
Toward Self-Referential Autonomous Learning of Object
and Situation Models

Florian Damerow1
• Andreas Knoblauch2,3

• Ursula Körner3
• Julian Eggert3

•

Edgar Körner3

Received: 17 November 2014 / Accepted: 7 April 2016 / Published online: 27 April 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Most current approaches to scene understanding

lack the capability to adapt object and situation models to

behavioral needs not anticipated by the human system

designer. Here, we give a detailed description of a system

architecture for self-referential autonomous learning which

enables the refinement of object and situation models

during operation in order to optimize behavior. This

includes structural learning of hierarchical models for sit-

uations and behaviors that is triggered by a mismatch

between expected and actual action outcome. Besides

proposing architectural concepts, we also describe a first

implementation of our system within a simulated traffic

scenario to demonstrate the feasibility of our approach.

Keywords Self-referential control � Scene understanding �
Autonomous learning � Hierarchical situation model

Introduction

Scene understanding and situation recognition is an

important prerequisite for realizing intelligent mobile

support systems for humans, for example, driver assistance

systems or systems for autonomous driving [1–4]. Current

driver assistance systems provide comfort functions such as

lane keeping, pedestrian recognition, and cruise control

which have reasonably good performance because sensory

analysis is restricted to the recognition of a small set of

simple predefined object and situation templates (e.g., [5–

7]). However, when trying to perform the step from com-

fort functions toward autonomous behavior, the situation

complexity reaches a level, where hand constructed situa-

tion templates will fail, because they lack the capability to

adapt to behavioral needs not anticipated by the human

modeler of the template. For example, many current

approaches used in computer vision for situation under-

standing are mostly based on low-level sensory represen-

tation which are by principle not able to acquire relevant

information for behavior adaption [8–12] Other approaches

try a ‘‘full’’ semantic representation of the scene including

the recognition of all visible objects and situations for

which a template is available [13–15]. Such approaches

soon arrive at hard computational limits and generally do

not scale to real-world applications, because they neglect to

focus analysis on the most relevant items that are necessary

for making autonomous decisions and reaching behavioral

goals.

Thus, current systems seem to lack the capability to

adapt object and situation models adequately to the actual

behavioral needs defined by the situational context the

system is embodied in. To approach this problem, we have

worked out in the last years a brain-inspired cognitive

architecture for ‘‘self-referential’’ autonomous learning of
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hierarchical knowledge representations [16–19]. Key ele-

ments of our architecture are the acquisition of knowledge

based on behavioral needs and the reusability of parts of

the already acquired knowledge to explain new situations.

More specifically, acquisition or adaptation of object and

situation models is triggered by a mismatch between

actual behavioral outcome derived from the current sen-

sory input signals, and the expected outcome derived from

previously learned internal world models (cf., [20]).

Although this process is computationally expensive, our

system is able to at least partly automatize the process of

creating and adapting models for objects, situations and

behavior.

In this work, we give a detailed description of our

current implementation of the system architecture for self-

referential autonomous learning, which enables the

refinement of already-gathered knowledge by new expe-

rience to improve the system’s behavior. For example, our

architecture may enable a human designer to define the

system’s task by hand-engineering a corresponding high-

level behavioral model that includes situations and their

corresponding sensory representations, expected out-

comes of relevant actions, and a reward function on the

situation states to specify the goal of the task. Although

this hand-designed model is easily integrated into the

system’s concept ontology by making references to

already existing concepts, it will typically be incomplete

because the human designer will not be able to identify all

relevant model components for solving the task (not to

mention model parameters). Our system enables now the

refinement of the existing knowledge representations by

refining the object and situation models in parallel with

the agent’s behavior. That is, starting from a low-di-

mensional imprecise state space, the mechanism of self-

referential autonomous learning expands the situation

space according to behavioral needs. Due to the hierar-

chical knowledge organization, an iterative refinement of

both situation and behavioral models is possible. Our

work demonstrates how such a process can quickly

improve system performance.

The paper is organized as follows: Section 2 introduces

the basic concepts including the format of hierarchical

situation and action models, and a description of structural

learning for specializing or generalizing these models.

Then Section 3 describes the current implementation of our

architecture within the context of a simple simulated traffic

scenario, where a car agent learns to drive safely over a

zebra crossing. Section 4 shows corresponding simulation

results. Finally, Section 5 concludes and discusses our

approach in the context of possible applications and alter-

native approaches.

Basic Concepts

Scenes versus Situations

It is important to distinguish between the two terms

‘‘scene’’ and ‘‘situation’’: We define a scene as a set of

entities that give a rich, potentially complete, perceptual

description of the current sensory environment of the

subject. By contrast, we define a situation as a behaviorally

relevant state of a subject, closely related to action options

and outcomes.

We will give more precise definitions below, but want

to emphasize here that, according to our definitions, a

scene refers predominantly to the perceivable environ-

ment describing the circumfluent space. In contrast, a

situation is rather the task-driven interpretation of a scene

referring also to behavioral models, action outcomes, and

internal states of the subject such as intentions or goals. In

this view, a situation model mediates between perception

and action by defining behavioral relevant scene entities

necessary to recognize the situation as well as providing

necessary parameters for associated actions. While scenes

are potentially full descriptions of the perceptually sen-

sible entities in the external environment, situations

include only behaviorally relevant entities that are nec-

essary to recognize the situation and/or to initiate appro-

priate actions.

Such a distinction between ‘‘scene’’ and ‘‘situation’’ is

largely consistent with the etymologies of the two terms

and is as well reflected in brain structure. In fact, the brain

has separate centers for realizing a sensory ‘‘scene’’

memory in the retrosplenial and in the parahippocampal

cortex integrating currently processed objects within the

current spatial context [21–23], and another set of struc-

tures for realizing a ‘‘behavioral’’ working memory in the

frontal cortex and associated regions that integrate sen-

sory entities with the current situational context including

current goals, action options, and expected outcomes [24–

26].

Note that our idea of a situation differs from situation

calculus [27] as we cannot easily identify a situation with

a sequence of actions or a universal state. Unlike in

common Markov decision processes (MDPs) [28, 29] or

partially observable MDPs [30, 31], our idea of situations

corresponds to neither a fixed set of states nor observa-

tions, but rather assumes a more flexible dynamic

structure as we will see below in more detail. This

includes, for example, hierarchical organization and,

unlike many hierarchical MDP approaches [32], also

learning mechanisms for re-structuring by specialization

and generalization.
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Knowledge Representation

Hierarchy of Scene Entity Models

By scene entities, we denote elements of a scene such as

objects, situations, relations between other scene entities,

and spatial layouts being containers for other scene entities.

Each scene entity model specifies the process of sensory

recognition of the scene entity, for example, by defining

type and locations of relevant parts to attend to. All scene

entity models are included as nodes in a graphical structure

that we call hierarchical scene entity model. Basically, the

hierarchical scene entity model contains a has-parts

ontology and an is-a ontology. The former describes the

decomposition of a higher-level concept into several lower-

level parts, and the latter covers variances by allowing

several subtypes of a concept.

Our model has close relationships to previously pro-

posed standard models for brain-inspired object recogni-

tion. For example, biological neural network models often

consist of a hierarchical arrangement of simple (S) and

complex (C) cells that employs similar mechanisms as our

model to represent part-whole (S) and type-subtype-rela-

tionships (C) (e.g., [10, 11]): S cells essentially implement

an AND operation, i.e., an S cell gets activated if there is

sensory evidence for part 1 AND part 2 AND part 3.

Similarly, C cells implement an OR operation, i.e., a C

cells gets activated if there is sensory evidence for con-

figuration 1 OR configuration 2 OR configuration 3. Within

a probabilistic framework, one can think of such models as

being composed of AND and OR layers resulting in a

polytree-like graphical structure without any loops for

which there exist efficient belief propagation methods such

as the sum-product and max-sum algorithms (e.g., see

[33]).

Figure 1 illustrates a related model by Zhu and Mum-

ford [13]. This so-called AND/OR graph (AOG) model is

again a hierarchy of AND and OR node layers within a

probabilistic framework as discussed above. However, it

extends the tree-type standard models by horizontal links

within the OR layers to express relations between the parts

of an AND node. Note that such links introduce loops such

that exact probabilistic inference becomes infeasible in

general.

At the present stage of research, the hierarchical scene

entity model is represented as a deterministic AND-OR-

graph as illustrated in Fig. 2 and closely related to [13, 34].

Here, a relation corresponds to a special node below an

AND node. To check if a certain situation represented by

an AND node holds, first, all non-relation children of the

AND node have to be checked, before it can be determined

whether the children are in a certain relation. Each of the

AND and OR nodes may represent the sensory configura-

tion for recognizing a certain situation.

As shown in Fig. 2, a specialization s�1 of a situation s1 is

located above the layer of s1. The refined situation s�1 adds

more details (node new) to the sensory configuration of s1.

Thus, a consecutive refinement process of the sensory

configuration is reached by going upwards into the spe-

cializations of a certain situation.

Situation Model

Formally, we define a situation model as a triple

s ¼ ðsc;F;AÞ. The first component sc is a link to a scene

entity model as explained in the previous section. This link

basically defines how to test whether situation s holds by

analyzing the sensory input.

Second, F ¼ ff1; f2; . . .g is a set of expected feedbacks

fi ¼ ðl; rÞ that may occur in situation s, where l is a textual

label and r is a real-valued expected reward. Several expected

feedbacks are possible in one situation. For example the sit-

uation s1 ‘‘drive safely over zebra crossing’’ contains further

sub-situations such as s11 ‘‘stopped at zebra crossing’’ and s12
‘‘crossed zebra crossing.’’ Those sub-situations expect dif-

ferent feedbacks F11 and F12, respectively, with labels f11 ¼
ð0reward for stopping correctly at z:c:0; 0:1Þ and f12 ¼
ð0rewardforsafelypassingz:c:0; 2:0Þ. Correspondingly, the
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higher-level situation s1 ¼‘‘drive safely over zebra crossing’’

then expects both feedback types with F1 ¼ ff11; f12g.
Finally, A ¼ fa1; a2; . . .g is a set of possible actions ai

that may be executed in situation s. The following section

gives a formal description of actions.

Action Model

In each situation si a set of actions

aj ¼ ðsinit; bmlow; sgoal; aactÞ

can be performed which may result in a situation transition.

Formally, we define an action as a quadruple

a ¼ ðsinit; bmlow; sgoal; aactÞ, where we distinguish two

types: First, a low-level action alow ¼ ðsinit ¼
None; bmlow ¼ None; sgoal ¼ None; aact 6¼ NoneÞ controls

directly relevant actuator states such as the gas pedal

position of a car by performing the actuator function aact
which is a parametrized interface to the actual actuators of

the agent. Second, a high-level action ahigh ¼ ðsinit 6¼
None; bmlow 6¼ None; sgoal 6¼ None; aact ¼ NoneÞ consists

of (1) a (higher-level) initial situation sinit which defines the

execution condition for the action, (2) a behavioral model

bmlow defining a (lower-level) policy to execute the action,

and (3) a (higher-level) goal situation sgoal which defines

the deactivation condition of the action. Thus, actions have

a hierarchical structure via behavioral models that com-

prise a detailed (lower-level) plan to execute the (higher-

level) action and reach the desired goal. This is explained

in more detail by the following section.

Hierarchical Behavioral Model

Situations are always embedded in behavior. This means

that each situation si affords a set of actions ai that could be

performed. Each action will lead to a situation transition

stþ1 ¼ f ðst; atÞ. Such transitions can be represented as a

graph or, more generally, as a Markov model with transition

probabilities pr½stþ1jst; at�. Thus, a behavioral model is

closely related to the theory of Markov decision processes

(MPD) [35] and can be modeled as bm ¼ ðS;A;P;RÞ where
S is a set of situation models, A is a set of actions, P ¼
S� A� S ! ½0; 1� is the transition distribution, and

Rðstþ1jst; atÞ is the expected reward. Fig. 3 illustrates a

behavioral model as a graph where nodes denote situations

and arrows correspond to lower-level actions intending

certain situation transitions. Note that behavioral models

have a hierarchical structure because each lower-level action

may consist again of a lower-level behavioral model.

A situation node s in a behavioral model bm executed

through a higher-level action ahigh can be of the following

types:

• Initial Situation sinit
An initial situation of bm is a specialization of the

initial situation of ahigh in the corresponding higher-

level behavioral model.

• Goal Situation sgoal
A goal situation of bm is a specialization of the goal

situation ahigh in the corresponding higher-level behav-

ioral model.

• Else Situation selse
This situation is active if no other situation is active.

Only one situation of this type is possible in one

behavioral model.

The set of all initial situations may also be called the

initiation set, and the set of goal situations the termination

set of an action. Our idea of actions is thus similar to

options as employed in hierarchical reinforcement learning

models [32, 36], although, due to the self-referential

learning of situation and behavioral models, we cannot

distinguish as sharply between primitive actions and

options or, correspondingly, between the lowest level

‘‘core’’ MDP and option policies.

It can be seen in Fig. 4 that descending in the behavioral

model corresponds to ascending in the sensory configura-

tion in order to gain a more detailed situation description

for a refined behavioral performance. For example, if the

situation s1 holds, the associated high-level action ahigh is

performed, which means activating a lower-level behav-

ioral model. The initial situation of this behavioral model is

a specialization s�1 of s1. To check if s�1 holds only the new

part of the graph has to be checked as s1 had already been

checked before. This enables a fast analysis of the current

approaching
zebra crossing

leaving
zebra crossing

pass zebra crossing

stopped at z.c
with pedestrianapproaching z.c

with pedestrian

approaching z.c
without pedestrian leaving z.c

without pedestrian

braking at z.c braking at z.c

drive

Lower-level behavioral model for:
pass zebra crossing:

action

specializes to

Situation model

Fig. 3 Hierarchical organization of behavioral models. In this

example, executing the action ‘‘pass zebra crossing’’ activates the

lower-level behavioral model, which itself executes different low-

level actions. The green arrows represent the specialization of

situation models (Color figure online)
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situation, because first a quite general situation, which can

be evaluated very quickly, is checked before refinement

starts iteratively. In case the refinement process has to be

truncated (e.g., because of a time-out), an approximation of

a situation is already available, which might be sufficient to

change behavior toward reaching a goal. To check if a

certain situation holds, the situation model checks the

sensory configuration by testing if all conditions for this

situation hold. This means that the subgraph of the con-

cerning situation node has to be parsed. Parsing the situa-

tion subgraph includes checking if leaf node objects are

present and relations hold. At this stage of research, the

parse algorithm is deterministic. But as our parse algorithm

is based on [34], it is possible to extend it to probabilistic

inference.

A simple control strategy for the efficient execution of

such hierarchical behavioral models is to realize a com-

petition between relevant actions at each level of repre-

sentation that is based on evaluating activation/deactivation

conditions and expected rewards:

1. Activation condition. An action can be performed if

the activation condition holds, i.e., if the subject is in a

situation that allows performing the action.

2. Deactivation condition. The action will be deactivated

if the deactivation condition holds, i.e., if the subject is

in an appropriate end situation.

For example, a high-level action representation would

be activated only if the initial condition holds and the

action is associated with the highest expected reward

among all possible actions. Similarly, a lower-level action

would be activated only if requested by the higher-level

action, i.e., if it is part of the behavioral model of the active

high-level action.

As discussed in further sections, it is the major target of

self-referential control to learn and/or extend such semantic

ontologies of situation and behavioral models in an

autonomous goal-directed way.

Self-Referential Control of Autonomous Learning

So far we have described concepts and structures for

knowledge representation such as situations, actions, and

behavioral models. Although they may be hard-coded by a

designer, here we are particularly interested in autono-

mously learning these structures. As learning from scratch

is difficult to demonstrate, we rather assume that a rich set

of structures is already provided and discuss how to extend

the system by ‘‘self-referential‘‘ autonomous learning. Here

the qualification ‘‘self-referential’’ (coined by Körner [37])

refers to the fact that the system can interpret the envi-

ronment only in terms of ‘‘its own’’ previously acquired

situation models and has to integrate previous and novel

models in a consistent behavior-related way.

In this work, we focus on teacher-guided ‘‘top-down’’

learning: We assume that an external ‘‘teacher‘‘ commu-

nicates an abstract high-level behavioral model for solving

a particular task that typically refers only to high-level

situations and actions. In the subsequent learning phase, the

system has then to refine the teacher model based on its

own behavioral experience. Unlike in unconstrained

‘‘bottom-up’’ learning, the teacher model, although sym-

bolic and ungrounded, can strongly reduce the search space

of possible actions and guide the system quickly toward the

desired behavior. Such a process is similar to learning in

humans, as most ‘‘real‘‘ human behavioral models have not

been acquired by pure exploration, but have rather been

transmitted in a cultural process from teacher to student.

So we can assume that there is already a behavioral

model for a higher-level action, and the system may try to

behave accordingly in order to reach the goal of that action.

As the teacher can communicate only a symbolic behav-

ioral model, the system still has to ground the model

operationally. This means that the system collects episodic

data by trying to perform the actions suggested by the

teacher model until it arrives in the desired goal state.

During subsequent learning, the episodic data are used to

’’complete’’ the situation and action models provided by

the teacher and integrate them into the hierarchy of scene

entity and behavioral models. In general, this will involve

several distinct learning processes including

1. Structural learning and refinement of the behavioral

models,

2. Learning of corresponding feature representations in

order to be able to classify situations correctly based

on sensory inputs, and

3. Learning parameters and values of preferred actions.

The latter two learning problems are relatively well

established, at least if considered in isolation, and assuming

a fixed situation space. Problem 3 is usually solved in a

s1 s2

ahigh
s1*

new R3 s1

L1 R1 L2

s1* else s2*

a1 a2

linked to

linked to

Fig. 4 Links between scene entity model (left) and behavioral models

(right). Behavioral models are strongly connected to the scene entity

model. Iteratively refining the behavioral model means in parallel

refining the scene entity model
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control approach, in our work by the Q-learning algorithm

which is a specific reinforcement learning (RL) algorithm

[29]. The algorithm has a function Qi : Si � Ai ! R which

calculates the quality of performing action ain in situation

sim for each behavioral model bmi. Problem 2 is usually

solved by standard supervised or unsupervised pattern

recognition and machine-learning approaches. We employ

an algorithm for information generation as explained fur-

ther below to generate the learning data necessary to extend

and refine the sensory scene representation. For the struc-

tural learning problem 1, we suggest a novel approach

where extending the model structure is based on the

detection of certain graph motifs in behavioral models.

This approach includes the structural learning concepts of

specialization and generalization which are explained in

the following.

Specialization

It has been proposed that the brain uses the difference

between expected and actual sensory experience as a trig-

ger for knowledge generation [38]. Based on this principle

of knowledge generation, we introduce a mechanism for

structural learning to refine the existing knowledge base.

The trigger for specialization is the graph motif illus-

trated in Fig. 5 (left) which shows a clip from a behavioral

model where performing action a in situation s may lead

either to the expected situation s1 with the expected feed-

back F1 or to the unexpected situation s2 with an unex-

pected feedback F2. Such a motif expresses basically the

uncertainty of the system as it is unable to predict the

outcome of a certain action in a certain situation. In our

system such a graph motif triggers structural learning in

order to reduce uncertainty and increase the system’s

ability to predict future situations. Here, this means to

extend the behavioral model, especially replacing action a

by a high-level action ahigh through specializing situation s

into two new situations s� and selse such that executing

action a in situation selse leads to the previously expected

situation s1, whereas choosing a in situation s� leads to the

new situation s2 that was unexpected previously. Thus, the

refined behavioral model can better predict the outcome of

performing action a and react accordingly.

Once the specialization process is completed, for every

new situation the optimal action can be determined via

reinforcement learning. This learning of the optimal policy

can use already experienced memory to pre-learn from

mind. This allows to make a more accurate educated guess

for the optimal action in the next learning cycle.

Although here we implement only on a simple deter-

ministic simulation scenario, realistic stochastic environ-

ments imply that certain situation transitions may depend

on factors not observable by the agent. In that case, the

described specialization procedure would not be able to

improve the agent’s performance. To avoid uncontrolled

proliferation of specialized situation models, it would then

be necessary to extend our model with methods that can

deal with partially observable or hidden factors [31, 39].

Another mechanism counteracting specialization is gener-

alization as described in the following section.

Generalization

Another graph motif that triggers structural learning is

shown in Fig. 6, left. Here, the system has learned a

behavioral model where an outcome s3 can be reached

from two different initial situations s1 and s2 by executing

the same action a. Such a graph motif means that situations

s1 and s2 are similar because both can lead to s3 by exe-

cuting a. Therefore, it makes sense to generalize both

involved situations s1 and s2 to a novel situation model s1_2
where action a can be performed (Fig. 6, right). Such

structural generalization renders a more compact descrip-

tion of the fact that we can reach s3 from s1_2 by choosing

a. This can potentially simplify behavioral models and

accelerate prediction and planning. In the simplest case, the

scene entity model of s1_2 is an OR connection of the

sensory configurations of s1 and s2. By applying graph

reduction tools this newly connected graph can be further

reduced. Thus generalization is used to compress unnec-

essary specialized situations or acquire novel higher-level

symbols [40]. A situation is unnecessarily specialized if the

optimal action determined via policy learning is identical

to the optimal actions in the specializations.

s

F1

s1

F2

s2

Specializationa

a
s s1 ∨ s2

s∗ else

F1

s1

F2

s2

ahigh

a

a

Fig. 5 Specialization refines the behavioral model as well as the

scene entity model to improve the behavior

s1

s2

s3

Generalizationa

a

s1∨2 s3

a

Fig. 6 Generalization combines situations having the same optimal

action that lead to the same successor situation. Thus, generalization

avoids an unnecessary separation of situations that have a similar

action/outcome relation
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Implementation

We have realized the self-referential (SR) learning archi-

tecture within a reinforcement learning framework. For our

simulation experiments, we have employed the micro-

scopic traffic simulator CarD [41]. The following describes

the implementation of an agent that is capable of SR

learning.

Simplifications for Sensory and Scene

Representation

As the focus of the current work is on the basic mecha-

nisms of self-referential learning rather than low-level

sensory representation and object classification, we have

employed the following simplifications:

1. Ideal Object Detector

We assume an ideal object detector, which is able to

deliver all visible objects in the scene as well as

corresponding object attributes without any uncer-

tainty. This simplifies semantic information generation

and reduces full probabilistic inference at the object

level to a simple deterministic framework. At a later

stage of research, we will include also uncertainty and

attention control.

2. Object Oriented Scene

The entire scene can be represented as a set O of

objects oi ¼ ðAtÞ. Each object has a set At of attributes

ati ¼ ðatli; atviÞ, where ali is an attribute label and atvi
the attribute value. Every object contains the integer-

valued attribute with atli ¼’category,’ which defines

the category of an object (e.g., ati ¼ ð0category0; 1Þ,
where 1 defines the category for cars). Such a

representation vastly simplifies and speeds up recog-

nition tasks because higher-level processes do not have

to cope with lower-level feature and object detection

problems.

Self-Referential Learning Architecture

Similar to common RL frameworks, the agent has to per-

form certain tasks in a behavioral environment associated

with certain rewards. The SR agent contains the self-ref-

erential autonomous learning architecture as introduced

before. The agent is able to sense the world only through

certain sensors, but is not aware of the entire world state. In

the current implementation, the sensor is an ideal object

detector that detects objects in a certain range in front of

the car. As explained above, the detector returns for each

object certain attributes including category, position, ori-

entation, and speed.

At this stage of research, the agent’s actions are limited

to longitudinal control, that is, setting gas and brake pedal

pressure of the car. For simplicity we have not yet included

transversal control like steering. Another input to the agent

is a feedback signal f ¼ ðl; rÞ comprising a label l and an

actual reward r that enable the agent to evaluate and

improve behavioral and recognition performance. The

interaction of all important elements of the learning

framework is illustrated in Fig. 7.

To enable SR control of learning as introduced by

Körner [1], the agent needs a semantic memory, an epi-

sodic memory and some kind of learning control which

will be introduced in the following.

For SR learning it is insufficient to store only those

entities that have already a representation in the situation

models of semantic memory. Rather, it is also necessary to

store additional details of experienced behavioral episodes

in order to discover new relations between sensory input

and action outcome and learn new situation and behavioral

models. For that purpose, we introduce two-memory sys-

tems: First, a semantic memory system for situation and

behavioral models that represent only behaviorally relevant

knowledge extracted from many behavioral episodes. And,

second, an episodic memory to store detailed representa-

tions of individual behavioral episodes. As explained

below, such episodes are linked to the semantic models to

give a concise interpretation of what has happened, but

they comprise also additional details to enable learning of

new knowledge representations.

Behavioral Control

Rule Base

Learning Control

Semantic Memory Episodic Memory

SceneActuators

checks
Rule Base

returns current
situation and

chosen action, of
behavioral policy

distribute
feedback

learn situations &
behavioral models

store episodes

perform low-
level-action

evaluate &
cluster episodes

current scene

stored behav-
ioral models

store entire
situations

Fig. 7 Self-referential learning framework determines the interac-

tions between semantic memory, episodic memory, learning control,

and the environment. Red arrow corresponds to self-referential

learning (Color figure online)
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In correspondence to the two memory systems, we need

two control structures for behavior and learning: First, the

behavioral control unit employs behavioral models of

semantic memory to generate optimal behavior based on

recognized situations and calculated action values. Second,

based on unexpected behavioral episodes, the learning

control unit triggers certain learning mechanisms to gen-

erate refined semantic models for situations and behavior.

Semantic Memory

As explained above, the semantic memory stores plans,

how to execute actions according to situations as well as

scene entity models for the recognition of situations. The

semantic memory contains all the knowledge collected and

understood by the agent.

The semantic memory can be modeled as SM ¼
ðBM; SCÞ, where BM is a set of hierarchical behavioral

models bmi and SC a set of hierarchical scene entity models.

Each situation sj in each bmi is connected to a node ðscÞj in
the scene entity model. A situation can only be determined

through the combination of its behavioral context, given by

the location in a behavioral model and the scene entity

model.

Episodic Memory

An essential part of the SR framework is the episodic

memory. The episodic memory is necessary to generate

new semantic knowledge. More exactly, it is necessary to

store episodic data that cannot be explained by the current

semantic models (and that may indeed turn out to be

irrelevant for behavior) in order to be able to refine the

semantic knowledge base at a later time when a sufficient

amount of episodic data has been collected. Such episodes

must be stored in a well structured format to allow the

agent to link the unexplained episodic data to the relevant

behavioral context. Only then the agent will be able to

extract relevant aspects and include them in the correct

situation and behavioral models of semantic memory. This

means that episodic memories must have a similar hierar-

chical order as behavioral models. Therefore, we have

modeled hierarchical episodic memory as EM ¼ ðES;EPÞ,
where ES is a set of entire situations es and EP is a set of

episodes ep.

An entire situation is basically a snapshot of the whole

scene at time t and can be modeled as est ¼ ðSOt;Ft;ACtÞ,
where SO is a set of Objects O sensed at time t, F the

gathered feedback and AC the action control at time t. AC

represents the current state of a behavioral model at time t,

specifically the performed hierarchical actions as well as

the active hierarchical situation models. It contains all

visible objects with its attributes, a hierarchical snapshot of

the active actions and situations and the received feedback.

Before storing the received feedback, it is checked against

the expected feedback by the agent’s world model.

An episode structures the stream of entire situations

according to the behavioral model that has been executed

by the behavioral control during experiencing the episode.

Thus, an episode may contain several lower-level episodes

reflecting the hierarchical structure of the corresponding

behavioral model as illustrated in Fig. 8. This allows the

agent to address entire situations in relation to corre-

sponding ‘‘start situation - action - end situation transi-

tions’’: An episode can be modeled as ep ¼ ðsstart; send; a;
ðtðsstartÞ; tðsendÞÞÞ and is defined as the transition from a

start situation sstart to an end situation send by performing

the action a. tðsstartÞ is the time index of the first occurrence

of the start situation and tðsendÞ the first occurrence of the

end situation. Thus, all entire situations esðtðsstartÞ� t� tðsendÞÞ
belong to the episode ep. As mentioned before, an action

a may be either a low-level action or a high-level action

containing a lower-level behavioral model. Thus, episodes

are structured according to the same hierarchical order as

behavioral models.

The hierarchical structure of the episodic memory is

illustrated in Fig. 8.

Behavioral Control

The behavioral control BC is the control unit to execute the

behavioral model. This means, first, to check whether

certain situations are active (by employing the corre-

sponding scene entity models) and, second, to choose an

optimal action by evaluating action values of all possible

actions. For each active behavioral model, a separate

behavioral control unit is active. Due to the hierarchical

ep1.1 ep1.2 ep1.3

ep1

approaching
zebra crossing

leaving
zebra crossing

pass zebra crossing

stopped at z.c
with pedestrian

approaching z.c
with pedestrian

stopped at z.c
without pedestrian

leaving z.c
without pedestrian

braking at z.c wait accelerate

child episodes:

entire situation stream
127 128 129 130 131 132 133 134 135 136 137 138 139 140

Fig. 8 Hierarchical episodic memory orders the stream of entire

situations according to the hierarchy of the executed behavioral model
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structure of behavioral models, there are usually several

behavioral control units active at the same time, which

check situations and select actions on different levels of

abstraction, down to the lowest and finest behavioral model

that executes a low-level action. Here, any higher-level

action executes recursively lower-level behavioral models

and, thus, activates the corresponding behavioral control

units on each level.

Learning Control

The learning control unit LC is the basic control instance

for any learning task. For example, as mentioned before,

the mechanism of specialization learning is triggered by the

graph motif where starting from one situation s1 and per-

forming action a can lead to two different situations, one

expected and the other unexpected. So the trigger for

learning is the difference between sensory expectation and

experience.

In this first proposal of an implementation, we use the

feedback f ¼ ðl; rÞ as a measure of expectation. Thus, any

differences in expected feedback and actually received

feedback activates structural learning. A fully trained

behavioral model is then able to explain (meaning receiv-

ing a certain feedback in a situation that expects receiving

this feedback) and predict (meaning that the resulting

feedback of a certain action in a certain situation is known)

feedback.

The overall learning architecture is illustrated in Fig. 9

and is divided into three sub-units dealing with interpre-

tation of world events, semantic knowledge generation, and

behavioral learning.

• Interpretation of world events

Compares the sensory input with the internal world

model. A difference in expectation and real-world

experience triggers semantic knowledge generation. In

our implementation, this means that, at every timestep,

the received feedback is compared to the feedback

expected in the active situation at every active level of

abstraction. Such gathered feedback F is then included

together with the expected feedback in each entire

situation that is stored in the episodic memory. By this

it becomes possible to extract information about which

situation–action combinations lead to unexpected suc-

cessor situations to control structural learning described

below. Although potentially large amounts of episodic

data are gathered at every time step, offline adaptation

of situation and behavior models remains feasible

because actual rewards r[ 0 are sparse events that

occur typically only if an action has been successfully

completed (i.e., if a higher-level goal state has been

reached).

• Semantic knowledge generation

A continued difference in expectation indicates that the

actual situation (state) space is not sufficient to perform

a given situation transition by a certain action. Thus,

the situation (or state)-space has to be adapted to the

behavioral needs. This means to refine situation models

to reduce uncertainty in the expected outcome of this

action. We call this process semantic knowledge

generation as it allows to explain and eliminate

differences between simulated and real world by

refining the situation models through structural learning

mechanisms like specialization. This leads to a refined

situation space in which a specialized behavior depend-

ing on the feedback is possible.

Depending on the agent’s experience, the structural

refinement might not always be optimal and could

produce a hierarchical deep redundancy in the situation

space. To prevent this the mechanism of generalization

is used. This mechanism is triggered by the graph motif

explained earlier and reduces unnecessarily specialized

situations. The target of the interplay between special-

ization and generalization is the convergence toward a

situation space that is minimal (in terms of situation

numbers and hierarchical levels) but still optimal for

behavioral performance.

• Behavioral Learning

Determines the optimal action for the new refined

situation model. In our current implementation, seman-

tic knowledge generation enables the agent to react

with a refined behavior to target or avoid certain types

of feedback. Thus, maximizing the expected feedback

is the main target of this learning unit. Reinforcement

SR Learning

Interpretation
of world events

Semantic Knowl-
edge Generation

Episodic
Memory

Behavioral Learning

Semantic
Memory World

simulated and
predicted scene
and feedback

refine world
model

improve
behavior

real world
scene and
feedback

triggers by
difference

raw un-
explained
knowledge

refined
world model

Fig. 9 Self-referential learning. Difference between expected feed-

back from the internal world model and the real-world feedback

triggers the semantic knowledge generation to refine the internal

world model, followed by the behavioral learning to optimize the

behavior
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learning methods are predestined to solve such opti-

mization tasks. Here, we have used Q-learning to

determine the optimal action. At this point of research,

each behavioral model bmi, thus each level of the

hierarchy, contains it’s own decoupled Q-learner

Qi : Si � Ai ! R, where Si and Ai is a set of situation

and actions of bmi. In future work, this may be replaced

by a fully hierarchical Q-learner like MAXQ [42].

Semantic knowledge generation and behavioral learning

closely interact with each other. By generating new

semantic knowledge a behavioral optimization is possible.

In turn, once behavior has changed, it may be necessary to

adapt the world model again, for example, as the actions

performed by the optimized policy may have unpre-

dictable outcomes again.

To control this cooperation of semantic knowledge

generation and behavior learning is a difficulty that is not

fully solved at this point. After a situation is refined by

semantic knowledge generation, the optimal situation–ac-

tion mapping has to be determined through reinforcement

learning. While behavioral learning is in progress semantic

knowledge generation is deactivated. Once the behavioral

learning has converged, the semantic knowledge genera-

tion can be activated again.

Structural Learning

As described above, we use feedback f ¼ ðl; rÞ as a mea-

sure of expectation. Thus, a difference between expected

feedback and actually gathered feedback leads to structural

refinement by specialization. By doing so, the implemented

mechanisms of knowledge refinement are special cases of

the basic mechanism explained in the previous sections,

where generally every unexpected part of a situation con-

tributes to this measure. In our current implementation of

the specialization mechanism, we differentiate between

‘‘gathering feedback when expecting feedback, but gath-

ering the wrong type/value of feedback’’ and ‘‘gathering

feedback when not expecting any feedback.’’ The first case

triggers the process of feedback specialization and the

second one triggers feedback expectation. Both cases are

special cases of the general graph motif for specialization.

Specialization enables refined behavioral learning. Thus,

for every new situation the optimal action can be deter-

mined as explained earlier. To learn the optimal policy,

already experienced memory can be used to ‘‘pre-learn

from mind’’ (use knowledge from the episodic memory to

perform offline learning). This allows the agent to perform

a more accurate educated guess for the optimal action in

the next learning cycle.

Feedback specialization is triggered if some feedback

was expected in a situation, but a different feedback

occurred. Thus to enable the agent to react specifically to a

certain outcome (feedback) of an action starting from the

same start situation, this situation has to be specialized into

two situations. As shown in Fig. 10, executing action a

in situation s usually leads to the situation s1 with the

expected feedback F1 but sometimes the unexpected

feedback F2 is gathered. This is a trigger for feedback

specialization. This means to extend the behavioral model,

especially replacing action a by a high-level action ahigh by

specializing the start situation s1 into two new situations s�1
and s1;else such that performing action a in situation s1;else
leads to the previously expected feedback F1, whereas

choosing a in situation s�1 leads to the new previously

unexpected feedback F2. The scene entity model of s�1 is a

specialization of s1 and extends s1 by some knowledge as

illustrated in 10 (bottom). There are now two goal situa-

tions of ahigh, s21 and s22 with the same scene entity model

as s2, but one expecting the feedback F1 and one expecting

F2. The sensory configuration of s2 is not illustrated, due to

the fact that the sensory configuration does not change.

Feedback expectation consists of two parts. The first one

is feedback interpretation and the second one is feedback

prediction. This process enables the system to react to any

feedback at any time. Once a feedback is received, when no

feedback was expected, the agent tries to explain why

feedback occurred, to expect and predict it in the future.

This method also enables the agent to split one high-level

action into several sub-actions (chaining) and enables the

specialization of subtasks.

As shown in Fig. 11, once the agent receives feedback,

the agent tries to explain when this feedback occurs

(feedback situation) during this event. In a next step, the

agent checks the near past before this feedback and tries to

create some predictor (toward the feedback situation). In

the current implementation, the predictor evaluates the

structure of the raw sensory scene representation, in par-

ticular, those objects that have been selected to explain the

s1

F1

s2

F2

s2

Specializationa

a
s1

F1∨2

s2

s∗
1

s1,else

F1

s21

F2

s22

ahigh

a

a

s1

L1 R1 L2

Specialization

s∗
1

s1

L1 R1 L2

R3 L3

Fig. 10 Feedback specialization refines the behavioral model as well

as the scene entity model to improve the behavior
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feedback, and trains a different classifier with the attributes

of the objects leading to the feedback. It has to be men-

tioned, that this is a restriction, because the feedback has to

be predictable by the same objects which are causing the

feedback.

If different types of feedback occur before the agent is

able to finalize the expectation task, due to the lack of

information gathered to explain one feedback, the infor-

mation might be enough to predict the general event of

feedback. In further steps, this prediction of general feed-

back can be specialized to predict either of the feedbacks.

The information that there will be feedback might be very

helpful for realizing attention control, for example, by

focusing processing resources specifically on the difference

between the feedbacks. However, this aspect is not further

targeted at this stage of research.

Semantic Knowledge Generation

An important part of self-referential learning is the gener-

ation of important knowledge from experience. Semantic

knowledge is important to understand a situation and create

a model of the environment based on behavioral needs. The

reason to extract knowledge is because the internal world

model differs from the external input. Thus, the internal

world model has to be refined.

In our current implementation, we use a two stage

knowledge extractor as shown in Fig. 12. The first stage is

fed with the clustered set of episodes, which belong to the

actual event. The clustering separates the episodes which

can be explained by the internal model from those which

cannot be explained. Based on these clusters, a feature

selector calculates the information gain for each involved

object to measure the object’s relevance for discriminating

between these different clusters (cf., [43]). If the infor-

mation gain is above some threshold, the type of object is

considered as ‘‘relevant for the situation‘‘. This object

represents a leaf node in the sensory configuration.

The second stage takes all relevant objects, which

includes the already-known relevant objects and the new

gathered relevant objects and performs the information

gain calculation on all attributes of these objects. Again if

the information gain is above some threshold the attribute

is considered as relevant.

Finally, based on the relevant attributes, a classifier with

dimension of relevant attributes and based on the clustered

episodes is trained. This classifier represents a relation in

the sensory configuration. Based on the new relation clas-

sifiers and the new relevant objects, the internal world

model can be refined. The following gives a more detailed

description of the algorithm:

1. from the episodic memory collect episodes ep with the

same start situation sstart and the same action a

2. cluster these episodes by the classes Cexp and Cunexp.

Cexp defines the class of episodes that lead to the

expected end situation send;exp. Cunexp defines the class

of episodes that lead to an unexpected end situation

send;unexp.

3. determine relevant objects relObj

(a) loop through entire situations es belonging to all

episodes ep inside the classes Cexp and Cunexp

extract all appeared object categories

O:Að0category0Þ into CATall.

(b) loop through entire situations es belonging to all

episodes ep inside the classes Cexp and Cunexp

and determine the appearance value appv for

s1 s2

alow

unexpected
feedback (R)

Feedback Expectation

s1 s2

else towards
feedback

R

expect
feedback

s2

ahigh

alow

alow

alow

Fig. 11 Feedback expectation and expectation specialization are both

used to explain and predict external feedback. If no feedback is

expected, but feedback occurs, feedback expectation is performed. If

feedback is expected, but a different feedback occurs expectation

specialization is performed
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Fig. 12 Semantic knowledge generation. The first stage extracts the

most relevant objects to explain the difference in expected and real

feedback. The second stage determines all relevant attributes of new

and already-known objects to train a relation classifier. Both, new

relevant objects and relations are used to refine the situation
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every category in CATall, which is True is an

object of that category appears in the entire

situation and False if not.

(c) for each category cat in CATall calculate the

information gain I based on the classification of

the two categories Cexp and Cunexp.

(d) relevant objects relObj are objects of a category

with an information gain above some threshold.

4. determine the relation for the refined situation

(a) for both classes Cexp and Cunexp collect all entire

situations that contain all relevant relObj and all

known objects knownObj. Known objects are

objects, that are already part of the scene entity

model of the situation sstart.

(b) for every attribute of every known and relevant

object calculate the information gain. The

attributes with an information gain above some

threshold are defined as relevant attributes and

form the feature space of a relation classifier

introduced earlier.

(c) train a new relation classifier relClassifier based

on the two classes Cexp and Cunexp.

5. integrate the new relevant objects relObj as well as the

relation classifier relClassifier into the scene entity

model as shown in Fig. 12.

The node specializeds1 defines the new specialized sit-

uation of the start situation s1 and allows now the refine-

ment of the behavioral model and a refined behavior.

Simulation Experiments

Scenario

The purpose of the following scenario is to demonstrate

aspects of self-referential autonomous learning and to show

the feasibility of our approach. This means to learn new

situation and behavioral models in a simple simulated

traffic scenario. Here, an agent has to learn to drive a car

safely over a zebra crossing as illustrated by Fig. 13: More

specifically, the scenario is that of a car approaching and

driving safely over a zebra crossing without intimidating or

hurting pedestrians crossing the street, but also without

unnecessarily wasting time. The system will be provided

initially with some mid-level preprocessed sensory infor-

mation such as ego-velocity, location of zebra crossing, as

well as probable locations of pedestrians. Thus, in our

scene representation there are several types of objects

possible which are listed in Table 1 with their attributes. As

our current implementation has only a ‘‘symbolic’’

interface with the CarD traffic simulation environment, the

scene ontology of objects is assumed to be fixed in the

following, and structural learning is limited to the situation

and behavior models for driving over the zebra crossing.

Additionally, the system is provided with a high-level

behavioral model (that could be communicated, for

example, by a driving teacher) in order to specify the task

and the high-level processing steps to solve the task. This

boils down to the specification of a set of rules such as ‘‘IF

not arrived at target position THEN continue driving.’’ Of

course such models are incomplete as they lack (1) situa-

tions not preconsidered by the teacher, (2) full specification

of situation models and (3) full specification of action

models and their integration with lower-level behavioral

models referred to in the teacher model. In order to com-

plete learning of full behavioral and situation models, the

system has to (1) explore the state space, (2) integrate low

and high-level behavior models , (3) learn new situation

models (at intermediary levels) as required by the task, and

(4) optimize behavior, e.g., with respect to time and/or

energy costs. Here, the costs correspond to either the

reward obtained for arriving at the target location by

driving safely over the zebra crossing or the punishment for

hurting pedestrians. This general procedure can be pursued

in scenarios of various difficulty degrees as explained

below. We assume high-level actions ‘‘stop’’ for stopping

in front of a stop line and ‘‘drive’’ for accelerating to a

certain speed and then keeping this speed.

Scenario1: Learn to Understand the Meaning

of a Pedestrian and Wheelchair for Driving Safely

over a Zebra Crossing

We introduce a scenario with a teacher model for driving

from a start location to an end location. Here, the teacher

model, illustrated in Fig. 14 (top), is essentially a behav-

ioral model with three situations, ‘‘driving free,’’ ‘‘ap-

proaching z.c.,’’ and ‘‘leaving z.c.’’ In all three situations,

the action ’’drive‘‘ is selected by the teacher to be

Fig. 13 Scenario

714 Cogn Comput (2016) 8:703–719

123



performed. ‘‘driving free’’ is active as long as none of the

other situations is active. ‘‘approaching z.c.’’ becomes

active as soon as the agent car is within a bounding box

around the zebra crossing and approaching the zebra

crossing. ‘‘leaving z.c.’’ gets active for the moment the

agent leaves the z.c. This situation expects some reward for

successfully driving over the zebra crossing.

By performing the teacher model, the system will ini-

tially be able to perform the task quite well as long as there

are no pedestrians or wheelchairs crossing the z.c. How-

ever, once hurting or intimidating a pedestrian or a

wheelchair user, the agent will experience punishment.

Thus, the initial model is not optimal and fine enough to

perform the task sufficiently (meaning not hurting anybody

while crossing the z.c.).

Results

After a preset number of occurrences of the motif for

feedback specialization (expecting some feedback, but

archiving a different feedback), this mechanism gets active.

As seen in Fig. 14 (from top to bottom), the agent first

determines the occurrence of the pedestrian in a certain

relation to the z.c. and the agent car as the cause for the

unexpected feedback. This induces feedback specialization

of the situation ‘‘approaching z.c.’’ into ‘‘approaching z.c.

with ped’’ and ‘‘else.’’ Based on the refined behavioral

model, Q-learning is used to determine the optimal action

for each of the new situations, with the result, that the agent

performs the action ‘‘stop’’ in ‘‘approaching z.c. with ped’’

and ‘‘drive’’ in ‘‘else.’’ The ‘‘else‘‘ situation represents

basically the situation ‘‘approaching z.c. without ped.’’ As

shown in Fig. 15, the value of punishments/tries is signif-

icantly reduced after this step. But there are still punish-

ments left. This is due to the occurrence of wheelchairs

which cross from time to time and are not detected as

pedestrians. Thus, after collecting some more punishments,

our system determines the occurrence of the wheelchair in

a certain relation to the z.c. and the agent car as the cause

for the unexpected feedback (punishment), and, as before,

the behavioral model is extended by the situations ‘‘ap-

proaching z.c. with wheelchair’’ and ‘‘else.’’ After

Table 1 Types of objects as

used for scene representation
Pedestrian object House object AgentCar object Wheelchair object

Category = pedestrian Category = house Category = self Category = wheelchair

xpos xpos xpos xpos

ypos ypos ypos ypos

Orientation Orientation Orientation Orientation

Velocity Color Velocity Velocity

Age Lights on

approaching z.c.

R
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P

leaving

initial driving

Specialization

drive

drive

drivedrive

approaching z.c. leaving

initial driving

with ped else
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Policy Learning

ahigh
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initial driving
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ahigh

drivedrive

drivestop

approaching z.c.
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car approaching z.c.
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initial driving
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appr z.c. with wheel

Fig. 14 Scenario: specialization and Policy Learning starting from

teacher-given behavioral model (top, left) and scene entity model for

approaching z.c. (top, right) in 4 steps down to the final learned

behavioral model (bottom, left) with the extended sensory configu-

ration (bottom, right). The steps are Specialization to understand the

meaning of pedestrians at a z.c. followed by policy learning to obtain

the best action in the new situation, followed by specialization to

understand the meaning of a wheelchair at a z.c. again with policy

learning
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determining the optimal actions, the value of punishments/

tries significantly decreases again.

Thus, after self-referential learning, our system is able to

understand the meaning of a pedestrian and a wheelchair

crossing a z.c. and also to perform the optimal action in

each of the situations.

Scenario2: Learn to Understand the Meaning

of a Zebra Crossing in Combination with a Crossing

Pedestrian for Driving Safely Along a Road.

We introduce a scenario with a teacher model for driving

from a start location to an end location. Here, the teacher

model, illustrated in Fig. 16, is essentially a behavioral

model with two situations, ‘‘driving free’’ and ‘‘end.’’ In

‘‘driving free,’’ the action ‘‘drive’’ is selected by the teacher

to be performed. ‘‘driving free’’ is active as long as the

agent didn’t arrive at the end location. Compared to the

previous scenario, there is no knowledge about a zebra

crossing and no situation that determines when the agent is

approaching a z.c. Also, no feedback is expected by the

agent during the task. By this, the system will initially be

able to perform the task quite well as long as there is no z.c.

with pedestrians. Once the z.c. is crossed some kind of

feedback is archived by the agent, which is not expected:

usually more often the reward signal for crossing safely,

but sometimes as well punishment for crossing and hurting

pedestrians. The very limited initial model is not optimal

and fine enough to perform the task sufficiently (meaning

not hurting anybody while driving). Thus, neither the

meaning of ‘‘zebra crossing’’ nor a corresponding behav-

ioral model for such situations is pre-designed by the

teacher.

Results

After a certain number of occurrences of the motif for

feedback expectation (expecting no feedback, but archiving

some feedback), this mechanism gets active. As seen in

Fig. 16, the agent first determines the occurrence of the z.c.

in a certain relation to the agent car as the cause for the

unexpected feedback. Thus, based on the feedback expec-

tation mechanism the situation ‘‘driving free‘‘ is special-

ized to two situations: ‘‘feedback at z.c.’’ is expecting the

feedback right when crossing the z.c. ‘‘approaching z.c.‘‘ is

the predictor for the feedback. Thus, based on all entire

situations right before the actual feedback, which contain

Fig. 15 Cumulative number of punishments. 1st phase (0\t\30):

behavior defined by teacher model; 2nd phase (30\t\110): refined

model after learning to cope with a pedestrian at a z.c.; 3rd phase

(t[ 110): refined model to cope with both pedestrians and wheel-

chairs at a z.c.
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(app z.c.)

R

expect
feedback
(at z.c.)

s2

unexpected
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drive

drive

Expectation
Specialization

free driving end
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feedback
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end

else (to R)
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to P
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expectR
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expectP

ahigh
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drive
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Fig. 16 Feedback expectation applied to scenario 1 to explain and

predict the feedback when driving over a zebra crossing (reward for

crossing without getting too close to a pedestrian and punishment for

getting so close to a pedestrian while crossing)
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the relevant objects z.c. and the agent car, this predictor is

trained. The resulting refined behavioral model is shown in

Fig. 16 (middle). At this point the situation, ‘‘feedback at

z.c.’’ is expecting some reward, because this happened

much more often than punishment for hurting pedestrians.

Thus, the agent is able to predict and understand the

meaning of a zebra crossing, but not yet the meaning of

pedestrians at a zebra crossing. The result of this scenario

may be the basis for Scenario 1, which uses feedback

specialization together with behavioral learning (RL) to

refine the model further and optimize behavior as shown in

Fig. 16 (bottom).

Summary and Discussion

Scene understanding and situation recognition is an

essential technological prerequisite for intelligent sys-

tems applications such as autonomous driving or mobile

human support systems [44, 45]. Current approaches

toward scene analysis and situation understanding face

several essential problems. For example, real-world

scenes are too complex and undergo too many variations

that simple appearance-based methods would be useful

for predicting future episodes of behavior in similar

situations [10–12]. Moreover, state-of-the-art systems

cannot adequately solve the problem of autonomous

learning of structured scene or situation representations

that are usefully constrained by behavioral needs [17,

29, 32]

In this work, we have developed a cognitive archi-

tecture for self-referential autonomous learning of situ-

ation representation. Our system is inspired by brain

architecture based on neuronal cell assemblies and

associative learning [46–50], and comprises subsystems

for working memory, episodic memory, and semantic

memory including structured situation models and hier-

archical behavioral models for planning and decision

making [13, 29, 32, 51]. By self-referential learning, we

mean the control process of autonomously extending

subjective knowledge representations. Similar to hier-

archical reinforcement learning (HRL), this involves

behavioral optimization of hierarchical policy models

[29, 32, 42, 52–56]. There, so-called options ðI ; pbÞ are
used for structuring the action and situation space, where

a policy p can be activated if the agent is in a primitive

state s 2 I that belongs to the set of the option’s initial

states I and will be followed until the agent’s state is in

some target set s 2 b. Thus, s and I correspond to dif-

ferent levels of a hierarchical situation model, and HRL

provides methods to optimize option policies. While

most HRL approaches assume a given pre-designed

hierarchical structure [32, 36, 42, 57] or only bottom-up

learning from the level of primitive states [53, 54, 58],

our approach targets at general structural learning of

behavioral and situation models by extending ‘‘is-a’’ and

‘‘has-parts’’ ontologies of situation models, including

both specialization and generalization [16–18, 40].

Besides proposing basic architectural concepts, we have

also described a first implementation of our architecture.

This implementation was tested within a simple simulated

traffic scenario to demonstrate the viability of our

approach. Instead of unconstrained bottom-up construction

of novel situation and behavior models, our system adopts

an abstract model that is communicated by a teacher in

terms of the current knowledge representations. By trying

to execute the abstract teacher model, our system can

produce structured episodic data and evaluate the outcome

through a reward system. Triggered by the mismatch

between predicted and actual action outcome, our system

can exploit the episodic data for structural learning. This

results in a hierarchical extensions of situation models and

their integration into a refined behavioral model. Therefore,

our system is able to autonomously learn novel situation

types and integrate them into the ontology of previously

acquired knowledge.

Although the current implementation solves only

quite a simple problem, we think that our approach

scales favorably to more complex tasks. For example,

one potential problem is the proliferation of situation

nodes in the behavioral models that may occur in bot-

tom-up approaches due to uncontrolled specialization, in

particular, in stochastic environments including partially

observable or hidden states [31, 39]. As our system

includes both specialization and generalization as well as

a way for a teacher to communicate high-level abstract

models to specify a raw solution to a task, this will

strongly constrain the agent’s search space and keep the

clustering procedure described in ‘‘Semantic Knowledge

Generation’’ section feasible.

Still, our learning algorithm may be too complex for

an immediate online implementation of autonomous

learning in current embedded automotive hardware.

Instead, we rather consider the support of model design

as potential short-term applications of our system: This

can be achieved, for example, by simulating complex

traffic scenes to let the agent learn an adequate structure

for the situation and behavioral models that may later be

employed in real vehicles. In addition to simulations, the

‘‘self-referential’’ loop (Fig. 7) may be closed by col-

lecting episodic traces recorded from real driving vehi-

cles, whereas the structural model updates would occur

offline. On the long term, however, we believe that full

online autonomous learning cannot be realized much

cheaper than in our system. In future work, we therefore

will extend our system toward more complex application
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scenarios and additional types of self-referential struc-

tural learning.
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