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Cell-Surface Bound Nonreceptors and Signaling
Morphogen Gradients

By Frederic Y. M. Wan

The patterning of many developing tissues is orchestrated by gradients of
signaling morphogens. Included among the molecular events that drive the
formation of morphogen gradients are a variety of elaborate regulatory
interactions. Such interactions are thought to make gradients robust, i.e.,
insensitive to change in the face of genetic or environmental perturbations.
However just how this is accomplished is a major unanswered question. Recently
extensive numerical simulations suggest that robustness of signaling gradients
can be achieved through morphogen degradation mediated by cell surface bound
nonsignaling receptor molecules (or nonreceptors for short) such as heparan
sulfate proteoglycans. The present paper provides a mathematical validation
of the results from the aforementioned numerical experiments. Extension of
a basic extracellular model to include reversible binding with nonreceptors
synthesized at a prescribed rate and mediated morphogen degradation shows that
the signaling gradient diminishes with increasing concentration of cell-surface
nonreceptors. Perturbation and asymptotic solutions obtained for (i) low
(receptor and nonreceptor) occupancy, and (ii) high nonreceptor concentration
permit more explicit delineation of the effects of nonreceptors on signaling
gradients and facilitate the identification of scenarios in which the presence of
nonreceptors may or may not be effective in promoting robustness.

1. Introduction

In the early stage of biological development, cells receive positional information,
usually from spatially distributed, and (signaling-)receptor bound morphogens,
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to adopt different fates resulting in tissue patterning. Morphogens (aka ligands)
such as Decapentaplegic (Dpp) in a Drosophila wing imaginal disc are protein
molecules that are synthesized (often at a localized source), transported away
from their source and bound to signaling receptors such as Thickveins (Tkv)
downstream to form a spatial concentration gradient of (signaling) Dpp-Tkv
complexes. Graded differences in signaling receptor occupancy at different
locations underlie the signaling differences that ultimately lead cells down
different paths of development.

An important requirement for morphogen gradients is to produce patterns
that are not easily altered by genetic or environmental fluctuations. The
insensitivity of a system’s output to variations in input or system parameters is
often termed robustness. How this requirement is met has been the subject of a
number of recent studies such as [1–12]. Understanding how robustness is
attained is important not only for shedding light on the reliability of developing
systems, but also for helping to explain the ubiquitous presence of elaborate
regulatory schemes in morphogen systems beyond those needed to produce a
stable signaling gradient of receptor-morphogen complexes (or simply bound
morphogens).

The Drosophila (melanogaster) fruit fly wing imaginal disc for instance is
patterned by the morphogen Decapentaplegic (Dpp), a member of the bone
morphogenetic protein (BMP) branch of the transforming growth factor-β
(TGF-β) superfamily, and its signaling receptor Thickveins (Tkv). An in vivo
visualization of the bound Dpp gradient in a wing imaginal disc is shown in
figure 1 of [13]. Figure 2 of the same reference indicates the evolution of
the bound morphogen gradient in the wing imaginal disc leading to a tissue
pattern that includes an anterior and a posterior wing blade (see also [14]).
With diffusion as a mechanism for morphogen transport, recent mathematical
modeling and analysis of reversible binding and (signaling-)receptor mediated
degradation of Dpp in the wing imaginal disc in [15–18] showed that the
steady state morphogen concentration gradients generated by these models are
consistent with available experimental observations [13, 19].

Formation of concentration gradients of different morphogen-receptor
complexes is expected to be affected by other known ligand activities including
binding with molecular entities (such as heparan sulfate proteoglycans) other than
their signaling receptors. Such nonsignaling entities will be called nonreceptors
since they bind with morphogens but the resulting bound morphogen complexes
do not contribute to signaling activities. From this perspective, the presence of
nonreceptors reduces the amount of morphogens available for binding with
signaling receptors and thereby reduces cell signaling. Effects of nonreceptors
have been examined briefly in [5, 20]. In [20], we extended the simple wing
disc morphogen model of [17] to include the possibility of morphogen binding
with a certain kind of cell-surface bound nonreceptor to investigate their
inhibiting effects on the formation and properties of steady state signaling
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Figure 1. Steady state signaling gradient b̄(x ; Z ) for D = 10−7cm2/s. with Z = 0, 1, 2.5, 5,
7.5, and 10 (from top down).

morphogen-receptor gradients and the related transient half life. The new
features of that investigation include nonreceptor mediated degradation known
to be involved in ligand activities and expected to have substantive effects
on ligand gradient formation. In addition to showing the various effect of
nonreceptors, the results obtained there have enabled us to clarify a seeming
inconsistency of two sets of experimental results in the literature on signaling
gradients in Drosophila imaginal disc [21, 22].

Available experimental results (obtained by S. Zhou in A.D. Lander’s Lab
at UCI) show that Dpp synthesis rate in Drosophila imaginal disc doubles
when the ambient temperature is increased by 6◦C. With such an increase
in Dpp synthesis rate, the simple models developed in [15–18] would lead
to signaling gradients qualitatively different from that at the lower (normal)
ambient temperature. Yet, little abnormality in the development of the wing
imaginal disc is observed under such a change in ambient temperature (see
also [9]). In effect, Dpp-mediated patterning of the Drosophila wing appears
substantially robust to significant increase in Dpp synthesis rate. On the other
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Figure 2. Steady state signaling gradient b̄(x ; Z ) for D = 10−6cm2/s. with Z = 0, 1, 2.5, 5,
10, and 20 (from top down).

hand, modification of models such as the one in [17] by the addition of a
feedback loop in which receptor synthesis rate is downregulated by an increase
in morphogen signaling was found not to lead to robustness (by numerical
simulation in [12] and by theoretical analysis in [23]).

Two novel strategies for achieving robustness have been identified by
massive simulations in [12]; both involve cell surface nonreceptors mediating a
large proportion of overall morphogen degradation. That nonreceptors provide
a mechanism for robust signaling gradients with respect to increased Dpp
synthesis rate is shown in [12] computationally for a portion of the 106

biologically realistic sets of parameter values in a six dimensional parameter
space. One purpose of the present paper is to provide a theoretical validation
of the results of these numerical experiments pertaining to nonreceptors as an
agent for robustness complementing the results in [10]. As measured by the
robustness index introduced in [9, 10, 12], signaling morphogen gradients are
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shown to be robust with respect to enhanced morphogen synthesis rates given
a sufficiently high concentration of nonreceptors.

For a proof of concept effort, a simplified model of morphogen gradient
systems was used in [20] to investigate the effect of nonreceptors. The model
assumes prescribed concentrations of receptors and nonreceptors; they are
available for binding with Dpp if not already occupied. The model in this
paper allows both receptors and nonreceptors to be synthesized at a prescribed
rate and degrade at a rate proportional to its current concentration as well
as to the concentration of bound Dpp. As such, it is more realistic than the
model in [20]. When there is an abundance of receptors and nonreceptors so
that the system is in a state of low (receptor and nonreceptor) occupancy,
this paper shows that the two models are to give qualitatively similar results.
It is also of considerable interest to see how the present model delimits
the applicability of the assumption of fixed concentrations of receptors and
nonreceptors.

Given the results of [16], an extracellular model such as the one in this paper
is also expected to give results equivalent to those of models that allow for
encytosis and exocytosis, such as the one treated in [10]. From a juxtaposition
of the analyses in [16] and [17], proofs of well-posedness and other qualitative
results for the present extracellular model are expected to be considerably
simpler mathematically than that of [10]. The extracellular model also enables
us to show more explicitly why nonreceptors may or may not be effective
in promoting robustness with respect to an enhanced morphogen synthesis
rate. Perturbation and asymptotic solutions appropriate for low receptor and
nonreceptor occupancy and for high nonreceptor concentrations display very
simply and explicitly how nonreceptors modify the signaling gradients, driving
any enhanced signaling gradient toward the distribution prior to enhancement.
In addition, the simpler model is expected to make the investigation of various
type of feedback mechanisms including that on the nonreceptor synthesis rates
more tractable.

As binding with nonreceptors is generic and our method of analysis applies to
any gradient in which cell-surface nonreceptor molecules mediate morphogen
degradation, our results also offers some insight to why nonreceptors are found
almost universally in morphogen gradient systems. Some interesting effects of
the freely diffusive nonreceptor molecules have been investigated and reported
in [11, 24–26] and references cited therein.

2. A one-dimensional formulation

In this paper, we focus on Dpp gradients in the extracellular space of the
posterior compartment of a Drosophila wing imaginal disc. (It has been shown
in [16] that the inclusion of transcytosis leads only to a re-interpretation of the
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system parameters in the final results.) For the purpose of analyzing the effects
of nonreceptors, the development of the wing imaginal disc is adequately
modeled by a one-dimensional reaction-diffusion problem. In this problem,
morphogen is introduced at the rate VL locally adjacent (and symmetric
with respect) to the border, X = −Xm , between the anterior and posterior
compartment of the disc, and completely absorbed at the other end, X = Xmax,
the edge of the posterior compartment. The biological development is taken to
be uniform in the direction along the compartment border (except possibly for
a layer phenomenon at each end) to reflect the fact that the Dpp synthesis
rate is taken to be uniform in that direction. Extension to a two-dimensional
model to allow for nonuniform activities in the apical-basal direction and their
implications on robustness have been carried out in [9, 18].

2.1. An extracellular model

Let [L(X, T )] be the concentration of a diffusing morphogen (such as Dpp) at
time T and distance X toward the wing disc edge normal to the compartment
boundary with the localized source spanning −Xm < X < 0. As in [17],
we take the diffusion of the ligand to be governed by Fick’s second law,
∂[L]/∂T = D∂2[L]/∂X2, D being the diffusion coefficient. We add to this
relation the formation and dissociation of ligand-receptor complexes at the
binding rate − kon[L][R] and dissociation rate kof f [L R]. Here [R] is the
concentration of signaling Tkv receptors for Dpp, synthesized at the spatially
distributed rate of VR(X, T ), and [L R] is the concentration of ligand-receptor
(Dpp-Tkv) complexes which degrade at the (receptor-mediated) degradation
rate kdeg[L R]. In these expressions, kon, kdeg, and koff are the binding rate
constant, degradation rate constant, and dissociation rate constant, respectively.
There is no endocytosis prior to degradation in this formulation. The omission
of receptor internalization results in no loss of generality for the purpose
of analysis; we have already established in [16] that the boundary value
problem (BVP) governing the steady state behavior of a more general systems
with receptor internalization can be reduced the same BVP for our simpler
system. For the effects of a proteoglycan type nondiffusive (cell-surface bound)
nonreceptor concentration [N (X, T )] synthesized at the rate VN (X, T ), we add
to these reactions a set of similar activities for the nonreceptor sites resulting
in a concentration of ligand–nonreceptor complexes [L N (X, T )] with jon, jdeg,
and joff being the corresponding rate constants. In this way, we obtain the
following nonlinear reaction-diffusion system governing the evolution of the
various concentrations [L], [R], [N ], [L R], and [L N ]:

∂[L]

∂T
= D

∂2[L]

∂X2
− kon[L][R] + koff[L R] − jon[L][N ]

+ joff[L N ] + VL , (1)
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∂[L R]

∂T
= kon[L][R] − (koff + kdeg)[L R],

∂[R]

∂T
= VR − kon[L][R] + kof f [L R] − kg[R], (2)

∂[L N ]

∂T
= jon[L][N ] − ( joff + jdeg)[L N ],

∂[N ]

∂T
= VN − jon[L][N ] + joff[L N ] − jg[N ], (3)

where VL (X, T ) is the localized morphogen synthesis rate (centered at and)
spanning symmetrically with respect to the border X = −Xmin and uniform
between the two wing disc compartments. To be specific, we take

VL(X, T ) = V̄L H (−X ) =
{

V̄L (−Xm < X < 0)
0 (0 < X < Xmax).

(4)

With the early stage of the anterior compartment and posterior compartment
developing more or less similarly, we consider here only the development in the
posterior compartment for which we have the following idealized boundary
conditions:

X = −Xmin :
∂[L]

∂X
= 0, X = Xmax : [L] = 0, (5)

for all T > 0, where the no flux condition at the compartment border being
a consequence of symmetry, and the kill end condition at the distal edge,
X = Xmax, of the compartment reflects the assumption of an absorbing edge
(which we will occasionally take to be infinitely far away to avoid making such
an assumption). For this paper, we consider the case of uniform receptor and
nonreceptor synthesis rates, both in space and time with VR(X, T ) = V̄R > 0
and VN (X, T ) = V̄N ≥ 0.

Until morphogens being generated at T = 0, the biological system was in
quiescence so that we have the homogeneous initial conditions

T = 0 : [L] = [L R] = [L N ] = 0, [R] = R0, [N ] = N0, (6)

for −Xm ≤ X ≤ Xmax, with

R0 = V̄R

kg
, N0 = V̄N

jg
. (7)

from steady state consideration. In the absence of nonreceptor (through V̄N = 0
and therewith N0 = 0), the initial-boundary value problem (IBVP for short)
defined by (1)–(6) reduces to the model treated in [17].
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2.2. Dimensionless form

To reduce the number of parameters in the problem, we introduce the
normalized quantities

t = D

X2
0

T, x = X

X0
, Z = N0

R0
, �M = Xmax

X0
(8)

{a, b, r} = 1

R0
{[L], [L R], [R]}, {c, n} = 1

N0
{[L N ], [N ]}, (9)

{ f0, g0, h0, gr , f1, g1, h1, gn} = X2
0

D
{koff, kdeg, kon R0, kg, joff, jdeg, jon R0, jg},

(10)

{h̄0, h̄1} = X2
0

D
{kon N0, jon N0, jg}, {v̄L , v̄R, v̄N } = X2

0

D

{
V̄L

R0
,

V̄R

R0
,

V̄N

N0

}
,

(11)
where X0 is some typical scale length, taken to be Xmax for the finite domain
case so that �M = Xmax/X0 = 1. With these normalized quantities, we rewrite
the IBVP for the five unknowns [L], [L R], [L N ], [R], and [N ] in the following
normalized form

∂a

∂t
= ∂2a

∂x2
− h0ar + f0b − Zh1an + Z f1c + v̄L H (−x), (12)

∂b

∂t
= h0ar − ( f0 + g0)b,

∂r

∂t
= v̄R − h0ar + f0b − grr, (13)

∂c

∂t
= h1an − ( f1 + g1)c,

∂n

∂t
= v̄N − h1an + f1c − gnn, (14)

with the boundary conditions

x = −xm :
∂a

∂x
= 0, x = �M : a = 0, (15)

for all t > 0, and the initial conditions

t = 0 : a = b = c = 0, r = 1, n = 1, (16)

in the interval −xm ≤ x ≤ �M .
The IBVP defined by (12)–(16) constitutes a new mathematical model for

morphogen activities in the presence of nondiffusive nonreceptors. It will be
used to study the effects of such nonreceptor sites on the amplitude and shape
of the various steady state ligand concentration gradients and the decay rate of
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transient behavior. Our ultimate goal is to see how the presence of a sufficiently
high concentration of nonreceptors should make the signaling morphogen
gradient [L R] robust with respect to an enhanced Dpp synthesis rate.

3. Time-independent steady state

3.1. Reduction

We denote by ā(x), b̄(x), c̄(x), r̄ (x), and n̄(x) the time-independent steady
state solution for a(x, t), b(x, t), c(x, t), r (x, t), and n(x, t) of (12)–(16),
respectively. For this steady state solution, we have ∂( )/∂t = 0 so that the
governing partial differential equations and boundary conditions become

ā′′ − h0ār̄ + f0b̄ − h1 Zān̄ + f1 Zc̄ + v̄L H (−x) = 0, (17)

h0ār̄ − ( f0 + g0)b̄ = 0, (gr + h0ā)r̄ − f0b̄ = v̄R, (18)

h1ān̄ − ( f1 + g1)c̄ = 0, (gn + h1ā)n̄ − f1c̄ = v̄N , (19)

with

ā́(−xm) = 0, ā(�M ) = 0, (20)

where a prime indicates differentiation with respect to x , i.e., ( )́ = d( )/dx .
We can solve (18) and (19) for b̄, r̄ , c̄, and n̄ in terms of ā to get

b̄(x) = ā(x)

α0 + ζ0ā(x)
, r̄ (x) = α0

α0 + ζ0ā(x)
, (21)

c̄(x) = ā(x)

α1 + ζ1ā(x)
, n̄(x) = ᾱ1

α1 + ζ1ā(x)
, (22)

with

α0 = f0 + g0

h0
, α1 = f1 + g1

h1
= Z ᾱ1, {ζ0,ζ1} =

{
kdeg

kg
,

jdeg

jg

}
. (23)

The results are then used to obtain from (17) a BVP for ā alone:

ā′′ − g0ā

α0 + ζ0ā
− Zg1ā

α1 + ζ1ā
+ v̄L H (−x) = 0, (24)

ā́(−xm) = 0, ā(�M ) = 0. (25)

For a finite domain, X0 would normally be Xmax so that �M = 1.
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3.2. Well-posedness

The following theorem ensures the existence of a unique nonnegative monotone
decreasing steady state concentration ā(x):

THEOREM 1. For positive values of the parameters g0, f0, h0, g1,

f1, h1, Z , ν̄L , ν̄R, and ν̄N , there exists a nonnegative regular solution ā(x) of the
BVP (24) and (25). The corresponding concentrations {b̄(x), c̄(x), r̄ (x), n̄(x)}
can then be calculated from (21) and (22).

Proof: The existence proof is similar to that in [17] for the case without
nonreceptors. It suffices to produce an upper solution and a lower solution
for the problem in order to apply the known monotone method in [27] (see
also [28, 29]). Though upper and lower solutions are similar to those for the
case without nonreceptors given in [17], they will be explicitly constructed
below to guide us in subsequent derivations of new results on the role of
nonreceptors in ensuring the robustness of the signaling ligand gradient b̄(x).

Evidently, a�(x) ≡ 0 is a lower solution since

−[a�]
′′ + g0a�

α0 + ζ0a�
+ Zg1a�
α1 + ζ1a�

− v̄L H (−x)

= −v̄L H (−x) ≤ 0 (−xm < x < �M ), a′
�(−xm) = 0, a�(�M ) = 0.

For an upper solution, consider

au(x) = v̄L

{
�M

(
xm + �M

2

)
− xm x − 1

2
x2

}

with a′
u(−xm) = 0 and au(�M ) = 0. From (i) au(−xm) = v̄L (�M + xm)2 /2 >

0, (ii) a′
u(x) = −v̄L(x + xm) < 0 for x > −xm, and (iii) au(�M ) = 0,we have

au(x) > 0 (−xm ≤ x < �M ).

It follows that

−[au]′′ + g0au

α0 + ζ0au
+ Zg1au

α1 + ζ1au
− v̄L H (−x)

= v̄L + g0au

α0 + ζ0au
+ Zg1au

α1 + ζ1au
− v̄L H (−x)

> v̄L − v̄L H (−x) ≥ 0

for −xm < x < �M so that au(x) is an upper solution for the BVP for ā(x).
The monotone method assures us that there exists a solution ā(x) of the BVP
(24) and (25) with

0 = a�(x) ≤ ā(x) ≤ au(x).

Since au(x) is already known to be positive for −xm ≤ x < �M , ā(x) must be
nonnegative in the whole solution domain.
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To prove uniqueness, let a1(x) and a2(x) be two (nonnegative) solutions
and a(x) = a1(x) − a2(x). Then as a consequence of the ordinary differential
equation (ODE) for a1(x) and a2(x), the difference a(x) satisfies the following
ODE:

−a′′ + g0ζ0α0a

(α0 + ζ0a1)(α0 + ζ0a2)
+ Zg1ζ1ᾱ1a

(α1 + ζ1a1)(α1 + ζ1a2)
= 0.

Form∫ �M

−xm

[
− a′′ + g0ζ0α0a

(α0 + ζ0a1)(α0 + ζ0a2)
+ Zg1ζ1ᾱ1a

(α1 + ζ1a1)(α1 + ζ1a2)

]
adx = 0.

Upon integration by parts, observing continuity of ā(x) and ā́(x), and
application of the boundary conditions in (25), the relation above may be
transformed into∫ �M

−xm

[á(x)]2dx +
∫ �M

−xm

{
g0ζ0α0[a(x)]2

(α0 + ζ0a1(x))(α0 + ζ0a2(x))

+ Zg1ζ1ᾱ1[a(x)]2

(α1 + ζ1a1(x))(α1 + ζ1a2(x))

}
dx = 0.

Both integrands are nonnegative and not identically zero; therefore we must
have a(x) ≡ 0 and uniqueness is proved. �

Stability of the steady state solution with respect to small perturbations can
be proved by an argument similar to that used in [20] but will be omitted since
it is not needed in subsequent developments.

3.3. Monotonicity and positivity

We wish to show that free morphogen concentration ā(x) and the signaling
morphogen gradient b̄(x) are positive at all interior points of the interval
(−xm, �M ). First we rule out the possibility of any extremum in that interval.

COROLLARY 2. Under the same hypotheses as those in Theorem 1, the steady
state concentration ā(x) does not attain a maximum or minimum in (0, �M )
and hence is monotone decreasing in that interval.

Proof: First, it is easy to see that ā(x) does not have an interior maximum
in the interval 0 < x < �M . If it should have a local maximum at some interior
point x0, then we must have (ā′(x0) = 0 and) ā′′(x0) ≤ 0. However since
ā(x) ≥ 0 and vL (x) = 0 in x > 0, we have

ā′′ = g0ā

α0 + ς0ā
+ Zg1ā

ᾱ1 + ζ1ā
≥ 0.

It follows that we must have ā′′(x0) = 0 and therewith ā(x0) = 0. Since x0 is
a maximum point, we must have ā(x) = 0 in 0 < x < �M . The continuity
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requirements imply ā(0) = ā́(0) = 0. However it is impossible for any nontrivial
solution of the ODE (24) to satisfy both of these conditions as well as the
boundary condition ā́(−xm) = 0 unless ā(x) ≡ 0 for all x in [−xm, 0] as well.
However such a free morphogen concentration does not satisfy (24) in the
interval (−xm, 0) where the normalized Dpp synthesis rate is a constant v̄L .
Hence, ā(x) does not have a maximum in (−xm, �M ).

Also, ā(x) does not have a positive interior minimum. If it should have
one at x0 (with ā(x0) > 0), then it must have an interior maximum at some
x1 > x0 in order for ā(x) to decrease from ā(x1) > 0 to ā(�M ) = 0. But this
contradicts the fact that ā(x) does not have an interior maximum. There is still
the possibility of a local interior minimum ā(x0) = 0. With ā́(x0) = 0 at the
local minimum, we have ā(x) ≡ 0 which does not satisfy the ODE (24) in the
interval (−xm, 0).

Altogether, the solution ā(x) of the BVP must be nonnegative and monotone
decreasing from ā(−xm) > 0 to ā(�M ) = 0. �

We can actually prove that the relevant morphogen concentrations are
positive for x < �M which we will need in subsequent development.

COROLLARY 3. Under the hypotheses of Theorem 1, the concentrations
ā(x), b̄(x), c̄(x), r̄ (x), and n̄(x) do not vanish in (−xm, �M ).

Proof: Suppose ā vanishes at x0 in (−xm, �M ) and hence attains a local
minimum there (since ā(x) is nonnegative). However this contradicts Corollary
2 that asserts that ā(x) does not have an interior minimum. By (21) and (22),
the remaining quantities also do not vanish in the same interval. �

4. Nonreceptor reducing signal gradient concentration

4.1. Low receptor/nonreceptor occupancy

For the signaling gradient to provide positional information that differentiates
cell fates, the normalized concentration b = [L R]/R0 should not be nearly
uniform (with a steep gradient adjacent to the absorbing edge). It is not difficult
to see that signaling gradients would be positionally indifferent if signaling
receptors are in such a state of high receptor occupancy. For a fixed Dpp
synthesis rate and a sufficiently high binding rate, we have α0 � 1. If α0 is
sufficiently small so that α0 + ζ0ā(x) 	 ζ0ā(x) away from the absorbing edge,
the expression (21) simplifies to

b̄ 	 1

ζ0
(x < �M ) (26)

except for a boundary layer adjacent to the absorbing edge where free and bound
morphogen concentration rapidly tend decrease to zero. The resulting signaling
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bound morphogen complexes given by (26) is positionally undifferentiating. It
is clearly unacceptable for the purpose of assigning differential cell fates and
tissue patterning.

Positional indifference would not occur if the binding rate is relatively
low compared to the receptor and nonreceptor degradation rates so that
α0 + ζ0ā(x) 	 α0. In that case, the relation (21) gives b̄ 	 ā/α0. If in addition,
the binding rate of Dpp to nonreceptors is also low so that α1 + ζ1ā(x) 	 α1,
the ODE (24) can be approximated accurately by

[ā]′′ 	 μ2ā − v̄L H (−x), μ2 = μ2
0 + Zμ2

1 (27)

with

μ2
0 = g0

α0
= kdeg

kdeg + koff

x2
max

D
kon R0 ≡ ψ0, (28)

Zμ2
1 = g1

α1
Z = jdeg

jdeg + joff

x2
max

D
jon N0 ≡ ψ1. (29)

The complementary solutions of the linear ODE (27) are the exponential
functions e−μx and eμx . The slope of b̄(x) is then determined by the parameter
μ. If μ 
 1, the signaling gradient for the limiting case of �M = ∞ would be
too steep and nearly vanishing except for a narrow interval adjacent to the Dpp
source (see (32)–(34)). Hence, we have the following operational definition of
a biologically useful signaling gradient:

DEFINITION 4. A signaling morphogen gradient b̄(x) is a biologically useful
gradient if the dimensionless binding rate constants h0 and h̄1 = Zh1 are
small so that

α0 + ζ0ā(x) 	 α0, α1 + ζ1ā(x) 	 α1, μ2 = O(1). (30)

A biologically useful signaling gradient is called a biological gradient
henceforth.

The first two conditions in (30) ensure the adequacy of (27). For the
Drosophila wing imaginal disc, we have f0 � g0 and f1 ≤ g1 so that g0/α0 	 h0

and Zg1/α1 	 h̄1. In that case, we have μ2 = μ2
0 + Zμ2

1 = O(h0) + O(h̄1).
The last condition then ensure that the gradient is sufficiently differentiating
and hence biologically useful. A steady state signaling morphogen gradient is
in a state of low receptor occupancy if the first and second conditions in (30)
are satisfied.

4.2. Perturbation solution for small ζ0 and ζ1

At low to moderate ligand synthesis rates, a state of low receptor occupancy is
quite typical since ζ0 and ζ1 are both less than 1 in biological systems of
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interest. When binding rates are slow, we expect the first two condition of (30)
to hold for moderate values of ν̄L . For such cases, a perturbation solution of
the BVP in ε is appropriate with ε being the larger of ζ0 and ζ1. The leading
term approximation, ā0(x), for ā(x) is obtained by neglecting the ā(x) terms in
the denominators of (24) and (25) to get

[ā0]′′ = μ2ā0 − v̄L H (−x), ā0́(−xm) = 0, ā0(�M ) = 0, (31)

with μ2 = μ2
0 + Zμ2

1 as previously defined in (28) and (29). The ODE for ā0

is identical to (27) and the exact solution of the linear BVP is immediate.

4.2.1. The limiting case of �M = ∞. For the limiting case �M = ∞, the
solution of (31) is

ā0(x) =

⎧⎪⎪⎨
⎪⎪⎩
ν̄L

μ2
{1 − e−μxm cosh(μ(x + xm))} (−xm ≤ x ≤ 0)

ν̄L

μ2
sinh(μxm)e−μ(x+xm ) (0 ≤ x < ∞)

, (32)

with

b̄(x) ∼ ā0(x)

α0
, r̄ (x) ∼ 1, c̄(x) ∼ ā0(x)

ᾱ1
, n̄(x) ∼ 1, (33)

α0b̄(0) ∼ ᾱ1c̄(0) ∼ ā(0) ∼ ā0(0) = ν̄L

μ2
sinh(μxm). (34)

The explicit leading term perturbation solution (32) for ā(x) confirms all
the properties described in Theorem 1 and Corollaries 2 and 3. In addition, we
have by differentiating (32) with respect to Z the following result for the low
occupancy case:

PROPOSITION 5. For a given v̄L , the magnitude of the leading term normalized
free morphogen concentration ā0(x) and the corresponding magnitude of bound
morphogen concentrations b̄0(x) decrease with increasing Z.

The justification of this proposition may be simplified by observing
sinh(μxm) 	 μxm � 1.

4.2.2. The case of a finite �M. For a finite positive �M , the exact solution
for ā0(x) is

ā0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν̄L

μ2

{
1 − cosh(μ�m)

cosh(μ(�M + xm))
cosh(μ(x + xm))

}
(−xm ≤ x ≤ 0)

ν̄L

μ2

sinh(μxm)

cosh(μ(�M + xm))
sinh(μ(�M − x)) (0 ≤ x ≤ �M )

,

(35)
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with

b̄(x) ∼ ā0(x)

α0
, α0b̄(0) ∼ ā(0) ∼ ā0(0) = ν̄L

μ2

sinh(μxm)

cosh(μ(�M + xm))
sinh(μ�M ).

(36)
For μ�m 
 1, the expression for ā0(x) in the signaling range of 0 ≤ x < �M is
asymptotically

ā0(x) ∼ ν̄L

μ2
e−μx (0 ≤ x < �M )

so that the gradient is effectively a boundary layer adjacent to x = 0, steep
near x = 0 and drop sharply to near zero away from x = 0.

We summarize the results of the discussion above in

PROPOSITION 6. Even if a morphogen system is in a steady state of low
receptor occupancy (so that the first two conditions in (30) are satisfied), its
signaling gradient may not be a biological gradient if the binding rates are not
moderate so that the third condition μ2 = O(1) of (30) is not met.

A morphogen system is said to be in a state of low (receptor and nonreceptor)
occupancy if all three conditions in (30) are satisfied.

4.3. The general case

4.3.1. Reduction of signaling morphogen concentration. In this section, we
investigate the effects of nonreceptors without the low receptor/nonreceptor
occupancy assumption. The following positive result is a local form of what
was found in the previous section.

THEOREM 7. The rate of changes of ā(x, Z ) and b̄(x, Z ) with respect to Z
are negative:

∂ ā

∂Z
< 0,

∂ b̄

∂Z
< 0.

Hence, the presence of nondiffusive nonreceptors generally lowers the amplitude
of the morphogen concentration gradients ā(x, Z ) and b̄(x, Z ) for all x in
[−xm, �M ).

Proof: Let u(x ; Z ) = ∂ ā(x ; Z )/∂Z in (−xm, �M ) and differentiate all the
relations in (24) and (25) with respect to Z to get

− û′′ +
[

α0g0

(α0 + ζ0ā)2
+ Z ᾱ1g1

(ᾱ1 + ζ1ā)2

]
û − g1ā

(ᾱ1 + ζ1ā)2
= 0, (37)

û́(−xm,Z ) = 0, û(�M ; Z ) = 0. (38)
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where û(x ; Z ) = −u(x ; Z ). The existence and uniqueness of the solution of
this linear inhomogeneous BVP is assured by the same monotone method used
for Theorem 1. The upper solution needed in this case is

ûu(x) = g1am

ᾱ1

[
�M

(
xm + 1

2
�M

)
− x

(
xm + 1

2
x

)]
with am = ā(−xm, Z ) > ā(x, Z ). The argument that proves Corollary
3 assures us that û > 0 for all x in [−xm, �M ). Hence, we have
u(x ; Z ) = ∂ ā(x ; Z )/∂Z = −û(x ; Z ) < 0 in [−xm, �M , ) so that ā(x ; Z ) is
a monotone decreasing function of the scaled nonreceptor concentration
magnitude Z there.

Unlike the low receptor/nonreceptor occupancy case, b̄(x ; Z ) is no longer
simply proportional to ā(x ; Z ) and the behavior of b̄(x, Z ) does not follow
immediately from the behavior of ā(x ; Z ). However, we have readily from the
relation (21)

∂ b̄

∂Z
= α0

[α0 + ζ0ā(x)]2

∂ ā

∂Z
< 0

given that the coefficient of ∂ ā/∂Z is positive. �

4.3.2. Increase of convexity. In addition to reducing signaling morphogen
concentration, an equally important, if not more important effect of nonreceptors
is on the convexity of the signaling gradient. From (24), re-written as

ā′′ = g0ā

α0 + ζ0ā
+ Zg1ā

α1 + ζ1ā
− v̄L H (−x),

we see that the presence of the nonreceptors (when Z > 0) renders ā′′(x)
more positive. The corresponding gradient becomes more convex. Even in an
environment of high morphogen synthesis rate and low receptor concentration
(resulting in a bound morphogen gradient too uniformly distributed for
differential cell fate), a sufficiently high concentration of nonreceptors would
make ā(x) sufficiently convex so that the resulting signaling gradient biological.
In the case of a low receptor occupancy, this follows from immediately from
b̄(x) ∼ ā(x)/α0. The accurate numerical solutions of the BVP for ā(x) reported
below show that it is also the case for near receptor saturation.

For these numerical solutions, we use in all cases the following set of
parameter values:

Xmax = 0.01cm, V̄L = 0.4μM/s, V̄R = 3 × 10−3μM/s

kon R0 = jon R0 = 0.01/s, joff = 10 × koff = 10−5/s

kdeg = jdeg = 2 × 10−4/s, jg = 10 × kg = 0.01/s

with V̄N = Z jgV̄R/kg (given Z = N0/R0 = (V̄N/jg)/(V̄R/kg) and Z to be
specified in the legends of the figures below). The diffusion coefficient D
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that generated the results in Figure 1 was at a relatively slow 10−7cm2/s.
Without nonreceptors, the total steady state receptor concentration is found
to be nearly in a state of saturation except in a boundary layer near the
absorbing edge x = 1. This can be seen from the top graph in Figure 1
giving the normalized bound morphogen concentration b̄(x) in the absence of
nonreceptors. Successively lower graphs correspond to the bound morphogen
concentration for Z = 1, 2.5, 5, 7.5, and 10. As Z increases from 0, the
convexity of the gradient b̄(x) increases, from nearly uniform and flat, to
monotone decreasing and concave, to a partially convex gradient. In fact, b̄(x)
becomes very much a biological gradient for Z ≥ 5.

Numerical results for b̄(x) in Figure 2 are for a relatively fast diffusion
coefficient of D = 10−6cm2/s. With faster diffusion, more morphogen
molecules escape binding with receptor and transported to the absorbing edge
at Xmax. Consequently, the graph for b̄(x) in the absence of nonreceptors is
more (monotone decreasing and) concave than the corresponding graph in
Figure 1. The same faster transport of free morphogen from source also
requires more nonreceptors to take away enough morphogen molecules to
make b̄(x) biological. The successive lower gradients in Figure 2 correspond
to Z = 0, 1, 2, 5, 5, 10, and 20.

In either case, we see that signaling morphogen gradients, nondifferentiating
without nonreceptors, become biological gradients in the presence of sufficiently
high concentration of nonreceptors. The change is accomplished by the presence
of a sufficiently large concentration of nonreceptors binding with most of the
free morphogen molecules to drive the signaling morphogen gradient to a state
of low receptor occupancy. Such an inference from the limited numerical results
will be confirmed mathematically later by an asymptotic solution of the signaling
gradient for large Z . It may well be the reason for the presence of a variety of
nonreceptors in thewing imaginaldiscof Drosophilaandotherbiologicalentities.

4.4. Fixed receptor and nonreceptor concentrations

The steady state free Dpp concentration ā(x ; Z ) for the present model is
determined by the BVP (24) and (25),

ā′′ − g0ā

α0 + ζ0ā
− Zg1ā

α1 + ζ1ā
+ v̄L H (−x) = 0, (39)

ā́(−xm) = 0, ā(�M ) = 0.

The corresponding occupied and unoccupied receptor and nonreceptor
concentrations are given by (21)–(23),

b̄(x) = ā(x)

α0 + ζ0ā(x)
, r̄ (x) = α0

α0 + ζ0ā(x)
, (40)

c̄(x) = ā(x)

α1 + ζ1ā(x)
, n̄(x) = ᾱ1

α1 + ζ1ā(x)
, (41)
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with

α0 = f0 + g0

h0
, α1 = f1 + g1

h1
, {ζ0,ζ1} =

{
kdeg

kg
,

jdeg

jg

}
,

They are re-stated above to facilitate comparison with the simpler model used
in [20].

While R0 and N0 were fixed prescribed constants in [20], here they are
given in terms of the synthesis rates and degradation rate constants of the
receptors and nonreceptors:

R0 = V̄R

kg
, N0 = V̄N

jg
. (42)

To facilitate a comparison of the two models, suppose the prescribed R0 and
N0 in [20] are as given by (42). In that case, the only differences between the
two models consist of the appearance of the two factors ζ0 = kdeg/kg and
ζ1 = jdeg/jg, the bound and free degradation rate ratios for receptors and
nonreceptors, respectively, in the ODE (39) for ā(x) and the four auxiliary
relations (40) and (41). For the simpler and less realistic model of [20], these
ratios were absent from the corresponding relations, i.e., they were replaced in
all these relations by 1 instead.

Since we have typically ζ0 � 1 and ζ1 � 1, the principal consequence of
working with the less realistic model of [20] is a resulting concentration
gradient less convex than the more realistic model. Aside from this obvious
difference, the replacement of fixed receptor and nonreceptor concentrations by
prescribed synthesis rates and degradation rates of these binding sites moves
the biological development more toward a state of low receptor occupancy to
result in a more useful signaling gradient. Even if ā(x) is not small compared
to α0 and/or α1, the presence of the factors ζ0, and ζ1 helps to make the
terms involving ā(x) in the denominators of the various fractions to be smaller
and more likely to be negligible, with the corresponding morphogen gradients
more likely to be in a state of low receptor occupancy.

5. High nonreceptor concentration

5.1. Asymptotic solution in ε2 = 1/Z

The level of nonreceptors needed to maintain a signaling morphogen gradient
that is biologically realistic varies depending on the particular morphogen
system as illustrated in the numerical examples in the last section. When
morphogen synthesis rate is high and the signaling receptor synthesis is low,
a large nonreceptor-to-receptor ratio (so that Z = N0/R0 
 1) is needed to
accomplish this task. For a high nonreceptor concentration, a perturbation
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solution of the BVP for ā(x) defined by (24)–(25) in the parameter ε2 = 1/Z
offers considerable insight to the role of nonreceptors in morphogen gradient
systems.

Upon dividing through by Z , the BVP for ā becomes

ε2ā′′ = ε2 g0ā

α0 + ζ0ā
+ g1ā

α1 + ζ1ā
− ε2v̄L H (−x), ā′(−xm) = 0, ā(�M ) = 0.

(43)
An exact solution of this problem is possible. The method of matched
asymptotic expansions is appropriate for the singular perturbation structure of
(43). However, neither would not be particularly informative. To the extent that
we expect a sufficiently high nonreceptor concentrations should drive gradient
system to a state of low receptor occupancy, we work here with the following
regular perturbation solution:

ā(x ; ε) =
∞∑

n=0

An(ξ )εn, ξ =
√

Z x = x

ε
.

with

ā′(x, ε) = 1

ε

dā

dξ
≡ 1

ε
ā·

The leading term of the expansion is determined by

A··
0 = g1 A0

α1 + ζ1 A0
− v̄εH (−ξ ), A·

0

(
− xm

ε

)
= 0, A0

(
�M

ε

)
= 0, (44)

with v̄ε = ε2v̄L . For the method of match asymptotic expansions, we have
�M/ε = �M

√
Z = √

Z → ∞ when we take the limit ε → 0 (so that x tending
to the the absorbing edge (at x → 1) corresponds to ξ → ∞). On the other
hand, the span of the local morphogen source is much shorter than the span of
the posterior compartment (in the distal direction) so that xm � 1. It is more
convenient to keep xm/ε = xm

√
Z ≡ ξm finite in the development below.

5.2. Low nonreceptor occupancy

For low (nonreceptor) occupancy, we have A0 ∼ a0 with

a··
0 = μ2

1a0 − v̄εH (−ξ ), a·
0

(
− xm

ε

)
= 0, a0

(
�M

ε

)
= 0, (45)
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where ( )· = d( )/dξ. For the limiting case of �M/ε = ∞, the exact solution of
linear BVP (45) is

ā(x) ∼ A0(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν̄L

Zμ2
1

{1 − e−μ1

√
Z xm cosh(μ1

√
Z (x + xm))}

∼ ν̄L

2Zμ2
1

{2 − eμ1

√
Z x} (−ξm ≤ ξ ≤ 0)

ν̄L

Zμ2
1

sinh(μ1

√
Z xm)e−μ1

√
Z (x+xm )

∼ ν̄L

2Zμ2
1

e−μ1

√
Z x (0 ≤ ξ < ∞)

. (46)

5.3. Low receptor occupancy

The approximate solution (46) for ā(x) was obtained with only two restrictions:
Z = N0/R0 
 1 and α1 
 ζ1ā(x) 	 ζ1 A0(x). The signaling Dpp gradient,

b̄(x) = ā(x)

α0 + ζ0ā(x)
,

may be in a state of either low or high occupancy. For the case of low receptor
occupancy, we have

b̄(x) 	 ā(x)

α0
∼ ν̄L

α0 Zμ2
1

sinh(μ1

√
Z xm)e−μ1

√
Z (x+xm )

∼ ν̄L

2α0 Zμ2
1

e−μ1

√
Z x (0 ≤ ξ < ∞). (47)

For a fixed normalized morphogen synthesis rate ν̄L , it is seen from the
expression (47) that more nonreceptors, i.e., increasing Z , would

(i) reduce the magnitude of the signaling gradient,
(ii) make the slope of the gradient more negative, and

(iii) make the curvature of the gradient more convex.

Since b̄(x) is approximately proportional to the morphogen synthesis rate,
increasing ν̄L simply increase the gradient magnitude proportionately.

5.4. High receptor occupancy

For high receptor occupancy, the expression for b̄(x) does not simplifies. We
have instead of (47) the more complicated expression

b̄(x) ∼ ν̄L

2Zμ2
1

e−μ1

√
Z x

α0 + ζ0ν̄Le−μ1

√
Z x/2Zμ2

1

(0 ≤ ξ < ∞). (48)
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For a fixed Z and ν̄L sufficiently large, the quantity ζ0ν̄Le−μ1

√
Z x/2Zμ2

1 would
not be small compared to α0 at least for x near 0.

On the other hand, for a fixed ν̄L , the term ζ0ν̄Le−μ1

√
Z x/2Zμ2

1 decreases
with increasing Z . For a sufficiently large Z , this term would become negligibly
small compared to α0 so that the gradient system would be in a state of
low receptor occupancy. As such, nonreceptors play two important roles in
morphogen systems:

PROPOSITION 8. In addition to reducing the strength of the signaling
gradient and steepening its downward slope, the presence of a sufficiently
large concentration of nonreceptors helps to render the gradient more convex
by driving the system toward a state of low receptor occupancy.

6. Nonreceptors and robustness

6.1. Sensitivity of signaling gradient to enhanced morphogen synthesis

Normal development of wing imaginal disc and other biological organism
may be altered by an enhanced morphogen synthesis rate stimulated by
environmental or other epigenetic changes. For example, Dpp synthesis rate in
Drosophila imaginal disc doubles when the ambient temperature is increased
by 6 ◦C (see Section 1). Typically, an enhanced morphogen synthesis rate alters
the magnitude and shape of the signal gradient and hence the cell fate at each
spatial location. For gradient systems in a state of low (receptor) occupancy,
we see from the explicit solution (32) and (34) of the BVP for ā(x) that the
signaling gradient b̄(x) is proportional to ν̄L For the more general case without
the restriction of low (receptor) occupancy, we prove presently that ā(x) and
b̄(x) are increasing functions of ν̄L .

Let v(x ; v̄L) = ∂ ā/∂v̄L and differentiate all the relations in (24) and (25)
with respect to v̄L to get

− v′′ +
[

α0g0

(α0 + ζ0ā)2
+ Z ᾱ1g1

(ᾱ1 + ζ1ā)2

]
v − H (−x) = 0, (49)

v́(−xm ; v̄L) = 0, v(�M ; v̄L) = 0. (50)

The proof of the existence of a unique solution for this linear BVP is again
straightforward; the upper solution needed in this case is

vu(x) =
[
�M

(
xm + 1

2
�M

)
− x

(
xm + 1

2
x

)]
.

The unique solution for v(x ; v̄L) enables us to prove the following proposition:
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PROPOSITION 9. Under the same hypotheses as Theorem 1, ā(x ; v̄L) and
b̄(x ; v̄L ) are monotonically increasing functions of the normalized morphogen
synthesis rate parameter v̄L = vL .

Proof: The same argument that proves Corollary 3 also allows us to prove
v > 0 for all x in (−xm, �M ) so that ∂ ā(x ; v̄L)/∂v̄L > 0 in [−xm, �M , ); hence,
ā(x ; v̄L) is an increasing function of v̄L . From the relation (21), we have

∂ b̄

∂v̄L
= α0

[α0 + ζ0ā(x)]2

∂ ā

∂v̄L
. (51)

It follows that b̄ is an increasing function of v̄L since both ∂ ā/∂v̄L and its
coefficient in (51) are positive. �

6.2. Diminishing enhancement of [L R] with more nonreceptors

Evidently, an abnormal enhancement of morphogen synthesis rate is undesirable
for normal development as it always enhances the signaling gradient whether
it remains differentiating. We know from the explicit solution (32) and (34) of
the BVP for ā(x) that for a fixed ν̄L , however large, the signaling gradient
b̄(x) is a decreasing function of Z . For the more general case without the
restriction of low (receptor) occupancy, we have already proved in Theorem
7 that ā(x) and b̄(x) are both monotone decreasing functions of Z . Thus,
nonreceptors has a role in reducing the sensitivity of signaling gradients to
enhanced morphogen synthesis and thereby offers a possible mechanism for
robustness of the signaling gradient, confirming what is suggested by the
numerical experiments of [12].

However, Theorem 7 on its own, while a step in the right direction, does
not assure robustness. For one thing, it is not quantitative in the reduction
of the enhanced signaling gradient b̃(x). Nor does a sufficient increase in
Z necessarily brings b̃(x) back down to b̄(x). More specifically, let b̄(x, Z )
and b̃(x, Z ) be the normalized signaling morphogen-receptor gradients for
morphogen synthesis rate V̄L and ṼL = 2V̄L , respectively, for a given level
of nonreceptor-to-receptor ratio Z . We know (at least for the low occupancy
case) the difference b̃(x, 0) − b̄(x, 0) would be significant. But what about
b̃(x, Z ) − b̄(x, 0) for a prescribed Z? Would it be uniformly small to a
prescribed tolerance? From the explicit solution for the low receptor occupancy
case, we see that the addition of nonreceptors not only changes the magnitude
of the signaling gradient, but also its slope and convexity. The different would
not be uniform in x or proportional to ν̄L . Hence, there would not be a value
Z for which b̃(x, Z ) = b̄(x, 0). Even in a range of x where the difference
in signal b̃(x, Z ) − b̄(x, 0) remains small, the difference, x̃ − x̄ , of locations
where b̃(x̃, Z ) = b̄(x̄, 0) = b would not be small when the slope of the two
gradients change slowly. In that case the pattern developed would still be
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significantly different since the cell type that was at x̄ is now at some distance
away at x̃ . These observations suffice to suggest that we need one or more
quantitative and global measures of robustness that safeguard against such
unwanted developments.

6.3. Robustness index

6.3.1. Root-mean-square signaling differential. A rather natural global
measure of signaling gradient robust is the following signal robustness index Rb

corresponding to the root mean square of the deviation between the normalized
bound morphogen concentration [L R]/R0 for V̄L without nonreceptors, denoted
previously by b̄(x, 0), and the same quantity for ṼL = 2V̄L with a nonzero
nonreceptor-to-receptor ratio Z , denoted previously by b̃(x, Z ):

Rb(Z ) = 1

bh − b�

√
1

x� − xh

∫ x�

xh

[b̃(x, Z ) − b̄(x, 0)]2dx, (52)

where 0 ≤ b� ≡ b̄(x�, 0) < b̄(xh, 0) ≡ bh ≤ b̄0(0),with 0 ≤ xh < x� ≤ �M = 1.
The quantities x� and xh (or b� and bh) may be chosen away from the
extremities to minimize the effects of outliers.

For the morphogen system in a state of low receptor occupancy, we have
from the following leading term asymptotic solution for b̄(x, 0) and b̃(x, Z ):

b̄(x, 0) ∼ ν̄L

α0μ
2
0

sinh(μ0xm) sinh(μ0(�M − x))

cosh(μ0(�M + xm))
, (0 ≤ x ≤ �M ) (53)

b̃(x, Z ) ∼ 2ν̄L

α0μ2

sinh(μxm) sinh(μ(�M − x))

cosh(μ(�M + xm))
. (0 ≤ x ≤ �M ) (54)

An explicit expression can be obtained for Rb when the leading term perturbation
solutions are applicable. In particular, we have for x� = 1 and xh = 0

Rb(0) = 1

b̄(0, 0)

√∫ 1

0
[b̃(x, 0) − b̄(x, 0)]2dx

∼ 1

sinh(μ0)

√∫ 1

0
[sinh(μ0(1 − x))]2dx

= 1

sinh(μ0)

√
1

2

(
sinh(2μ0)

2μ0
− 1

)
. (55)

For a gradient system with the parameter values given in Table 1 except
with V̄L = 0.005μM/s.(instead of V̄L = 0.05μM/s), the steady state is in low
receptor occupancy. For this case, the approximate solution for Rb(0) given by
(55) is 0.3943 · · · while accurate numerical solutions of the BVP for ā(x) gives
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Table 1
V̄L = 0.05μM/s, V̄R = 4 × 10−2μM/s, kdeg = jdeg = 2 × 10−4/s,

koff = 10−6/s = joff × 10−1, kg = 10−3/s = jg × 10−1, Xmax = 0.01cm.
kon R0 = jon R0 = 0.01/s, D = 10−7cm2/s, Xm = 0.001cm

Z = N0/R0 ã0(Z ) b̃0(Z ) r̃0(Z ) ñ0(Z ) Rb(Z ) Rx (Z )

0 0.0780 2.1848 0.5630 0.9309 0.4269 0.2590
0.25 0.0625 1.9169 0.6166 0.9438 0.2513 0.1507
0.5 0.0531 1.7274 0.6545 0.9519 0.1437 0.0783
1 0.0417 1.4651 0.7070 0.9618 0.0665 0.0656
2 0.0301 1.1516 0.7697 0.9722 0.1698 0.1733

Table 2
V̄L = 0.4μM/s, V̄R = 4 × 10−2μM/s, kdeg = jdeg = 2 × 10−4/s,

koff = 10−6/s = joff × 10−1, kg = 10−3/s = jg × 10−1, Xmax = 0.01cm.
kon R0 = jon R0 = 0.01/s, D = 10−7cm2/s, Xm = 0.001cm

Z = N0/R0 ã0(Z ) b̃0(Z ) r̃0(Z ) ñ0(Z ) Rb(Z ) Rx (Z )

0 1.4666 4.6793 0.0641 0.4172 0.2412 0.2426
0.25 0.9796 4.5348 0.0931 0.5173 0.1094 0.1191
0.5 0.7298 4.3948 0.1210 0.5900 0.0342 0.0335

0.75 0.5872 4.2693 0.1461 0.6413 0.1262 0.1180
1 0.4954 4.1567 0.1687 0.6794 0.2047 0.1961

0.4052 for a percentage error of less than 3%. The comparison serves to validate
the numerical simulation code that generated the results in Tables 1 and 2.

Our main interest however is in the numerical values of Rb for specific sets
of system parameter values to illustrate possible robustness of the signaling
gradients in the presence of nonreceptors. This type of numerical results
are given for the two examples in Tables 1 and 2. For these examples, the
relevant morphogen systems are not in a state of low receptor occupancy.
The use of the approximate signaling robustness index based on the leading
term perturbation solution (53)–(54) would not be appropriate and hence not
discussed further. On the other hand, numerical solutions for ā(x ; Z ) and
ã(x ; Z ) the corresponding numerical evaluation of Rb(Z ) are straightforward.
(See with the numerical results discussed in the next section.)

6.3.2. Root-mean-square displacement differential. The signal robustness
index Rb is not the only measure of the deviation from normal development due
to morphogen synthesis rate enhancement (doubling in our examples). Given
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an existing genetic program for individual cells, a more relevant measure of
robustness may be the displacement of the same level of morphogen-receptor
complex concentration due to a change of morphogen synthesis rate. Let
b̄(x, Z ) and b̃(x, Z ) again be the normalized signaling morphogen-receptor
gradients at location x for morphogen synthesis rate V̄L and ṼL = 2V̄L ,

respectively. Let x̄ and x̃ be the corresponding location where they attain the
value b, i.e., b̄(x̄, 0) = b̃(x̃, Z ) = b. With a change of ligand synthesis rate, x̃
is generally different from x̄ with x̃ − x̄ = �x . The root-mean-square of �x
over the range of b would be another meaningful measure of robustness:

Rx (Z ) = 1

x� − xu

√
1

bu − b�

∫ bu

b�

(x̃ − x̄)2db. (56)

As mentioned previously, a substantial �x corresponds to a significant
displacement of the cell fate normally at location x̄ to a new location x̃ . To
minimize the effects of outliers, we may limit the range of b to be the interval
(b�, bu) with 0 ≤ b� < bu ≤ b̄(0; 0), e.g., b� = b̄(0; 0)/10 and bu = 9b̄(0; 0)/10.

Evidently, Rx should be as small as possible to minimize the deviation
from the normal gradient with Rx (Z ) = 0 being no change. Since b̃(x, Z ) is a
monotone decreasing function of Z , we expect Rx (Z ) to first decrease as Z
increases from 0 reaching a minimum at some optimal Zop. From that point
on, Rx (Z ) is expected to increase with Z . An important question would be
whether there is a range of Z values for which Rx (Z ) is in the acceptable
range of Rx (Z ) < 0.2. Some numerical results for Rx (Z ) for several choice
values of Z are reported in Tables 1 and 2 (see next section for a discussion of
these results) for the same two examples considered previously for Rb(Z ).

It should be noted that unlike the numerical evaluation of Rb(Z ), the
numerical evaluation of Rx (Z ) is more complicated and will be addressed in
the next section. If the morphogen system is in a state of low occupancy, we
can again use the perturbation solution (35) and (36) for a simpler evaluation
of Rx (Z ). In particular, we have for x� = 1 and xu = 0

Rx (Z ) =
√

1

b̄0

∫ b̄0

0
(x̃ − x̄)2db,

where b̄0 = b̄(0, 0). For μ 
 1, we have

b̄(x) ∼ B0(Z )e−μx , B0(Z ) = ν̄L

2α0μ2

(
1 − e−2μxm

)
with μ2 = μ2

0 + Zμ2
1. It follows that

Rx (Z ) ∼ ln(2)

μ
, Rx (0) ∼ ln(2)

μ0
.
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6.4. Numerical results for robustness indices

6.4.1. Numerical evaluation of Rx (Z ). While the numerical evaluation of
Rb(Z ) is straightforward, the corresponding evaluation of Rx (Z ) requires some
finesse. To the extent that the governing BVP has been formulated in terms of
ā(x ; Z ), we first re-write Rx (Z ) (as defined in (56)) as

Rx (Z ) = 1

x� − xu

√
α0

bu − b�

∫ au

a�

(
x̃ − x̄

α0 + ζ0a

)2

da. (57)

It remains to develop a numerical method for determining x̃(a; Z ) and
x̄(a; Z ) for the signaling gradient range 0 ≤ a ≤ ā(0; 0) ≡ ā0 (corresponding
to 0 ≤ x ≤ 1). While it is possible to formulate a self-contained algorithm for
this purpose, it is numerically less challenging to use an approach that takes
advantage of three pieces of information we already obtained while computing
Rb(Z ), namely, v̄1 = ā′(1; 0), ṽ1 = ã′(1; 0) and ṽz = ã′(1; Z ) (for a prescribed
Z > 0) where ã(x ; Z ) is the solution of the BVP with ṼL instead of V̄L .

Let w(x ; Z ) = (da/dx)−1 so that

dx

da
= w(x ; Z ). (58)

With

dw

da
= dw/dx

da/dx
= w

d

dx

(
1

da/dx

)
= −w3 d2a

dx2

(where we have used a instead of ā to allow for the possibility of different
morphogen synthesis rate), we get from (39) a second equation for w and x as
functions of a for 0 < a < ā0:

dw

da
= −w3

(
g0a

α0 + ζ0a
+ Z

g1a

α1 + ζ1a

)
(59)

given that there is no morphogen synthesis in the range 0 < x < 1. The two
first-order ODE (58) and (59) are augmented by two initial conditions:

x(0; Z ) = 1, w(0; Z ) = w1. (60)

corresponding to a(x = 1; Z ) = 0 and a′(x = 1; Z ) = 1/w(a = 0; Z ). For the
information needed to calculate Rx (Z ), we have to solve the IVP defined
by (58)–(60) for three different values of w1, 1/v̄1, 1/ṽ1, and 1/ṽz , to get
x̄(a; 0), x̃(a; 0), and x̃(a; Z ).

6.4.2. Two numerical examples. For the particular set of parameter values
given in Table 1, we have {α0 = 0.0201, ᾱ1 = 0.021}and {ζ0 = 0.2, ζ1 = 0.02}.
Together with the results on r̃0(Z ) = r̃ (0; Z ) and ñ0(Z ) = ñ(0; Z ) reported in
the table, we see that the steady state solution for the enhanced synthesis rate
is only with low nonreceptor occupancy but not low receptor occupancy (or
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Figure 3. Signaling gradients for system reported in Table 1 for Z = 1.
(solid = b̄(x, 0), dashed = b̃(x, 1), dots = b̃(x, 0)).

near receptor saturation). The use of the leading term perturbation solution
(53)–(54) is therefore not appropriate. Nevertheless, the signaling gradient
b̄0(0) = b̄(0; 0) and b̃0(Z ) = b̃(0; Z ) are suitably convex to be biologically
realistic but with the enhanced signaling gradient b̃0(0) = b̃(0; 0) significantly
different from the normal gradient b̄0(0) = b̄(0; 0). For a sufficiently high
nonreceptor-to-receptor ratio, Z ≈ 1, binding of morphogens with nonreceptors
dominates, resulting in the graphs for normalized signaling Dpp gradients in
Figure 3, showing the effects of high receptor occupancy but low nonreceptor
occupancy. The presence of nonreceptors not only reduces the magnitude of
enhanced signaling morphogen gradient (bringing it closer to the one for the
normal morphogen synthesis rate) but also makes the gradient more convex.

The change from a decreasing but nearly linear signaling gradient in
the interval (0, 1) to a convex one reflects the dominant effect due to a
relatively high concentration of nonreceptors toward a state of low nonreceptor
occupancy (as shown mathematically in the previous section). The reduced
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Figure 4. Signaling gradients for system reported in Table 2 for Z = 0.5.
(solid = b̄(x, 0), dashed = b̃(x, 1), dots = b̃(x, 0)).

concentration magnitude and higher degree of convexity should render the
enhanced gradient more in line with the normal one, the enhanced synthesis
rate notwithstanding. To the extent that more nonreceptors further reduce the
magnitude of the signaling gradient concentration and make it even more
convex, it is not surprising that the robustness index Rb as a function of Z first
decreases with Z to reach a minimum and then reverses itself and increases
with more nonreceptors. From Table 1, we see that for the prescribed level of
morphogen synthesis rate, the system is most robust around Z = 1.

Table 2 shows the corresponding results for the same morphogen system
reported in Table 1 except for a larger prescribed V̄L . The computed values
for r̃0(Z ) = r̃ (0; Z ) and ñ0(Z ) = ñ(0; Z ) show that neither receptors nor
nonreceptors are in a state of low occupancy. These are also reflected in the
graphs for b̄(x ; 0), b̃(x ; 0) and b̃(x ; Z ) in Figure 4. Nevertheless, a modest
level of nonreceptors brings the enhanced gradient b̃(x ; Z ) to nearly coincident
with b̄(x ; 0) with both robustness indices well within the acceptable threshold
0.2. In contrast to that for the previous example, both indices provide nearly
the same global indicator for normal development.
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7. Concluding remarks

In this paper, we initiated a quantitative investigation of the effects of
cell surface bound nonreceptors and their role in promoting robustness
of signaling morphogen gradients by investigating an extracellular model
more realistic than the one in [20]. Nonreceptor-mediated degradation as a
possible mechanism for promoting robustness relative to significant morphogen
synthesis rate change is suggested by the numerical simulations in [12]. The
principal goal of the present paper is to validate theoretically the inference
from the numerical experiments. To this end, the basic model of morphogen
gradient formation in wing imaginal disc formulated and analyzed in [17] is
extended to include reversible binding with nonreceptors (synthesized at a
prescribed rate) and nonreceptor mediated degradation of nonreceptor-bound
morphogens. It is shown that the signaling morphogen gradient of this model
is, as expected, enhanced by an increase in morphogen synthesis rate (to result
in abnormal development). This enhancement is shown to diminish as the
nonreceptor synthesis rate increases while the receptor synthesis rate is kept
fixed.

Beyond the validation of nonreceptor-mediated degradation as a possible
mechanism for robustness of signaling morphogen gradient with respect to
a significant increase in morphogen synthesis rate, the results obtained also
quantify the level of nonreceptor synthesis rate needed to achieve a level of
insensitivity to morphogen dosage. It is possible that a given wing disc with a
certain set of system characteristics (associated with the specific values of the
rate constants) may require a biologically unrealistic level of nonreceptors for
robustness. In that case, robustness cannot be attained even if it is theoretically
possible. Hence, it is important to delineate the relation among the system
characteristics including the nonreceptor-to-receptor ratio. This task has been
undertaken recently; some preliminary results can be found in [9–12].

In this paper, we work with a simple but realistic model to obtain explicit
solutions by perturbation and asymptotic methods. They enable us to show
how the addition of nonreceptors changes an enhanced signal gradient by

� reducing the magnitude of the gradient,
� making the slope of the gradient more negative, and
� rendering the gradient more convex.

So that the enhanced gradient from an enhanced morphogen synthesis rate
may be reduced to a tolerable level (for normal development) for some range
of nonreceptor concentrations.

For systems for which perturbation and asymptotic solutions are not
appropriate, accurate numerical solutions for the various gradients and
robustness measures are obtained. In general, the signaling robustness index
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Rb(Z ) tends to exaggerate the possibility of abnormal development compared
to the displacement index Rx (Z ). However, the numerical results show a
general qualitative agreement between the two different robustness indice,
espccially on the optimal level of nonreceptor concentration for robustness.

Whatever the concentration of nonreceptors during normal development,
environmental perturbations that lead to an enhanced signaling gradient require
additional nonreceptors to degrade the excess moorphogen to maintain normal
development. An appropriate feedback mechanism for stimulating such an
enhanced degradation will be a subject of a future publication.
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