
Palenstijn et al. Adv Struct Chem Imag (2016) 2:19
DOI 10.1186/s40679-016-0032-z

METHODOLOGY

A distributed ASTRA toolbox
Willem Jan Palenstijn1*  , Jeroen Bédorf1,2, Jan Sijbers3 and K. Joost Batenburg1,4

Abstract 

While iterative reconstruction algorithms for tomography have several advantages compared to standard backprojec-
tion methods, the adoption of such algorithms in large-scale imaging facilities is still limited, one of the key obstacles
being their high computational load. Although GPU-enabled computing clusters are, in principle, powerful enough
to carry out iterative reconstructions on large datasets in reasonable time, creating efficient distributed algorithms
has so far remained a complex task, requiring low-level programming to deal with memory management and
network communication. The ASTRA toolbox is a software toolbox that enables rapid development of GPU acceler-
ated tomography algorithms. It contains GPU implementations of forward and backprojection operations for many
scanning geometries, as well as a set of algorithms for iterative reconstruction. These algorithms are currently limited
to using GPUs in a single workstation. In this paper, we present an extension of the ASTRA toolbox and its Python
interface with implementations of forward projection, backprojection and the SIRT algorithm that can be distributed
over multiple GPUs and multiple workstations, as well as the tools to write distributed versions of custom reconstruc-
tion algorithms, to make processing larger datasets with ASTRA feasible. As a result, algorithms that are implemented
in a high-level conceptual script can run seamlessly on GPU-enabled computing clusters, up to 32 GPUs or more.
Our approach is not limited to slice-based reconstruction, facilitating a direct portability of algorithms coded for
parallel-beam synchrotron tomography to cone-beam laboratory tomography setups without making changes to the
reconstruction algorithm.

Keywords:  Tomography, Reconstruction, Distributed computation

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
In recent years, iterative reconstruction algorithms for
tomography have demonstrated promising results in
the ability to compute high-quality 3D images from less
data compared to the classical backprojection algorithms
[1–3]. Despite these results, the practical use of advanced
iterative algorithms for X-ray tomography, in both syn-
chrotron and laboratory settings, remains limited.

One of the key obstacles in the adoption of such
algorithms is the requirements that it imposes on the
hardware (computing and memory) and software (par-
allelization). Due to advances in modern X-ray cameras,
experimental datasets and their corresponding 3D recon-
structed volumes can easily occupy hundreds of giga-
bytes of computer memory. For classical backprojection
methods, it is trivial to partition both computation and

memory-usage into smaller portions that can each be
processed independently. The computations can there-
fore be carried out on a distributed computing system
(e.g. a large cluster) to reduce the computation time to
acceptable levels [4, 5]. For iterative methods, however,
such a decomposition is often not straightforward [6–8].

For single workstations, there are now many high-per-
formance implementations of both classical backprojec-
tion methods and iterative methods, often using graphics
processing units (GPUs), for both parallel and cone-beam
geometries [9–14].

The main constraint when applying iterative recon-
struction methods is that in many cases the full 3D vol-
ume must be loaded into computer memory at once
during the reconstruction, such that the basic operations
of forward projection (FP, computing the X-ray images
for the given 3D volume) and backprojection (BP, the
mathematical transpose of the forward projection) can
both be carried out efficiently.

Open Access

*Correspondence: Willem.Jan.Palenstijn@cwi.nl
1 CWI, Amsterdam, The Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0511-4763
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-016-0032-z&domain=pdf

Page 2 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

One notable exception to this memory requirement is
tomography in a strictly parallel-beam illumination set-
ting, using a single axis of rotation, which is common in
synchrotron imaging. In this setting, each slice of the 3D
volume is measured by a single row of the detector, allow-
ing the reconstruction to be carried out independently
for different slices. Although it is very powerful, this
approach also has strong limitations. In particular, (1)
small deviations from the ideal geometrical setup, such as
slightly divergent X-ray beams or a slight tilt of the rota-
tion axis, cannot be dealt with in slice-based algorithms;
(2) to exchange algorithms between a synchrotron setup
and the much more common cone-beam setups used in
non-synchrotron X-ray labs, the entire algorithm must
be recoded into a non-slice-based version; (3) many itera-
tive algorithms make use of prior information about the
object, which is often specified in 3D, thereby inducing
dependencies between the reconstructions of different
slices.

The problem of performing large-scale iterative
reconstructions on a distributed computing cluster is
illustrated in Figs. 1 and 2. Figure 1 shows how the com-
putations for a typical synchrotron tomography dataset
(single rotation axis, parallel-beam illumination) are dis-
tributed over multiple nodes in a computing cluster. Split-
ting the volumes into thick “slabs,” each consisting of a
stack of slices perpendicular to the rotation axis, the areas
on the detector influenced by the slabs are all disjoint.
This allows treating the slabs as independent volumes in
the reconstruction, where each node is responsible for
a specific part of the 3D volume (its slab) and a specific
part of the projection data. Figure 2 illustrates the situ-
ation for a circular cone-beam acquisition scheme. Due
to the divergence of the beam, each line from source to
detector intersects with multiple slices perpendicular

to the beam. As a result, the areas on the detector that
are influenced by each slab are overlapping. To perform
a forward projection (computing the projections of a
given 3D volume) where each node is responsible for one
slab, the computational results for adjacent slabs have to
be merged to form the projections in these overlapping
regions. This introduces the need for network communi-
cation between the nodes, which is typically much slower
than memory access within the nodes. Moreover, such
communication typically requires low-level network pro-
gramming using the message-passing interface (MPI) or
other message-passing libraries, which can turn elegant
high-level implementations of reconstruction algorithms
into technically complex programmes that are tied to
particular computing architectures.

Our goal for the work presented here is to create a soft-
ware platform that allows for easy implementation of
advanced reconstruction algorithms in a non-slice-based
setting, that is scalable from a single workstation to a
medium-sized computing cluster. By focusing on a more
generic geometry model, our approach can alleviate all
of the drawbacks of a slice-based approach mentioned
above: (1) it provides the ability to perform large-scale
(up to a TB of data size or more) reconstructions that can
be used in both parallel-beam and circular cone-beam
setups; (2) it allows for the implementation of spatial pri-
ors that exploit the 3D dependencies between the infor-
mation present in consecutive slices.

Our platform is an extension to the ASTRA toolbox
[15], a toolbox for rapid implementation of advanced
tomography algorithms that offers a high-level math-
ematical syntax for expressing the algorithms, while
performing the basic computational operations using an
optimized parallel GPU-implementation. The ASTRA
toolbox offers a high degree of geometrical flexibility,

Fig. 1  Parallel-beam projection of two volume slabs. It shows a parallel-beam projection of the cubic volume in the centre on the detector plane
on the right. Two slabs in the volume are outlined in black, and indicated by North-West (NW) diagonal patterns and North-East (NE) diagonal pat-
terns. The projections of these two slabs are correspondingly patterned with NW respectively NE diagonals, and do not overlap

Page 3 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

making it possible to use the same algorithms for differ-
ent geometrical setups [16, 17]. Without our new exten-
sion, the ASTRA toolbox is limited to the processing of
3D volumes that fit fully into the available system mem-
ory of a single workstation. Our distributed computing
extension makes it possible to use the same high-level
model for specifying algorithms, while the algorithm can
be carried out in a distributed computing environment,
with limited overhead for communication between the
compute nodes.

A key challenge in the design of such a distributed
computing framework is hiding the details of comput-
ing and memory synchronization for the user. We use
Python as the language for specifying the reconstruc-
tion algorithms. By using the capabilities of the Python
language for code serialization and remote execution,
the user can provide a single algorithm implementation
that looks almost identical to a standard single-node
algorithm. Operations performed on large volumes are
carried out by the individual nodes without the need
for unnecessary expensive data-communication. The
forward and backprojection operations, which are usu-
ally the most time-consuming, are also carried out in a
distributed way, synchronizing only the memory over-
lap between detector regions that reside on different
nodes.

This paper is structured as follows: In “Methods” sec-
tion, we describe our approach for distributing both
the 3D volume data and the projection data across mul-
tiple nodes in a cluster, where each node is responsible

for processing only part of the data. We then describe
the various operations that are supported in our frame-
work: Forward projection, backprojection, and voxel-
based operations on the 3D volume. “Usage” section
then covers the high-level usage of our platform and
illustrates its use by a concrete example, where the
CGLS algorithm is combined with a smoothness prior
in the volume domain. In “Results” section, we pre-
sent timing results that demonstrate the scalability of
our approach, report on the subtle differences that can
arise between the results of a distributed reconstruc-
tion as compared to a reconstruction on a single node,
and show reconstructions of both simulated and exper-
imental data, followed by “Discussion and conclusions”
section.

Methods
To facilitate re-use of code, and hide as many distributed
programming details as possible, we have chosen to keep
the interface similar to single-node usage of ASTRA. We
have therefore made distributed ASTRA still execute a
single Python script on a single master node. The ASTRA
functions called by this script then internally manage the
other nodes and distribute the work to these nodes. For
the communication between nodes we use MPI. In this
section, we describe the distributed operations in more
detail.
First, we summarize the use of the ASTRA toolbox from
Python on a single node here. As we illustrate in Fig. 3,
both input and output data are stored internally in data

Fig. 2  Cone-beam projection of two volume slabs. It shows a cone-beam projection of the cubic volume in the centre on the detector plane on
the right. Two slabs in the volume are outlined in black, and indicated by North-West (NW) diagonal patterns and North-East (NE) diagonal patterns.
The projections of these two slabs are correspondingly patterned with NW, respectively, NE diagonals. The solidly filled area shows where the projec-
tions of the two slabs overlap

Page 4 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

objects, as single precision floating point. These come in
two types: projection data, and volume data. Associated
to these objects are, respectively, a projection geometry
and a volume geometry. These describe the geometry
of the experimental setup, with the position and move-
ment of the X-ray source (or the direction of the rays),
the number and size of pixels in the detector, and the
number and size of voxels in the reconstruction volume.
On these data objects, users can call algorithms, such as
the Forward Projection or Backprojection operators, or
reconstruction algorithms including, but not limited to,
filtered backprojection (FBP), Feldkamp-Davis-Kress
(FDK), and the simultaneous iterative reconstruction
technique (SIRT). These concepts and functions are dem-
onstrated in the sample Python code in Table 1.

Distribution of data
To go beyond the use of a single node, we have to dis-
tribute the data objects over multiple nodes. For this

distribution, we make a distinction between volume data
and projection data. For efficiency reasons, we assume
that we have a setup that approximately rotates around
the z-axis, with either a rotating sample or rotating
source and detector.

Suppose we have N nodes. First of all, we split the vol-
ume into N independent sub-volume blocks of approxi-
mately equal size, where each node is assigned as a
different set of slices orthogonal to the z-axis, which
we call a “slab.” Next, we compute for each such volume
slab the projection extent on the detector, combined
for the full range of projection angles; this is the region
of the detector that is affected by an FP of the slab (in
any projection direction), or, equivalently, the region of
the detector that affects a BP to the slab. Note that, the
detector regions corresponding to different volume slabs
can overlap, cf. Fig. 2.

Each node stores the data for its volume slab, and the
data for the corresponding detector region. In this way,

Algorithms:
Forward Projection
Backprojection
Reconstruction

Projection Data

Projection Geometry

Volume Data

Volume Geometry

Fig. 3  Relationships between the core ASTRA concepts

Table 1  Calling single-node GPU SIRT

Page 5 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

we store a limited amount of data on each node, while
also only requiring a limited amount of communication
between neighbouring nodes for the FP and BP opera-
tions, as we will describe in the subsection on these oper-
ations below.

Ghost cells
The domain decomposition splits the volumes such that
the amount of data in the nodes is minimized and each
node therefore only holds the data that are necessary for
the FP and BP operations. However, certain operations,
such as computing gradients, or applying image filters,
require information from (usually a small set of) neigh-
bouring voxels. When all voxels are in the same memory
buffer, this is not a problem and the required data can
be read directly. However, when the neighbouring vox-
els are stored in the memory of another node, this would
no longer be possible. To enable the execution of these
operations, we have the option to make the domains, as
computed by our domain decomposition, slightly larger
than otherwise strictly necessary. These extra slices
which overlap with neighbouring nodes, we call ghost
cells. They are automatically synchronized after FP and
BP operations.

The addition of ghost cells allows users to execute their
multi-voxel operations as before, without having to worry
about the fact that they are applied to a subset of the full
dataset. The toolbox contains utility functions to auto-
matically select the unique subset within the local volume
in case the user has to perform operations on unique ele-
ments only (e.g. compute a norm or inner product).

Forward projection and backprojection
Computing the result of an FP operation on the over-
lapping regions on the detector requires volume data
from multiple nodes. Since FP as modelled by ASTRA
is a linear operation, we can perform the FP opera-
tion for each node separately, and afterwards sum the
results in the overlapping detector regions by exchang-
ing data between nodes. This is achieved using the
overlap configuration computed during the domain
decomposition. These overlapping slices are exchanged
with the neighbouring processes, and the overlapping
detector regions are combined. By exactly computing
the domain extents, we minimize the amount of data
that have to be exchanged, while ensuring that after-
wards, each node has a consistent and correct copy of
its detector region.
For the backprojection operation, each node locally
stores the part of the detector data needed to perform a
BP operation, so this can be performed locally and inde-
pendently on each node.

Other operations
All iterative reconstruction algorithms need intermediate
operations apart from the FP and BP steps. These include
(but are not limited to) basic arithmetic on the data vol-
umes, image filtering steps such as blurring or computing
gradients, reduction operations such as norms or inner
products, and reading and writing data to disc.

Some of these operations are available directly using
utility functions provided by the ASTRA toolbox, a num-
ber of which are shown below in “Usage” section. Oth-
ers can be implemented using a provided general method
to execute a custom written Python function across all
nodes. With this functionality, the user can perform cus-
tom operations on the distributed dataset, thereby taking
full advantage of the extra available computation power
when using multiple nodes.

Using Python’s functionality to serialize code, the user-
supplied custom function is sent from the master script
to all nodes, and executed on each node. There, the func-
tion can access the local data on each node, and perform
the required functions on that data.

The user-supplied function can choose to either pro-
cess all local data on a node, or only to process data for
which the current node has the authoritative copy. This
last functionality can for example be used to compute dot
products, where it is important not to perform computa-
tions twice on overlapping regions. After any such opera-
tions, the ASTRA toolbox can synchronize all data on the
nodes again, to propagate any changes to the overlapping
regions.

In “Usage” section, we show two basic functions that
process distributed volumes in this way.

SIRT
We have extended the GPU implementation of the Simul-
taneous Iterative Reconstruction Technique (SIRT) [18]
in ASTRA to this MPI framework, using the distributed
FP and BP operations described above, and also perform-
ing all intermediate arithmetic directly on the GPUs.

During an iteration of SIRT, the only communication
between nodes takes place at the end of the FP operation
as described above. The BP operation requires no addi-
tional communication, and neither do all other arithme-
tic operations, which are performed locally on each node.

Usage
Launching code
The distributed code is integrated in the Python bindings
of the ASTRA toolbox, which allows near-transparent
use for the user of the distributed toolbox functions. All
the functions that handle data and execute functions have
been made MPI aware and will handle the distribution

Page 6 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

and gathering of data. This functionality is enabled by a
special launcher. This launcher programme will start cli-
ents on all nodes, and then executes the user’s script on
the master node. A launch could look as follows:

which performs the actual addition using NumPy arrays.
It takes ASTRA object IDs as input, and accesses the data
contained in the objects using the get_shared_local
function.

To execute this function on all the available processes,
the function mpi.run is called, with as arguments the
function to be distributed, and a list of parameters to be
passed to the function.

Finally, the last line could be used to synchronize
any overlapping regions. However, since the function
sumArrays keeps all data consistent, there is no need to
call that in this specific example.

Certain operations should solely be executed on unique
data. For example, when computing the inner product of
a volume the overlapping regions of the volumes should
not be included. The content of these regions is available
on multiple processes and would therefore be added mul-
tiple times. To exclude this overlap in the computations
there is a function that selects the data for which the
current node has the authoritative copy, which we refer
to as the slices that the current node is responsible for.
The usage of this function is presented in Table 4 using
a simple sum example. The function reduceExample
calls getObjectResponsibleSlices to obtain the
necessary subset of the data, sums this, and returns the

Table 2  Calling distributed SIRT

This will use four nodes to run a script called recon-
struction.py written by the user. As mentioned
before, the user script itself is executed only on a single
master node, but supported ASTRA calls will use all four
nodes.

A distributed version of the non-distributed script
given before in Table 1 is presented in Table 2. It differs
from the single-node script only in the single line calling
mpi.create that enables the distributed functionality
when combined with mpirun and toolbox.py.

User‑supplied functions
We present two examples, Tables 3 and 4, to illustrate the
functionality to run user-supplied functions on distrib-
uted data volumes.

The first example, Table 3, adds two data volumes
(pointwise) and stores the sum in a third data volume.
This is implemented by a function called sumArrays

mpirun −np 4 . / too lbox . py −−s c r i p t r e c on s t r u c t i on . py

Page 7 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

partial local sum. The function mpi.run returns a list
containing these partial local sums from all nodes, and
we sum these values to obtain the full sum of the data
volume.

A sample reconstruction algorithm
Finally, we show an implementation of a full iterative
reconstruction algorithm using the distributed function-
ality of ASTRA presented in this paper.

We make no claims here on the suitability of this algo-
rithm for reconstruction of specific projection datasets,
but use it to illustrate a set of operations used in many
algorithms.

Writing x for an (unknown) volume (in vector form),
p for the measured projection data (also in vector form),
and W for the tomographic system matrix, a basic alge-
braic formulation for the tomography problem is given by

To this, we add a regularization term with the ℓ2-norm
of the discrete gradient (Sobolev prior) of the image,
denoted by ||∇x||2, and with �2 as the weight of this term:

min
x

||Wx − p||22.

Since both W and ∇ are linear operations, we can stack
these operators into a single operator to obtain

Our sample script in Table 5 implements the conjugate
gradients least-squares (CGLS) algorithm [19] for this

stacked operator, which we denote by A =

(

W
�∇

)

.
It calls the FP and BP operators (corresponding to

multiplication with W and WT , respectively) using the
ASTRA functions create_sino3d_gpu and cre-
ate_backprojection3d_gpu. It also calls utility
functions grad3 and grad3_adj to perform the ∇ and
∇T operations, respectively.

The function dot is used to compute inner products,
and finally, the script uses the linear_combination
utility function to compute various linear combinations
of pairs of vectors, as described in the comments in the
script.

min
x

||Wx − p||22 + �
2||∇x||22.

||Wx − p||22 + �
2||∇x||22 =

∣

∣

∣

∣

∣

∣

∣

∣

(

W
�∇

)

x −

(

p
0

)
∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

Table 3  Running a custom function on distributed data objects

Table 4  Running a custom reduction function on distributed data objects

Page 8 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

In “Results” section below, we show sample reconstruc-
tions and timings for this implementation.

Results
To demonstrate the MPI implementation of ASTRA
described in this paper is able to produce proper recon-
structions of real-world tomographic data, we have run

150 iterations of the SIRT algorithm on projection data
of an alginate/hydroxyapatite bone tissue engineer-
ing scaffold [20]. The data consist of 1800 projections of
2005× 1335 with a cone angle of approximately 15.8◦ ,
and the reconstruction volume is 1984 × 1984 × 1332.
We used 20 GPUs for this reconstruction. A representa-
tive slice of the reconstructed volume is shown in Fig. 4.

Table 5  ASTRA/MPI implementation of CGLS with Sobolev regularization

Page 9 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

To further validate the MPI implementation, we have
compared the results of multi-node runs of the FP, BP
and SIRT (50 iterations) functions against the existing
single-node implementations in ASTRA. We have used a
512

3 volume with 180 projections of 5122 for this, and 2,
3, 4, and 16 nodes.

The results are summarized in Table 6. As expected, the
parallel-beam results are identical (to full machine pre-
cision), as there is no need for communication between
nodes. For cone beam, there are small differences. These
are caused by small numerical inaccuracies during the
tracing of rays, which differ between tracing through the
subvolume on each individual node compared to tracing
through the full volume. However, the differences are iso-
lated, and the average error remains very small.

In this section, we also show how the performance
of three different methods scales with volume size
and number of used nodes: a single FP (including the
required communication), a single BP and the SIRT
reconstruction algorithm. Each SIRT iteration consists
of an FP (including communication), a BP, and auxiliary
functions required for the reconstruction algorithm. For
SIRT, we present the average time of a single iteration.
With these methods, we have performed three differ-
ent experiments. In the first experiment, we tested the
multi-node scaling on a fixed sized volume using 1 to 21
GPUs. In the second experiment, we scale the volume
size from 256 to 2048 and measured the time that each
method takes using 4, 8, 16, and 21 GPUs. In the third
experiment, we use a different cluster (with more nodes)
to determine how the distribution of GPUs over nodes
affects performance.

For all computational experiments, we used a cubic
reconstruction volume of size N 3, with N projections with
a square detector of size N 2. For the cone-beam experi-
ments, we have used a cone angle of approximately 7.8◦.

The cluster we used for the first two experiments con-
sists of three servers, connected using 100 Gbit EDR
Infiniband cards and an EDR Infiniband router. Each
server has an Intel Xeon E5-2698 CPU, 128 GB of RAM
and contains 7 Titan X (Maxwell) GPUs from NVIDIA
with 12 GB of RAM each. For these tests, boost was disa-
bled and the GPUs were manually set to their maximum
supported clock speed. The CPU has two 16 lane PCIe
slots available. Since this is not enough for the available
devices, there are PCIe switches in between the PCIe
devices and the CPU. Each switch has 16 PCIe lanes to
the CPU and 64 lanes for the connected devices. The first
switch holds 4 GPUs, so if all these GPUs communicate
with the CPU at the same time, then this results in a 4:1
bottleneck. The second switch holds 3 GPUs and the
Infiniband card. The servers are running Ubuntu Linux
16.04, with CUDA 7.5, and gcc 4.8.4.

This cluster allows us to scale from 1 to 21 GPUs. We
always fill a single node before we add a second node. For
example, with 7 GPUs a single machine is used, and with
8 GPUs two machines are used with 7 processes on the
first and 1 process on the second node.

The results of the first experiment are presented in
Fig. 5 (parallel beam) and Fig. 6 (cone beam), for the
case N = 1024. On the horizontal axis, we indicate the
number of GPUs and on the vertical axis the time it takes
to complete one BP (solid line), FP (dashed line) or one
SIRT (dotted line) iteration.

For parallel beam, everything scales linearly as there is
nearly no communication overhead.

For cone beam, the BP scales nearly linearly from 1 to
21 GPUs as there is no communication required and the

Fig. 4  SIRT reconstruction of tissue engineering scaffold. Recon-
struction with 150 iterations of SIRT on 20 GPUs of an alginate/
hydroxyapatite bone tissue engineering scaffold. Courtesy of Dr.
Francesco Brun and Dr. Gianluca Turco, University of Trieste, Italy

Table 6  Comparison of multi-node with single-node
results

Reported is the normalized root mean squared error (NRMSE), the square root of
the mean squared error divided by the maximum value of the reference output

2 Nodes 3 Nodes 4 Nodes 16 Nodes

Parallel FP 0 0 0 0

Parallel BP 0 0 0 0

Parallel SIRT 0 0 0 0

Cone FP 5.7e−6 5.5e−6 5.6e−6 5.8e−6

Cone BP 3.7e−7 3.6e−7 3.8e−7 3.8e−7

Cone SIRT 2.3e−6 2.4e−6 2.4e−6 2.4e−6

Page 10 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

sub-volumes are large enough to saturate the GPU. For
the FP the scaling is affected by network communication.
We can see that the scaling is less ideal than that of the
BP. But although the network communication negatively
impacts the scaling, the execution time keeps decreasing
when more GPUs are added. The SIRT iteration, which
consists of both an FP, BP, network communication and
host operations, also benefits from using more GPUs and

continues to scale. As with the FP operation, we see the
influence of network communication, but here the effect
of adding GPUs becomes negligible when using 16 GPUs.
With 17 or more GPUs, we hardly see any improvement
in the execution time as it is dominated by the commu-
nication time. The more GPUs are used, the smaller the
blocks per GPU and the lower the computation time, but
the number of slices that overlap will form a larger frac-
tion of the total block size on a GPU. So with more GPUs,
we have to exchange relatively more data with more
neighbours while the GPU has less data to process. If we
were to increase the number of GPUs further beyond 21,
we expect the total runtime will start to increase for this
volume size.

In Figs. 7 (parallel beam) and 8 (cone beam), we present
the results of the second experiment. Each of the three
panels shows a different operation; BP in the top, FP in
the middle and SIRT in the bottom panel. For each, we
present the execution time for N = 256 up to N = 2048
using the four different GPU configurations. Ignoring
communication, it is expected that doubling N results
roughly in a 16× increase in execution time. The lines for
the BP match this approximately, since there is no need
for communication there. For FP and SIRT, communica-
tion time becomes a smaller fraction of total execution
time when the volume size increases.

For the third experiment, we have used a cluster of
eight machines, each with two Intel Xeon E5-2630 CPUs,
128 GB of memory (except for the master node, which
has 256 GB), and four Titan X (Maxwell) GPUs from

Fig. 7  Parallel-beam performance for different volume sizes. Perfor-
mance scaling of parallel-beam BP, FP and SIRT routines over a range
of volume sizes. Presented is the time required, in seconds, to execute
a single BP (top panel), single FP (bottom panel) and single SIRT itera-
tion (middle panel). We increase the volume size from 2563 to 20483

. For a volume size of N3, the detector size is N2, and N projections are
used. Missing data points are due to not enough total GPU memory

Fig. 6  Cone-beam performance for different GPU counts. Perfor-
mance scaling of cone-beam BP, FP and SIRT routines from 1 to 21
GPUs. Presented is the time required, in seconds, to execute a single
BP (solid line, square), single FP (dashed line, circle) and single SIRT
iteration (dotted line, triangle). Missing data points are due to not
enough total GPU memory

Fig. 5  Parallel-beam performance for different GPU counts. Perfor-
mance scaling of parallel-beam BP, FP and SIRT routines from 1 to
21 GPUs. Presented is the time required, in seconds, to execute a
single BP (solid line, square), single FP (dashed line, circle) and single
SIRT iteration (dotted line, triangle). Missing data points are due to not
enough total GPU memory

Page 11 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

NVIDIA with 12 GB of RAM each. These machines are
connected with a Gbit ethernet network (i.e. no Infini-
band). They are running Fedora Linux 24, with CUDA
8.0, and gcc 5.4.0.

In Fig. 9, we present the results. They are divided into
three configurations. All of these use a volume of N 3 and

N projections of size N 2. The configurations are paral-
lel beam with N = 1024, cone beam with N = 1024 ,
and cone beam with N = 1536. As before, the cone
angle is approximately 7.8◦. For each configuration, we
have varied the number of GPUs, and distributed these
GPUs over the hosts in two different ways: either filling
up a host completely before moving to the next one as
in the first two experiments (labelled “max GPUs/host”
in the figure), or using as few GPUs per host as possi-
ble (labelled “min GPUs/host”). Additionally, the points
labelled “without communication” show the time spent
on computation without communication between GPUs,
which we have determined by disabling the exchange of
overlapping regions in the MPI SIRT implementation
described. The jump observed between 11 and 12 GPUs
with the 15363 cone-beam configuration is due to the fact
that with 12 GPUs, all temporary volumes used by SIRT
fit entirely in the available GPU memory. With fewer
GPUs, temporary volumes are stored in host memory,
and computations other than FP and BP are performed
by the CPU. (This is not an issue for the 10243 volumes.)
Clustering as many GPUs together as possible leads to
higher performance on this cluster since fewer commu-
nication channels traverse the network. When compared
to the first experiment, the effect of the slower network of
this cluster can be seen.

Finally, in Fig. 10, we show slices from three reconstruc-
tions using the Sobolev–regularized CGLS algorithm
implemented in Table 6. We have simulated projection
data consisting of 180 projection of 10242 pixels of a 3D
variant of the Shepp-Logan phantom, with a fairly high
level of Poisson noise. We have run 100 iterations, using a
reconstruction volume of 10243 voxels, with the Sobolev
term weighted with three different weights: � = 0, 10 and
100. The figure shows the central slices of these three
reconstructions. The effect of a stronger weight on the
Sobolev term is clearly visible.

To show the scaling of performance, we have run this
algorithm on a larger dataset of 1024 projections of 10242
on 1–21 GPUs. The average time per iteration is shown
in Fig. 11.

Discussion and conclusions
In this paper, we have presented the Distributed ASTRA
toolbox, which offers computational building blocks for
implementing tomography algorithms that are scalable
from a single GPU-equipped workstation to a moderately
sized cluster of GPU-equipped nodes. Our work extends
the functionality of the existing ASTRA Tomography
toolbox by allowing efficient reconstructions of volumes
that do not fit in the memory of a single GPU, on either
a single node or using multiple nodes of a GPU clus-
ter. We have shown that the method scales to at least a

Fig. 9  Effects of distribution of GPUs over nodes. Performance scal-
ing of SIRT routines over a range of GPU counts on a cluster of 8 hosts
with 4 GPUs each, with two different ways of distributing the GPUs
over hosts: with “max GPUs/host” we cluster the GPUs as much as
possible on hosts, while with “min GPUs/host” we use as few GPUs per
host as possible. The time “without communication” is the time spent
on actual computation, with communication between nodes disa-
bled. The volume size is N3, the detector size is N2, and N projections
are used. The time shown is the time for a single SIRT iteration

Fig. 8  Cone-beam performance for different volume sizes. Perfor-
mance scaling of cone-beam BP, FP and SIRT routines over a range of
volume sizes. Presented is the time required, in seconds, to execute a
single BP (top panel), single FP (bottom panel) and single SIRT iteration
(middle panel). We increase the volume size from 2563 to 20483. For a
volume size of N3, the detector size is N2, and N projections are used.
Missing data points are due to not enough total GPU memory

Page 12 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

volume size of N = 2048 using 21 GPUs. Similar to the
current operations implemented in the ASTRA toolbox,
our work will enable the rapid design and implementa-
tion of distributed advanced reconstruction algorithms,
using the distributed FP, BP and SIRT implementations
as building blocks.

Through its design, the distributed ASTRA tool-
box allows implementing algorithms in Python using a
high-level syntax that is close to the formal mathemati-
cal algorithm description, while performing the distri-
bution of data and computation in a way that is almost
hidden from the user. By keeping the data on the individ-
ual nodes as much as possible and only exchanging the
parts of 3D volume and projection data at the boundaries
between the 3D slabs, communication between the nodes
is minimized.

The experiments from “Results” section indicate that
the implemented parallel distribution method scales well

Fig. 11  CGLS + Sobolev multi-node performance. Average execu-
tion time per iteration of the described CGLS+Sobolev algorithm,
with as input 1024 projections of size 10242 and an output volume of
1024

3

Fig. 10  CGLS + Sobolev reconstructions. Slices of reconstructions using the described CGLS + Sobolev algorithm, with Sobolev weights set to
0, 10, 100, from left to right. Below are magnified versions of a small region of the slices to more clearly see the effect on noise and features. The
projection data consisted of 180 simulated noisy cone-beam projections of 10242 pixels, with a reconstruction volume of 10243 voxels

Page 13 of 13Palenstijn et al. Adv Struct Chem Imag (2016) 2:19

for practical volume sizes and GPU counts. The larger the
volume, the more GPUs can be used before communica-
tion overhead prevents a speedup from adding additional
GPUs. Yet there is still room for improvement. In par-
ticular, better scaling might be achieved when perform-
ing the exchange of the overlap regions in parallel with
computation, rather than sequentially.

At present, our implementation is limited to single-
axis tomography acquisition schemes that are close to
the parallel-beam or circular cone-beam geometry, and
assumes a homogeneous cluster with similar GPUs and
nodes. For these configurations, a uniform slab-based
distribution of the data is highly appropriate. For more
general acquisition schemes however, such as helical
cone-beam acquisition and laminography, or for hetero-
geneous clusters, the way the data are distributed across
the nodes will have to be adapted to achieve reason-
able computational performance. Our current research
focuses on the development of more automatic ways of
performing the data distribution that can deal with more
general acquisition geometries.

Authors’ contributions
WJP, JB and KJB together wrote the manuscript; JB implemented the major-
ity of the MPI code, and WJP the majority of the GPU code. WJP and JB
implemented and ran the experiments. JS and KJB supervised the project. All
authors read and approved the final manuscript.

Author details
1 CWI, Amsterdam, The Netherlands. 2 Leiden Observatory, Universiteit
Leiden, Leiden, The Netherlands. 3 iMinds‑Vision Lab, Antwerp University,
Antwerp, Belgium. 4 Mathematisch Instituut, Universiteit Leiden, Leiden, The
Netherlands.

Acknowledgements
The authors are grateful to Dr. Francesco Brun and Dr. Gianluca Turco, Univer-
sity of Trieste, Italy for providing the tissue engineering scaffold data.

Competing interests
 The authors declare that they have no competing interests.

Availability of data and materials
 The Distributed ASTRA toolbox presented in this paper is available at http://
www.astra-toolbox.com/ . It runs on the Linux operating system, uses the
Python programming language, and is provided under the GNU GPLv3
license.

Funding
 This work was supported by the Netherlands Organisation for Scientific
Research NWO (Grants #612.071.305, #639.072.005 and #639.073.506) and EU
Horizon2020 RIA-FET-OPEN Grant #665207. Networking support was provided
by the EXTREMA COST Action MP1207.

Received: 13 September 2016 Accepted: 24 November 2016

References
	1.	 Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

	2.	 Batenburg, K.J., Sijbers, J.: DART: a practical reconstruction algorithm for
discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

	3.	 Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex
problems with applications to imaging. J. Math. Imaging Vis. 40(1),
120–145 (2011)

	4.	 Mirone, A., Brun, E., Gouillart, E., Tafforeau, P., Kieffer, J.: The PyHST2 hybrid
distributed code for high speed tomographic reconstruction with itera-
tive reconstruction and a priori knowledge capabilities. Nucl. Instrum.
Methods Phys. Res. B 324, 41–48 (2014)

	5.	 Pelt, D.M., Gürsoy, D., Palenstijn, W.J., Sijbers, J., De Carlo, F., Batenburg, K.J.:
Integration of TomoPy and the ASTRA toolbox for advanced processing
and reconstruction of tomographic synchrotron data. J. Synchrotron
Radiat. 23(3), 842–849 (2016)

	6.	 Benson, T.M., Gregor, J.: Framework for iterative cone-beam micro-CT
reconstruction. IEEE Trans. Nucl. Sci. 52(5), 1335–1340 (2005)

	7.	 Gregor, J.: Distributed CPU multi-core implementation of SIRT with
vectorized matrix kernel for micro-CT. In: Proceedings of the 11th Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine (2011)

	8.	 Rosen, J.M., Wu, J., Fessler, J.A., Wenisch, T.F.: Iterative helical CT reconstruc-
tion in the cloud for ten dollars in five minutes. In: Proceedings of the
12th Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine (2013)

	9.	 Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: Performance improvements for
iterative electron tomography reconstruction using graphics processing
units (GPUs). J. Struct. Biol. 176(2), 250–253 (2011)

	10.	 Käseberg, M., Melnik, S., Keeve, E.: OpenCL accelerated multi-GPU cone-
beam reconstruction. In: Proceedings of the 12th International Meeting
on Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, pp. 477–480 (2013)

	11.	 Zinsser, T., Keck, B.: Systematic performance optimization of cone-beam
back-projection on the Kepler architecture. In: Proceedings of the 12th
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear
Medicine, pp. 225–228 (2013)

	12.	 Sørensen, H.H.B., Hansen, P.C.: Multicore performance of block algebraic
iterative reconstruction methods. SIAM J. Sci. Comput. 36(5), 524–546
(2014)

	13.	 Matenine, D., Goussard, Y., Després, P.: GPU-accelerated regularized
iterative reconstruction for few-view cone beam CT. Med. Phys. 42(4),
1505–1517 (2015)

	14.	 Shkarin, R., Ametova, E., Chilingaryan, S., Dritschler, T., Kopmann, A.,
Mirone, A., Shkarin, A., Vogelgesang, M., Tsapko, S.: GPU-optimized direct
Fourier method for on-line tomography. Fundam. Inform. 141(2–3),
245–258 (2015)

	15.	 The ASTRA Tomography Toolbox. http://www.astra-toolbox.com/ (2012).
Accessed 10 Sept 2016

	16.	 van Aarle, W., Palenstijn, W.J., De Beenhouwer, J., Altantzis, T., Bals, S.,
Batenburg, K.J., Sijbers, J.: The ASTRA toolbox: a platform for advanced
algorithm development in electron tomography. Ultramicroscopy 157,
35–47 (2015)

	17.	 van Aarle, W., Palenstijn, W.J., Cant, J., Janssens, E., Bleichrodt, F., Dabravol-
ski, A., De Beenhouwer, J., Batenburg, K.J., Sijbers, J.: Fast and flexible X-ray
tomography using the ASTRA toolbox. Opt. Express 24(22), 25129–25147
(2016)

	18.	 Gregor, J., Benson, T.M.: Computational analysis and improvement of SIRT.
IEEE Trans. Med. Imaging 27(7), 918–924 (2008)

	19.	 Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

	20.	 Brun, F., Turco, G., Accardo, A., Paoletti, S.: Automated quantitative charac-
terization of alginate/hydroxyapatite bone tissue engineering scaffolds
by means of micro-CT image analysis. J. Mater. Sci. Mater. Med. 22(12),
2617–2629 (2011)

http://www.astra-toolbox.com/
http://www.astra-toolbox.com/

	A distributed ASTRA toolbox
	Abstract
	Background
	Methods
	Distribution of data
	Ghost cells
	Forward projection and backprojection
	Other operations
	SIRT

	Usage
	Launching code
	User-supplied functions
	A sample reconstruction algorithm

	Results
	Discussion and conclusions
	Authors’ contributions
	References

