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Abstract: Suppose we observe n independent and identically distributed observations of a finite dimensional
bounded random variable. This article is concerned with the construction of an efficient targeted minimum
loss-based estimator (TMLE) of a pathwise differentiable target parameter of the data distribution based on
a realistic statistical model. The only smoothness condition we will enforce on the statistical model is that
the nuisance parameters of the data distribution that are needed to evaluate the canonical gradient of the
pathwise derivative of the target parameter are multivariate real valued cadlag functions (right-continuous
and left-hand limits, (G. Neuhaus. On weak convergence of stochastic processes with multidimensional time
parameter. Ann Stat 1971;42:1285-1295.) and have a finite supremum and (sectional) variation norm. Each
nuisance parameter is defined as a minimizer of the expectation of a loss function over over all functions
it its parameter space. For each nuisance parameter, we propose a new minimum loss based estimator that
minimizes the loss-specific empirical risk over the functions in its parameter space under the additional con-
straint that the variation norm of the function is bounded by a set constant. The constant is selected with
cross-validation. We show such an MLE can be represented as the minimizer of the empirical risk over lin-
ear combinations of indicator basis functions under the constraint that the sum of the absolute value of the
coefficients is bounded by the constant: i.e., the variation norm corresponds with this L;-norm of the vector
of coefficients. We will refer to this estimator as the highly adaptive Lasso (HAL)-estimator. We prove that
for all models the HAL-estimator converges to the true nuisance parameter value at a rate that is faster than
n Y4 w.rt. square-root of the loss-based dissimilarity. We also show that if this HAL-estimator is included
in the library of an ensemble super-learner, then the super-learner will at minimal achieve the rate of con-
vergence of the HAL, but, by previous results, it will actually be asymptotically equivalent with the oracle
(i.e., in some sense best) estimator in the library. Subsequently, we establish that a one-step TMLE using
such a super-learner as initial estimator for each of the nuisance parameters is asymptotically efficient at any
data generating distribution in the model, under weak structural conditions on the target parameter map-
ping and model and a strong positivity assumption (e.g., the canonical gradient is uniformly bounded). We
demonstrate our general theorem by constructing such a one-step TMLE of the average causal effect in a
nonparametric model, and establishing that it is asymptotically efficient.

Keywords: asymptotic linear estimator, canonical gradient, cross-validated targeted minimum loss estim-
ation (CV-TMLE), Donsker class, efficient influence curve, efficient estimator, empirical process, entropy,
highly adaptive Lasso, influence curve, one-step TMLE, super-learning, targeted minimum loss estimation
(TMLE)

1 Introduction

We consider the general statistical estimation problem defined by a statistical model for the data distribution,
a Euclidean valued target parameter mapping defined on the statistical model, and observing n independent
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and identically distributed draws from the data distribution. Our goal is to construct a generally asymptot-
ically efficient substitution estimator of the target parameter. An estimator is asymptotically efficient if and
only if it is asymptotically linear with influence curve equal to the canonical gradient (also called the effi-
cient influence curve) of the pathwise derivative of the target parameter [1]. For realistic statistical models
construction of efficient estimators requires using highly data adaptive estimators of the relevant parts of the
data distribution the efficient influence curve depends upon. We will refer to these relevant parts of the data
distribution as nuisance parameters.

One can construct an asymptotically efficient estimator with the following two general methods. Firstly,
the one-step estimator is defined by adding to an initial plug-in estimator of the target parameter an empirical
mean of an estimator of the efficient influence curve at this same initial estimator [1]. In the special case that
the efficient influence curve can be represented as an estimating function, one can represent this methodo-
logy as the first step of the Newton-Raphson algorithm for solving the estimating equation defined by setting
the empirical mean of the efficient influence curve equal to zero. Such general estimating equation method-
ology for construction of efficient estimators has been developed for censored and causal inference models
in the literature (e.g., [2, 3]). Secondly, the TMLE defines a least favorable parametric submodel through an
initial estimator of the relevant parts (nuisance parameters) of the data distribution, and updates the initial
estimator with the MLE over this least favorable parametric submodel. The one-step TMLE of the target para-
meter is now the resulting plug-in estimator [4—6]. In this article we focus on the one-step TMLE since it is a
more robust estimator by respecting the global constraints of the statistical model, which becomes evident
when comparing the one-step estimator and TMLE in simulations for which the information is low for the
target parameter (e.g., even resulting in one-step estimators of probabilities that are outside the (0, 1) range)
(e.g., [7-9]). Nonetheless, the results in this article have immediate analogues for the one-step estimator and
estimating equation method.

The asymptotic linearity and efficiency of the TMLE and one-step estimator relies on a second order
remainder to be op(n~/2), which typically requires that the nuisance parameters are estimated at a rate faster
than n™# w.r.t. an L2(Py)-norm (e.g., see our example in Section 7). To make the TMLE highly data adaptive
and thereby efficient for large statistical models we have recommended to estimate the nuisance parameters
with a super-learner based on a large library of candidate estimators [10-13]. Due to the oracle inequality
for the cross-validation selector, the super-learner will be asymptotically equivalent with the oracle selected
estimator w.r.t. loss-based dissimilarity, even when the number of candidate estimators in the library grows
polynomial in sample size. The loss-based dissimilarity (e.g., Kullback-Leibler divergence or loss-based dis-
similarity for the squared error loss) behaves as a square of an L?(Py)-norm (see, for example Lemma 4 in
our example). Therefore, in order to control the second order remainder, our goal should be to construct a
candidate estimator in the library of the super-learner which will converge at a faster rate than n~/* w.r.t.
square-root of the loss-based dissimilarity.

In this article, for each nuisance parameter, we propose a new minimum loss based estimator that minim-
izes the loss-specific empirical risk over its parameter space under the additional constraint that the variation
norm is bounded by a set constant. The constant is selected with cross-validation. We show that these MLEs
can be represented as the minimizer of the empirical risk over linear combinations of indicator basis func-
tions under the constraint that the sum of the absolute value of the coefficients is bounded by the constant:
i.e., the variation norm corresponds with this L;-norm of the vector of coefficients. We will refer to this estim-
ator as the highly adaptive Lasso (HAL)-estimator. We prove that the HAL-estimator converges at a rate that is
for all models faster than n~ w.r.t. square-root of the loss-based dissimilarity. This even holds if the model
only assumes that the true nuisance parameters have a finite variation norm. As a corollary of the general
oracle inequality for cross-validation, we will then show that the super-learner including this HAL-estimator
it its library is guaranteed to converge to its true counterparts at the same rate as this HAL-estimator (and thus
faster than n~/#). By also including a large variety of other estimators in the library of the super-learner, the
super-learner will also have excellent practical performance for finite samples relative to competing estim-
ators [14]. Based on this fundamental result for the HAL-estimator and the super-learner, we proceed in this
article with proving a general theorem for asymptotic efficiency of the one-step TMLE for arbitrary statistical
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models. In this article we will use a one-step cross-validated-TMLE (CV-TMLE), which avoids the Donsker-
class entropy condition on the nuisance parameter space, in order to further minimize the conditions for
asymptotic efficiency [5, 15]. In our accompanying technical report [16] we present the analogue results for
the one-step TMLE. Beyond establishing these fundamental theoretical general results, we will also discuss
the practical implementation of the HAL-estimator and corresponding TMLE.

2 Example: Treatment specific mean in nonparametric model

Before we start the main part of this article, in this section we will first introduce an example, and use this
example to provide the reader with a guide through the different sections.

2.1 Defining the statistical estimation problem

Let O = (W,A,Y) ~ Py be a d-dimensional random variable consisting of a (d — 2)-dimensional vector of
baseline covariates W, binary treatment A ¢ {0, 1} and binary outcome Y ¢ {0, 1}. We observe n i.i.d. copies
O1,...,0,0f O ~ Py. Let Q(P)(W) = Ep(Y | A = 1, W) and G(P)(W) = Ep(A | W). Let Q,(P) be the marginal
cumulative probability distribution of W, and Q = (Q; = Q, Q,). Let the statistical model be of the form
M ={P: G(P) € G,Q(P) ¢ Q}, where G is a possibly restricted set, and Q is nonparametric. The only key
assumption we will enforce on Q and G is that for each P ¢ M, W — Q(P)(W) and W ~ G(P)(W) are cadlag
functions in W on a set [0, 7p] ¢ R4 [17], and that the variation norm of these functions Q(P) and G(P) are
bounded. The definition of variation norm will be presented in the next section. Suppose that G assumes that
G only depends on W through a subset of covariates of dimension d, < d - 2: if d, = d - 2, then this does not
represent an assumption.

Our target parameter ¥ : M — R is defined by ¥(P) = [ Qw)dQ,(w) = ¥1(Q; = Q, Q). For notational
convenience, we will use W for both mappings ¥ and ¥;. It is well known that ¥ is pathwise differentiable so
that for each 1-dimensional parametric submodel {P, : €} ¢ M through P with score S at € = 0, we have

d
%‘P(Pe)

_ PD(P)S = / D(P)(0)S(0)dP(0),

e=0

for some D(P) € L?(P), where L?(P) is the Hilbert space of functions of O with mean zero endowed with inner
product (f, g)p = Pfg. Here we use the notation Pf = [ f(0)dP(0). Such an object D(P) is called a gradient at
P of the pathwise derivative. The unique gradient that is also an element of the tangent space T(P) is defined
as the canonical gradient. The tangent space T(P) at P is defined as the closure of the linear span of the
set of scores of the class of 1-dimensional parametric submodels we consider. In this example the canonical
gradient D*(P) = D*(Q(P), G(P)) at P is given by:

- _ A wo¢ W) -
D"(Q. 0)(0) = Zos (¥ = QW) + QW) ~¥(Q).

Let D*(Q, G) = A/G(W)(Y - Q(W)) and D3}(Q) = Q(W) - ¥(Q) and note that D*(Q, G) = D}(Q, G) + D5(Q).

An estimator i, of g = W(Py) is asymptotically efficient (among the class of all regular estimators) if
and only if it is asymptotically linear with influence curve equal to the canonical gradient D*(Py) [1]:

Yn — o = PD*(Po) + op(n2),

where P, is the empirical probability distribution of Oy, ..., O,. Therefore, the canonical gradient is also
called the efficient influence curve.
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We have that
¥(P) - ¥(Po) = (P - Po)D*(Q, G) + Rx((Q, G), (Qo, Go)), 1)
where Q = Q(P), G = G(P), and the second order remainder Ry () is defined as follows:

G(w) ~ Go(w)

o (Qw) - Qo(w))dPo(w).

Ry((Q, G), (Qo, Go)) = /

Of course, PD*(Q, G) = 0.
We define the following two log-likelihood loss functions for Q, Q; and G, respectively:

Lu(Q)(0) = ~A{¥log QW) + (1 - V) log(1 - QW))}

L12(Q2)(0) = —1og dQ,(W);
L,(G)(0) = - {A log G(W) + (1 - A) log(1 G(W))] .

We also define the corresponding Kullback-Leibler dissimilarities dig1(Q, Qo) = Po{Lu(Q) - L11(Qo)},
di0,2(Q2, Q20) = Pof{L12(Q2) — L12(Q20)}, and dao(G, Go) = PofLa(G) — Ly(Go)}. Here Q; represents an easy
to estimate parameter which we will estimate with the empirical probability distribution Q,, = Q2(P,) of
Wi, ..., Wy

Let the submodel M(8) ¢ M be defined by the extra restriction that § < Q(W) < 1 - 6 and G(W) > 8
Py-a.e. If we would replace the log-likelihood loss Li;(Q) (which becomes unbounded if Q approximates 0 or
1) by a squared error loss (Y — Q(W))24, then one can remove the restriction § < Q(W) < 1 - 6 in the definition
of M(6). Given a sequence 8, — 0 as n — oo, we can define a sequence of models M,, = M(6,) which grows
from below to M as n — oo. By assumption, there exists an Ny = N(Py) < oo so that for n > Ny we have
Po € Mn.

Let Q, = Qin x Oy, and G, be the corresponding parameter spaces for Q = (é, Q) and G, respectively,
and specifically, Q1, = {Q : 6, < Q < 1 - 8,}, while Oy, = O,.

2.2 One step CV-TMLE

Let Q : Muonp — Qin and G : Mponp — Gy be initial estimators of Qo, Go, respectively, where Monp
denotes a nonparametric model so that the estimator is defined for zitll realizations of the empirical prob-
ability distribution. Let Q : Myomp — Qn be the estimator Q(Py) = (Q(Py), Q2(Pn)) of Qo = (Qo, Q). For a
given cross-validation scheme B, ¢ {0, 1}", let P}I’BH,P?LBH be the empirical probability distributions of the
validation sample {O; : B,(i) = 1} and training sample {O; : B,(i) = 0}, respectively. It is assumed that the
proportion of observations in the validation sample (i.e., Y ; Bx(i)/n) is between § and 1- 6 for some 0 < § < 1.
Let Qup, = (Qup,> Qunp,) = é(Pg’Bn) and G, = G(PS’BH) be the estimators applied to the training sample
Pg’Bn. Given a (Q, G), consider the uniform least favorable submodel (van der Laan and Gruber, 2015)

LogitQe, = LogitQ + €,Hp

through Q at e; = 0, where Hz(W) = 1/G(W). We indeed have d%Lu(Qel) = D#(Qe,, G) for all ;. Given a
Q = (Q, Q,), consider also the local least favorable submodel

dQl™ (W) = dQ,(W)(1+ ,D%(Q)(W))

2,62
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through Q; at e, = 0. Indeed, diquz(lef'gz)
e,

following uniform least favorable submodel (van der Laan and Gruber, 2015): for e, > 0

0" D;‘(Q, Q). This local least favorable submodel implies the

€2 _
dQy,¢, = dQy exp (/ D;(Q, QZ,x)dX> .
0

This universal least favorable submodel implies a recursive construction of Q¢ for all e-values, by starting
at € = 0 and moving upwards. For negative values of €,, we define foez = [ 62. For all e, d%le(Qz,ez) =
D;((_), Qy,¢,), which shows that this is indeed a universal least favorable submodel for Q..

Let €1, = argming, EBnP}LBnLll(én»Bnyel)’ and QZ,B,, = én,Bn,eln- The score equation for €;, shows that
EB"P:LBHD}‘((_);’BH, Gnp,) = O. Let €3, = argmin,, EBHP;’Bnle(QZn,Bn,Q) and Q3,5 = QonBy,ey,- The score
equation for €5, shows that EBnP)11, BnDj(Q;’ By’ Q. Bn) = 0, which implies

- _
Ep,P, n,Bn Q:,Bn = Ep, an,Bn QZ,B,,- @

The CV-TMLE of ¥(Qo) is defined as ¥}, = EBn\Ij(Q:,Bn)’ where Q::,Bn = (Q;’Bn, an,Bn)' By eq. (2) this implies
that the CV-TMLE can also be represented as:

Yy = Es,Pyp, Q5. (€))

Note that this latter representation proves that we never have to carry out the TMLE-update step for Q,,, but
that the CV-TMLE is a simple empirical mean of Q;Bn over the validation sample, averaged across the different
splits B,,. We also conclude that this one-step CV-TMLE solves the crucial cross-validated efficient influence
curve equation

Ep,P} 5 D*(Q} 5, Gn,3,) = 0. (4)

2.3 Guide for article based on this example

Section 3: Formulation of general estimation problem. The goal of this article is far beyond establish-
ing asymptotic efficiency of the CV-TMLE eq. (3) in this example. Therefore, we start in Section 3 by defining
a general model and general target parameter, essentially generalizing the above notation for this example.
Therefore, having read the above example, the presentation in Section 3 of a very general estimation problem
will be easier to follow. Our subsequent definition and results for the HAL-estimator, the HAL-super-learner,
and the CV-TMLE in the subsequent Sections 4-6 apply now to our general model and target parameter,
thereby establishing asymptotic efficiency of the CV-TMLE for an enormous large class of semi-parametric
statistical estimation problems, including our example as a special case.

Let’s now return to our example to point out the specific tasks that are solved in each section of this
article. By egs (1) and (4), we have the following starting identity for the CV-TMLE:

Ep,¥(Q} )~ ¥(Qo) = Eg, (P} 5 — Po)D*(Q}, p, - Gn,5,)
+ EBnRzo((Qf,,Bn, Gn.,)» (Qo, Go)). 5)

By the Cauchy-Schwarz inequality and bounding 1/ Cn,Bn by 1/6,, we can bound the second order remainder
as follows:

o o 1
| EB,R20((Q;, g, » Gn,B,)s (Qo, Go)) |< =

< 5-Es, || @5, = Qo 170l G, = Go I ©)
n

where || f ||p,= (Pof?)"?. Suppose we can construct estimators Q and G of Qo and Gy so that || Q, - Qo ||p,=
Op(n/*-) and || G, - Go | p,= Op(n"4%2) for some a; > 0, a; > 0. Since the training sample is proportional
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to sample size n, this immediately implies || Gnp, — Go ||p,= Op(n*"%2) and || Qu,, -~ Qo [py= Op(n~*~%).
In addition, it is easy to show (as we will formally establish in general) that the rate of convergence of the
initial estimator Q,,)Bn carries over to its targeted version so that || Q;Bn - Qo llpo= Op(n~Y4-1), Thus, with
such initial estimators, we obtain

EBnRzo(((_)’,‘l,Bn, Gn.5,)» (Qo, Go)) = 0p(8,'n12-01-62), ()

Thus, by selecting 6, so that §,'n"%~% — 0, we obtain Eg,Ra((Q}; 5, » Gn,5,)> (Qo, Go)) = 0p(n™"2).

Section 4: Construction and analysis of an M -speciﬁg HAL-gstimator that converges at a rate faster
than n"4, This challenge of constructing such estimators Q and G is addressed in Section 4. In the context
of our example, in Section 4 we define a minimum loss estimator (MLE) (_2,,,M = argmin g P,L1(Q) that
minimizes the empirical risk over all cadlag functions with variation norm smaller than M. In Section 4 we
then show that, if M is chosen larger than the variation norm of Qo, di/oz’l(én,M, Qo) converges to zero at a faster
rate than n 4~ for some a; = ay(d) > O (for each dimension d). We provide an explicit representation eq.
(17) of a cadlag function with finite variation norm M as an infinite linear combination of indicator functions
for which the sum of the absolute value of the coefficients is bounded by M. As a consequence, it is shown
in Appendix D that this M-specific minimum loss-based estimator can be approximated by (or can be exactly
defined as) a Lasso-generalized linear regression problem in which the sum of the absolute values of the
coefficients is bounded by M. Therefore, we will refer to Q,, » as the M-specific HAL-estimator. Our proof of
Lemma 1 in Section 4, which establishes the rate of convergence of the M-specific HAL-estimator, relies on
an empirical process result by [18] that expresses the upper bound for this rate of convergence in terms of the
entropy of the model space Q; of Q. The representation eq. (17) demonstrates that the set of cadlag functions
that have variation norm smaller than a constant M is a difference of a“convex” hull of indicator functions,
and, as a consequence of a general convex hull result in [19] this proves that it is a Donsker class with a
specified upper bound on its entropy. In this way, we obtain an explicit entropy bound for our model space
Q1. Given this explicit upper bound for the entropy, the result in [18] establishes a rate of convergence of the
M-specific HAL-estimator faster than n~4- for a specified a; > 0. By selecting M larger than the unknown
variation norm of the true nuisance parameter value, we obtain an HAL-estimator that converges at a faster
rate than n 4,

Section 5: Construction and analysis of an HAL-super-learner. Instead of assuming that the the vari-
ation norm of Qg is bounded by a known M and use the corresponding M-specific HAL-estimator, in Section 5
we define a a collection of such M-specific estimators for a set of M-values for which the maximum value con-
verges to infinity as sample size converges to infinity. We then use cross-validation to data adaptively select
M. We now show that the resulting cross-validated selected estimator of Qy will be asymptotically equivalent
with the oracle (i.e., best w.r.t. loss-based dissimilarity) choice. This follows from a previously established
oracle inequality for the cross-validation selector, as long as the supremum norm bound on the loss-function
at the candidate estimators does not grow too fast to infinity as a function of sample size (e.g., [11, 13]). By
using such a data adaptively selected M one obtains an estimator with better practical performance and it
avoids having to know an upper bound M. As a consequence, our statistical model does not need to assume
a universal bound M on the variation norm of the nuisance parameters, but it only needs to assume that each
nuisance parameter value has a finite variation norm. For the sake of finite sample performance, we want to
use a super-learner that uses cross-validation to select an estimator from a library of candidate estimators
that includes these M-specific estimators as candidates, beyond other candidate estimators. In this way, the
choice of estimator will be adapted to what vyorks well for the actual data set. Therefore, in Section 5, we
actually define such a general super-learner Q and Theorem 2 states that it will converge at least as fast as
the best choice in the library, and thus certainly as fast as the M-specific HAL-estimator using M equal to
the true variation norm of Qy. We refer to a super-learner whose library includes this collection of M-specific
HAL-estimators as an HAL-super-learner. We will use an analogue HAL-super-learner of Go (Theorem 6).
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The convergence results for this super-learner in terms of the Kullback-Leibler loss-based dissimilarities
also imply corresponding results for L(Py)-convergence as needed to control the second order remainder eq.
(6): see Lemma 4.

Section 6: Construction and analysis of HAL-CV-TMLE. To control the remainder we need to under-
stand the behavior of the updated initial estimator (_2; 5, instead of the initial estimator Qn,p, itself. In our
example, since the updated estimator only involves a single updating step of the initial estimator, using a
cross-validated MLE selector of €, we can easily show that QZ,B,, converges at same rate to (_20 as the initial
estimator Qp p,. In general, in Section 6 we define a one-step CV-TMLE for our general model and target para-
meter so that the targeted versions of the initial estimator of Q, converges at the same rate as the initial
HAL-super-learner estimator Q. (Since the initial estimator is an HAL-super-learner, we refer to this type of
CV-TMLE as an HAL-CV-TMLE.) This concerns a choice of least favorable submodel for which the CV-TMLE-
step separately updates each of the components of the initial estimator Q. We then show that with this choice
of least favorable submodel the CV-TMLE-step preserves the convergence rate of the initial estimator (Lemma
3). We also establish in Appendix D that the one-step CV-TMLE already solves the desired cross-validated
efficient influence curve equation (4) up till an op(n~/2)-term, so that an iterative CV-TMLE can be avoided
(Lemma 13 and Lemma 14). At that point, we have shown that the generalized analogue of eq. (7) indeed
holds with a specified a; > 0, @, > 0. In the final subsection of Section 6, Theorem 1 then establish the asymp-
totic efficiency of the HAL-CV-TMLE, which now also involves analyzing the cross-validated empirical process
term, specifically, showing that

Eg, (P:z,B,, - Po)D*(Q g, » Gn,) = (Pn — Po)D*(Qo, Go) + op(n?). (8)

This will hold under weak conditions, given that we have estimators Qﬁ’ By’ Gn,B, that converge at specified
rates to their true counterparts and that, for each split B, conditional on the training sample, the empirical
process is indexed by a finite dimensional (i.e., dimension of €) class of functions.

Section 7: Returning to our example. In Section 7 we return to our example to present a formal Theorem
2 with specified conditions, involving an application of our general efficiency Theorem 1 in Section 6.

Appendix: Various technical results are presented in the Appendix.

3 Statistical formulation of the estimation problem

Let Oy, ..., 0, be n independent and identically distributed copies of a d-dimensional random variable O
with probability distribution Py that is known to be an element of a statistical model M. Let ¥ : M — R be
a one-dimensional target parameter, so that ) = W(Pp) is the estimand of interest we aim to learn from the
n observations oy, . . ., 0,. We assume that ¥ is pathwise differentiable at any P € M with canonical gradient
D*(P): for a specified rich class of one-dimensional submodels {P : € € (-6, §)} ¢ M through P at e = 0 and
score S = % log dP./ dPL_O, we have

d
W)

_ PDH(P)S = / D*(P)(0)S(0)dP(0).

e=0 [

Our goal in this article is to construct a substitution estimator (i.e., a TMLE W(P;},) for a targeted estimator
P} of Py) that is asymptotically efficient under minimal conditions.

Relevant nuisance parameters Q, G and their loss functions: Let Q(P) be a nuisance parameter of P
so that W(P) = ¥;(Q(P)) for some W1, so that W(P) only depends on P through Q(P). Let Q = QM) = {Q(P) :
P ¢ M} be the parameter space of this parameter Q : M — Q. Suppose that Q(P) = (Qi(P) : j=1,...,k +1)

has k; + 1 components, and Q; : M — Q; are variation independent parametersj = 1,...,k + 1. Let Q; =
Q;j(M) be the parameter space of Q;. Thus, the parameter space of Q is a cartesian product Q = Hlk:lf ! 9;.

In addition, suppose that forj = 1,...,k + 1, Qj(Py) = arg minQ}.er PyLyj(Q)) for specified loss functions
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(0, Qj) ~ Lyj(Q;)(0). Let Q=(0Q,..., Qi) represent parameters that require data adaptive estimation trading
off variance and bias (e.g., densities), while Qy,.1 represents an easy to estimate parameter for which we have
an empirical estimator leﬂ available with negligible bias. In our treatment specific mean example above
Q = (Q; = Q, Qy), where the easy to estimate parameter Q, was the probability distribution of W which is
naturally estimated with the empirical probability distribution. The parameter Q(P,) will be estimated with
our proposed loss-based HAL-super-learner. In the special case that each of the components of Q require
a super-learner type-estimator, we define Q, .1 as empty (or equivalently, a known value), and in that case
Q = Q. We define corresponding loss-based dissimilarities di0j(Qj, Qjo) = PoL1j(Qj) - PoL1j(Qjo),j =1,..., ki +1.
We assume that dlo(k1+1)(ék1+1(Pn); Qqq+1)0) = Op(rg,k,+1(n)) for a known rate of convergence rq i, +1(n). Let

di0(Q, Qo) = (d10j(Q}, Qjo) :j =1,..., ki +1) )

be the collection of these k; + 1 loss-based dissimilarities. We use the notation di(Q, Qo) = (d10j(Qj, Qo) : j =
1, ..., k) for the vector of k; loss-based dissimilarities for Q.

Suppose that D*(P) only depends on P through Q(P) and an additional nuisance parameter G(P). In the
special case that D*(P) only depends on P through Q(P), we define G as empty (or equivalently, as a known
value). Let G = (G, ..., Giy+1) be a collection of (k, + 1)-variation independent parameters of G for some
integer k, + 1 > 1. Thus the parameter space of G is a cartesian product G = ]_[]"‘jl+ ! Gj, where G; is the para-
meter space of Gj : M — G;. Let Gjo = arg minGeg]. PoL,i(G;) for a loss function (0, G;) ~ Ly(G;)(0), and
let dyjo(Gj, Gjo) = PoLy(Gj) — PoLyj(Gjo) be the corresponding loss-based dissimilarity, j = 1,...,k + 1. Let
Gi,+1 Tepresents an easy to estimate parameter for which we have a well behaved and understood estimator
sz+1 available. The parameter G(P,) will be estimated with our proposed HAL-super-learner. We assume
that dzo(k2+1)(ékz+1(Pn), G,+100) = Op(rG,+1(n) for a known rate of convergence rg,1,+1(n). As above, let
dy(G, Go) = (drj(Gj, Gjo) : j = 1,...,k + 1) be the collection of these loss-based dissimilarities, and let
(G, Go) = (da0(Gj, Gjo) : j = 1,..., k), where G = (Gi, .. ., Gy,). In the special case that each G; requires a
supet-learner based estimator, then we define Gy, as empty, and G = G.

We also define

dO((Q9 G)’ (QO; GO)) = (dlojl (ij leo)a d20j2 (sz’ szO) : j1’j2) (10)

as the vector of k; + k, + 2 loss-based dissimilarities. We will also use the short-hand notation dq(P, Py) for

do((Q, G), (Qo, Go)).

We define
Li(Q=@yQ):j=1....ka+1) (11)
as the vector of k; + 1-loss functions for Q = (Qy, . . ., Qx,+1), and similarly we define
Ly(G) = LGy :j=1,...,ka + 1). (12)

We will also use the notation L1(Q) = (L1(Q)) : j=1,..., ki) and L,(G) = (Ly(G)) : j =1, ..., k). We will assume
that Q ~ L;(Q) is a convex function in the sense that, forany Q; = (Qj1 : j=1,...,k1), ..., Qm = (Qjm : j =
1,...,k),foreachj=1,...,k

PoLyj (Z aijk) < Z aiPoL1j(Qji) (13)

k=1 k=1

when ), ax = 1 and minga; > 0. Similarly, we assume G ~ Ly(G) is a convex function. Our results for
the TMLE generalize to non-convex loss functions, but the convexity of the loss functions allows a nicer
representation for the super-learner oracle inequality, and in most applications a natural convex loss function
is available.
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We will abuse notation by also denoting W(P) and D*(P) with ¥(Q) and D*(Q, G), respectively. A special
case is that D*(P) = D*(Q(P)) does not depend on an additional nuisance parameter G: for example, if O € R,
M is nonparametric, and W(P) = | p(0)*do is the integral of the square of the Lebesgue density p of P, then
the canonical gradient is given by D*(P) = 2p? — 2¥(P), so that one would define Q(P) = p, and there is no G.

Second order remainder for target parameter: We define the second order remainder R,(P, Py) as
follows:

Ry(P, Py) = ¥(P) — ¥(Py) + PoD*(P). (14)

We will also denote R, (P, Py) with Ryo((Q, G), (Qo, Go)) to indicate that it involves differences between Q and
Qo and G and Gy, beyond possibly some additional dependence on Py. In our experience, this remainder
R,(P, Py) can be represented as a sum of terms of the type [(H;(P) — H1(Po))(H2(P) — Hy(Po))f (P, Po)dPo (o) for
some functionals Hy, H, and f, where, typically, H;(P) and H,(P) represent functions of Q(P) or G(P). In certain
classes of problems we have that R,(P, Py) only involves cross-terms of the type [(H:(Q) — Hi(Qo))(H2(G) -
H>(Go))f (P, Po)dPy, so that Ryo((Q, G), (Qo, Go)) = 0 if either Q = Qg or G = Gy. In these cases, we say that the
efficient influence curve is double robust w.r.t. misspecification of Qp and Gg:

PoD*(P) = ¥(Po) - ¥(P) if G(P) = G(Po) or Q(P) = Q(Py).

Given the above double robustness property of the canonical gradient (i.e, of the target parameter), if P solves
PyD*(P) = 0, and either G(P) = Gg or Q(P) = Qq, then ¥(P) = ¥(Py). This allows for the construction of so
called double robust estimators of ¢ that will be consistent if either the estimator of Qg is consistent or the
estimator of Gg is consistent.

Support of data distribution: The support of P ¢ M is defined as a set Op ¢ R? so that P(Op) = 1. It is
assumed that for each P € M, Op c [0, Tp] for some finite Tp € ]RZO. We define

T = sup Tp, (15)
PeM

so that [0, Tp] c [0, 7] for all P ¢ M, where T = oo is allowed, in which case [0, 7] = ]Rgo. That is, [0, 7] is an
upper bound of all the supports, and the model M states that the support of the data structure O is known to
be contained in [0, 7].

Cadlag functions on [0, 7], supremum norm and variation norm: Suppose 7 is finite, and, in fact, if 7
is not finite, then we will apply the definitions below to a T = 7, that is finite and converges to 7. Let D[0, 7] be
the Banach space of d-variate real valued cadlag functions (right-continuous with left-hand limits) [17]. For
af € D[0, 7], let || f [loo= SUPxe[0,7] | f(X) | be the supremum norm. For a f € D[0, 7], we define the variation
norm of f [20] as

TAEVOIESS / | f(dxe,0) | (16)

scf1,...,

Forasubsets c {l,...,d}, xs = (xj: j€s),x_s = (xj : j £ 5), and the D, in the above definition of the variation
norm is over all subsets of {1, .. ., d}. In addition, x; — f(xs, 0_g)) is the s-specific section of x — f(x) that sets
the coordinates in the compliment of s equal to 0. Note that || f ||, is the sum of variation norms of s-specific
sections of f (including f itself). Therefore, one might refer to this norm as the sectional variation norm, but,
for convenience, for the purpose of this article, we will just refer to it as variation norm. If | f ||, < oo, then we
can, in fact, represent f as follows [20]:

f0-f@+ Y /0 Fldus, 0-9), (17)

sc{L,..., s:%s]
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where f(dus, 0_s) is the measure generated by the cadlag function ug ~ f(us, 0_5). For a M € Ry, let
Fum ={f e DIO, 7] :|| f [lv< M}

denote the set of cadlag functions f : [0, 7] — R with variation norm bounded by M.

Cartesian product of cadlag function spaces, and its component-wise operations: Let D¥[0, 7] be
the product Banach space of k-dimensional (fi, . . ., f) where each f; e D[O, 7], j = 1,..., k. If f € DX[0, 7], then
we define || f ||oo= (|| fj [0z j = 1,..., k) as a vector whose j-th component equals the supremum norm of the
j-th component f; of f. Similarly we define a variation norm of f ¢ DK[0, 7] as a vector

I lv=Cfilvii=1,.., k)

of variation norms. If f € D¥[0,7], then || f |p,= (|l f; lpy: j = L,...,k) is a vector whose components
are the L2(Py)-norms of the components of f. Generally speaking, in this paper any operation on a function
f € D¥[0, 7], such as taking anorm || f || p,» an expectation Pof, operations on a pair of functionsf, g « DX[o, 7],
such as f/g, f x g, max(f, g) or an inequality f < g, is carried out component wise: for example, max(f, g) =
(max(fj, g) : j = 1,...,k) and infoeg PoL1(Q) = (ian].gQ]. PoLij(Q)) : j =1,...,k +1). In a similar manner, for
an M € ]R’;O, let Fum = ]_[j-‘:l }'V,Mj denote the cartesian product. This general notation allows us to present
results with minimal notation, avoiding the need to continuously having to enumerate all the components.

Our results will hold for general models and pathwise differentiable target parameters, as long as the
statistical model satisfies the following key smoothness assumption:

Assumption 1. (Smoothness Assumption) For each P ¢ M, Q = Q(P) ¢ D"[0,7], G = G(P) ¢ D*[0, 1],
D*(P) = D*(Q,G) € D[0,7], Li(Q) € D"[0,7], Ly(G) € D*[0,7], and Q, G, D*(P), L1(Q), L(G) have a finite
supremum and variation norm.

Definition of bounds on the statistical model: The properties of the super-learner and TMLE rely on
bounds on the model M. Our estimators will also allow for unbounded models by using a sieve of models
for which its finite bounds slowly approximate the actual model bound as sample size converges to infinity.
These bounds will be defined now:

T =T1(M) = sup 1(P),
PeM

Mg = Mig(M) = sup || L1(Q) - L1(Qo) || >
Q,QoeQ

| L1(Q) - L1(Qo) |,
M>o = Mrp(M) = —
2 = MagM) PJS’BEI/)\/I {d10(Q, Qo)}2

Mig = Mig(M) = sup || Lo(G) — Lo(Go) | oo,
G,Goeg

| L(G) - La(Go) ||p,
PPoeM  {dao(G, Go)}2
Mp+ = Mp+(M) = sup || D*(P) || - (18)
Pe M

My = Myg(M) =

>

Note that Mg, Myq € ]ngo and My, My € ]ngo are defined as vectors of constants, a constant for each com-
ponent of Q and G, respectively. The bounds Mg, Myg guarantee excellent properties of the cross-validation
selector based on the loss-function L;(Q)(e.g., [11, 13]). A bound on M, shows that the loss-based dissimilar-
ity do1(Q, Qo) behaves as a square of a difference between Q and Qo. Similarly, the bounds M;g, My control
the behavior of the cross-validation selector based on the loss function L,(G).

Bounded and Unbounded Models: We will call the model M bounded if it is a model for which 7 < oo
(i.e., universally bounded support), Mg, Mg, Mig, My, Mp+ are finite. In words, in essence, a bounded
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model is a model for which the support and the supremum norm of Q(P), G(P), L1(Q), L»(G) and D*(Q, G)
are uniformly (over the model) bounded. Any model that is not bounded will be called an unbounded
model.

Sequence of bounded submodels approximating the unbounded model: For an unbounded model
M, our initial estimators (Qy, G,) of (Qo, Go) are defined in terms of a sequence of bounded submodels M,, c
M that are increasing in n and approximate the actual model M as n converges to infinity. The counterparts
of the above defined universal bounds on M applied to M, are denoted with 7, Mig,n, M2g,n, Mi6,n, MaG,n»
Mp~ ». The conditions of our general asymptotic efficiency Theorem 1 will enforce that these bounds converge
slowly enough to infinity (in the case the corresponding true model bound is infinity). This model M, could
be defined as the largest subset of M for which these latter bounds apply. By Assumption 1, with this choice
of definition of M,, for any Py € M, there exists an Ny = N(Py), so that for n > Ny Py € M,,. Either way, we
assume that M, is defined such that the latter is true.

Let ©, = Q(M,) and G, = G(M,) be the parameter spaces of Q and G under model M,, and let
On = Q(M,) and G, = G(M,,) be the parameter spaces of Q and G. We define the following true parameters
corresponding with this model M,,:

Qon = arg min PyL;(Q)
QeQn

Gon = arg min PoL(G).
GeGn

We will assume that M, is chosen so that Qx,+1(Pon) = Qiy+1(Po) and Gi,+1(Pon) = Gi,+1(Po), where Py, =
arg maxpeaq, Po log d%. That is, our sieve is not affecting the estimation of the “easy” nuisance parameters
Q(iq+1)0 and Gy, +1)0- Note that for n > No, we have Qon = Qo and Gon = Go.

In this paper our initial estimators of Qy and Gy are always enforced to be in the parameter spaces of this
sequence of models M,, but if the model M is already bounded, then one can set M, = M for all n. How-
ever, even for bounded models M, the utilization of a sequence of submodels M, with stronger universal
bounds than M could result in finite sample improvements (e.g., if the universal bounds on M are very large
relative to sample size and the dimension of the data).

4 Highly adaptive Lasso estimator of Nuisance parameters

Let M; < oo be given. Our M;-specific HAL-estimator of Qo is defined as the minimizer of the empirical risk
PnL1(Q) over Q € O, for which L;(Q) has a variation norm bounded by M; (see eq. (21)). The rate of conver-
gence of a minimum empirical risk estimator is driven by the rate of convergence of the covering number of
the parameter space over which one minimizes (e.g., [19]). This explains why the rate of convergence of the
covering number of this set of functions L;(Q) defines a minimal rate of convergence for this HAL-estimator
(while M; will be selected with the cross-validation selector). Similarly, this applies to our HAL-estimator
of Go. In the next subsection we define the relevant covering numbers and their rates a, a, and establish
an upper bound on them. Subsequently, we establish in Lemma 1 the minimal rate of convergence of the
HAL-estimator in terms of these rates ay, a,.

4.1 Upper bounding the entropy of the parameter space for the HAL-estimator

We remind the reader that a covering number N(e, F, L2(A)) is defined as the minimal number of balls of
size € w.r.t. L2(A)-norm that are needed to cover the set F of functions embedded in LZ(A). Let a; € ]R’;l0 and
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a e IRIS0 be such that for fixed M;, M,

sup log"2(N(e, L1(Qnt,), L*(A)) = O(e™ )

sup log"2(N(e, La(Gn ), L (1)) = O(e™179), (19)
A

where Ly(Qnu,) = {L1(Q) : Q € Onar,}s L2(Guas,) = {L2(G) : G € Gy, }, and

Onaty, ={Q € O || Li(Q) [lv< My}
G, =1{G € G || Lo(G) [lv< M2} (20)

The minimal rates of convergence of our HAL-estimator of Qo and G, are defined in terms of @; and a,
respectively.

By eq. (17) it follows that any cadlag function with finite variation norm can be represented as a difference
of two bounded monotone increasing functions (i.e., cumulative distribution function). The class of d-variate
monotone increasing/cumulative distribution functions is a convex hull of d-variate indicator functions,
which is again concretely implied by the representation eq. (17) by noting that fé‘ df(w) = [I(u < x)df(u).
Thus, F, i consists of a difference of two convex hulls of d-variate indicator functions. By Theorem 2.6.9 in
[19], which maps the covering number of a set of functions into a covering number of the convex hull of these
functions, for a fixed M < oo, we have that the universal covering number of F,, j1 is bounded as follows:

suplog'? N(e, Fyu, LA(1) = O(e™1-4@D),
A

where a(d) = 2/(d + 2). Let d; « ][\Ilf0 be the vector of integers indicating the dimension of the domain of
Q=(Qi,...,Qx), and similarly, let d, € ]R’;z0 be the vector of integers indicating the dimension of the domain
of G = (G, ..., Gi,). Since Ly(Qnu,) € Fy, With d = di, Ly(Guas,) € Fym, With d = dy, we have that a; > a(d;)
and a, > a(dy).

4.2 Minimal rate of convergence of the HAL-estimator

Lemma 1 below proves that the minimal rates rq 1.1, () € RM and 16,1:k, (1) € R of our HAL-estimator of Qy
and Gy w.r.t. the loss-based dissimilarities do;(Q, Qo) and dox(G, Go) are given by:
ro(n) = ro 1 () = n~ W2

ra(n) = T, () = n~ 020/,

Let rq,k,+1 and rg,i,+1 be the rates of the simple estimators leﬂ and Gk2+1 of Quy+1)0 and G, +1)0, respectively.
This defines ro(n) € RX*! and rg(n) ¢ R,

Lemma 1. For a given vector M e RY., of constants, let Oy  {Q € Oy :|| Li(Q) [|v< M} ¢ Fyu be the set of all
functions in the parameter space O, for Qo for which the variation norm of its loss is smaller than M < . (In
this definition one can also incorporate some extra M-constraints, as long as Op p-co = On.) Let QM, € Oy 11 be
so that PoL;(QM,) = infges, PoL1(Q). Assume that for a fixed M < oo,

Li(Q) - L1(Q
Moy =lim sup sup | L1(Q) - E(A?I("/I") [P, .
N QeQum {di0(Q, QY)Y
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Consider an estimator (_21,‘1” for which

PuLi(Qy) = _inf  PpLi(Q) + 1, (21)
QeQn
where r, = op(n~2). Then
0 < doi(QM, QM) < —(Py — Po}{L1(QM) - Li(QM)} + 1, (22)

and
dor(QM, QM) = Op(rg(n)) + 1y
Proof: We have

0 < doi(QM, QM) = Po{L1(QM) - L, (QM )}
= ~(Py — Po){L1(QM) - Li(QY)} + Pu{Li(QY) - L1 (QM)}
< —(Py — Po{L1(QM) - Li(QM)} + 1y,

which proves eq. (22). Since L;(QM)-L,(QM,) falls in a Py-Donsker class F, y, it follows that the right-hand side
is Op(n1/2), and thus do; (QY, Q}) = Op(n~12). Since My,q i1 < oo, this also implies that || L;(QM)-L;(QM) H%,O=
Op(n"'?). By empirical process theory we have that n"?(P, - Po)f, —p O if f, falls in a Py-Donsker class
with probability tending to 1, and Pof2 —, 0 asn — co. Applying this to f, = L;(QM) — L;(Q¥) shows that
(Pn — Po)(L1(QM) — L(QY)) = op(n™'2), which proves doi(QM, QM,) = op(n™1).

We now apply Lemma 7 with 7, = {L1(Q) — Li(QY)) : Q € Onm}, @ = a1 (see eq. (19)), envelope bound
My, = M and ro(n) = n"¥#, which proves that

| n'2(Py, — Po)fy |= Op(n™®7%).

This proves do;(QY, QM) = Op(n~ W2 @/¥) 4 1, 0

5 Super-learning: HAL-estimator tuning the variation norm of the fit
with cross-validation

Defining the library of candidate estimators: Foran M ¢ ]R’fo, let Qy : /\/lnong — Quu © Fyu be the
HAL-estimator eq. (21) and let Qux = Qu(Py). By Lemma 1 we have do;(Quu = Qu(Pn), QM) = Op(ré(n)),
assuming that the numerical approximation error ry is of smaller order. Let K; ,,, be an ordered collection
M < M} < ... < Mg, ,, of ki-dimensional constants, and consider the corresponding collection of K

candidate estimators Qy with M ¢ K1,n,v. We impose that this index set Ky, is increasing in n such that
lim sup,,_, oo Mk, ,,, €quals suppp, || Li(Q(P)) ||v, so that for any P € M, there exists an N(P) so that for
n > N(P), we will have that M, ,,, >|| Li(Q(P)) ||y. Note that for all M € K1, with M >| L1(Qo) ||v, we have
that doy(Qu(Pn), Qo) = Op(ré(n)). In addition, let Qj : Myuonp — Qn, j € Kin,q be an additional collection of
Ki,n,q estimators of Qo. For example, these candidate estimators could include a variety of parametric model
as well as machine learning based estimators. This defines an index set /C1, = K10,y U K1,n,q representing a
collection of Ky, = Ky n,v + Ki,n,q candidate estimators {0k : k € Kin)-

Super Learner: Let B,, € {0, 1} denote a random cross-validation scheme that randomly splits the sample
{04, ..., 04} in a training sample {O; : By(i) = 0} and validation sample {O; : B,(i) = 1}. Let g, = > 1, Ba())/n
denote the proportion of observations in the validation sample. We impose throughout the article that g <
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qn < 1/2 for some g > 0 and that this random vector B, has a finite number V possible realizations for a
fixed V < co. In addition, P; By’ Pg B, will denote the empirical probability distributions of the validation and
training sample, respectively. Thus, the cross-validated risk of an estimator Q: Mouponp = 0y, of Qo is defined
as Ep, P} L1(Q(PY ).

We define the cross-validation selector as the index

kin = kl(Pn) = arg Igl]én EBnP}I’BnLl(ék(Pg,Bn))
1n

that minimizes the cross-validated risk EBnP,,Ll((_)k(PS’ Bn)) over all choices k € Ky, of candidate estimators.
Our proposed super-learner is defined by

Qn = QPy) = Bz, Qi (P25). 23

The following lemma proves that the super-learner Q(P,) converges to Qp at least at the rate rQ(n) the

HAL-estimator converges to Qo: do1(Q(Py), Qo) = Op(rg(n)). This lemma also shows that the super-learner is
either asymptotically equivalent with the oracle selected candidate estimator, or achieves the parametric rate
1/n of a correctly specified parametric model.

Lemma 2. Recall the definition of the model bounds My n, Mag,n €q. (18), and let C(My, Ma, 6) = 2(1+ 8)2(2M; /3 +
M3/6).
For any fixed § > 0,

dor(@ns Qon) < (1+26)Es, min dor(Qe(Py5,). Qon)
€Xin

log Ky,
. .

+0p <C(M1Q,n, Mao,n, 6)

If for each fixed 6 > 0, C(Mi,n, M2q,n, 8) log Kin/n divided by Ep, miny dm((i)k(Pg’Bn), Qon) is 0p(1), then

do1(Q(Py), Qon)

= - -1= Op(l).
Ep, miny do1(Qx(P} 5 ), Qon)

If for each fixed & > 0, Ep, ming do1(Qu(P° ;. ), Qon) = Op(C(M1q,n, Mag,n, 6) log Ki/n), then

n,Bn

s C(Min, Moy, 8) 10g Ky
d01(a(Pn),00n)=op( W, o )log 1).

Suppose that for each finite M, the conditions of Lemma 1 hold with negligible numerical approximation

error ry, so that do1(Qum = Qu(Pn), QM) = Op(ré(n)). Let A € ]R’;l0 be chosen so that ré(n) = O(n™). For each
fixed 6 > 0, we have

(24)

- log K;
do1(Qn, Qon) = 0p(n™1) + Op <C(M10,mMza,m 6) g m) .

The proof of this lemma is a simple corollary of the finite sample oracle inequality for cross-validation
[11, 13, 21, 33, 34], also presented in Lemma 5 in Section A of the Appendix. It uses the convexity of the loss
function to bring the Ep, inside the loss-based dissimilarity.

In the Appendix we present the analogue super-learner eq. (37) of Go and its corresponding Lemma 6.
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6 One-step CV-HAL-TMLE

Cross-validated TMLE (CV-TMLE) robustifies the bias-reduction of the TMLE-step by selecting € based on the
cross-validated risk [5, 15]. In the next subsection we define the CV-TMLE. In this subsection we propose a
particular type of local least favorable submodel that separately updates the initial estimator of Qjo for each
j=1,..., k. Due to this choice, in subsection 2 we now easily establish that the CV-TMLE of Qo converges at
the same rate to Qo as the initial estimator, which is important for control of the second order remainder in
the asymptotic efficiency proof of the CV-TMLE. In subsection 3 we establish the asymptotic efficiency of the
CV-TMLE.

6.1 The CV-HAL-TMLE

Definition of one-step CV-HAL-TMLE for general local least favorable submodel: Let Li(Q) =
Z}‘j; ! L1;(Q;) be the sum loss-function. For a given (Q, G), let {Q¢ : €} ¢ Qn ¢ Q be a parametric submodel
tAhrough Qate=0 suchAthat the linear span of d%il(Qe) at € = 0 includes the_ canonical gradient D*_(Q, G). Let
Q : Muonp = Qnand G : Mponp — Gn be our initial estimators of Qo = (Qo, Qox,+1) and Go = (Go, Go,ky+1-
We recommend defining the initial estimators é and E} of Qo and Gy to be HAL-super-learners as defined by
eqgs (23) and (37), so that dio(Q(Py), Qon) = Op(rg(n)) and doo(G(Pn), Gon) = 0p(r3(n)). Given a cross-validation
scheme By, € {0, 1}%, let Qn3, = @(Pg,Bn) ¢ Oy be the estimator Q applied to the training sample Pg,B,,- Simil-
arly, let G g, = @(PS’BH). Let {Qu,B,,¢ : €} be the above submodel with (Q, G) = (Qu,5,, Gn,,) through Qp g, at
€=0.Let

. 1 T
€n = argmin Ep, Py, 8, L(Qn.Bye)

be the MLE of € minimizing the cross-validated empirical risk. This defines Q;’ B, = Qn.By,en @S the B,,-specific
targeted fit of Qp. The one-step CV-TMLE of 1) is defined as

l/);kz = EBn \P(Q:,Bn)'

One-step CV-HAL-TMLE solves cross-validated efficient score equation: Our efficiency Theorem 1
assumes that

Ep,P} 5 D*(Q ., Gn,) = 0p(n™72). (25)

That is, it is assumed that the one-step CV-TMLE already solves the cross-validated efficient influence curve
equation up till an asymptotically negligible approximation error. By definition of €, we have that it solves
its score equation EBHP}“BH %I_,(Qn,gn,en) = 0, which provides a basis for verifying eq. (25). As formalized by
Lemma 13 in the Appendix D, for our choice of n~(/4)_consistent initial estimators Qn, Gy of Qg, Go, a one-step
CV-TMLE will satisfy eq. (25) for one-dimensional local least favorable submodels under weak regularity con-
ditions. We believe that such a result can be proved in great generality for arbitrary (also multivariate) local
least favorable submodels. Instead, below we propose a particular class of multivariate local least favorable
submodels eq. (26) for which we establish eq. (25) under regularity conditions. In (van der Laan and Gruber,
2015) it is shown that one can always construct a so called universal least favorable submodel through Q with
a one dimensional € so that %L(Qe) = D*(Qe, G) at each € so that EBHP;,BHD*(Q:’Bn,en, Gn,,) = 0 (exactly),
independent of the properties of the initial estimator (Qy, Gy).

One-step CV-HAL-TMLE preserves fast rate of convergence of initial estimator: Our efficiency The-
orem 1 also assumes that the updated estimator Q;, ; satisfies for each split B, d01(Q;’ By Qo) = 0p(n"2). This
is generally a very reasonable condition given that do1(Qy,5,, Qo) = Op(n™) for a specified A; > 1/2. Our pro-
posed class of local least favorable submodels eq. (26) below guarantees that the rate of convergence of the
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initial estimator Qn,p, is completely preserved by Q; B, SO that this condition is automatically guaranteed to
hold.

A class of multivariate local least favorable submodels that separately updates each nuisance
parameter component: One way to guarantee that d01(Q;‘l By ,Q0) = op(n~1?) is to make sure that the
updated estimator Q;; B, converges as fast to Qo as the initial estimator Qy p,. For that purpose we propose
a k; + 1-dimensional local least favorable submodel of the type

Q€ = (Ql,é‘l’ ey Qk1+1 €lq +1) such that Ll](Q} e)) = D]*(Q’ G)’ (26)
forj = 1,...,k + 1, and where D*(Q,G) = Z]kl; ! D*(Q, G). By using such a submodel we have Q].*,H’Bn =
Qj,n,By,en() @nd €4(j) = arg mine EBnP}[anLlj(Qj,n,Bn,e) Thus, in this case Qj 5, is updated with its own €,(j),
j=1,...,k +1. The advantage of such a least favorable submodel is that the one-step update of Q; » g, is not

affected by the statistical behavior of the other estimators Ql,n’Bn, 1 # j. On the other hand, if one uses a local
least favorable submodel with a single €, the MLE €, is very much driven by the worst performing estimator
(_2,;,,, B,- Lemma 3 shows that, by using such a k; + 1-variate local least favorable submodel satisfying eq. (26),
the rate of convergence of the initial estimator (_2,-,,l is fully preserved by the TMLE-update éj*’n, B, (see Lemma
3 below).

How to construct a local least favorable submodel of type eq. (26): A general approach for construct-
ing such a k + 1-variate least favorable submodel is the following. Let D;‘ (P) be the efficient influence curve at
a P for the parameter ¥; p : M — R defined by ¥; p(P1) = ¥(Q-;(P), Q;(P1)) that sets all the other components
of Q; with 1 # j equal to its true value under P, j = 1, .. ., ky + 1. Then, it follows immediately from the definition
of pathwise derivative that

kp+1
D*(P) =) _Dj(P),

j=1

so that, D*(P) is an element of the linear span of {D;‘(P) :j=1,...,k + 1} Let {Qj ;) : €()} ¢ Qjn bea
one-dimensional submodel through Q; so that

de (])Ll](Q] e(,))‘ = D*(Q G),j=1,...,k+1.

That is, {Q]-,e(,-) : €(j)} is a local least favorable submodel at (Q, G) for the parameter ¥j o : M — R, j =
.y ki + 1. Now, define {Q, : €} ¢ Q, by Qe = (Qj¢() :j = 1,..., ki + 1). Then, we have

= (DQ6) =1,k + 1),

e=0

d-
%L(Qe)

so that the submodel is indeed a local least favorable submodel.

Lemma 14 provides a sufficient set of minor conditions under which the one-step-HAL-CV-TMLE using
a local least favorable submodel of the type eq. (26) will satisfy eq. (25). Therefore, the class of local least
favorable submodels eq. (26) yields both crucial conditions for the HAL-CV-TMLE: it solves eq. (25) and it
preserve the rate of convergence of the initial estimator.

6.2 Preservation of the rate of initial estimator for the one-step CV-HAL-TMLE using
eq. (26)

Consider the submodel {Q; : €} of the type eq. (26) presented above. Given an initial estimator Q: Muonp =
On, recall the definition Qu,,,c = Qe(Pg Bn) as the fluctuated version of the initial estimator applied to the
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training sample, and €, = arg ming Eg P! . L1(Qn.5, ¢). We want to show that Qp, g, ., converges to Qo at the
p n- n,Bp »Dn, »Dn,€n

same rate as the initial estimator Qp g, (and thus also Q(P,)). The following lemma establishes this result and
it is an immediate consequence of the oracle inequality of the cross-validation selector for the loss function
Lyj, applied to the set of candidate estimators P, - Qjy.c() = Q) ¢(j)(Pn) indexed by €(j), foreachj =1, ...,k +1.

Lemma 3. Let €, = arg min, EBnP,lq,BnLl(Qn,Bn,e)- We have

Ep,do1(Qe, (P 5 ), Qon) < (1+ 26) min Eg, dor(Qe(PY ), Qon)
+0p (C(MIQ,H» M>q,n, 6) log Kin ) .

nq
By convexity of the loss function L(Q), this implies

do1(Ep, éen (P,?,Bn), Qon) < (1+26) mein Ep, dm(ée(Pg,Bn), Qon)

C(Mig,n, Mag,n, 6)1og Kin
+Op nq .

We have
mein Eg, dOl(ée(PS,Bn)’ Qon) < Eg, dm(@(Pg,Bn), Qon)-

Thus, if for some A; > 0 C(Myq.n, Mag n, 6) 10g K1n/(nq) = O(n™4) and for each B, d01((A2(P2,Bn), Qon) = Op(n™),
then

do1(Ep, QnB,en» Qon) = Op(n™).

It then also follows that for each B, d01(@en (Pg, Bn)’ Qon) = Op(n™M).

6.3 Efficiency of the one-step CV-HAL-TMLE.

We have the following theorem.

Theorem 1. Consider the above defined corresponding one-step CV-TMLE 1, = Eg, ¥(Qn,p,.¢,) of ¥(Qo).

Initial estimator conditions: Consider the HAL-super-learners Q(P,) and G(P,) defined by egs (23) and
(37), respectively, and, recall that we are given simple estimators Qx,+1 and Gi,+1 of Qo k41 and Gop,+1. Let Ay
and A, be chosen so that rp(n) = 0(n™) and re(n) = 0(n™2). Assume the conditions of Theorem 2 and Theorem
6 so that we have

do1(Q(Py), Qo) = Op(n™ED) + Op(C(Mig,n, Mag,n, 8) 10g K1n/1)
do2(G(Py), Go) = 0p(n2k2)) 1 0p(C(Myg ny Mag s 8) 10g Kon/1),

where Li(1: k1) > 1/2and (1 : ko) > 1/2. Let Q = ((3, ékﬁl) and G = (G, Gkﬁl) be the corresponding estimators
of Qo and Gy, respectively.

“Preserve rate of convergence of initial estimator”-condition: In addition, assume that either (Case
A) the CV-TMLE uses a local least favorable submodel of the type eq. (26) so that Lemma 3 applies, or (Case B)
assume that for each split By, d01(Q;, By Qo) = Op(n™) for some AF > 1/2.
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Efficient influence curve score equation condition and second order remainder condition: Define
fre = D*(Qe(Pg’Bn), Gn,,) — D*(Qo, Go) and the class of functions Fn = {fn,c : €}. Assume

Ep, P 5 D*(Qn,By.c0» Gn,,) = 0p(n ™), 27)
| D*(Qy, 5,> Gn,B,) — D*(Qo, Go) ||p, = 0p(rps,n) for rp<,n = 0(1), (28)
EBnRZO((Q:,Bn’ Gn,Bn); (QO’ GO)) = OP(n_l/z)’ (29)
max(Mio , M2, )log K.
- — SR _ oy, (30)
max(Mg,, M2. )logK:
S = - o), €3)
sup N(eMp+ i, Fn, L2(A)) < Ke™P foraK < oo, p < co. (32)
A

In Case A, for verification of assumption eq. (27) one could apply Lemma 14.
In Case A, for verification of the two assumptions eqs (28) and (29) one can use that for each of the V realizations
of Bn, do(Qy, 5 » Qo) = 0p(n™) and doy(Gy,p,, Go) = Op(n™2).
In Case B, for verification of the latter two assumptions eqs (28) and (29) one can use that for each of the V
realizations of By, dO(Q:,Bn’ Qo) = 0p(n™) and do2(Gn,B,, Go) = Op(n2).

Then, Y} = Ep,¥(Qn,B,.¢,) is asymptotically efficient:

W — o = (Py — Po)D*(Qo, Go) + op(n). (33)

Condition eq. (32) will practically always trivially hold for p = k; + 1 equal to the dimension of €: note
that this is even true for unbounded models due to the normalizing constant Mp+ ,. We already discussed
the crucial condition eq. (27) in our subsection defining the CV-TMLE. Conditions eqs (30) and (31) are easily
satisfied by controlling the speed at which the model bounds Miq,n, M2q,n, MiG,n, Mac,n can converge to infin-
ity, and are always true for bounded models (as long as the size of the library of the super-learner behaves
as a polynomial power of sample size). For bounded models M, condition eq. (28) will typically hold with
TD*n = n~* and A equal to the minimum of the components of A;/2 and A,/2: i.e., the efficient influence curve
estimator will converge to its true counterpart as fast as the slowest converging nuisance parameter estim-
ator. If the model M is unbounded so that the model bounds of the sieve M,, will converge to infinity, then
eq. (28) will hold with rp« , = n~M,, for some M, converging to infinity (e.g., M, = Mp« »). So, in the latter
case one has to control the rate at which the model bounds of the sieve M,, such as the supremum norm
bound Mp-« , for the efficient influence curve, converge to infinity. Finally, the crucial condition eq. (29) will
easily hold for bounded models M if this slowest rate A is larger than 1/4, which we know to be true for the
HAL-estimator and its super-learner. For unbounded models, this condition eq. (29) will put a serious brake
on the speed as which the model bounds of M,, can converge to infinity.

Proof: By assumptions eqs (30) and (31), we have

do((QPY 5 ), G(PY 1 ), (Qo, Go)) = Op(n ™, n™2).

Consider Case A. Lemma 3 proves that under these same assumptions eqs (30), (31), we also have, for
each By, do1(Qn,,.e,» Qon) = Op(n™). This proves that for each By, do((Q; g, = Qn.By,ens GnB,), (Qo, Go)) =
Op(n™, n2). For Case B, we replace in latter expression A; by A. Suppose n > Ny so that Qon = Qo and
Gon = Go. By the identity ¥(Q;, 5 ) - ¥(Qo) = ~PoD*(Q}, 5 , Gn,B,) + R20((Q}, . » Gn.5,), (Qo, Go)), we have

Ep,¥(Q; 3,) — ¥(Qo) = —Ep,PoD*(Q;, g » Gn,B,) + EB,R20((Qp, . Gn,B,), (Qo, Go))
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Combining this with eq. (27) yields the following identity:

¥ — ¥(Qo) = Ep,¥(Q}, 5,) — ¥(Qo)
= Eg, (P} 5, — Po)D*(Q}, 5., Gn,p,)
+Ep, R20((Qp 5> Gn,B,)5 (Qo, Go)) + op(n?).

By assumption eq. (29) we have that EBHRZO((Q;;, By Gn,B,), (Qo, Go)) = op(n~12). Thus, we have shown

W¥(Q;) - ¥(Qo) = Eg, (Py 5 — Po)D*(Q, 5., Gn.p,) + op(n ).
We now note

EBn (Pil,Bn - PO)D*(QZ,BH’ Gn,Bn) = EBn (P}I,Bn - PO)D*(QO’ GO)
+Ep, (P}, 5~ Po{D*(Q}; 5 » Gn,B,) — D*(Qo, Go)}
= (Pn — Po)D*(Qo, Go) + Eg, (P;,’Bn = Po{D*(Q;, . > Gn,B,) — D*(Qo, Go)}-

Thus, it remains to prove that Eg, (P:l’ B, ~PoD*(Q}, 5, Gn,B,)-D*(Qo, Go)} = op(n~2). For this we apply Lemma
10 with f, e = D*((A)e(ngBn), Gn,,) — D*(Qo, Go), conditional on Pg’Bn, and Fy, = {fne : €}. By assumption eq.
(28), there exists a rate rp«, = o(1) so that || fue, |lp,= Op(rp=n), where (e.g., for Case A) this rate will be
determined based upon do((Qfly By Gn,B,)> (Qo, Go)) = Op(n~™, n%2). Note also that the envelope of F;, satisfies
| Fn |la< Mp+ , for any measure A (see eq. (18)). Since € is p-dimensional for some integer p, the entropy
of F;, easily satisfies supy N(€ || Fn ||a, Fn> L?(A)) = O(e™P), which is assumed to hold by condition eq. (32).
Application of Lemma 10 proves now that, if rp+ , = 0(1), then, given Pg’ By’

(P;,Bn - PO)fn,en = OP(nil/z)-

This proves also that Ep, (P;, 5, ~ P)fne, = op(n~12). This completes the proof. o

7 Example: Treatment specific mean

We will now apply Theorem 1 to the example introduced in Section 2. We have the following sieve model
bounds (van der Laan et al., 2004): Mg, = 0(10g 6,1); Mag,n = 0(1/8,); Mign = O(log 8,1); Mag,n = O(1/8,);
Mp+ n = 0(1/6,).

Since the parameter space Q;, consists of the cadlag functions with bounded variation norms, without
any further restrictions beyond the global bound §,,, we can select the entropy quantities for Q; as follows:
ay = a(dy) = 2/(d;+2), where d; = d-21is the dimension of W. Similarly, if G, consists of all cadlag functions of
dimension d,, without further meaningful restrictions beyond §,, then we can select the entropy quantities
for G, as a; = a(ds) = 2/(d>+2). If the model G enforces more meaningful restrictions than that A only depends
on W through a subset of W of dimension d,, then a, can be replaced by a sharper upper bound than a(d,).
We already established that condition eq. (27) in Theorem 1 holds exactly. Condition eq. (32) trivially holds.

Verification of eqs (30) and (31): Let Q, ¢ Qi, be a super-learner of Qq of the type presented in
eq. (23). Similarly, let G, € G, be such a super-learner of Gy as presented in eq. (37) . Suppose that
max(Miq,n, M3, ,) 10g Kin/n = O(n~4) and max(Mig n, M3; ) 10 Kon/n = 0D, where A(d) = 1/2+ a(d) /4.
Then, by Lemma 2 and Lemma 6, we have dio,1(Qn, Qo) = Op(n™) and doy(Gn, Go) = Op(n"4). Plug-
ging in the above bounds for Miq n, M2g,n, MiG,n, Mac,n, it follows that it suffices to select 6, so that 6;1 =
0(n*/2-Y2Md1) (max(log Kin, log K»r))"¥2). (Improvements can be obtained by selecting a separate 8y, for trun-
cating Q and 6, for truncating G.) Let K,, = max(Ki, K2n) and impose that log K, = O(n'/2-4@)12)_ Then, it
follows that this bound for 6;1 is larger than n@/6 go that this constraint on 8, is dominated by our later
constraint given below &,! = o(n®@)/®),
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Above we showed that if §,! = 0(n"?"2Ad)(max(log Ky, log K2n))~"/2), then the two super-learners Qy g,
and Gy, of Qo and G, based on the training sample PS’BH converge at the rate n4@) and n"A4) w.r.t the
loss-based dissimilarities dijo,; and doy, respectively. By Lemma 3, under the same conditions stated above
for do1(Qn, Qo) = Op(n ), the TMLE update Q;’Bn converges at this same rate: for each split B,, we have

dOl (QZ,Bn ) (_20) = OP(n_A(dl))'
Verification of eq. (28): Using straightforward algebra and using the triangle inequality for a norm, we
obtain

_ _ Gy, G _
| D*(Q}.5, Grue) = D*(Qos Go) <l A2 - Qo) [,

+ | Z2-(Q; 5, Qo) llmy + 1| Q5 — Qo llpy + | E5, ¥(Q; 5,) —¥(Qo) | -

n,Bn

Using that min(Gy,g,, Go) > 6nand | Y-Qo |< 1it follows that the first term is bounded by 62 || Gpp,~Go ||p,-
Using that G, p, > 6y, it follows that the second term is bounded by &,! || (_2;‘1, B~ Qo ||, - S0, we have

| D@}, s, » Gn3,) = D*(Qo, Go) llpo< 82 || G, = Go llpo
26,1 || Q4 5, — Qo llpo + | B, ¥(Q5.) — W(Qo) | -

We bound the last term as follows:

Ep,¥(Q; 5,) — ¥(Qo) = Ep, Q5 5 Qi 5. — Q20Q0

= Ep,(Q}, 5, — Q20)Qo + Eg, Q3,5 (Q; 5 — Qo)

= 0p(n™"?) + Ej, (Qs, ~ on)(é;“,,gn - Qo) +Eg, on(@f,,gn - Qo)

= 0p(n™2) + Ep, (@, 5. — Q0)(@Q; 5 — Qo) + Op(Ep,din1(Q; 5 » Qo)),

where we used at the third equality that for each split B, (Q},, B~ Q20)Qo = Op(n~2), by the standard central
limit theorem.
In order to bound the second empirical process term we apply Lemma 10 to the term nl/z(Qén’Bn -

QZO)(é:;Bn ~ Qo). Lemma 4 below shows that || Qnz, — Qo |p,= Op(n™@26.2) Therefore, we can apply
Lemma 10 with rp+ , equal to this latter rate. This yields the following bound:

Ep, (@3, 5, — Q20)(Q; 5, — Qo) = Op(n 426, 12(1 + log n + log 6,)).
Thus, we have shown

I D*(Qy, g, » Gn,,) — D*(Qo, Go) | py= Op(n™@28,2(1 + log n + 1og 6,))
+0p (8;1 11 @15, = Qo o ) + Op (827 I G, = Go l1ry) -

We have dlo,l(Q;’Bn, Qo) = Op(n™ M) and do,(Gp,,,, Go) = Op(n(@)). These rates first need to be translated
in terms of L2(Po)-norms in order to utilize the above bound. Lemma 4 below shows that || Q;; — Qo |lpy=
Op(n @252y and || G5, - Go || po= Op(n14)). So we obtain the following bound:

| D*(Q;, 5, Gn,B,) — D*(Qo, Go) | py= 0p(M2§ 121 4 1og n + log 6,))
+0p (5;3/2,1—/\@1)/2) +0p (5;3/2,1—/\((12)/2) .

We can conservatively bound this as follows:
I D*(Q;, 5, » Gn,5,) — D*(Qo, Go) || py= Op(8;,72n @2 1og n),

where we used conservative bounding by not utilizing that d, could be significantly smaller than d;. We con-
clude that we can set rp« , = 6,°*n1@)2Jog n. We need that rp- , = o(1) and thus that 6,7 = o(n")21og n),
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or 5;1 = o(nl/6+ald/e log n) The latter condition is dominated by the condition 5;,1 = 0(n*4/6) we need in the
analysis below of the second order remainder.
Verification of eq. (29): By eq. (6), we can bound the second order remainder as follows:

Ryo(P; 5., Po) < 8," || Gns, — Go llpoll @5, — Qo llp
— OP(5;3/2n—/l(dl)/Z—/\(dz)D).

Thus, it suffices to assume that 5,>*n@) = o(n"12), and thus §;! = o(na@/6),
We verified the conditions of Theorem 1. Application of Theorem 1 yields the following result.

Theorem 2. Consider the nonparametric statistical model M for Py of the d-dimensional O = (W,A,Y) ~ Py ¢
M and target parameter ¥ : M — R defined by W(P) = EpEp(Y | A = 1, W). In this nonparametric model we
only assume that for each P ¢ M, Q(P) = Ep(Y | A = 1, W) and G(P) = Ep(A | W) are cadlag functions on
[0,7] c ]R‘i(‘)2 for some finite T with finite variation norm.

Consider the above defined one-step CV-TMLE y; = E Bn‘{I(Q:;, Bn) of ¥(Qo) based on the HAL-super-learner
Qn and Gy, of type eqs (23) and (37), where Q, and G, are enforced to be contained in interval (6,,1 — 8y). Let
dy =d-2. Let a(dy) = 2/(d; + 2), A(dy) = 1/2 + a(dy)/4, and K,, = max (K, Kop).

Assume that 1ogK, = 0(n'>-42) and that &, converges slowly enough to oo so that &, = o(n®/e)
Then Y} is a regular asymptotically linear estimator with influence curve equal to the efficient influence curve
D*(Py), and is thus asymptotically efficient.

Thus for large dimension d, §,! is only allowed to converge to infinity at a very slow rate. Note that §,!
immediately implies a bound on the efficient influence curve and such bounds are naturally very crucial.
Above we used the following lemma.

Lemma 4. We have

I Q- Qo ||12:0S 46,1 do1(Q, Qo). (34)
We also have
| G- Go H12:0S 4doy(G, Go). (35)
Proof: We first prove eq. (34). Let
Qo(W) 1-Qo(W)

KL(Q(W), Qo(W)) = Qo(W)log o) +(1- Qo(W))log o)

be the Kullback-Leibler divergence between the Bernoulli laws with probabilities Q(W) and Qo(W). Then,
do1(Q, Qo) = Ep, Go(W)KL(Q(W), Qo(W)).

In van der Vaart (1998, page 62) it is shown that for two densities p, po, we have | p'? - p%,/z IIf,Os
— [ log(p/po)dPo. Applying this inequality to Bernoulli laws with probabilities Q(W) and Qo(W) yields:

KL(Q(), Qo()) > Qo(@" - Q§)? + (1 - Qo)((1 - Q"2 - (1 - Qo).

Applying the inequality (a — b)? < 4(a'2 — b¥2)2 (for a, b ¢ [0,1]) to the square terms on the right-hand side
now yields:

KL(Q(), Qo (")) = 471(Q - Qo)*. (36)
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Now, note that do1(Q, Qo) = Ep, Go(W)KL(Q(W), Qo(W)). We can use that Gy > 8,, which provides us with the
following bound:

do1(Q, Qo) 2_5nE_PoKL(Q(W), QO(W)2 )
> 8,47 Epy(Q ~ Qo)* (W) = 8,47 | Q- Qo I3, -

This completes the proof of eq. (34). We have
do(G, Go) = Ep,KL(G(W), Go(W)).
Completely analogue to the derivation above of eq. (36) we obtain
KL(G(), Go()) > 47'(G - Go)?,
and thus
dox(G,Go) 247 || G- Go ||12,0 .

This proves eq. (35). O

8 Discussion

In this article we established that a one-step CV-TMLE, using a super-learner with a library that includes
L'-penalized MLEs that minimize the empirical risk over high dimensional linear combinations of indicator
basis functions under a series of L!-constraints, will be asymptotically efficient. This was shown to hold
under remarkable weak conditions and for an arbitrary dimension of the data structure O.

This remarkable fact is heavily driven by the fact that this super-learner will always converge at a rate
faster than n~ w.r.t. the loss-based dissimilarity, which is typically equivalent with the L2(Pp)-norm. This
holds for every dimension of the data and any underlying smoothness of the true nuisance parameter val-
ues, as long as these true nuisance parameter values have a finite variation norm. Since the second order
remainder R,(P, Po) of the first order expansion for the TMLE can be bounded in terms of these loss-based
dissimilarities between the super-learner and its true counterpart, this rate of convergence is fast enough to
make the second order remainder asymptotically negligible. As a consequence, the first order empirical mean
of the canonical gradient/efficient influence curve drives the asymptotics of the TMLE.

In order to prove our theorems it was also important to establish that a one-step TMLE already approxim-
ately solves the efficient influence curve equation, under very general reasonable conditions. In this article
we focused on a one-step TMLE that updates each nuisance parameter with its own one-dimensional MLE
update step. This choice of local least favorable submodel guarantees that the one-step TMLE update of the
super-learner of the nuisance parameters is not driven by the nuisance parameter component that is hard-
est to estimate, which might have finite sample advantages. Nonetheless, our asymptotic efficiency theorem
applies to any local least favorable submodel.

The fact that a one-step TMLE already solves the efficient influence curve equation is particularly import-
ant in problems in which the TMLE update step is very demanding due to a high complexity of the efficient
influence curve. In addition, a one-step TMLE has a more predictable robust behavior than a limit of an iterat-
ive algorithm. We could have focused on the universal least favorable submodels so that the TMLE is always
a one-step TMLE, but in various problems local least favorable submodels are easier to fit and can thus have
practical advantages.

By now, we also have implemented the HAL-estimator for nonparametric regression and dimensions
d < 10, and established that its practical performance appears to be very good [22]. In addition, we also
implemented the HAL-TMLE for the ATE (i.e., our example) for such low dimensions and the coverage of the
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confidence intervals has been remarkable good for normal sample sizes, suggesting that the asymptotics of
the HAL-TMLE kicks in at earlier sample sizes then theory would predict. We suspect that part of the reason for
the excellent practical performance is the double robust nature of the second order remainder, which suggest
more finite sample bias cancelation than an actual square of a difference. The practical implementation and
evaluation of the HAL-estimator and HAL-TMLE across a diversity of problems remains an area of future
research.

In this article we assumed independent and identically distributed observations. Nonetheless, this type
of super learner and the resulting asymptotic efficiency of the one-step TMLE will be generalizable to a variety
of dependent data structures such as data generated by a statistical graph that assumes sufficient conditional
independencies so that the desired central limit theorems can still be established [4, 23-26].

This article focused on a CV-TMLE that represents the statistical target parameter W(P) as a function
W(Qi(P), ..., Qx+1(P)) of variation independent nuisance parameters (Qy, . . ., Qx,+1). However, there are key
examples in which representing W(P) in terms of recursively defined nuisance parameters has key advant-
ages. For example, the longitudinal one-step TMLE of causal effects of multiple time point interventions in
[27, 28] relies on a sequential regression representation of the target parameter [29]. In this case, the next
regression is defined as the regression of the previous regression on a shrinking history, across a number
of regressions, one for each time point at which an intervention takes place. In this case, a super-learner of
nuisance parameter Qi is based on a loss function L]’k,Qkﬂ(Qk) that depends on a next nuisance parameter
Q41 (representing the outcome for the regression defining Qy), k = 1, ..., k; + 1.. One would now start with
obtaining the desired result for the super-learner of Qy,.1 whose loss function does not depend on other nuis-
ance parameters. For the second super-learner of Qi, based on candidate estimators ékl,,-, j=1...,], we
would use as cross-validated risk EB"P}l,BnLlykl,éklﬂ(Pg’Bn)(ékl’j)' In other words, one estimates the nuisance

parameter of the loss-function based on the training sample. In [11, 30, 31] we establish oracle inequalities
for the cross-validation selector based on loss-functions indexed by an unknown nuisance parameter, which
now also rely on a remainder concerning the rate at which @kl+1(Pn) converges to Qy,+1,0- In this manner, one
can establish that the super-learner of Qy, o will converge at the same or better rate than the super-learner of
Qi +1,0- This process can be iterated to establish convergence of all the super-learners at the same or better rate
than the initial super-learner of Qy,.1,0. Our asymptotic efficiency results for the one-step TMLE and one-step
CV-TMLE can now be generalized to one-step TMLE and CV-TMLE that rely on sequential targeted learning.
The disadvantage of sequential learning is that the behavior of previous super-learners affects the behavior
of the next super-learners in the sequence, but the practical implementation of a sequential super-learner
can be significantly easier.

Our general theorems and specifically the theorems for our example demonstrate that the model bound
on the variance of the efficient influence curve heavily affects the stability of the TMLE, and that we can only
let this bound converge to infinity at a slow rate when the dimension of the data is large. Therefore, knowing
this bound instead of enforcing it in a data adaptive manner is crucial for good behavior of these efficient
estimators. This is also evident from the well known finite sample behavior of various efficient estimators
in causal inference and censored data models that almost always rely on using truncation of the treatment
and/or censoring mechanism. If one uses highly data adaptive estimators, even when the censoring or treat-
ment mechanism is bounded away from zero, the estimators of these nuisance parameters could easily get
very close to zero, so that truncation is crucial. Careful data adaptive selection of this truncation level is
therefore an important component in the definition of these efficient estimators.

Alternatively, one can define target parameters in such a way that their variance of the efficient influence
curve is uniformly bounded over the model (e.g., [32]). For example, in our example we could have defined
the target parameter EYy, — EYy,, where di(W) = I(G,(W) > 6) and do(W) = 1 - I((1 = Go(W) > 6), and
Gy is the super-learner of Go = Eo(A | W) and 8 > 0 is a user supplied constant. In this case, the static
interventions have been replaced by data dependent realistic dynamic interventions that approximate the
static interventions but are guaranteed to only carry out the intervention when there is enough support in the
data. Due to the fact that such parameters have a guaranteed amount of support in the data, the variance of
the efficient influence curve is uniformly bounded over the model: i.e. Mp« < oco.
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Appendix

A Oracle inequality for the cross-validation selector

Lemma 2 is a simple corollary of the following finite sample oracle inequality for cross-validation [11, 13],
combined with exploiting the convexity of the loss function allowing us to bring the Eg, inside the loss-based
dissimilarity.

Lemma 5. For any § > O, there exists a constant C(Miq,n, Mag,n, 6) = 2(1+ 6)*(QMiq,n/3 + M3, ,/6) such that

Eo{Es,dor(Q, (P 5,), Q0)} < (1+ 28)Eo{Es, min do(Qu(Pf,5,), Qo)}

log K
+2C(Mig.n, Magn, ) ogB In

n

Similarly, for any § > 0,
Ep,do1(Qiq, (P 5.), Qo) < (1+26)E, mkin do1(Qk(P) 5,), Qo)} + Rn,

where ERy < 2C(Mig,n, Magn, 6)" 551
n

Iflog Ki,/n divided by Ep, miny dm(ék(Pg’ Bn)’ Qo)} converges to zero in probability, then we also have

Ep,do1(Qx, (PQ, By’ Qo)
Eg, ming do1(Qx(PY 5 , Qo)

—

Similarly, if log Kin/n divided by EoEp, ming dm((i)k(Pg’Bn), Qo)} converges to zero, then we also have

EoEp, do1(Qx, (PO Qo)
EoEp, miny do1(ék(P2, By Qo)

—

B Super learner of Gy

Completely analogue to the super-learner eq. (23), we can define such a super-learner of Go, which we will
do here. Foran M ¢ ]R’;ZO, let Gy : Muonp = Gy © Fyu be the MLE for which doz(Gn,M = Gu(Pp), G{‘){l) =
Op(ré(n)). Let /Cy,n,v be an ordered collection of k,-dimensional constants, and consider the corresponding
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collection of candidate estimators Gy with M ¢ KCo,n,v- We assume the index set K, 5,y is increasing in n and
that lim sup,_, o, Mk, ,, = max(Mg,y, Mp,), ,,) Note that for all M € Ky, with M >|| Ly(Go) ||v, we have that

doz(GM(Pn) Go) = Op(n™2). In addition, let G] Muonp = Gn, j € Kana» be an addltlonal collection of Ky n,q

estimators of Go. This defines a collection of Ky, = Ky nv + Kz n,q candidate estimators {G;< k € Kon} of Go.
We define the cross-validation selector as the index

2n = kZ(Pn) = arg min EBnP}IB Ll(ék(P,(z)B ))
kekon En -En
that minimizes the cross-validated risk EBnPan(ék(PS,B,,)) over all choices k of candidate estimators. Our
proposed super-learner of Gy is defined by

Gn = G(P,) = Ep, Gy, (P ). @37

The same Lemma 2 applies to this estimator G(P,,) of Go.

Lemma 6. Recall the definition of the model bounds Mg n, Mag  €q. (18), and let C(My, M5, 8) = 2(1+6)*(2M;/3+
M3/6). For any fixed 6 > 0,

doa(Gn, Gon) < (1+26)Ep, kIEn’én doz(ék(Pg,Bn), Gon)
2n

log Kon )

+0p <C(MlG > Mo n, 6)

If for each fixed 6 > 0, C(Mi¢,n, MaG n, 6) l0g Kon/n divided by Eg, ming doz(Gk(P B, ), Gon) is op(1), then

d02(é(Pn), Gon)

= - -1= Op(l).
EBn ming dOZ(Gk(Pg,Bn)’ GOn)

If for a fixed 6 > 0, Ep, miny doz(Gk(POB )s Gon) = Op(C(My6,n, Mg n, 8) 10g Kan/1), then

a _ C(M ,M ,6 log K
O e

n

Suppose that for each fixed M the conditions of Lemma 1 hold with negligible numerical approximation
error ry, so that doz(Gn,M, GI(‘,/{,I) = Op(ré(n)). Let A, be chosen so that rza(n) = 0(n™™). For each fixed 6 > 0, we
have

(38)

log K
do(G(Pr), Gon) = Op(n ™) + Op (C(Mlan,Mzcn,s) g 2")

C Empirical process results

Theorem 2.1 in [18] establishes the following result for a Donsker class J;,, with uniformly bounded envelope
F,, and for which for each f € F,, Pof? < §°PF2:

6’fn
Euannﬂsna,ﬂ)(n J6, 7n) )||F||p0,

822 || Fy |lp,

where Gy(f) = n'2(P, — Po)f and

)
J(8, F») = sup / 10g(1+ N(e || Fy lln, Fus X(M))de
A 0
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is the entropy integral from O to 6. This definition of the entropy integral is slightly different from a common
definition in which the supremum over P is taken within the integral.

Suppose we want a bound on SUPfeFp, |1, <6 | Gu(f) |. Of course, || f ||p,< 6 is equivalent with || f ||p,<
61 || Fn |lp,» where 8; = 8/ || Fy | p,. Application of the above result with this choice of § = &, yields:

(39)

Esup | GalP) IS/ || Fa llpys F) (1+ o

](5/ || Fn ||P()a ffl) ” Fn ”Po) ” F ||P
o g -
feFulflpy<8 ’

Suppose that sup, 10g"2(1+ N(€ || Fn ||a, F, L2(A))) = O(e” ") for some a € (0, 1). Then,
J(8/ || Fn llpg> Fn) = O(6% || Fa |Ipg)-
Thus, we have

E sup | Gu(f) 56" || Fn ||113;a 182212 | Fy, ”12{)2(1.
feFulflpy <6

Note that this is a decreasing function in || F, ||p,. Given a bound My, so that || F, |p,< My, a conservative
bound is obtained by replacing || Fy || p, by M.
This proves the following lemma.

Lemma 7. Consider F, with || Fy |py< My and sup, log"?(1+ N(e | Fy ||a, Fn» L2(A)) = O(e” 1) for some
a € (0,1). Then,

E sup | Gn(f) IS {ro(n)/ M }* M, + {ro(n)/Mn}Za—Zn—l/Z.
feFnlflpy<ro(n)

Ifro(n) < ™Y, one should select ro(n) = n~/

in the above right hand side, giving the bound:

E sup | Gn(f) IS {n_1/4/Mn}aMn + {Mn}2—2an—a/2'
feFn,|Ifllpy <ro(n)

Consider eq. (39) again, but suppose now that sup, N(e || Fp |la, Fn, L2(A)) = O(e7P) for some p > 0.
Then,

8/||Fnllp,
T/ || Fu llpgs o) = 0 / * Jog"? el de.

0

We can conservatively bound log!?

Thus, we have the bound

€' by loge™! for € small enough, and then note fg log ede = x(1 - log x).

J8/ || Fu lpgs Fn) = O || Fu |5 (1=10g(8/ || Fa llpy))-
By plugging this latter bound into eq. (39) we obtain

E  sup | Ga(f) 5 61 —10g(8/ || Fu |[py)) + (1 ~108(8/ || Fn I|py))n 2.
feFnlfllpy <6

Note that the right-hand side is increasing in || F, ||p,. So if we know that || F, ||p,< My for some M,, we
obtain the bound

E  sup | Gu(f) IS 6(1 - 10g(6/Mp)) + (1 - log(8/My))*n~ 2.
feFnlflpy<6
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Lemma 8. Consider F, with || Fy | py< Myn and sup, N(€ || Fn llA» Frn, L2(A))) = O(e7P) for some p > 0. Then,

2
E sup | Gr(f) |S ro(n) (1 - log ro(n)> + (1 - log M) n 2,
feFn, I lpg <ro(m) M,

M, (40)

n

The following lemma is proved by first applying the Lemma 7 to (P, — Po)f, with ro(n) = 1 to obtain an
initial rate ro(n), and then applying the above lemma again with this new initial rate ry(n).

Lemma 9. Consider the following setting:

fn € Fn, || Fn ||P0§ My,

supy log (1 + N(e || Fy |[a, Fn» L2(N))) = O(e 9), a € (0, 1),
dO(Q)’b QO) S' (Pn - PO)fn |’

| fr lpo< Man{do(Qn, Qo)}?
1< Mn s nl/([‘(l_a)).

Then

do(Qn, Qo) s 1P C(My, Moy, @),

where

C(My, Moy, @) = MM AP0 4 pralippaippie?,

n

Proof: We have do(Qp, Qo) <| (P, — Po)fy |. We apply Lemma 7 to the right-hand side with ro(n) = 1. This
yields

E| (Pn - PO)fn IS n_l/zMrll_a + Mﬁ—Zan—l.

This shows do(Qn, Qo) < n2MI® + M2 271, Using that \/X+y < /X + /y, this implies do(Qn, Q0)"? <
n VA2 M}-%n~12, By assumption, this implies

| fu llpgs n 4 MonMS2 + Mo ML A

The right-hand side is of order n™ "My, M if M, < n!/“0-a)_ which holds by assumption. Let ro(n) =

n‘l/“MZnMﬁ,l_“)/ 2, We now apply Lemma 7 to (P, — Po)f, with this choice of ry(n). Note ro(n) converges to zero
at slower rate (or equal than) n="/. Thus, application of Lemma 7 gives the following bound:

E | (P~ Po)fy IS nPro(n)*My @ + ro(n)* My 2*n”!
< n—l/2n—a/4MgnM’11—lX/2—lX2/2 ¥ n—1/2(l+a)M%g—2M}l—a2 )

We can factor out n~12n"%/  giving the bound

< pi2p-als [ M, M:l—a/Z—az/Z T M%f,_z M)11—a2} )
This completes the proof of the lemma. o
The following lemma is needed in the analysis of the CV-TMLE, where f, ¢ = D*(Qn,p,,,e> Gn,8,) —~D*(Qo, Go).

Lemma 10. Let fy ¢, € Fn = {fue : €} where € varies over a bounded set in RP and fy, ¢ is a non-random function
(i.e., not based on data Oy, . . ., Op). Let F,, be the envelope of F,, and let My, be such that || Fy, ||< Mp+ n. Assume
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that supy N(e || Fp ||a, Fn, L*(A)) = O(e™P). Suppose that || fue, |l po= 0p(rp+(n)) for a rate rp=(n) — 0. Then,
Gn(fn,en) = Gn(fn,en) + Epn, where

Eo | Gu(fuye,) |= O (rp+(n)(1 - log(rp (n)/Mp ) ,

and E, equals O with probability tending to 1. Thus, if rp«(n) log(Mp+ »/rp<(n)) = 0(1), then Gu(fn,e,) = op(1).

Proof: For notational convenience, let’s denote f, ¢, with f,. We have that with probability tending to 1
|| fu llpo< rp+(n). We have fi, = ful(|| fa llpo< ro+(0)) + ful(|| fu llpy> Tp+(n)). Denote the first terIP with f,, and
note that the second term equals zero with probability tending to 1. This shows that G,(f,,) = Gy (f,) + E, where
E,, equals zero with probability tending to 1 while || f;, || po < rp+(n) with probability 1. Application of Lemma 8
shows that

E | Gn(fn) |5 rp+(n) 10g(Mp+ n/1p-(n)).
This completes the proof. O

D Implementing the HAL-estimator

For notational convenience, consider the case that Q, = Q. The M-specific HAL-estimator is defined for a
given M < oo vector, by minimizing P,L1(Q) over all Q ¢ Q for which the variation norm of L;(Q) is bounded
by this M. We need to calculate this estimator for a series of M-vectors ranging from O to infinity, and we will
then select M with cross-validation (see next section). Suppose that, for a fixed n, there exists an My, € RM
so that forall Q € O, || L1(Q) |lv< My, || Q ||y. This is typically an assumption that is trivially satisfied. Then,
calculating this collection of M-specific HAL-estimators across a set of M-vectors can also be achieved by
computing an MLE of Q — P,L1(Q) over all Q € O with I Q lly< M, for a series of M-vectors. Therefore we
rephrase our goal as to compute a QnyM so that

PnLi(Qn) = min PyLi(Q) + 1y, (41)
QeQyr

where in this section we redefine Oy = {Q € O : I Q llv< M}, and ry, is a controlled small number. We will now
address a strategy for implementation of this MLE Qy, .

D.1 Approximating a function with variation norm M by a linear combination of indicator basis functions
with L -norm of the coefficient vector equal to M

Any cadlag function f € D[0, 7] with finite variation norm can be represented as follows:

F0-F0+ Y [ fladus,0.0).

sc{l,...,p} (0s,xs]

For each subset s of size | s |, consider a partitioning of (Os, 75] in | s |-dimensional cubes with width hy,.
Let’s denote these cubes with Ry, (j, s), where j is the index of the j-th cube and j runs over O(1/ RS cubes. Let
R, (s) be the index set, so that we can write (0s, 7] = UjeR (51 RAm (J, s). By definition of an integral, we have
f(x) = limp,, .0 fin(x), where

fn) = (G =FO) + > > @ B, s

scfl,...,.p} jeRpy (s)

B;m,j = f(Rn,,(j, 5)) is the measure f assigns to the cube Ry, (j, s), and q,')flm’j(x) = I(mp,,(j, s) < x;) is the indicator
that the midpoint my,, (j, s) of the cube Ry, (j, s) is smaller or equal than x;. By the dominated convergence
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theorem, it also follows that || fi,(f) = f |laA— O for any L>(A)-norm. Moreover, the variation norm of f is
approximated by the sum of the absolute values of all the coefficients ﬁim,]’:

I £ ll= lim f(0) + oY B

sc{l,....p} jeRpy, (5)

Let By denote the intercept f(0). Thus, we conclude that given a function f € F, , we can approximate it with
a finite linear combination f;,(f) of indicator basis functions ¢im,j plus an intercept By for which the L!-norm
of its coefficient vector (Bo, (ﬂ;m,j : j,s)) approximates the variation norm of f. The support points my,, (j, s)
could also be selected based on the data support {Oy, . .., O,}. Such a strategy is presented and implemented
for the HAL-estimator of a nonparametric regression in [22]. In the latter paper we select n support points for
each s-specific measure, possibly resulting in as many as n * 2¢-number of basis functions.

D.2 An approximation of the MLE over functions of bounded variation using L-penalization

For an M € R, let’s define

Foi=1 2o D PhniB, Z | Bhyj 1< M
S,)

sc{l,....p} jeRpy, (5)

as the collection of all these finite linear combinations of this collection of basis functions under the con-
straint that its L!-norm is bounded by M. Consider the case that the parameter space Q; for Qj(P), je{l,... , k}
is nonparametric, so that the MLE over Q_j’M = Fymof (_2,0 would correspond with minimizing over F, yr. Note
that this does not imply that the model M is nonparametric: for example, the data distribution could be para-
meterized in terms of unspecified functions (_2,- of dimension d;(j), j = 1, ..., ki, and unspecified functions f}j
of dimension d,(j),j =1, ..., k>.

The next lemma proves that we can approximate such an MLE over F, y for a loss function Llj(éj) by an
MLE over ]—';flM by selecting m large enough.

Lemma 11. Let M € R.( be given. Consider fy € F, u c DO, 7] so that for a loss function (0, f) — L(f)(0), we
have PoL(fo) = minser, ,, PoL(f). Assume that if fm € F,m converges pointwise to a f € Fyu on [0, ], then
L(fyn) converges pointwise to L(f) on a support of Py, including the support of the empirical distribution Py,. Let
fom € ]—";f’M be such that PoL(fo,m) = minfeleM PoL(f). We have Po(L(fo,m) — L(fo)) — 0 as hy, — O.

Consider now an f, € F, u so that P,L(f,) = miny. Fym P,L(f), and let fum € f;f‘M be such that PpL(fo,m) =
minféf;r’zM P,L(f). We have Py(L(fu,m) — L(fn)) — 0 as hy, — O.

Proof: We want to show that Po(L(fo,m) — L(fo)) = O as h,; — 0. By the approximation presented in the
previous section, since f, € F, u, we can find a sequence fg{ m € ]—"TM so that fék,m - fo as hy, — 0, pointwise
and in L?(Py) norm. By assumption and the dominated convergence theorem, this implies PoL(f5 ) — PoL(fo)
also converges to zero as h,, — 0. But, since fo , minimizes PoL(f) over all f ¢ f\TM’ we have

0 < PoL(fo,m) = PoL(fo) < PoL(fg,) = PoL(fo) = O,

which proves that PoL(fy ) — PoL(fs) — 0, as hy, — O.

We now want to show that P,(L(fy,m) — L(f,)) — O as hy,, — 0. Since f,, € F, y, we can find a sequence
from € Fhy so that f, — fn @s hm — 0, pointwise and in L%(P,)-norm.

Then, by assumption and the dominated convergence theorem, P,L(f;; ,,) — PnL(fn) also converges to zero
as hy, — 0. But, since f, , minimizes P,L(f) over all f € ]’V'f‘M, we have

0< PnL(fn,m) - PoL(fy) < PnL(f:,m) - PoL(fy) — 0,
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which proves that P,L(fy,m) — PnL(fy) — O, as hy, — 0.0

D.3 An approximation of the MLE over the subspace Oy by an MLE over an L;-constrained linear model

Above we defined a mapping from a function f € F, y into a linear combination fi,;(f) € }"TM of basis functions
for which the norm of the coefficient vector approximates the variation norm of f. The following lemma proves
in general that we can compute the MLE over Qy = OnZ,,  with the MLE over Q% = {Qn(Q) : Q € Qu}, which
is a collection of these linear combinations of the basis functions for which the L'-norm of the coefficient
vector is bounded by M. Note that QA”,} is typically not a submodel of Qy, but it is obtained by replacing each
element Q in Oy with its approximation Qn(Q).

Lemma 12. Assume that if Qn € F,y converges pointwise to a Q € F,y on [0, 7]%, then L1(Q,,) converges
pointwise to L1(Q) on a support of P, including the support of the empirical distribution P,. For an M € RN,
let Oy = On ]-‘ﬁ,} ={Q(P) : P € M, Q(P) € Fy,u} be all functions in the parameter space for Qo that have a
variation norm smaller than M < oo. Let O = {Qn(Q) : Q € Ou}, where Qu(Q) is defined above as the finite
dimensional linear combination of the basis functions {¢§lm’j : j, s} with coefficient vector {Bim,].(é) :j,sh

Consider a Qo € Qu so that PoLy(Qo.n) = ming. s PoL1(Q), and let éng e QM be such that PoLl((_)ng) =
min()eglr& PoLy(Q). Then, Po(h(éng) — Li(Qo,m)) — 0 as hy — 0.

Similarly, consider a Quu € Qu S0 that PaLi(Qna) = ming, Sy PoL1(Q), and let (_2;"’ 1w € O be such that
PyL1(Qyy) = mingegm PaL1(Q). Then, Pa(Ly(Qy; = L1(Qna)) — O as b — 0.

Proof: We want to show that Po(Ll((_)ng) - L(QO,M)) - 0 as h,, — 0. By the approximation presented
in the previous section, since (_QO,M e Fyum, we can find a sequence (_26"1;} € }"‘TM so that (_22)"1\’; — QO,M as
hm — 0, pointwise and in L?(Po) norm. By assumption and the dominated convergence theorem, this implies
PoLl((_ng;"Z) - PoLl(QO,M) also converges to zero as h,, — 0. But, since (_Qg ,; minimizes PoL1(Q) overall Q e QI’(,},
we have

0 < PoL1(Qf' ) — PoL1(Qom) < PoLi(QY ;) — PoLs(Qom) — O,

which proves that P0L1(éng) ~ PoL1(Qo.nm) — O, as hy, — 0.

We now want to show that Pn(Ll(Q;’fM) - L1(Qnm)) — O as hy — 0. Since Quu € Fyum, we can find a
sequence Qnm;[ € ]:\TM so that Qnm;/} — Q,,)M as h, — 0, pointwise and in L?(P,;)-norm.

Then, by assumption and the dominated convergence theorem, PnLl((_))’Zﬁ) - PnLl(Q,,,M) also converges
to zero as h,, — 0. But, since Qn’"  minimizes P,L1(Q) overall Q ¢ Qn’" > We have

0< PnLl(éZTM) - PnLl(én,M) < PnLl(Q:Z};}) - PnLl(én,M) -0,
which proves that PnLl(QmM) ~ PpL1(Quy) — 0, as hy, — 0.0

E Asingle updating step in TMLE suffices for approximately solving the efficient
influence curve equation

In this section we focus on the one-step TMLE, but the results can be straightforwardly generalized to the
one-step CV-TMLE.

The following lemma proves that for a local least favorable submodel with a 1-dimensional € and n~/4*-
consistent initial estimators, the one-step TMLE already solves P,D*(Qn,e,, Gn) = op(n"12) under some
regularity conditions.

Lemma 13. ¥ : M — Ris a pathwise differentiable parameter at P with canonical gradient D*(P), and assume
Y(P) = Y(Q(P)) and D*(P) = D*(Q(P), G(P)) for parameters Q : M — Q ={Q(P) : P e M}and G : M —
G = {G(P) : P € M}. Let Ry() be defined by ¥(P) — ¥(Py) = (P — Po)D*(P) + Ry(P, Py), and let Ry(P, Py) =
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R20((Q, G), (Qo, Go)). Suppose Qo = arg ming PoL(Q) for some loss function L(Q) and that, forany Q € Q and G ¢
G, {Qe : €} ¢ Q is a one dimensional parametric submodel through Q with L(Qe)’ o D*(Q, G). Let (Qy, Gy)

be an initial estimator of (Qg, Go), and consider the one-step TMLE ¥(Qj, en) with €, = arg ming P,L(Qp,c).
Let fu(€) = PuD*(Qn.e; Gn) and gn(€) = LP,L(Qne). Let f1(€) = “Lfn(€) and g} (€) = Lgn(e). Let €0 = 0.
Assume

fulen) = fn(0) +fn,(0)€n + OP(G%) and gy(en) = gn(0) + g;,(O)en + OP(E%);

ey = op(n™?);

{d%,D*(Qn,en’ Gp) - %L(Qn,en)}/ n'/ falls in a Py-Donsker class with probability tending to 1;

. Pﬂ}m@wm)iv@wﬁﬂ=mwﬁ @)
2
%{dumw ﬂu&@%mm%n
o 2oL 1(Qoey) = ~PoD*(BoHD" (PO} @3)

d2

IFL(Q(P)) = —10g pop) () for some density parameterization (Q, 1) — po,y, then (43) holds;
7=R20((Qo,e9» Go), (Qo, Go)) = 0

Then, PuD*(Qn,e,» Gn) = op(n~"?).

The first bullet point condition only assumes that the chosen least favorable submodel is smooth in €. The
second bullet point condition will be satisfied if the initial estimators Qn, G, converge to the true Qo, Go at
a rate faster than n~ V4. The third bullet condition will hold without n~4-scalar if the estimators Q,, G, have
uniformly bounded variation norm. Due to the scaling n~4, it could even allow that the variation norm grows
with sample size, again showing that this is a very weak condition. Conditions eq. (42) are expected to hold
if Qn, G, converge to Qo, Go at a rate n Y. Condition eq. (43) is a condition that holds for loss-functions that
can be represented as log-likelihood loss function, and is therefore again a natural condition for a local least
favorable submodel w.r.t. loss function L. Finally, consider the last bullet point condition. If this remainder
has a double robust form R,((Q, G), (Qo, Go)) = [(H1(Q) — H1(Qo))(H2(G) — H2(Go))dPy for some functionals
Hi, H,, then this condition holds. If the remainder is of the form Ry ((Q, G), (Qo, Go)) = [(H(Q) — H(Qo))*dPy,
then again this condition trivially holds. This shows that also the latter condition is a weak regularity condi-
tion.

Proof of Lemma: Firstly, by the fact that Q, ¢ has score D*(Qy, G,) at € = 0, it follows that f;,(0) = g,(0). We
also know that g,(e,) = 0, and we want to show that f,(e,) = op(n~/2). Let €y = 0. By the second order Tailor
expansion assumption for f;, g, at € = 0, we have

fulen) = fulen) — gnlen)
= fn(0) — gn(0) + en(f;; —g;)(o) + 0(52)

d d
= { deo —P,D*(Qy €0 Gn) - PnL(Qn 60)} + 0(62)

By assumption, €2 = op(n"'?), so that O(e2) = op(n~"/?). Thus, it remains to show

d a?
PniD*(Qn,eo; Gn) - Pnd 2

- 1/4
deo L(Qn eo) Op(n™").

By our Donsker class assumption, we have

d2

d k
(Pn - PO) {T%D (Qn,eo, Gn) d€2

L 1 eo)} It = (1),
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Thus, it remains to show

d . &> .
degFoD (Qneo» Gn) — Pod—eéL(Qn,eo) = Op(n™).

By assumptions eq. (42), we have that the left-hand side of last expression equals

d d?
—PoD*(Qo,¢y, Go) = Po——

L 0 -1/4 ,
des e (Qo,eo) + Op(n™")

so that it remains to show that the first term equals zero. By —PoD*(P) = W(P) — ¥(Py) — R2(P, Py), it follows
that
d

d d
dT:OPOD*(QO’eO’ Go) = —dTO‘I’(Qo,eO) + dTORz((Qo,eo, Go), (Qo, Go)).

By assumption we have %Rz((Qo,QO, Go), (Qo, Go)) = 0. By definition of the pathwise derivative at Py, we have
that the derivative W(Qo,c) = ¥(Po,¢) at € = 0 equals PoD*(Po){D*(Py)}'. Thus, we have shown

%POD*(QO,%, Go) = —PoD*(Po){D*(Py)}".

Thus, it remains to show eq. (43), which thus holds by assumption. Suppose that L(Q(P)) = —1log po(p), ) for
some density parameterization (Q,1) — pq,- Then L(Qo,c) = —108 Pqy .10~ Since {poq .o : €} is a correctly
specified parametric model, we have that the second derivative of —Pg log pq, .y, at € = 0 equals its informa-
tion matrix (i.e., covariance matrix of its score) Po & 108 pgy 1o {4 108 Py ..no} " @t € = 0. However, the latter
equals —PoD*(Po){D*(Py)}", which proves eq. (43). This completes the proof of f,(e,) = op(n~2). o

In the main article we have not proposed a 1-dimensional local least favorable submodel as in Lemma
13, even though our results are straightforwardly generalized to that case. Instead we proposed a k; + 1-
dimensional least favorable submodel that uses a 1-dimensional €(j) for updating Q;, foreachj=1,...,k +1.
We will now state the desired lemma for the one-step TMLE for such a submodel by application of the above
lemma across all j.

Lemma 14. Let ¥ : M — R be pathwise differentiable with canonical gradient D*(P) = D*(Q, G) and let ¥ (P) =
¥(Q(P)) for Q(P) = (Qi(P), ..., Q+1(P)). For a given Q, we define ¥q; : M — R by ¥q;(P) = ¥(Qj, Q;(P)),
j=1,...,k +1 Let Da].(P) = Da].(Q,-(P), Q-;(P), G(P)) be the efficient influence curve of ¥q; at P, and define
Ry,0,i(P, Po) = Ry,0,/((Q(P), G(P)), (Qo, Go)) by ¥ j(P) —¥q,j(Po) = (P—Po)Dy ;(P) + Ry,qj(P, Po),j = 1,..., ky + 1.
Here Q= (Qi: 1 #j,1€{1,..., K +1}). We have D*(P) = Y1 Dy (P).

QPp),j
Let Qq € Qn, Gy € Gy be a given initial estimator. Let {Qjn 5 : €()} ¢ Qjn be a submodel through Q;, at

€(j) = 0 and satisfying %@LU(Q]-,,,GU)) 0 = DBHJ(Qn, Gn),j=1,..., k1 + 1. Let {Qne : €} ¢ Oy be defined by

Qne = (an,e(j) :j=1,...,ki+1). Let €, = argmine PyL1(Qn,e), where PyL1(Qn,e) = (PnLlj(an,e(j)) Hj=1,.., k+1).
Let Q} = Qn,ey-
We wish to establish that P,D*(Qn,e,, Gn) = op(n~12), where

k1+1

PnD*(Qn,en; Gn) = Z P"D?)n,en J(an,en(j)x Q—jn,en, Gn)o
j=1

Foreachj=1,...,k +1, assume the following conditions:

1. Suppose that by application of the previous lemma to Wq,; : M — R, submodel {Qj,; : €(j)}, loss
function Lj(Q)), €,(j) = argmingg) PnL1j(Qjn,c()), and one-step TMLE Qjn,c, (), we establish its conclusion
PnD’én,j(Q]-n,en(,-), Q-jn, Gn) = op(n~2). For completeness, Lemma 15 below explicitly states these j specific
conditions of the previous lemma, which are sufficient for this conclusion.
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2. Let fyj = Dpy, Q3 Q-jn, Gn) = Dy, Q. Q%5 Gn), and assume (P — Po)fyj = op(n~12). For this to hold if
suffices to assume that Pofrfj —p 0andlimsup,_. ., || fuj lv< M a.e.

3. Let fyj1 = D’én’j(Qz, Gn) - DE;;,,'(Q;;’ Gn), and assume (Pn — Po)fyj1 = op(n~12). For this to hold if suffices to
assume that Pofrf].’1 —p 0Oandlimsup,_, ., || fuj1 lv< M a.e.

4. Ry,0,,i(((Q},, Q%55 Gn), (Qo, Go)) — Ra,0,,i(((Q}5 Q-jn), G (Qo, Go)) = op(n12);

5. Ry,03,/((Q}, Gn), (Qo, Go)) — R2,0,,i((Q} Gn), (Qo, Go)) = 0p(n™'2);

6. W0;,/(Q) ~ ¥0;,(Q) ~ {¥a,/(Q}) ~ ¥a,.i(Qo) | = op(n ).

Then, PoD*(Qn,e,, Gn) = op(n™2).

Lemma 15. Let fnj(e(j)) = PnDan’j(an,e(j)’ Q-jns Gp) and gnj(e(j)) = %@PnLlj(an,e(j))- Let frs](e(l)) = %(])fn](e(]))
and g},(e()) = 3%;8ni(€(). Let €o(j) = 0.
Assume the following conditions:
fnj(en(j)) = fnj(o) +fr/1j(0)€"(j) + OP(en(i)z) and gnj(en(j)) = gnj(o) + g;,j(o)en(j) + OP(G%(].));
€2(j) = op(n™2);
{ﬁ@Dsz(an,en(j), Q_inGn) - #Z)lej(Q}n,en(i))}/ n'* falls in a Po-Donsker class with probability tending to 1;
d

* . P . ) . _ -1/4
mpo {DQn’j(an,eo(j), Q—]n» Gn) DQnJ(QJO,eO(]), Q—]O, GO)] = OP(” )

N e

@ )
WPO {Ll](Q]n,eo(])) - Ll](QJO,eo(]))} _ OP(TI 1/4);

d? ) *
Py lej(QjO,eo(i)) = —PoD}, ;(Po)}{D}, j(Po)}". N
If L1j(Qi(P)) = ~10g poy(p) (p) for some density parameterization (Qj, n) — pay,y, then eq. (44) holds;
6. a7 R2.00/(Qo,eo (9 Q-jos Go), (Qo, Go)) = 0.

Then, PuD}, (Qjn.en(j)> Q-jns Gn) = 0p(n12).

Proof: This is an immediate application of Lemma 13. O

Proof of Lemma 14: Consider a 1-dimensional submodel {P, : €} ¢ M with score S. We have

4y(p,) = 49(Q.)
= %\P(Qle, covs Qgeie)
=0 4w, Qo).

By pathwise differentiability of ¥ at P the left-hand side equals PD*(P)S, while, by pathwise differentiability
of W at P, each j-specific term on the right-hand side equals PDB’).(P)S. This proves that

Jj=1 j=1

kq+1 ki+1
PD*(P)S = Y " PDy;(P)S = P IZ Daj(P)} S.

Since this holds for each S ¢ T(P) and Dg,].(P) e T(P) for all j, this implies D*(P) = Z}Ef ! D*é’].(P). This proves

the first statement of the lemma. This shows also that P,D*(Q}, G,) = Z]kjf ! PnDj, }.(Q;, Gn), so it suffices
to prove that P,,DZ* ].(Q;‘I, Gn) = op(n™2) for each j. In the lemma we assumed that we already established

PnD’[)nJ( ;.‘n, Q-jn, Gn) = op(n~12), by application of Lemma 15.
Firstly, we want to prove that Po{Df, (Q}, Q-jn, Gn) - Dgy (Q}, Q. Gn)} = op(n"12), which then shows

jn’ jn’ <-jn’

that PannJ.( %, Gn) = op(n™2). This term can be represented as Pyf,. We can write P,f, = (Py — Po)fn + Pof.
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By our first assumption, we have (P, — Po)f;, = op(1). So we now have to consider

Po{Dp, {Q3s Qjns Gn) = Dpy Q5> Q%5 G}

= ¥0,(Q}) — ¥0,,i(Qjo) + Ro,0,i(((Q;,, Q%5,)5 Gr), (Qo, Go))
“¥0,,i(Q5) + ¥0,,i(Qjo) — R2,0,,j(((Qj,, Qjn); Gn), (Qo, Go))

= R2,0,,j(((Q},, Q%35 Gn), (Qo, Go)) — Ra,q,,i(((Q} Qjn); Gn)s (Qo, Go)).

By assumption 2., the latter is op(n~%/2). This proves now that PaDy, (Q5, Gn) = op(n12).

We now want to prove that P,,{D’én,j(Qx,Gn) - D’a;yj(Q’,;,Gn)} = op(n™'?), so that we can conclude
PnDa,ﬁ’j(Q;j, Gn) = op(n?). Let f, = {DE"J(Q;‘I, Gy) - D’éﬁ’j(Q;, Gy)}, so that this term can be represented as
Pufy. We have Pufy = (Py — Po)fy + Pofy. By assumption 3., we have (P, — Po)fy = op(n~'/2). We now have to
consider

PolDy, (@} Gn) - Dy (5 G}
= \IIQ;‘,,](QJ*H) - \PQ;"I’I(Q]O) + Rz’Qr*uj((Q;'k" Gn)s (QO’ GO))
_\PQHJ(Q;;’[) + \I]Qn,](Q]O) - RZ,Qn,).((Q;’ Gn)’ (QO! GO))'

By assumption 4., we have Ryqx ,]-() —Ry,0,,;0 = op(n12), By assumption 5, the “second order W-difference” is
op(n12) as well. O



