of (Q̄0, Ḡ0) are defined in terms of a sequence of bounded submodelsMn ⊂

M that are increasing in n and approximate the actual modelM as n converges to infinity. The counterparts
of the above defined universal bounds onM applied toMn are denoted with 4n,M1Q,n, M2Q,n, M1G,n, M2G,n,
MD∗,n. The conditions of our general asymptotic efficiency Theorem 1 will enforce that these bounds converge
slowly enough to infinity (in the case the corresponding true model bound is infinity). This modelMn could
be defined as the largest subset ofM for which these latter bounds apply. By Assumption 1, with this choice
of definition ofMn, for any P0 ∈ M, there exists an N0 = N(P0), so that for n > N0 P0 ∈ Mn. Either way, we
assume thatMn is defined such that the latter is true.

Let Qn = Q(Mn) and Gn = G(Mn) be the parameter spaces of Q and G under model Mn, and let
Q̄n = Q̄(Mn) and Ḡn = Ḡ(Mn) be the parameter spaces of Q̄ and Ḡ. We define the following true parameters
corresponding with this modelMn:

Q̄0n = arg min
Q̄∈Q̄n

P0L1(Q̄)

Ḡ0n = argmin
Ḡ∈Ḡn

P0L2(Ḡ).

We will assume thatMn is chosen so that Qk1+1(P0n) = Qk1+1(P0) and Gk2+1(P0n) = Gk2+1(P0), where P0n =
argmaxP∈Mn P0 log dP

dP0 . That is, our sieve is not affecting the estimation of the “easy” nuisance parameters
Q(k1+1)0 and G(k2+1)0. Note that for n > N0, we have Q0n = Q0 and G0n = G0.

In this paper our initial estimators of Q̄0 and Ḡ0 are always enforced to be in the parameter spaces of this
sequence of modelsMn, but if the modelM is already bounded, then one can setMn =M for all n. How-
ever, even for bounded modelsM, the utilization of a sequence of submodelsMn with stronger universal
bounds thanM could result in finite sample improvements (e.g., if the universal bounds onM are very large
relative to sample size and the dimension of the data).

4 Highly adaptive Lasso estimator of Nuisance parameters
Let M1 < ∞ be given. Our M1-specific HAL-estimator of Q̄0 is defined as the minimizer of the empirical risk
PnL1(Q̄) over Q̄ ∈ Q̄n for which L1(Q̄) has a variation norm bounded by M1 (see eq. (21)). The rate of conver-
gence of a minimum empirical risk estimator is driven by the rate of convergence of the covering number of
the parameter space over which one minimizes (e.g., [19]). This explains why the rate of convergence of the
covering number of this set of functions L1(Q̄) defines a minimal rate of convergence for this HAL-estimator
(while M1 will be selected with the cross-validation selector). Similarly, this applies to our HAL-estimator
of Ḡ0. In the next subsection we define the relevant covering numbers and their rates !1, !2, and establish
an upper bound on them. Subsequently, we establish in Lemma 1 the minimal rate of convergence of the
HAL-estimator in terms of these rates !1, !2.

4.1 Upper bounding the entropy of the parameter space for the HAL-estimator

We remind the reader that a covering number N(:,F , L2(D)) is defined as the minimal number of balls of
size : w.r.t. L2(D)-norm that are needed to cover the set F of functions embedded in L2(D). Let !1 ∈ IRk1≥0 and
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!2 ∈ IRk2≥0 be such that for fixedM1,M2

sup
D

log1/2(N(:, L1(Q̄n,M1 ), L
2(D)) = O(:–(1–!1))

sup
D

log1/2(N(:, L2(Ḡn,M2 ), L
2(D)) = O(:–(1–!2)), (19)

where L1(Q̄n,M1 ) = {L1(Q̄) : Q̄ ∈ Q̄n,M1 }, L2(Ḡn,M2 ) = {L2(Ḡ) : Ḡ ∈ Ḡn,M2 }, and

Q̄n,M1 ≡ {Q̄ ∈ Q̄n :∥ L1(Q̄) ∥v< M1}
Ḡn,M2 ≡ {Ḡ ∈ Ḡn :∥ L2(Ḡ) ∥v< M2}. (20)

The minimal rates of convergence of our HAL-estimator of Q̄0 and Ḡ0 are defined in terms of !1 and !2,
respectively.

By eq. (17) it follows that any cadlag functionwith finite variation norm can be represented as a difference
of two boundedmonotone increasing functions (i.e., cumulative distribution function). The class of d-variate
monotone increasing/cumulative distribution functions is a convex hull of d-variate indicator functions,
which is again concretely implied by the representation eq. (17) by noting that

∫ x
0 df (u) =

∫
I(u ≤ x)df (u).

Thus, Fv,M consists of a difference of two convex hulls of d-variate indicator functions. By Theorem 2.6.9 in
[19], which maps the covering number of a set of functions into a covering number of the convex hull of these
functions, for a fixedM < ∞, we have that the universal covering number of Fv,M is bounded as follows:

sup
D

log1/2 N(:,Fv,M, L2(D)) = O(:–(1–!(d))),

where !(d) = 2/(d + 2). Let d1 ∈ INk1
>0 be the vector of integers indicating the dimension of the domain of

Q̄ = (Q1, . . . ,Qk1 ), and similarly, let d2 ∈ IRk2>0 be the vector of integers indicating the dimension of the domain
of Ḡ = (G1, . . . ,Gk2 ). Since L1(Q̄n,M1 ) ⊂ Fv,M1 with d = d1, L2(Ḡn,M2 ) ⊂ Fv,M2 with d = d2, we have that !1 ≥ !(d1)
and !2 ≥ !(d2).

4.2 Minimal rate of convergence of the HAL-estimator

Lemma 1 below proves that the minimal rates rQ,1:k1 (n) ∈ IR
k1 and rG,1:k2 (n) ∈ IR

k2 of our HAL-estimator of Q̄0
and Ḡ0 w.r.t. the loss-based dissimilarities d01(Q,Q0) and d02(G,G0) are given by:

rQ̄(n) = rQ,1:k1 (n) = n–(1/2+!1/4)

rḠ(n) = rG,1:k2 (n) = n–(1/2+!2/4).

Let rQ,k1+1 and rG,k2+1 be the rates of the simple estimators Q̂k1+1 and Ĝk2+1 of Q(k1+1)0 and G(k2+1)0, respectively.
This defines rQ(n) ∈ IRk1+1 and rG(n) ∈ IRk2+1.

Lemma 1. For a given vector M ∈ IRk1≥0 of constants, let Q̄n,M ⊂ {Q̄ ∈ Q̄n :∥ L1(Q̄) ∥v≤ M} ⊂ Fv,M be the set of all
functions in the parameter space Q̄n for Q̄0n for which the variation norm of its loss is smaller than M < ∞. (In
this definition one can also incorporate some extra M-constraints, as long as Q̄n,M=∞ = Q̄n.) Let Q̄M

0n ∈ Q̄n,M be
so that P0L1(Q̄M

0n) = infQ̄∈Q̄n,M
P0L1(Q̄). Assume that for a fixed M < ∞,

M2Q,M ≡ lim sup
n→∞

sup
Q̄∈Q̄n,M

∥ L1(Q̄) – L1(Q̄M
0n) ∥P0

{d10(Q̄, Q̄M
0n)}1/2

< ∞.
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Consider an estimator Q̄M
n for which

PnL1(Q̄M
n ) = inf

Q̄∈Q̄n,M
PnL1(Q̄) + rn, (21)

where rn = oP(n–1/2). Then

0 ≤ d01(Q̄M
n , Q̄M

0n) ≤ –(Pn – P0){L1(Q̄M
n ) – L1(Q̄M

0n)} + rn, (22)

and

d01(Q̄M
n , Q̄M

0n) = OP(rQ̄(n)) + rn.

Proof:We have

0 ≤ d01(Q̄M
n , Q̄M

0n) = P0{L1(Q̄M
n ) – L1(Q̄M

0n)}
= –(Pn – P0){L1(Q̄M

n ) – L1(Q̄M
0n)} + Pn{L1(Q̄M

n ) – L1(Q̄M
0n)}

≤ –(Pn – P0){L1(Q̄M
n ) – L1(Q̄M

0n)} + rn,

which proves eq. (22). Since L1(Q̄M
n )–L1(Q̄M

0n) falls in a P0-Donsker classFv,M, it follows that the right-hand side
isOP(n–1/2), and thus d01(Q̄M

n , Q̄M
0n) = OP(n–1/2). SinceM2,Q,M < ∞, this also implies that ∥ L1(Q̄M

n )–L1(Q̄M
0n) ∥2P0=

OP(n–1/2). By empirical process theory we have that n1/2(Pn – P0)fn →p 0 if fn falls in a P0-Donsker class
with probability tending to 1, and P0f 2n →p 0 as n → ∞. Applying this to fn = L1(Q̄M

n ) – L1(Q̄M
0n) shows that

(Pn – P0)(L1(Q̄M
n ) – L(Q̄M

0n)) = oP(n–1/2), which proves d01(Q̄M
n , Q̄M

0n) = oP(n–1/2).
We now apply Lemma 7 with Fn = {L1(Q̄) – L1(Q̄M

0n) : Q̄ ∈ Q̄n,M}, ! = !1 (see eq. (19)), envelope bound
Mn = M and r0(n) = n–1/4, which proves that

| n1/2(Pn – P0)fn |= OP(n–!1/4).

This proves d01(Q̄M
n , Q̄M

0n) = OP(n–(1/2+!1/4)) + rn. ◻

5 Super-learning: HAL-estimator tuning the variation norm of the fit
with cross-validation

Defining the library of candidate estimators: For an M ∈ IRk1>0, let
ˆ̄QM : Mnonp → Q̄n,M ⊂ Fv,M be the

HAL-estimator eq. (21) and let Q̄n,M = ˆ̄QM(Pn). By Lemma 1 we have d01(Q̄n,M = ˆ̄QM(Pn), Q̄M
0n) = OP(r2Q̄(n)),

assuming that the numerical approximation error rn is of smaller order. Let K1,n,v be an ordered collection
Mn

1 < Mn
2 < . . . < MK1,n,v of k1-dimensional constants, and consider the corresponding collection of K1,n,v

candidate estimators ˆ̄QM with M ∈ K1,n,v. We impose that this index set K1,n,v is increasing in n such that
lim supn→∞MK1,n,v equals supP∈M ∥ L1(Q̄(P)) ∥v, so that for any P ∈ M, there exists an N(P) so that for
n > N(P), we will have that MK1,n,v >∥ L1(Q̄(P)) ∥v. Note that for all M ∈ K1,n,v with M >∥ L1(Q̄0) ∥v, we have
that d01( ˆ̄QM(Pn), Q̄0) = OP(r2Q̄(n)). In addition, let ˆ̄Qj : Mnonp → Qn, j ∈ K1,n,a be an additional collection of
K1,n,a estimators of Q̄0. For example, these candidate estimators could include a variety of parametric model
as well as machine learning based estimators. This defines an index set K1,n = K1,n,v ∪ K1,n,a representing a
collection of K1n = K1,n,v + K1,n,a candidate estimators { ˆ̄Qk : k ∈ K1n}.

Super Learner: LetBn ∈ {0, 1}n denote a random cross-validation scheme that randomly splits the sample
{O1, . . . ,On} in a training sample {Oi : Bn(i) = 0} and validation sample {Oi : Bn(i) = 1}. Let qn =

∑n
i=1 Bn(i)/n

denote the proportion of observations in the validation sample. We impose throughout the article that q <
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qn ≤ 1/2 for some q > 0 and that this random vector Bn has a finite number V possible realizations for a
fixed V < ∞. In addition, P1n,Bn ,P

0
n,Bn will denote the empirical probability distributions of the validation and

training sample, respectively. Thus, the cross-validated risk of an estimator ˆ̄Q :Mnonp → Q̄n of Q̄0 is defined
as EBnP1n,BnL1(

ˆ̄Q(P0n,Bn )).
We define the cross-validation selector as the index

k1n = K̂1(Pn) = arg min
k∈K1n

EBnP1n,BnL1(
ˆ̄Qk(P0n,Bn ))

that minimizes the cross-validated risk EBnPnL1(
ˆ̄Qk(P0n,Bn )) over all choices k ∈ K1n of candidate estimators.

Our proposed super-learner is defined by

Q̄n = ˆ̄Q(Pn) ≡ EBn ˆ̄Qk1n (P
0
n,Bn ). (23)

The following lemma proves that the super-learner ˆ̄Q(Pn) converges to Q̄0 at least at the rate rQ̄(n) the
HAL-estimator converges to Q̄0: d01( ˆ̄Q(Pn), Q̄0) = OP(rQ̄(n)). This lemma also shows that the super-learner is
either asymptotically equivalent with the oracle selected candidate estimator, or achieves the parametric rate
1/n of a correctly specified parametric model.

Lemma 2. Recall the definition of the model boundsM1Q,n,M2Q,n eq. (18), and let C(M1,M2, $) ≡ 2(1+$)2(2M1/3+
M2

2/$).
For any fixed $ > 0,

d01(Q̄n, Q̄0n) ≤ (1 + 2$)EBn min
k∈K1n

d01( ˆ̄Qk(P0n,Bn ), Q̄0n)

+OP

(
C(M1Q,n,M2Q,n, $)

logK1n
n

)
.

If for each fixed $ > 0, C(M1Q,n,M2Q,n, $) logK1n/n divided by EBn mink d01( ˆ̄Qk(P0n,Bn ), Q̄0n) is oP(1), then

d01( ˆ̄Q(Pn), Q̄0n)

EBn mink d01( ˆ̄Qk(P0n,Bn ), Q̄0n)
– 1 = oP(1).

If for each fixed $ > 0, EBn mink d01( ˆ̄Qk(P0n,Bn ), Q̄0n) = OP(C(M1Q,n,M2Q,n, $) logK1n/n), then

d01( ˆ̄Q(Pn), Q̄0n) = OP

(
C(M1n,M2n, $) logK1n

n

)
.

Suppose that for each finite M, the conditions of Lemma 1 hold with negligible numerical approximation
error rn, so that d01(Q̄n,M = ˆ̄QM(Pn), Q̄M

0n) = OP(r2Q̄(n)). Let +1 ∈ IR
k1
>0 be chosen so that r2Q̄(n) = O(n–+1 ). For each

fixed $ > 0, we have

d01(Q̄n, Q̄0n) = OP(n–+1 ) + OP

(
C(M1Q,n,M2Q,n, $)

logK1n
n

)
. (24)

The proof of this lemma is a simple corollary of the finite sample oracle inequality for cross-validation
[11, 13, 21, 33, 34], also presented in Lemma 5 in Section A of the Appendix. It uses the convexity of the loss
function to bring the EBn inside the loss-based dissimilarity.

In the Appendix we present the analogue super-learner eq. (37) of G0 and its corresponding Lemma 6.
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6 One-step CV-HAL-TMLE
Cross-validated TMLE (CV-TMLE) robustifies the bias-reduction of the TMLE-step by selecting : based on the
cross-validated risk [5, 15]. In the next subsection we define the CV-TMLE. In this subsection we propose a
particular type of local least favorable submodel that separately updates the initial estimator of Qj0 for each
j = 1, . . . , k1. Due to this choice, in subsection 2 we now easily establish that the CV-TMLE of Q̄0 converges at
the same rate to Q̄0 as the initial estimator, which is important for control of the second order remainder in
the asymptotic efficiency proof of the CV-TMLE. In subsection 3 we establish the asymptotic efficiency of the
CV-TMLE.

6.1 The CV-HAL-TMLE

Definition of one-step CV-HAL-TMLE for general local least favorable submodel: Let L̄1(Q) ≡∑k1+1
j=1 L1j(Qj) be the sum loss-function. For a given (Q,G), let {Q: : :} ⊂ Qn ⊂ Q be a parametric submodel

through Q at : = 0 such that the linear span of d
d: L̄1(Q:) at : = 0 includes the canonical gradient D∗(Q,G). Let

Q̂ : Mnonp → Qn and Ĝ : Mnonp → Gn be our initial estimators of Q0 = (Q̄0,Q0,k1+1) and G0 = (Ḡ0,G0,k2+1.
We recommend defining the initial estimators ˆ̄Q and ˆ̄G of Q̄0 and Ḡ0 to be HAL-super-learners as defined by
eqs (23) and (37), so that d10(Q̂(Pn),Q0n) = OP(r2Q(n)) and d20(Ĝ(Pn),G0n) = OP(r2G(n)). Given a cross-validation
scheme Bn ∈ {0, 1}n, let Qn,Bn = Q̂(P0n,Bn ) ∈ Qn be the estimator Q̂ applied to the training sample P0n,Bn . Simil-
arly, let Gn,Bn = Ĝ(P0n,Bn ). Let {Qn,Bn,: : :} be the above submodel with (Q,G) = (Qn,Bn ,Gn,Bn ) through Qn,Bn at
: = 0. Let

:n = argmin
:

EBnP1n,Bn L̄(Qn,Bn,:)

be the MLE of :minimizing the cross-validated empirical risk. This defines Q∗
n,Bn = Qn,Bn,:n as the Bn-specific

targeted fit of Q0. The one-step CV-TMLE of 80 is defined as

8∗
n = EBnJ(Q∗

n,Bn ).

One-step CV-HAL-TMLE solves cross-validated efficient score equation: Our efficiency Theorem 1
assumes that

EBnP1n,BnD
∗(Q∗

n,Bn ,Gn,Bn ) = oP(n–1/2). (25)

That is, it is assumed that the one-step CV-TMLE already solves the cross-validated efficient influence curve
equation up till an asymptotically negligible approximation error. By definition of :n we have that it solves
its score equation EBnP1n,Bn

d
d:n L̄(Qn,Bn,:n ) = 0, which provides a basis for verifying eq. (25). As formalized by

Lemma 13 in the Appendix D, for our choice of n–(1/4+)-consistent initial estimatorsQn,Gn ofQ0,G0, a one-step
CV-TMLE will satisfy eq. (25) for one-dimensional local least favorable submodels under weak regularity con-
ditions. We believe that such a result can be proved in great generality for arbitrary (also multivariate) local
least favorable submodels. Instead, below we propose a particular class of multivariate local least favorable
submodels eq. (26) for which we establish eq. (25) under regularity conditions. In (van der Laan and Gruber,
2015) it is shown that one can always construct a so called universal least favorable submodel throughQwith
a one dimensional : so that d

d: L̄1(Q:) = D∗(Q:,G) at each : so that EBnP1n,BnD
∗(Q∗

n,Bn,:n ,Gn,Bn ) = 0 (exactly),
independent of the properties of the initial estimator (Qn,Gn).

One-step CV-HAL-TMLE preserves fast rate of convergence of initial estimator: Our efficiency The-
orem 1 also assumes that the updated estimator Q∗

n,Bn satisfies for each split Bn d01(Q
∗
n,Bn ,Q0) = oP(n–1/2). This

is generally a very reasonable condition given that d01(Qn,Bn ,Q0) = OP(n–+1 ) for a specified +1 > 1/2. Our pro-
posed class of local least favorable submodels eq. (26) below guarantees that the rate of convergence of the
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initial estimator Qn,Bn is completely preserved by Q∗
n,Bn , so that this condition is automatically guaranteed to

hold.
A class of multivariate local least favorable submodels that separately updates each nuisance

parameter component: One way to guarantee that d01(Q∗
n,Bn ,Q0) = oP(n–1/2) is to make sure that the

updated estimator Q∗
n,Bn converges as fast to Q0 as the initial estimator Qn,Bn . For that purpose we propose

a k1 + 1-dimensional local least favorable submodel of the type

Q: = (Q1,:1 , . . . ,Qk1+1,:k1+1 ) such that
d
d:j L1j(Qj,:j )

∣∣∣
:j=0

= D∗
j (Q,G), (26)

for j = 1, . . . , k1 + 1, and where D∗(Q,G) =
∑k1+1

j=1 D∗
j (Q,G). By using such a submodel we have Q∗

j,n,Bn =
Qj,n,Bn,:n(j) and :n(j) = argmin: EBnP1n,BnL1j(Qj,n,Bn,:). Thus, in this case Qj,n,Bn is updated with its own :n(j),
j = 1, . . . , k1 + 1. The advantage of such a least favorable submodel is that the one-step update of Q̄j,n,Bn is not
affected by the statistical behavior of the other estimators Q̄l,n,Bn , l /= j. On the other hand, if one uses a local
least favorable submodel with a single :, the MLE :n is very much driven by the worst performing estimator
Q̄j,n,Bn . Lemma 3 shows that, by using such a k1 + 1-variate local least favorable submodel satisfying eq. (26),
the rate of convergence of the initial estimator Q̄j,n is fully preserved by the TMLE-update Q̄∗

j,n,Bn (see Lemma
3 below).

How to construct a local least favorable submodel of type eq. (26): A general approach for construct-
ing such a k1 + 1-variate least favorable submodel is the following. Let D∗

j (P) be the efficient influence curve at
a P for the parameterJj,P :M→ IR defined byJj,P(P1) = J(Q–j(P),Qj(P1)) that sets all the other components
ofQl with l /= j equal to its true value under P, j = 1, . . . , k1 +1. Then, it follows immediately from the definition
of pathwise derivative that

D∗(P) =
k1+1∑
j=1

D∗
j (P),

so that, D∗(P) is an element of the linear span of {D∗
j (P) : j = 1, . . . , k1 + 1}. Let {Qj,:(j) : :(j)} ⊂ Qjn be a

one-dimensional submodel through Qj so that

d
d:(j)L1j(Qj,:(j))

∣∣∣∣
:(j)=0

= D∗
j (Q,G), j = 1, . . . , k1 + 1.

That is, {Qj,:(j) : :(j)} is a local least favorable submodel at (Q,G) for the parameter Jj,Q : M → IR, j =
1, . . . , k1 + 1. Now, define {Q: : :} ⊂ Qn by Q: = (Qj,:(j) : j = 1, . . . , k1 + 1). Then, we have

d
d: L̄(Q:)

∣∣∣∣
:=0

= (D∗
j (Q,G) : j = 1, . . . , k1 + 1)⊺,

so that the submodel is indeed a local least favorable submodel.
Lemma 14 provides a sufficient set of minor conditions under which the one-step-HAL-CV-TMLE using

a local least favorable submodel of the type eq. (26) will satisfy eq. (25). Therefore, the class of local least
favorable submodels eq. (26) yields both crucial conditions for the HAL-CV-TMLE: it solves eq. (25) and it
preserve the rate of convergence of the initial estimator.

6.2 Preservation of the rate of initial estimator for the one-step CV-HAL-TMLE using
eq. (26)

Consider the submodel {Q: : :} of the type eq. (26) presented above. Given an initial estimator Q̂ :Mnonp →

Qn, recall the definition Qn,Bn,: = Q̂:(P0n,Bn ) as the fluctuated version of the initial estimator applied to the
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training sample, and :n = argmin: EBnP1n,BnL1(Qn,Bn,:). We want to show that Qn,Bn,:n converges to Q0 at the
same rate as the initial estimator Qn,Bn (and thus also Q̂(Pn)). The following lemma establishes this result and
it is an immediate consequence of the oracle inequality of the cross-validation selector for the loss function
L1j, applied to the set of candidate estimators Pn → Qjn,:(j) = Q̂j,:(j)(Pn) indexed by :(j), for each j = 1, . . . , k1 +1.

Lemma 3. Let :n = argmin: EBnP1n,BnL1(Qn,Bn,:). We have

EBnd01(Q̂:n (P0n,Bn ),Q0n) ≤ (1 + 2$)min
:

EBnd01(Q̂:(P0n,Bn ),Q0n)

+OP

(
C(M1Q,n,M2Q,n, $) logK1n

nq

)
.

By convexity of the loss function L1(Q), this implies

d01(EBnQ̂:n (P0n,Bn ),Q0n) ≤ (1 + 2$)min
:

EBnd01(Q̂:(P0n,Bn ),Q0n)

+OP

(
C(M1Q,n,M2Q,n, $) logK1n

nq

)
.

We have

min
:

EBnd01(Q̂:(P0n,Bn ),Q0n) ≤ EBnd01(Q̂(P0n,Bn ),Q0n).

Thus, if for some +1 > 0 C(M1Q,n,M2Q,n, $) logK1n/(nq) = O(n–+1 ) and for each Bn d01(Q̂(P0n,Bn ),Q0n) = OP(n–+1 ),
then

d01(EBnQn,Bn,:n ,Q0n) = OP(n–+1 ).

It then also follows that for each Bn, d01(Q̂:n (P0n,Bn ),Q0n) = OP(n–+1 ).

6.3 Efficiency of the one-step CV-HAL-TMLE.

We have the following theorem.

Theorem 1. Consider the above defined corresponding one-step CV-TMLE 8∗
n = EBnJ(Qn,Bn,:n ) ofJ(Q0).

Initial estimator conditions: Consider the HAL-super-learners ˆ̄Q(Pn) and ˆ̄G(Pn) defined by eqs (23) and
(37), respectively, and, recall that we are given simple estimators Q̂k1+1 and Ĝk2+1 of Q0,k1+1 and G0,k2+1. Let +1
and +2 be chosen so that rQ̄(n) = O(n–+1 ) and rḠ(n) = O(n–+2 ). Assume the conditions of Theorem 2 and Theorem
6 so that we have

d01( ˆ̄Q(Pn), Q̄0) = OP(n–+1(1:k1)) + OP(C(M1Q,n,M2Q,n, $) logK1n/n)

d02( ˆ̄G(Pn), Ḡ0) = OP(n–+2(1:k2)) + OP(C(M1G,n,M2G,n, $) logK2n/n),

where +1(1 : k1) > 1/2 and +2(1 : k2) > 1/2. Let Q̂ = ( ˆ̄Q, Q̂k1+1) and Ĝ = ( ˆ̄G, Ĝk2+1) be the corresponding estimators
of Q0 and G0, respectively.

“Preserve rate of convergence of initial estimator”-condition: In addition, assume that either (Case
A) the CV-TMLE uses a local least favorable submodel of the type eq. (26) so that Lemma 3 applies, or (Case B)
assume that for each split Bn d01(Q∗

n,Bn ,Q0) = OP(n–+
∗
1 ) for some +∗

1 > 1/2.
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Efficient influence curve score equation condition and second order remainder condition: Define
fn,: = D∗(Q̂:(P0n,Bn ),Gn,Bn ) – D∗(Q0,G0) and the class of functions Fn = {fn,: : :}. Assume

EBnP1n,BnD
∗(Qn,Bn,:n ,Gn,Bn ) = oP(n–1/2), (27)

∥ D∗(Q∗
n,Bn ,Gn,Bn ) – D

∗(Q0,G0) ∥P0 = oP(rD∗,n) for rD∗,n = o(1), (28)

EBnR20((Q∗
n,Bn ,Gn,Bn ), (Q0,G0)) = oP(n–1/2), (29)

max(M1Q,n,M2
2Q,n) logK1n

n
= O(n–+1 ), (30)

max(M1Gn ,M2
2Gn ) logK2n

n
= O(n–+2 ), (31)

sup
D

N(:MD∗,n,Fn, L2(D)) < K:–p for a K < ∞, p < ∞. (32)

In Case A, for verification of assumption eq. (27) one could apply Lemma 14.
In Case A, for verification of the two assumptions eqs (28) and (29) one can use that for each of the V realizations
of Bn, d0(Q∗

n,Bn ,Q0) = OP(n–+1 ) and d02(Gn,Bn ,G0) = OP(n–+2 ).
In Case B, for verification of the latter two assumptions eqs (28) and (29) one can use that for each of the V
realizations of Bn, d0(Q∗

n,Bn ,Q0) = OP(n–+
∗
1 ) and d02(Gn,Bn ,G0) = OP(n–+2 ).

Then, 8∗
n = EBnJ(Qn,Bn,:n ) is asymptotically efficient:

8∗
n – 80 = (Pn – P0)D∗(Q0,G0) + oP(n–1/2). (33)

Condition eq. (32) will practically always trivially hold for p = k1 + 1 equal to the dimension of :: note
that this is even true for unbounded models due to the normalizing constant MD∗,n. We already discussed
the crucial condition eq. (27) in our subsection defining the CV-TMLE. Conditions eqs (30) and (31) are easily
satisfied by controlling the speed at which the model boundsM1Q,n,M2Q,n,M1G,n,M2G,n can converge to infin-
ity, and are always true for bounded models (as long as the size of the library of the super-learner behaves
as a polynomial power of sample size). For bounded modelsM, condition eq. (28) will typically hold with
rD∗,n = n–+ and + equal to the minimum of the components of +1/2 and +2/2: i.e., the efficient influence curve
estimator will converge to its true counterpart as fast as the slowest converging nuisance parameter estim-
ator. If the modelM is unbounded so that the model bounds of the sieveMn will converge to infinity, then
eq. (28) will hold with rD∗,n = n–+Mn for some Mn converging to infinity (e.g., Mn = MD∗,n). So, in the latter
case one has to control the rate at which the model bounds of the sieveMn, such as the supremum norm
bound MD∗,n for the efficient influence curve, converge to infinity. Finally, the crucial condition eq. (29) will
easily hold for bounded modelsM if this slowest rate + is larger than 1/4, which we know to be true for the
HAL-estimator and its super-learner. For unbounded models, this condition eq. (29) will put a serious brake
on the speed as which the model bounds ofMn can converge to infinity.
Proof: By assumptions eqs (30) and (31), we have

d0((Q̂(P0n,Bn ), Ĝ(P
0
n,Bn ), (Q0,G0)) = OP(n–+1 , n–+2 ).

Consider Case A. Lemma 3 proves that under these same assumptions eqs (30), (31), we also have, for
each Bn, d01(Qn,Bn,:n ,Q0n) = OP(n–+1 ). This proves that for each Bn, d0((Q∗

n,Bn = Qn,Bn,:n ,Gn,Bn ), (Q0,G0)) =
OP(n–+1 , n–+2 ). For Case B, we replace in latter expression +1 by +∗

1 . Suppose n > N0 so that Q0n = Q0 and
G0n = G0. By the identityJ(Q∗

n,Bn ) –J(Q0) = –P0D∗(Q∗
n,Bn ,Gn,Bn ) + R20((Q

∗
n,Bn ,Gn,Bn ), (Q0,G0)), we have

EBnJ(Q∗
n,Bn ) –J(Q0) = –EBnP0D∗(Q∗

n,Bn ,Gn,Bn ) + EBnR20((Q
∗
n,Bn ,Gn,Bn ), (Q0,G0)).
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Combining this with eq. (27) yields the following identity:

8∗
n –J(Q0) = EBnJ(Q∗

n,Bn ) –J(Q0)
= EBn (P1n,Bn – P0)D

∗(Q∗
n,Bn ,Gn,Bn )

+EBnR20((Q∗
n,Bn ,Gn,Bn ), (Q0,G0)) + oP(n–1/2).

By assumption eq. (29) we have that EBnR20((Q∗
n,Bn ,Gn,Bn ), (Q0,G0)) = oP(n–1/2). Thus, we have shown

J(Q∗
n) –J(Q0) = EBn (P1n,Bn – P0)D

∗(Q∗
n,Bn ,Gn,Bn ) + oP(n

–1/2).

We now note

EBn (P1n,Bn – P0)D
∗(Q∗

n,Bn ,Gn,Bn ) = EBn (P1n,Bn – P0)D
∗(Q0,G0)

+EBn (P1n,Bn – P0){D
∗(Q∗

n,Bn ,Gn,Bn ) – D
∗(Q0,G0)}

= (Pn – P0)D∗(Q0,G0) + EBn (P1n,Bn – P0){D
∗(Q∗

n,Bn ,Gn,Bn ) – D
∗(Q0,G0)}.

Thus, it remains to prove that EBn (P1n,Bn–P0){D
∗(Q∗

n,Bn ,Gn,Bn )–D
∗(Q0,G0)} = oP(n–1/2). For thiswe apply Lemma

10 with fn,: = D∗(Q̂:(P0n,Bn ),Gn,Bn ) – D∗(Q0,G0), conditional on P0n,Bn , and Fn = {fn,: : :}. By assumption eq.
(28), there exists a rate rD∗,n = o(1) so that ∥ fn,:n ∥P0= OP(rD∗,n), where (e.g., for Case A) this rate will be
determined based upon d0((Q∗

n,Bn ,Gn,Bn ), (Q0,G0)) = OP(n–+1 , n–+2 ). Note also that the envelope ofFn satisfies
∥ Fn ∥D≤ MD∗,n for any measure D (see eq. (18)). Since : is p-dimensional for some integer p, the entropy
of Fn easily satisfies supD N(: ∥ Fn ∥D,Fn, L2(D)) = O(:–p), which is assumed to hold by condition eq. (32).
Application of Lemma 10 proves now that, if rD∗,n = o(1), then, given P0n,Bn ,

(P1n,Bn – P0)fn,:n = oP(n–1/2).

This proves also that EBn (P1n,Bn – P0)fn,:n = oP(n–1/2). This completes the proof. ◻

7 Example: Treatment specific mean
We will now apply Theorem 1 to the example introduced in Section 2. We have the following sieve model
bounds (van der Laan et al., 2004): M1Q,n = O(log $–1n ); M2Q,n = O(1/$n); M1G,n = O(log $–1n ); M2G,n = O(1/$n);
MD∗,n = O(1/$n).

Since the parameter space Q1n consists of the cadlag functions with bounded variation norms, without
any further restrictions beyond the global bound $n, we can select the entropy quantities for Q1 as follows:
!1 = !(d1) = 2/(d1 +2), where d1 = d–2 is the dimension ofW. Similarly, if Gn consists of all cadlag functions of
dimension d2, without further meaningful restrictions beyond $n, then we can select the entropy quantities
for Gn as !2 = !(d2) = 2/(d2+2). If themodel G enforcesmoremeaningful restrictions than thatA only depends
onW through a subset ofW of dimension d2, then !2 can be replaced by a sharper upper bound than !(d2).
We already established that condition eq. (27) in Theorem 1 holds exactly. Condition eq. (32) trivially holds.

Verification of eqs (30) and (31): Let Q̄n ∈ Q1n be a super-learner of Q̄0 of the type presented in
eq. (23). Similarly, let Ḡn ∈ Gn be such a super-learner of Ḡ0 as presented in eq. (37) . Suppose that
max(M1Q,n,M2

2Q,n) logK1n/n = O(n–+(d1)) and max(M1G,n,M2
2G,n) logK2n/n = O(n–+(d2)), where +(d) = 1/2+!(d)/4.

Then, by Lemma 2 and Lemma 6, we have d10,1(Q̄n, Q̄0) = OP(n–+(d1)) and d02(Ḡn, Ḡ0) = OP(n–+(d2)). Plug-
ging in the above bounds for M1Q,n,M2Q,n,M1G,n,M2G,n, it follows that it suffices to select $n so that $–1n =
O(n1/2–1/2+(d1)(max(logK1n, logK2n))–1/2). (Improvements can be obtained by selecting a separate $1n for trun-
cating Q̄ and $2n for truncating Ḡ.) Let Kn = max(K1n,K2n) and impose that logKn = O(n1/2–!(d1)/2). Then, it
follows that this bound for $–1n is larger than n!(d1)/6, so that this constraint on $n is dominated by our later
constraint given below $–1n = o(n!(d1)/6).
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Above we showed that if $–1n = O(n1/2–1/2+(d1)(max(logK1n, logK2n))–1/2), then the two super-learners Q̄n,Bn
and Ḡn,Bn of Q̄0 and Ḡ0 based on the training sample P0n,Bn converge at the rate n

–+(d1) and n–+(d2) w.r.t the
loss-based dissimilarities d10,1 and d02, respectively. By Lemma 3, under the same conditions stated above
for d01(Q̄n, Q̄0) = OP(n–+(d1)), the TMLE update Q̄∗

n,Bn converges at this same rate: for each split Bn, we have
d01(Q̄∗

n,Bn , Q̄0) = OP(n–+(d1)).
Verification of eq. (28): Using straightforward algebra and using the triangle inequality for a norm, we

obtain

∥ D∗(Q∗
n.Bn , Ḡn,Bn ) – D

∗(Q0, Ḡ0) ∥P0≤∥ A
Ḡn,Bn–Ḡ0
Ḡn,Bn Ḡ0

(Y – Q̄0) ∥P0
+ ∥ A

Ḡn,Bn
(Q̄∗

n,Bn – Q̄0) ∥P0 + ∥ Q̄∗
n,Bn – Q̄0 ∥P0 + | EBnJ(Q∗

n,Bn ) –J(Q0) | .

Using thatmin(Ḡn,Bn , Ḡ0) > $n and | Y–Q̄0 |< 1 it follows that the first term is bounded by $–3/2 ∥ Ḡn,Bn–Ḡ0 ∥P0 .
Using that Ḡn,Bn > $n, it follows that the second term is bounded by $–1n ∥ Q̄∗

n,Bn – Q̄0 ∥P0 . So, we have

∥ D∗(Q∗
n,Bn ,Gn,Bn ) – D

∗(Q0,G0) ∥P0≤ $
–3/2
n ∥ Ḡn,Bn – Ḡ0 ∥P0

+2$–1n ∥ Q̄∗
n,Bn – Q̄0 ∥P0 + | EBnJ(Q∗

n,Bn ) –J(Q0) | .

We bound the last term as follows:

EBnJ(Q∗
n,Bn ) –J(Q0) = EBnQ1

2n,BnQ̄
∗
n,Bn – Q20Q̄0

= EBn (Q1
2n,Bn – Q20)Q̄0 + EBnQ1

2n,Bn (Q̄
∗
n,Bn – Q̄0)

= OP(n–1/2) + EBn (Q1
2n,Bn – Q20)(Q̄∗

n,Bn – Q̄0) + EBnQ20(Q̄∗
n,Bn – Q̄0)

= OP(n–1/2) + EBn (Q1
2n,Bn – Q20)(Q̄∗

n,Bn – Q̄0) + OP(EBnd
1/2
10,1(Q̄∗

n,Bn , Q̄0)),

where we used at the third equality that for each split Bn (Q1
2n,Bn –Q20)Q̄0 = OP(n–1/2), by the standard central

limit theorem.
In order to bound the second empirical process term we apply Lemma 10 to the term n1/2(Q1

2n,Bn –
Q20)(Q̄∗

n,Bn – Q̄0). Lemma 4 below shows that ∥ Q̄n,Bn – Q̄0 ∥P0= OP(n–+(d1)/2$–1/2n ). Therefore, we can apply
Lemma 10 with rD∗,n equal to this latter rate. This yields the following bound:

EBn (Q1
2n,Bn – Q20)(Q̄∗

n,Bn – Q̄0) = OP(n–+(d1)/2$–1/2n (1 + log n + log $n)).

Thus, we have shown

∥ D∗(Q∗
n,Bn , Ḡn,Bn ) – D

∗(Q0, Ḡ0) ∥P0= OP(n–+(d1)/2$–1/2n (1 + log n + log $n))
+OP

(
$–1n ∥ Q̄∗

n,Bn – Q̄0 ∥P0

)
+ OP

(
$–3/2n ∥ Ḡn,Bn – Ḡ0 ∥P0

)
.

We have d10,1(Q̄∗
n,Bn , Q̄0) = OP(n–+(d1)) and d02(Ḡn,Bn , Ḡ0) = OP(n–+(d2)). These rates first need to be translated

in terms of L2(P0)-norms in order to utilize the above bound. Lemma 4 below shows that ∥ Q̄∗
n,Bn – Q̄0 ∥P0=

OP(n–+(d1)/2$–1/2n ) and ∥ Ḡn,Bn – Ḡ0 ∥P0= OP(n–+(d2)). So we obtain the following bound:

∥ D∗(Q∗
n,Bn , Ḡn,Bn ) – D

∗(Q0, Ḡ0) ∥P0= OP(n–+(d1)/2$–1/2n (1 + log n + log $n))
+OP

(
$–3/2n n–+(d1)/2

)
+ OP

(
$–3/2n n–+(d2)/2

)
.

We can conservatively bound this as follows:

∥ D∗(Q∗
n,Bn , Ḡn,Bn ) – D

∗(Q0, Ḡ0) ∥P0= OP($–3/2n n–+(d1)/2 log n),

where we used conservative bounding by not utilizing that d2 could be significantly smaller than d1. We con-
clude that we can set rD∗,n = $–3/2n n–+(d1)/2 log n. We need that rD∗,n = o(1) and thus that $–3/2n = o(n+(d1)/2 log n),
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or $–1n = o(n1/6+!(d1)/6 log n) The latter condition is dominated by the condition $–1n = o(n!(d1)/6) we need in the
analysis below of the second order remainder.

Verification of eq. (29): By eq. (6), we can bound the second order remainder as follows:

R20(P∗
n,Bn ,P0) ≤ $

–1
n ∥ Ḡn,Bn – Ḡ0 ∥P0∥ Q̄

∗
n,Bn – Q̄0 ∥P0

= OP($–3/2n n–+(d1)/2–+(d2)/2).

Thus, it suffices to assume that $–3/2n n–+(d1) = o(n–1/2), and thus $–1n = o(n!(d1)/6).
We verified the conditions of Theorem 1. Application of Theorem 1 yields the following result.

Theorem 2. Consider the nonparametric statistical modelM for P0 of the d-dimensional O = (W,A,Y) ∼ P0 ∈
M and target parameter J :M → IR defined by J(P) = EPEP(Y | A = 1,W). In this nonparametric model we
only assume that for each P ∈ M, Q̄(P) = EP(Y | A = 1,W) and Ḡ(P) = EP(A | W) are cadlag functions on
[0, 4] ⊂ IRd–2≥0 for some finite 4 with finite variation norm.

Consider the above defined one-step CV-TMLE 8∗
n = EBnJ(Q∗

n,Bn ) of J(Q0) based on the HAL-super-learner
Q̄n and Ḡn of type eqs (23) and (37), where Q̄n and Ḡn are enforced to be contained in interval ($n, 1 – $n). Let
d1 = d – 2. Let !(d1) = 2/(d1 + 2), +(d1) = 1/2 + !(d1)/4, and Kn = max(K1n,K2n).

Assume that logKn = O(n1/2–!(d1)/2), and that $–1n converges slowly enough to ∞ so that $–1n = o(n!(d1)/6)
Then 8∗

n is a regular asymptotically linear estimator with influence curve equal to the efficient influence curve
D∗(P0), and is thus asymptotically efficient.

Thus for large dimension d, $–1n is only allowed to converge to infinity at a very slow rate. Note that $–1n
immediately implies a bound on the efficient influence curve and such bounds are naturally very crucial.

Above we used the following lemma.

Lemma 4. We have

∥ Q̄ – Q̄0 ∥
2
P0≤ 4$

–1
n d01(Q̄, Q̄0). (34)

We also have

∥ Ḡ – Ḡ0 ∥
2
P0≤ 4d02(Ḡ, Ḡ0). (35)

Proof:We first prove eq. (34). Let

KL(Q̄(W), Q̄0(W)) = Q̄0(W) log
Q̄0(W)
Q̄(W)

+ (1 – Q̄0(W)) log
1 – Q̄0(W)
1 – Q̄(W)

be the Kullback-Leibler divergence between the Bernoulli laws with probabilities Q̄(W) and Q̄0(W). Then,

d01(Q̄, Q̄0) = EP0 Ḡ0(W)KL(Q̄(W), Q̄0(W)).

In van der Vaart (1998, page 62) it is shown that for two densities p, p0, we have ∥ p1/2 – p1/20 ∥2P0≤

–
∫
log(p/p0)dP0. Applying this inequality to Bernoulli laws with probabilities Q̄(W) and Q̄0(W) yields:

KL(Q̄(⋅), Q̄0(⋅)) ≥ Q̄0(Q̄1/2 – Q̄1/2
0 )2 + (1 – Q̄0)((1 – Q̄)1/2 – (1 – Q̄0)1/2)2.

Applying the inequality (a – b)2 ≤ 4(a1/2 – b1/2)2 (for a, b ∈ [0, 1]) to the square terms on the right-hand side
now yields:

KL(Q̄(⋅), Q̄0(⋅)) ≥ 4–1(Q̄ – Q̄0)2. (36)
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Now, note that d01(Q̄, Q̄0) = EP0 Ḡ0(W)KL(Q̄(W), Q̄0(W)). We can use that Ḡ0 > $n, which provides us with the
following bound:

d01(Q̄, Q̄0) ≥ $nEP0KL(Q̄(W), Q̄0(W))
≥ $n4–1EP0 (Q̄ – Q̄0)2(W) = $n4–1 ∥ Q̄ – Q̄0 ∥

2
P0 .

This completes the proof of eq. (34). We have

d02(Ḡ, Ḡ0) = EP0KL(Ḡ(W), Ḡ0(W)).

Completely analogue to the derivation above of eq. (36) we obtain

KL(Ḡ(⋅), Ḡ0(⋅)) ≥ 4–1(Ḡ – Ḡ0)2,

and thus

d02(Ḡ, Ḡ0) ≥ 4–1 ∥ Ḡ – Ḡ0 ∥
2
P0 .

This proves eq. (35). ◻

8 Discussion
In this article we established that a one-step CV-TMLE, using a super-learner with a library that includes
L1-penalized MLEs that minimize the empirical risk over high dimensional linear combinations of indicator
basis functions under a series of L1-constraints, will be asymptotically efficient. This was shown to hold
under remarkable weak conditions and for an arbitrary dimension of the data structure O.

This remarkable fact is heavily driven by the fact that this super-learner will always converge at a rate
faster than n–1/4 w.r.t. the loss-based dissimilarity, which is typically equivalent with the L2(P0)-norm. This
holds for every dimension of the data and any underlying smoothness of the true nuisance parameter val-
ues, as long as these true nuisance parameter values have a finite variation norm. Since the second order
remainder R2(P∗

n,P0) of the first order expansion for the TMLE can be bounded in terms of these loss-based
dissimilarities between the super-learner and its true counterpart, this rate of convergence is fast enough to
make the second order remainder asymptotically negligible. As a consequence, the first order empirical mean
of the canonical gradient/efficient influence curve drives the asymptotics of the TMLE.

In order to prove our theorems it was also important to establish that a one-step TMLE already approxim-
ately solves the efficient influence curve equation, under very general reasonable conditions. In this article
we focused on a one-step TMLE that updates each nuisance parameter with its own one-dimensional MLE
update step. This choice of local least favorable submodel guarantees that the one-step TMLE update of the
super-learner of the nuisance parameters is not driven by the nuisance parameter component that is hard-
est to estimate, which might have finite sample advantages. Nonetheless, our asymptotic efficiency theorem
applies to any local least favorable submodel.

The fact that a one-step TMLE already solves the efficient influence curve equation is particularly import-
ant in problems in which the TMLE update step is very demanding due to a high complexity of the efficient
influence curve. In addition, a one-step TMLE has amore predictable robust behavior than a limit of an iterat-
ive algorithm. We could have focused on the universal least favorable submodels so that the TMLE is always
a one-step TMLE, but in various problems local least favorable submodels are easier to fit and can thus have
practical advantages.

By now, we also have implemented the HAL-estimator for nonparametric regression and dimensions
d ≤ 10, and established that its practical performance appears to be very good [22]. In addition, we also
implemented the HAL-TMLE for the ATE (i.e., our example) for such low dimensions and the coverage of the
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confidence intervals has been remarkable good for normal sample sizes, suggesting that the asymptotics of
theHAL-TMLE kicks in at earlier sample sizes then theorywould predict.We suspect that part of the reason for
the excellent practical performance is the double robust nature of the second order remainder, which suggest
more finite sample bias cancelation than an actual square of a difference. The practical implementation and
evaluation of the HAL-estimator and HAL-TMLE across a diversity of problems remains an area of future
research.

In this article we assumed independent and identically distributed observations. Nonetheless, this type
of super learner and the resulting asymptotic efficiency of the one-step TMLEwill be generalizable to a variety
of dependent data structures such as data generated by a statistical graph that assumes sufficient conditional
independencies so that the desired central limit theorems can still be established [4, 23–26].

This article focused on a CV-TMLE that represents the statistical target parameter J(P) as a function
J(Q1(P), . . . ,Qk1+1(P)) of variation independent nuisance parameters (Q1, . . . ,Qk1+1). However, there are key
examples in which representing J(P) in terms of recursively defined nuisance parameters has key advant-
ages. For example, the longitudinal one-step TMLE of causal effects of multiple time point interventions in
[27, 28] relies on a sequential regression representation of the target parameter [29]. In this case, the next
regression is defined as the regression of the previous regression on a shrinking history, across a number
of regressions, one for each time point at which an intervention takes place. In this case, a super-learner of
nuisance parameter Qk is based on a loss function L1,k,Qk+1 (Qk) that depends on a next nuisance parameter
Qk+1 (representing the outcome for the regression defining Qk), k = 1, . . . , k1 + 1.. One would now start with
obtaining the desired result for the super-learner of Qk1+1 whose loss function does not depend on other nuis-
ance parameters. For the second super-learner of Qk1 based on candidate estimators Q̂k1,j, j = 1, . . . , J, we
would use as cross-validated risk EBnP1n,BnL1,k1,Q̂k1+1(P0n,Bn )

(Q̂k1,j). In other words, one estimates the nuisance
parameter of the loss-function based on the training sample. In [11, 30, 31] we establish oracle inequalities
for the cross-validation selector based on loss-functions indexed by an unknown nuisance parameter, which
now also rely on a remainder concerning the rate at which Q̂k1+1(Pn) converges to Qk1+1,0. In this manner, one
can establish that the super-learner of Qk1,0 will converge at the same or better rate than the super-learner of
Qk1+1,0. This process can be iterated to establish convergence of all the super-learners at the same or better rate
than the initial super-learner of Qk1+1,0. Our asymptotic efficiency results for the one-step TMLE and one-step
CV-TMLE can now be generalized to one-step TMLE and CV-TMLE that rely on sequential targeted learning.
The disadvantage of sequential learning is that the behavior of previous super-learners affects the behavior
of the next super-learners in the sequence, but the practical implementation of a sequential super-learner
can be significantly easier.

Our general theorems and specifically the theorems for our example demonstrate that the model bound
on the variance of the efficient influence curve heavily affects the stability of the TMLE, and that we can only
let this bound converge to infinity at a slow rate when the dimension of the data is large. Therefore, knowing
this bound instead of enforcing it in a data adaptive manner is crucial for good behavior of these efficient
estimators. This is also evident from the well known finite sample behavior of various efficient estimators
in causal inference and censored data models that almost always rely on using truncation of the treatment
and/or censoring mechanism. If one uses highly data adaptive estimators, even when the censoring or treat-
ment mechanism is bounded away from zero, the estimators of these nuisance parameters could easily get
very close to zero, so that truncation is crucial. Careful data adaptive selection of this truncation level is
therefore an important component in the definition of these efficient estimators.

Alternatively, one can define target parameters in such a way that their variance of the efficient influence
curve is uniformly bounded over the model (e.g., [32]). For example, in our example we could have defined
the target parameter EYd1 – EYd0 , where d1(W) = I(Ḡn(W) > $) and d0(W) = 1 – I((1 – Ḡn(W) > $), and
Ḡn is the super-learner of Ḡ0 = E0(A | W) and $ > 0 is a user supplied constant. In this case, the static
interventions have been replaced by data dependent realistic dynamic interventions that approximate the
static interventions but are guaranteed to only carry out the intervention when there is enough support in the
data. Due to the fact that such parameters have a guaranteed amount of support in the data, the variance of
the efficient influence curve is uniformly bounded over the model: i.e.MD∗ < ∞.
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Appendix
A Oracle inequality for the cross-validation selector
Lemma 2 is a simple corollary of the following finite sample oracle inequality for cross-validation [11, 13],
combined with exploiting the convexity of the loss function allowing us to bring the EBn inside the loss-based
dissimilarity.

Lemma 5. For any $ > 0, there exists a constant C(M1Q,n,M2Q,n, $) = 2(1 + $)2(2M1Q,n/3 +M2
2Q,n/$) such that

E0{EBnd01(
ˆ̄Qk1n (P

0
n,Bn ), Q̄0)} ≤ (1 + 2$)E0{EBn min

k
d01( ˆ̄Qk(P0n,Bn ), Q̄0)}

+2C(M1Q,n,M2Q,n, $)
logK1n
nB̄n

.

Similarly, for any $ > 0,

EBnd01(
ˆ̄Qk1n (P

0
n,Bn ), Q̄0) ≤ (1 + 2$)EBn min

k
d01( ˆ̄Qk(P0n,Bn ), Q̄0)} + Rn,

where ERn ≤ 2C(M1Q,n,M2Q,n, $) logK1nnB̄n
.

If logK1n/n divided by EBn mink d01( ˆ̄Qk(P0n,Bn ), Q̄0)} converges to zero in probability, then we also have

EBnd01(
ˆ̄Qkn (P0n,Bn , Q̄0)

EBn mink d01( ˆ̄Qk(P0n,Bn , Q̄0)
→p 1.

Similarly, if logK1n/n divided by E0EBn mink d01( ˆ̄Qk(P0n,Bn ), Q̄0)} converges to zero, then we also have

E0EBnd01(
ˆ̄Qkn (P0n,Bn , Q̄0)

E0EBn mink d01( ˆ̄Qk(P0n,Bn , Q̄0)
→ 1.

B Super learner of G0
Completely analogue to the super-learner eq. (23), we can define such a super-learner of G0, which we will
do here. For an M ∈ IRk2>0, let

ˆ̄GM : Mnonp → Ḡn,M ⊂ Fv,M be the MLE for which d02(Ḡn,M = ˆ̄GM(Pn), ḠM
0n) =

OP(r2Ḡ(n)). Let K2,n,v be an ordered collection of k2-dimensional constants, and consider the corresponding
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collection of candidate estimators ˆ̄GM with M ∈ K2,n,v. We assume the index set K2,n,v is increasing in n and
that lim supn→∞MK2,n,v = max(MG,v,ML2(G),v). Note that for all M ∈ K2,n,v with M >∥ L2(Ḡ0) ∥v, we have that
d02( ˆ̄GM(Pn), Ḡ0) = OP(n–+2 ). In addition, let ˆ̄Gj :Mnonp → Ḡn, j ∈ K2,n,a, be an additional collection of K2,n,a
estimators of G0. This defines a collection of K2n = K2,n,v + K2,n,a candidate estimators { ˆ̄Gk : k ∈ K2n} of Ḡ0.

We define the cross-validation selector as the index

k2n = K̂2(Pn) = arg min
k∈K2n

EBnP1n,BnL1(
ˆ̄Gk(P0n,Bn ))

that minimizes the cross-validated risk EBnPnL2(
ˆ̄Gk(P0n,Bn )) over all choices k of candidate estimators. Our

proposed super-learner of Ḡ0 is defined by

Ḡn = ˆ̄G(Pn) = EBn
ˆ̄Gkn (P0n,Bn ). (37)

The same Lemma 2 applies to this estimator ˆ̄G(Pn) of Ḡ0.

Lemma 6. Recall the definition of the model boundsM1G,n,M2G,n eq. (18), and let C(M1,M2, $) ≡ 2(1+$)2(2M1/3+
M2

2/$). For any fixed $ > 0,

d02(Ḡn, Ḡ0n) ≤ (1 + 2$)EBn min
k∈K2n

d02( ˆ̄Gk(P0n,Bn ), Ḡ0n)

+OP

(
C(M1G,n,M2G,n, $)

logK2n
n

)
,

If for each fixed $ > 0, C(M1G,n,M2G,n, $) logK2n/n divided by EBn mink d02( ˆ̄Gk(P0n,Bn ), Ḡ0n) is oP(1), then

d02( ˆ̄G(Pn), Ḡ0n)

EBn mink d02( ˆ̄Gk(P0n,Bn ), Ḡ0n)
– 1 = oP(1).

If for a fixed $ > 0, EBn mink d02( ˆ̄Gk(P0n,Bn ), Ḡ0n) = OP(C(M1G,n,M2G,n, $) logK2n/n), then

d02( ˆ̄G(Pn), Ḡ0n) = OP

(
C(M1G,n,M2G,n, $) logK1n

n

)
.

Suppose that for each fixed M the conditions of Lemma 1 hold with negligible numerical approximation
error rn, so that d02(Ḡn,M, ḠM0n) = OP(r2Ḡ(n)). Let +2 be chosen so that r

2
Ḡ(n) = O(n–+2 ). For each fixed $ > 0, we

have

d02( ˆ̄G(Pn), Ḡ0n) = OP(n–+2 ) + OP

(
C(M1G,n,M2G,n, $)

logK2n
n

)
. (38)

C Empirical process results
Theorem 2.1 in [18] establishes the following result for a Donsker class Fn with uniformly bounded envelope
Fn and for which for each f ∈ Fn P0f 2 ≤ $2PF2n:

E ∥ Gn ∥Fn≲ J($,Fn)
(
1 +

J($,Fn)
$2n1/2 ∥ Fn ∥P0

)
∥ Fn ∥P0 ,

where Gn(f ) = n1/2(Pn – P0)f and

J($,Fn) ≡ sup
D

∫ $

0
log1/2(1 + N(: ∥ Fn ∥D,Fn, L2(D))d:
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is the entropy integral from 0 to $. This definition of the entropy integral is slightly different from a common
definition in which the supremum over P is taken within the integral.

Suppose we want a bound on supf∈Fn,∥f∥P0<$ | Gn(f ) |. Of course, ∥ f ∥P0< $ is equivalent with ∥ f ∥P0<
$1 ∥ Fn ∥P0 , where $1 = $/ ∥ Fn ∥P0 . Application of the above result with this choice of $ = $1 yields:

E sup
f∈Fn,∥f∥P0<$

| Gn(f ) |≲ J($/ ∥ Fn ∥P0 ,Fn)
(
1 +

J($/ ∥ Fn ∥P0 ,Fn) ∥ Fn ∥P0
$2n1/2

)
∥ Fn ∥P0 . (39)

Suppose that supD log1/2(1 + N(: ∥ Fn ∥D,Fn, L2(D))) = O(:–(1–!)) for some ! ∈ (0, 1). Then,

J($/ ∥ Fn ∥P0 ,Fn) = O($! ∥ Fn ∥–!P0 ).

Thus, we have

E sup
f∈Fn,∥f∥P0<$

| Gn(f ) |≲ $! ∥ Fn ∥1–!P0 +$2!–2n–1/2 ∥ Fn ∥2–2!P0 .

Note that this is a decreasing function in ∥ Fn ∥P0 . Given a bound Mn so that ∥ Fn ∥P0< Mn, a conservative
bound is obtained by replacing ∥ Fn ∥P0 byMn.

This proves the following lemma.

Lemma 7. Consider Fn with ∥ Fn ∥P0< Mn and supD log1/2(1 + N(: ∥ Fn ∥D,Fn, L2(D))) = O(:–(1–!)) for some
! ∈ (0, 1). Then,

E sup
f∈Fn,∥f∥P0<r0(n)

| Gn(f ) |≲ {r0(n)/Mn}!Mn + {r0(n)/Mn}2!–2n–1/2.

If r0(n) < n–1/4, one should select r0(n) = n–1/4 in the above right hand side, giving the bound:

E sup
f∈Fn,∥f∥P0<r0(n)

| Gn(f ) |≲ {n–1/4/Mn}!Mn + {Mn}2–2!n–!/2.

Consider eq. (39) again, but suppose now that supD N(: ∥ Fn ∥D,Fn, L2(D)) = O(:–p) for some p > 0.
Then,

J($/ ∥ Fn ∥P0 ,Fn) = p1/2
∫ $/∥Fn∥P0

0
log1/2 :–1d:.

We can conservatively bound log1/2 :–1 by log :–1 for : small enough, and then note
∫ x
0 log :d: = x(1 – log x).

Thus, we have the bound

J($/ ∥ Fn ∥P0 ,Fn) = O($ ∥ Fn ∥–1P0 (1 – log($/ ∥ Fn ∥P0 )).

By plugging this latter bound into eq. (39) we obtain

E sup
f∈Fn,∥f∥P0<$

| Gn(f ) |≲ $(1 – log($/ ∥ Fn ∥P0 )) + (1 – log($/ ∥ Fn ∥P0 ))2n–1/2.

Note that the right-hand side is increasing in ∥ Fn ∥P0 . So if we know that ∥ Fn ∥P0≤ Mn for some Mn, we
obtain the bound

E sup
f∈Fn,∥f∥P0<$

| Gn(f ) |≲ $(1 – log($/Mn)) + (1 – log($/Mn))2n–1/2.
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Lemma 8. Consider Fn with ∥ Fn ∥P0< Mn and supD N(: ∥ Fn ∥D,Fn, L2(D))) = O(:–p) for some p > 0. Then,

E sup
f∈Fn,∥f∥P0<r0(n)

| Gn(f ) |≲ r0(n)
(
1 – log

r0(n)
Mn

)
+
(
1 – log

r0(n)
Mn

)2
n–1/2. (40)

The following lemma is proved by first applying the Lemma 7 to (Pn – P0)fn with r0(n) = 1 to obtain an
initial rate r0(n), and then applying the above lemma again with this new initial rate r0(n).

Lemma 9. Consider the following setting:

fn ∈ Fn, ∥ Fn ∥P0≤ Mn,
supD log1/2(1 + N(: ∥ Fn ∥D,Fn, L2(D))) = O(:–(1–!)), ! ∈ (0, 1),
d0(Qn,Q0) ≤| (Pn – P0)fn |,
∥ fn ∥P0≤ M2n{d0(Qn,Q0)}1/2
1 < Mn ≲ n1/(4(1–!)).

Then

d0(Qn,Q0) ≲ n–1/2n–!/4C(Mn,M2n, !),

where

C(Mn,M2n, !) = M!
2nM1–!/2–!2/2

n + n–!/4M2!–1
2n M1–!2

n .

Proof:We have d0(Qn,Q0) ≤| (Pn – P0)fn |. We apply Lemma 7 to the right-hand side with r0(n) = 1. This
yields

E | (Pn – P0)fn |≲ n–1/2M1–!
n +M2–2!

n n–1.

This shows d0(Qn,Q0) ≲ n–1/2M(1–!)
n + M2–2!

n n–1. Using that √x + y ≤
√
x + √y, this implies d0(Qn,Q0)1/2 ≲

n–1/4M(1–!)/2
n +M1–!

n n–1/2. By assumption, this implies

∥ fn ∥P0≲ n
–1/4M2nM(1–!)/2

n + n–1/2M2nM1–!
n .

The right-hand side is of order n–1/4M2nM(1–!)/2
n if Mn ≲ n1/(4(1–!)), which holds by assumption. Let r0(n) =

n–1/4M2nM(1–!)/2
n . We now apply Lemma 7 to (Pn – P0)fn with this choice of r0(n). Note r0(n) converges to zero

at slower rate (or equal than) n–1/4. Thus, application of Lemma 7 gives the following bound:

E | (Pn – P0)fn |≲ n–1/2r0(n)!M1–!
n + r0(n)2!–2M2–2!

n n–1

≲ n–1/2n–!/4M!
2nM

1–!/2–!2/2
n + n–1/2(1+!)M2!–2

2n M1–!2
n .

We can factor out n–1/2n–!/4, giving the bound

≲ n–1/2n–!/4
{
M!

2nM1–!/2–!2/2
n + n–!/4M2!–2

2n M1–!2
n

}
.

This completes the proof of the lemma. ◻
The following lemma is needed in the analysis of the CV-TMLE, where fn,: = D∗(Qn,Bn,:,Gn,Bn )–D∗(Q0,G0).

Lemma 10. Let fn,:n ∈ Fn = {fn,: : :} where : varies over a bounded set in IRp and fn,: is a non-random function
(i.e., not based on data O1, . . . ,On). Let Fn be the envelope ofFn and let Mn be such that ∥ Fn ∥< MD∗,n. Assume
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that supD N(: ∥ Fn ∥D,Fn, L2(D)) = O(:–p). Suppose that ∥ fn,:n ∥P0= oP(rD∗ (n)) for a rate rD∗ (n) → 0. Then,
Gn(fn,:n ) = Gn(f̃n,:n ) + En, where

E0 | Gn(f̃n,:n ) |= O
(
rD∗ (n)(1 – log(rD∗ (n)/MD∗,n))

)
,

and En equals 0 with probability tending to 1. Thus, if rD∗ (n) log(MD∗,n/rD∗ (n)) = o(1), then Gn(fn,:n ) = oP(1).

Proof: For notational convenience, let’s denote fn,:n with fn. We have that with probability tending to 1
∥ fn ∥P0< rD∗ (n). We have fn = fnI(∥ fn ∥P0< rD∗ (n)) + fnI(∥ fn ∥P0> rD∗ (n)). Denote the first term with f̃n and
note that the second term equals zero with probability tending to 1. This shows that Gn(fn) = Gn(f̃n)+En where
En equals zero with probability tending to 1 while ∥ f̃n ∥P0< rD∗ (n) with probability 1. Application of Lemma 8
shows that

E | Gn(f̃n) |≲ rD∗ (n) log(MD∗,n/rD∗ (n)).

This completes the proof. ◻

D Implementing the HAL-estimator
For notational convenience, consider the case that Qn = Q. The M-specific HAL-estimator is defined for a
givenM < ∞ vector, by minimizing PnL1(Q̄) over all Q̄ ∈ Q̄ for which the variation norm of L1(Q̄) is bounded
by thisM. We need to calculate this estimator for a series ofM-vectors ranging from 0 to infinity, and we will
then select M with cross-validation (see next section). Suppose that, for a fixed n, there exists an Mn,v ∈ IRk1
so that for all Q̄ ∈ Q̄, ∥ L1(Q̄) ∥v≤ Mn,v ∥ Q̄ ∥v. This is typically an assumption that is trivially satisfied. Then,
calculating this collection of M-specific HAL-estimators across a set of M-vectors can also be achieved by
computing an MLE of Q̄ → PnL1(Q̄) over all Q̄ ∈ Q̄ with ∥ Q̄ ∥v< M, for a series of M-vectors. Therefore we
rephrase our goal as to compute a Q̄n,M so that

PnL1(Q̄n,M) = min
Q̄∈Q̄M

PnL1(Q̄) + rn, (41)

where in this section we redefine Q̄M = {Q̄ ∈ Q̄ :∥ Q̄ ∥v< M}, and rn is a controlled small number. We will now
address a strategy for implementation of this MLE Q̄n,M.

D.1 Approximating a function with variation normM by a linear combination of indicator basis functions
with L1-norm of the coefficient vector equal toM

Any cadlag function f ∈ ID[0, 4] with finite variation norm can be represented as follows:

f (x) = f (0) +
∑

s⊂{1,...,p}

∫
(0s,xs]

f (dus, 0–s).

For each subset s of size | s |, consider a partitioning of (0s, 4s] in | s |-dimensional cubes with width hm.
Let’s denote these cubes with Rhm (j, s), where j is the index of the j-th cube and j runs over O(1/h

|s|
m ) cubes. Let

Rhm (s) be the index set, so that we can write (0s, 4s] = ∪j∈Rhm (s)Rhm (j, s). By definition of an integral, we have
f (x) = limhm→0 fm(x), where

fm(x) = fm(f )(x) = f (0) +
∑

s⊂{1,...,p}

∑
j∈Rhm (s)

6s
hm,j(x)"

s
hm,j,

"shm,j = f (Rhm (j, s)) is themeasure f assigns to the cube Rhm (j, s), and6s
hm,j(x) = I(mhm (j, s) ≤ xs) is the indicator

that the midpoint mhm (j, s) of the cube Rhm (j, s) is smaller or equal than xs. By the dominated convergence
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theorem, it also follows that ∥ fm(f ) – f ∥D→ 0 for any L2(D)-norm. Moreover, the variation norm of f is
approximated by the sum of the absolute values of all the coefficients "shm,j:

∥ f ∥v= lim
hm→0

f (0) +
∑

s⊂{1,...,p}

∑
j∈Rhm (s)

| "shm,j | .

Let "0 denote the intercept f (0). Thus, we conclude that given a function f ∈ Fv,M, we can approximate it with
a finite linear combination fm(f ) of indicator basis functions 6s

hm,j plus an intercept "0 for which the L
1-norm

of its coefficient vector ("0, ("shm,j : j, s)) approximates the variation norm of f . The support points mhm (j, s)
could also be selected based on the data support {O1, . . . ,On}. Such a strategy is presented and implemented
for the HAL-estimator of a nonparametric regression in [22]. In the latter paper we select n support points for
each s-specific measure, possibly resulting in as many as n ∗ 2d-number of basis functions.

D.2 An approximation of the MLE over functions of bounded variation using L1-penalization

For anM ∈ IR>0, let’s define

Fm
v,M =

⎧⎨
⎩

∑
s⊂{1,...,p}

∑
j∈Rhm (s)

6s
hm,j(x)"

s
hm,j :

∑
s,j

| "shm,j |≤ M
⎫⎬
⎭

as the collection of all these finite linear combinations of this collection of basis functions under the con-
straint that its L1-norm is bounded byM. Consider the case that the parameter space Q̄j for Q̄j(P), j ∈ {1, . . . , k1}
is nonparametric, so that the MLE over Q̄j,M = Fv,M of Q̄j0 would correspond with minimizing overFv,M. Note
that this does not imply that themodelM is nonparametric: for example, the data distribution could be para-
meterized in terms of unspecified functions Q̄j of dimension d1(j), j = 1, . . . , k1, and unspecified functions Ḡj
of dimension d2(j), j = 1, . . . , k2.

The next lemma proves that we can approximate such an MLE over Fv,M for a loss function L1j(Q̄j) by an
MLE over Fm

v,M by selectingm large enough.

Lemma 11. Let M ∈ IR>0 be given. Consider f0 ∈ Fv,M ⊂ ID[0, 4] so that for a loss function (O, f ) → L(f )(O), we
have P0L(f0) = minf∈Fv,M P0L(f ). Assume that if fm ∈ Fv,M converges pointwise to a f ∈ Fv,M on [0, 4], then
L(fm) converges pointwise to L(f ) on a support of P0, including the support of the empirical distribution Pn. Let
f0,m ∈ Fm

v,M be such that P0L(f0,m) = minf∈Fm
v,M

P0L(f ). We have P0(L(f0,m) – L(f0)) → 0 as hm → 0.
Consider now an fn ∈ Fv,M so that PnL(fn) = minf∈Fv,M PnL(f ), and let fn,m ∈ Fm

v,M be such that PnL(fn,m) =
minf∈Fm

v,M
PnL(f ). We have Pn(L(fn,m) – L(fn)) → 0 as hm → 0.

Proof: We want to show that P0(L(f0,m) – L(f0)) → 0 as hm → 0. By the approximation presented in the
previous section, since f0 ∈ Fv,M, we can find a sequence f ∗0,m ∈ Fm

v,M so that f ∗0,m → f0 as hm → 0, pointwise
and in L2(P0) norm. By assumption and the dominated convergence theorem, this implies P0L(f ∗0,m) – P0L(f0)
also converges to zero as hm → 0. But, since f0,m minimizes P0L(f ) over all f ∈ Fm

v,M, we have

0 ≤ P0L(f0,m) – P0L(f0) ≤ P0L(f ∗0,m) – P0L(f0) → 0,

which proves that P0L(f0,m) – P0L(f0) → 0, as hm → 0.
We now want to show that Pn(L(fn,m) – L(fn)) → 0 as hm → 0. Since fn ∈ Fv,M, we can find a sequence

f ∗n,m ∈ Fm
v,M so that f ∗n,m → fn as hm → 0, pointwise and in L2(Pn)-norm.

Then, by assumption and the dominated convergence theorem, PnL(f ∗n,m) – PnL(fn) also converges to zero
as hm → 0. But, since fn,m minimizes PnL(f ) over all f ∈ Fm

v,M, we have

0 ≤ PnL(fn,m) – PnL(fn) ≤ PnL(f ∗n,m) – PnL(fn) → 0,
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which proves that PnL(fn,m) – PnL(fn) → 0, as hm → 0. ◻

D.3 An approximation of the MLE over the subspace Q̄M by an MLE over an L1-constrained linear model

Abovewe defined amapping from a function f ∈ Fv,M into a linear combination fm(f ) ∈ Fm
v,M of basis functions

for which the normof the coefficient vector approximates the variation normof f . The following lemmaproves
in general that we can compute theMLE over Q̄M = Q̄∩Fv,M with theMLE over Q̄m

M = {Q̄m(Q̄) : Q̄ ∈ Q̄M}, which
is a collection of these linear combinations of the basis functions for which the L1-norm of the coefficient
vector is bounded byM. Note that Q̄m

M is typically not a submodel of Q̄M, but it is obtained by replacing each
element Q̄ in Q̄M with its approximation Q̄m(Q̄).

Lemma 12. Assume that if Q̄m ∈ Fv,M converges pointwise to a Q̄ ∈ Fv,M on [0, 4]k1 , then L1(Q̄m) converges
pointwise to L1(Q̄) on a support of P0, including the support of the empirical distribution Pn. For an M ∈ IRk1 ,
let Q̄M = Q̄ ∩ Fk+1

v,M = {Q̄(P) : P ∈ M, Q̄(P) ∈ Fv,M} be all functions in the parameter space for Q̄0 that have a
variation norm smaller than M < ∞. Let Q̄m

M = {Q̄m(Q̄) : Q̄ ∈ Q̄M}, where Q̄m(Q̄) is defined above as the finite
dimensional linear combination of the basis functions {6s

hm,j : j, s} with coefficient vector {"
s
hm,j(Q̄) : j, s}.

Consider a Q̄0,M ∈ Q̄M so that P0L1(Q̄0,M) = minQ̄∈Q̄M
P0L1(Q̄), and let Q̄m

0,M ∈ Q̄
m
M be such that P0L1(Q̄m

0,M) =
minQ̄∈Q̄m

M
P0L1(Q̄). Then, P0(L1(Q̄m

0,M) – L1(Q̄0,M)) → 0 as hm → 0.
Similarly, consider a Q̄n,M ∈ Q̄M so that PnL1(Q̄n,M) = minQ̄∈Q̄M

PnL1(Q̄), and let Q̄m
n,M ∈ Q̄

m
M be such that

PnL1(Q̄m
n,M) = minQ̄∈Q̄m

M
PnL1(Q̄). Then, Pn(L1(Q̄m

n,M – L1(Q̄n,M)) → 0 as hm → 0.

Proof: We want to show that P0(L1(Q̄m
0,M) – L(Q̄0,M)) → 0 as hm → 0. By the approximation presented

in the previous section, since Q̄0,M ∈ Fv,M, we can find a sequence Q̄m,∗
0,M ∈ F

m
v,M so that Q̄m,∗

0,M → Q̄0,M as
hm → 0, pointwise and in L2(P0) norm. By assumption and the dominated convergence theorem, this implies
P0L1(Q̄m,∗

0,M) – P0L1(Q̄0,M) also converges to zero as hm → 0. But, since Q̄m
0,M minimizes P0L1(Q̄) over all Q̄ ∈ Q̄m

M,
we have

0 ≤ P0L1(Q̄m
0,M) – P0L1(Q̄0,M) ≤ P0L1(Q̄m,∗

0,M) – P0L1(Q̄0,M) → 0,

which proves that P0L1(Q̄m
0,M) – P0L1(Q̄0,M) → 0, as hm → 0.

We now want to show that Pn(L1(Q̄m
n,M) – L1(Q̄n,M)) → 0 as hm → 0. Since Q̄n,M ∈ Fv,M, we can find a

sequence Q̄m,∗
n,M ∈ F

m
v,M so that Q̄m,∗

n,M → Q̄n,M as hm → 0, pointwise and in L2(Pn)-norm.
Then, by assumption and the dominated convergence theorem, PnL1(Q̄m,∗

n,M) – PnL1(Q̄n,M) also converges
to zero as hm → 0. But, since Q̄m

n,M minimizes PnL1(Q̄) over all Q̄ ∈ Q̄m
n,M, we have

0 ≤ PnL1(Q̄m
n,M) – PnL1(Q̄n,M) ≤ PnL1(Q̄m,∗

n,M) – PnL1(Q̄n,M) → 0,

which proves that PnL1(Q̄m
n,M) – PnL1(Q̄n,M) → 0, as hm → 0. ◻

E A single updating step in TMLE suffices for approximately solving the efficient
influence curve equation

In this section we focus on the one-step TMLE, but the results can be straightforwardly generalized to the
one-step CV-TMLE.

The following lemma proves that for a local least favorable submodel with a 1-dimensional : and n–1/4+-
consistent initial estimators, the one-step TMLE already solves PnD∗(Qn,:n ,Gn) = oP(n–1/2) under some
regularity conditions.

Lemma 13. J :M→ IR is a pathwise differentiable parameter at P with canonical gradient D∗(P), and assume
J(P) = J(Q(P)) and D∗(P) = D∗(Q(P),G(P)) for parameters Q : M → Q = {Q(P) : P ∈ M} and G : M →

G = {G(P) : P ∈ M}. Let R2() be defined by J(P) – J(P0) = (P – P0)D∗(P) + R2(P,P0), and let R2(P,P0) =
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R20((Q,G), (Q0,G0)). Suppose Q0 = argminQ P0L(Q) for some loss function L(Q) and that, for any Q ∈ Q and G ∈
G, {Q: : :} ⊂ Q is a one dimensional parametric submodel through Q with d

d:L(Q:)
∣∣∣
:=0

= D∗(Q,G). Let (Qn,Gn)
be an initial estimator of (Q0,G0), and consider the one-step TMLEJ(Qn,:n ) with :n = argmin: PnL(Qn,:).

Let fn(:) = PnD∗(Qn,:,Gn) and gn(:) = d
d:PnL(Qn,:). Let f ′n(:) = d

d: fn(:) and g′n(:) =
d
d:gn(:). Let :0 = 0.

Assume

• fn(:n) = fn(0) + f ′n(0):n + OP(:2n) and gn(:n) = gn(0) + g′n(0):n + OP(:2n);
• :2n = oP(n–1/2);
• { d

d:n D
∗(Qn,:n ,Gn) – d2

d:2n
L(Qn,:n )}/n1/4 falls in a P0-Donsker class with probability tending to 1;

• P0
{

d
d:0

D∗(Qn,:0 ,Gn) –
d
d:0

D∗(Q0,:0 , ,G0)
}
= OP(n–1/4) (42)

P0
{
d2

d:20
L(Qn,:0 ) –

d2

d:20
L(Q0,:0 )

}
= OP(n–1/4);

• P0
d2

d:20
L(Q0,:0 ) = –P0D∗(P0){D∗(P0)}⊺. (43)

If L(Q(P)) = – log pQ(P),'(P) for some density parameterization (Q, ') → pQ,', then (43) holds;
• d

d:0R20((Q0,:0 ,G0), (Q0,G0)) = 0.

Then, PnD∗(Qn,:n ,Gn) = oP(n–1/2).

The first bullet point condition only assumes that the chosen least favorable submodel is smooth in :. The
second bullet point condition will be satisfied if the initial estimators Qn,Gn converge to the true Q0,G0 at
a rate faster than n–1/4. The third bullet condition will hold without n–1/4-scalar if the estimators Qn,Gn have
uniformly bounded variation norm. Due to the scaling n–1/4, it could even allow that the variation norm grows
with sample size, again showing that this is a very weak condition. Conditions eq. (42) are expected to hold
if Qn,Gn converge to Q0,G0 at a rate n–1/4. Condition eq. (43) is a condition that holds for loss-functions that
can be represented as log-likelihood loss function, and is therefore again a natural condition for a local least
favorable submodel w.r.t. loss function L. Finally, consider the last bullet point condition. If this remainder
has a double robust form R20((Q,G), (Q0,G0)) =

∫
(H1(Q) – H1(Q0))(H2(G) – H2(G0))dP0 for some functionals

H1,H2, then this condition holds. If the remainder is of the form R20((Q,G), (Q0,G0)) =
∫
(H(Q) – H(Q0))2dP0,

then again this condition trivially holds. This shows that also the latter condition is a weak regularity condi-
tion.
Proof of Lemma: Firstly, by the fact that Qn,: has score D∗(Qn,Gn) at : = 0, it follows that fn(0) = gn(0). We
also know that gn(:n) = 0, and we want to show that fn(:n) = oP(n–1/2). Let :0 = 0. By the second order Tailor
expansion assumption for fn, gn at : = 0, we have

fn(:n) = fn(:n) – gn(:n)
= fn(0) – gn(0) + :n(f ′n – g′n)(0) + O(:2n)

= :n
{

d
d:0

PnD∗(Qn,:0 ,Gn) –
d2

d:20
PnL(Qn,:0 )

}
+ O(:2n).

By assumption, :2n = oP(n–1/2), so that O(:2n) = oP(n–1/2). Thus, it remains to show

Pn
d
d:0

D∗(Qn,:0 ,Gn) – Pn
d2

d:20
L(Qn,:0 ) = OP(n–1/4).

By our Donsker class assumption, we have

(Pn – P0)
{

d
d:0

D∗(Qn,:0 ,Gn) –
d2

d:20
L(Qn,:0 )

}
/n1/4 = OP(n–1/2).
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Thus, it remains to show

d
d:0

P0D∗(Qn,:0 ,Gn) – P0
d2

d:20
L(Qn,:0 ) = OP(n–1/4).

By assumptions eq. (42), we have that the left-hand side of last expression equals

d
d:0

P0D∗(Q0,:0 ,G0) – P0
d2

d:20
L(Q0,:0 ) + OP(n–1/4),

so that it remains to show that the first term equals zero. By –P0D∗(P) = J(P) – J(P0) – R2(P,P0), it follows
that

d
d:0

P0D∗(Q0,:0 ,G0) = –
d
d:0

J(Q0,:0 ) +
d
d:0

R2((Q0,:0 ,G0), (Q0,G0)).

By assumptionwe have d
d:0R2((Q0,:0 ,G0), (Q0,G0)) = 0. By definition of the pathwise derivative at P0, we have

that the derivativeJ(Q0,:) = J(P0,:) at : = 0 equals P0D∗(P0){D∗(P0)}⊺. Thus, we have shown

d
d:0

P0D∗(Q0,:0 ,G0) = –P0D∗(P0){D∗(P0)}⊺.

Thus, it remains to show eq. (43), which thus holds by assumption. Suppose that L(Q(P)) = – log pQ(P),'(P) for
some density parameterization (Q, ') → pQ,'. Then L(Q0,:) = – log pQ0,:,'0 . Since {pQ0,:,'0 : :} is a correctly
specified parametric model, we have that the second derivative of –P0 log pQ0,:,'0 at : = 0 equals its informa-
tion matrix (i.e., covariance matrix of its score) P0 d

d: log pQ0,:,'0{
d
d: log pQ0,:,'0}

⊺ at : = 0. However, the latter
equals –P0D∗(P0){D∗(P0)}⊺, which proves eq. (43). This completes the proof of fn(:n) = oP(n–1/2). ◻

In the main article we have not proposed a 1-dimensional local least favorable submodel as in Lemma
13, even though our results are straightforwardly generalized to that case. Instead we proposed a k1 + 1-
dimensional least favorable submodel that uses a 1-dimensional :(j) for updating Qjn for each j = 1, . . . , k1 + 1.
We will now state the desired lemma for the one-step TMLE for such a submodel by application of the above
lemma across all j.

Lemma 14. LetJ :M→ IR be pathwise differentiable with canonical gradient D∗(P) = D∗(Q,G) and letJ(P) =
J(Q(P)) for Q(P) = (Q1(P), . . . ,Qk1+1(P)). For a given Q, we define JQ,j : M → IR by JQ,j(P) = J(Q–j,Qj(P)),
j = 1, . . . , k1 + 1. Let D∗

Q,j(P) = D∗
Q,j(Qj(P),Q–j(P),G(P)) be the efficient influence curve of JQ,j at P, and define

R2,Q,j(P,P0) = R2,Q,j((Q(P),G(P)), (Q0,G0)) byJQ,j(P) –JQ,j(P0) = (P –P0)D∗
Q,j(P) +R2,Q,j(P,P0), j = 1, . . . , k1 + 1.

Here Q–j = (Ql : l /= j, l ∈ {1, . . . , k1 + 1}). We have D∗(P) =
∑k1+1

j=1 D∗
Q(P),j(P).

Let Qn ∈ Qn,Gn ∈ Gn be a given initial estimator. Let {Qjn,:(j) : :(j)} ⊂ Qjn be a submodel through Qjn at
:(j) = 0 and satisfying d

d:(j)L1,j(Qjn,:(j))
∣∣∣
:(j)=0

= D∗
Qn,j(Qn,Gn), j = 1, . . . , k1 + 1. Let {Qn,: : :} ⊂ Qn be defined by

Qn,: = (Qjn,:(j) : j = 1, . . . , k1+1). Let :n = argmin: PnL1(Qn,:), where PnL1(Qn,:) = (PnL1j(Qjn,:(j)) : j = 1, . . . , k1+1).
Let Q∗

n = Qn,:n .
We wish to establish that PnD∗(Qn,:n ,Gn) = oP(n–1/2), where

PnD∗(Qn,:n ,Gn) =
k1+1∑
j=1

PnD∗
Qn,:n ,j(Qjn,:n(j),Q–jn,:n ,Gn).

For each j = 1, . . . , k1 + 1, assume the following conditions:
1. Suppose that by application of the previous lemma to JQn,j : M → IR, submodel {Qjn,:(j) : :(j)}, loss

function L1j(Qj), :n(j) = argmin:(j) PnL1j(Qjn,:(j)), and one-step TMLE Qjn,:n(j), we establish its conclusion
PnD∗

Qn,j(Qjn,:n(j),Q–jn,Gn) = oP(n–1/2). For completeness, Lemma 15 below explicitly states these j specific
conditions of the previous lemma, which are sufficient for this conclusion.
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2. Let fnj = D∗
Qn,j(Q

∗
jn,Q–jn,Gn) – D∗

Qn,j(Q
∗
jn,Q

∗
–jn,Gn), and assume (Pn – P0)fnj = oP(n–1/2). For this to hold if

suffices to assume that P0f 2nj →p 0 and lim supn→∞ ∥ fnj ∥v< M a.e.
3. Let fnj,1 = D∗

Qn,j(Q
∗
n,Gn) – D∗

Q∗
n,j
(Q∗

n,Gn), and assume (Pn – P0)fnj,1 = oP(n–1/2). For this to hold if suffices to
assume that P0f 2nj,1 →p 0 and lim supn→∞ ∥ fnj,1 ∥v< M a.e.

4. R2,Qn,j(((Q∗
jn,Q

∗
–jn),Gn), (Q0,G0)) – R2,Qn,j(((Q∗

jn,Q–jn),Gn), (Q0,G0)) = oP(n–1/2);
5. R2,Q∗

n,j((Q
∗
n,Gn), (Q0,G0)) – R2,Qn,j((Q∗

n,Gn), (Q0,G0)) = oP(n–1/2);
6. JQ∗

n,j(Q
∗
jn) –JQ∗

n,j(Qj0) –
{
JQn,j(Q∗

jn) –JQn,j(Qj0)
}
= oP(n–1/2).

Then, PnD∗(Qn,:n ,Gn) = oP(n–1/2).

Lemma 15. Let fnj(:(j)) = PnD∗
Qn,j(Qjn,:(j),Q–jn,Gn) and gnj(:(j)) = d

d:(j)PnL1j(Qjn,:(j)). Let f ′nj(:(j)) =
d

d:(j) fnj(:(j))
and g′nj(:(j)) =

d
d:(j)gnj(:(j)). Let :0(j) = 0.

Assume the following conditions:
1. fnj(:n(j)) = fnj(0) + f ′nj(0):n(j) + OP(:n(j)2) and gnj(:n(j)) = gnj(0) + g′nj(0):n(j) + OP(:2n(j));
2. :2n(j) = oP(n–1/2);
3. { d

d:n(j)D
∗
Qn,j(Qjn,:n(j),Q–jnGn) – d2

d:n(j)2
L1j(Qjn,:n(j))}/n1/4 falls in a P0-Donsker class with probability tending to 1;

4. d
d:0(j)

P0
{
D∗
Qn,j(Qjn,:0(j),Q–jn,Gn) – D∗

Qn,j(Qj0,:0(j),Q–j0,G0)
}
= OP(n–1/4)

d2

d:0(j)2
P0
{
L1j(Qjn,:0(j)) – L1j(Qj0,:0(j))

}
= OP(n–1/4);

5. P0
d2

d:0(j)2
L1j(Qj0,:0(j)) = –P0D∗

Q0,j(P0){D
∗
Q0,j(P0)}

⊺. (44)

If L1j(Qj(P)) = – log pQj(P),'(P) for some density parameterization (Qj, ') → pQj,', then eq. (44) holds;
6. d

d:0(j)R2,Q0,j((Qj0,:0(j),Q–j0,G0), (Q0,G0)) = 0.

Then, PnD∗
Qn,j(Qjn,:n(j),Q–jn,Gn) = oP(n–1/2).

Proof: This is an immediate application of Lemma 13. ◻

Proof of Lemma 14: Consider a 1-dimensional submodel {P: : :} ⊂ M with score S. We have

d
d:J(P:) =

d
d:J(Q:)

= d
d:J(Q1:, . . . ,Qk1+1:)

=
∑k1+1

j=1
d
d:J(Q–j,Qj:).

By pathwise differentiability of J at P the left-hand side equals PD∗(P)S, while, by pathwise differentiability
ofJQ,j at P, each j-specific term on the right-hand side equals PD∗

Q,j(P)S. This proves that

PD∗(P)S =
k1+1∑
j=1

PD∗
Q,j(P)S = P

⎧⎨
⎩
k1+1∑
j=1

D∗
Q,j(P)

⎫⎬
⎭ S.

Since this holds for each S ∈ T(P) and D∗
Q,j(P) ∈ T(P) for all j, this implies D∗(P) =

∑k1+1
j=1 D∗

Q,j(P). This proves
the first statement of the lemma. This shows also that PnD∗(Q∗

n,Gn) =
∑k1+1

j=1 PnD∗
Q∗
n,j
(Q∗

n,Gn), so it suffices
to prove that PnD∗

Q∗
n,j
(Q∗

n,Gn) = oP(n–1/2) for each j. In the lemma we assumed that we already established
PnD∗

Qn,j(Q
∗
jn,Q–jn,Gn) = oP(n–1/2), by application of Lemma 15.

Firstly, we want to prove that Pn{D∗
Qn,j(Q

∗
jn,Q–jn,Gn) – D∗

Qn,j(Q
∗
jn,Q

∗
–jn,Gn)} = oP(n–1/2), which then shows

that PnD∗
Qn,j(Q

∗
n,Gn) = oP(n–1/2). This term can be represented as Pnfn. We can write Pnfn = (Pn – P0)fn + P0fn.
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By our first assumption, we have (Pn – P0)fn = oP(1). So we now have to consider

P0{D∗
Qn,j(Q

∗
jn,Q–jn,Gn) – D∗

Qn,j(Q
∗
jn,Q

∗
–jn,Gn)}

= JQn,j(Q∗
jn) –JQn,j(Qj0) + R2,Qn,j(((Q∗

jn,Q
∗
–jn),Gn), (Q0,G0))

–JQn,j(Q∗
jn) +JQn,j(Qj0) – R2,Qn,j(((Q∗

jn,Q–jn),Gn), (Q0,G0))
= R2,Qn,j(((Q∗

jn,Q
∗
–jn),Gn), (Q0,G0)) – R2,Qn,j(((Q∗

jn,Q–jn),Gn), (Q0,G0)).

By assumption 2., the latter is oP(n–1/2). This proves now that PnD∗
Qn,j(Q

∗
n,Gn) = oP(n–1/2).

We now want to prove that Pn{D∗
Qn,j(Q

∗
n,Gn) – D∗

Q∗
n,j
(Q∗

n,Gn)} = oP(n–1/2), so that we can conclude
PnD∗

Q∗
n,j
(Q∗

n,Gn) = oP(n–1/2). Let fn = {D∗
Qn,j(Q

∗
n,Gn) – D∗

Q∗
n,j
(Q∗

n,Gn)}, so that this term can be represented as
Pnfn. We have Pnfn = (Pn – P0)fn + P0fn. By assumption 3., we have (Pn – P0)fn = oP(n–1/2). We now have to
consider

P0{D∗
Qn,j(Q

∗
n,Gn) – D∗

Q∗
n,j
(Q∗

n,Gn)}
= JQ∗

n,j(Q
∗
jn) –JQ∗

n,j(Qj0) + R2,Q∗
n,j((Q

∗
n,Gn), (Q0,G0))

–JQn,j(Q∗
jn) +JQn,j(Qj0) – R2,Qn,j((Q∗

n,Gn), (Q0,G0)).

By assumption 4., we have R2,Q∗
n,j() – R2,Qn,j() = oP(n–1/2). By assumption 5, the “second orderJ-difference” is

oP(n–1/2) as well. ◻


