当前期刊: Experimental Neurology Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Spleen associated immune-response mediates brain-heart interaction after intracerebral hemorrhage
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-24
    Wei Li; Linlin Li; Wenkui Li; Michael Chopp; Poornima Venkat; Alex Zacharek; Zhili Chen; Julie Landschoot-Ward; Jieli Chen

    Background and purpose Intracerebral hemorrhage (ICH) patients frequently encounter cardiovascular complications which may contribute to increased mortality and poor long term outcome. ICH induces systemic oxidative stress and activates peripheral immune responses which are involved in the pathological cascade leading to cardiac dysfunction and heart failure after ICH. We have previously reported that ICH induces progressive cardiac dysfunction in mice without primary cardiac diseases. In this study, we have investigated the role of immune response in mediating cardiac dysfunction post ICH in mice. Methods Adult male C57BL/6 J mice were randomly assigned to the following groups (n = 8/group): 1) sham control; 2) ICH; 3) splenectomy with ICH (ICH + Spx); 4) splenectomy alone (Spx). Echocardiography was performed at 7 and 28 days after ICH. A battery of neurological and cognitive tests were performed. Flow cytometry, western blot and immunostaining were used to test mechanisms of ICH induced cardiac dysfunction. Results Compared to sham control mice, Spx alone does not induce acute (7 day) or chronic (28 day) cardiac dysfunction. ICH induces significant neurological and cognitive deficits, as well as acute and chronic cardiac dysfunction compared to sham control mice. Mice subjected to ICH + Spx exhibit significantly improved neurological and cognitive function compared to ICH mice. Mice with ICH + Spx also exhibit significantly improved acute and chronic cardiac function compared to ICH mice indicated by increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), decreased cardiac fibrosis, decreased cardiomyocyte hypertrophy, decreased cardiac infiltration of immune cells and decreased expression of inflammatory factor and oxidative stress in the heart. Conclusions Our study demonstrates that splenectomy attenuates ICH-induced neurological and cognitive impairment as well as ICH-induced cardiac dysfunction in mice. Inflammatory cell infiltration into heart and immune responses mediated by the spleen may contribute to ICH-induce acute and chronic cardiac dysfunction and pathological cardiac remodeling.

    更新日期:2020-01-24
  • Cognitive improvement and synaptic deficit attenuation by a multifunctional carbazole-based cyanine in AD mice model through regulation of Ca2+/CaMKII/CREB signaling pathway
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-24
    Chen Chen; Di Xu; Zhong-Hao Zhang; Shi-Zheng Jia; Xian-Chun Cao; Yu-Bin Chen; Guo-Li Song; Man Shing Wong; Hung Wing Li

    Accumulation of β-amyloid (Aβ) peptide and hyperphosphorylated tau in the brain is one of the pathological characteristics of Alzheimer's disease (AD) and attractive therapeutic targets in its treatment. In the present study, the cognitive ability of 4-month-old 3 × Tg-AD mice significantly improved after 40 days treatment with intraperitoneal injection of 2.25 mg/kg of SLOH, which is a multifunctional carbazole-based cyanine fluorophore. It reduced Aβ deposition, tau levels and its hyperphosphorylation by modulating AKT/glycogen synthase kinase-3β activities and promoting protein phosphatase 2A activity in the brain as well as in the primary neurons of 3 × Tg-AD mice. Moreover, SLOH attenuated synaptic deficit both in vitro and in vivo by regulating the Ca2+/CaMKII/CREB signaling pathway. These findings strongly suggest that SLOH owns a high therapeutic potential to treat early onset AD.

    更新日期:2020-01-24
  • Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-24
    Sarah J. Bertrand; Zhi Zhang; Ruchit Patel; Caroline O'Ferrell; Naresh M. Punjabi; Sapna R. Kudchadkar; Sujatha Kannan

    Sleep fragmentation is an increase in sleep-wake transitions without an overall decrease in total sleep time. Sleep fragmentation is well documented during acute and chronic hospitalization and can result in delirium and memory problems in children. Sleep fragmentation is also often noted in neurodevelopmental disorders. However, it is unclear how sleep fragmentation independent of disease affects brain development and function. We hypothesized that acute sleep fragmentation during the neonatal period in otherwise healthy animals would result in neuroinflammation and would be associated with abnormalities in cognitive development. The orbital shaker method was used to fragment sleep for 72 h in postnatal day 3 New Zealand white rabbit kits (fragmentation group). To control for maternal separation, the sham group was separated from the dam and maintained in the same conditions without undergoing sleep fragmentation. A naïve control group remained with the dam. Kits underwent behavioral testing with novel object recognition and spontaneous alternation T-maze tests at 2–3 weeks post-fragmentation and were sacrificed 3–50 days after fragmentation. Sleep fragmentation resulted in acute and chronic changes in microglial morphology in the hippocampus and cortex, and regional differences in mRNA expression of pro- and anti-inflammatory cytokines at 3, 7 and 50 days post-fragmentation. Impaired novel object recognition and a longer latency in T-maze task completion were noted in the fragmented kits. This was in spite of normalization of sleep architecture noted at 2 months of age in these kits. The results indicate that transient neonatal sleep fragmentation results in short-term and long-term immune alterations in the brain, along with diminished performance in cognitive tasks long-term.

    更新日期:2020-01-24
  • Progressive secondary exo-focal dopaminergic neurodegeneration occurs in not directly connected midbrain nuclei after pure motor-cortical stroke
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-24
    J.A. Hosp; K.L. Greiner; L. Martinez Arellano; F. Roth; F. Löffler; J. Reis; B. Fritsch

    Transsynaptic anterograde and retrograde degeneration of neurons and neural fibers are assumed to trigger local excitotoxicity and inflammatory processes. These processes in turn are thought to drive exo-focal neurodegeneration in remote areas connected to the infarcted tissue after ischemic stroke. In the case of middle cerebral artery occlusion (MCAO), in which striato-nigral connections are affected, the hypothesis of inflammation-induced remote neurodegeneration is based on the temporal dynamics of an early appearance of inflammatory markers in midbrain followed by dopaminergic neuronal loss. To test the hypothesis of a direct transsynaptic mediation of secondary exo-focal post-ischemic neurodegeneration, we used a photochemical induction of a stroke (PTS) in Sprague-Dawley rats restricted to motor cortex (MC), thereby sparing the striatal connections to dopaminergic midbrain nuclei. To dissect the temporal dynamics of post-ischemic neurodegeneration, we analyzed brain sections harvested at day 7 and 14 post stroke. Here, an unexpectedly pronounced and widespread loss of dopaminergic neurons occurred 14 days after stroke also affecting dopaminergic nuclei that are not directly coupled to MC. Since the pattern of neurodegeneration in case of a pure motor stroke is similar to a major stroke including the striatum, it is unlikely that direct synaptic coupling is a prerequisite for delayed secondary exo-focal post ischemic neurodegeneration. Furthermore, dopaminergic neurodegeneration was already detected by Fluoro-Jade C staining at day 7, coinciding with a solely slight inflammatory response. Thus, inflammation cannot be assumed to be the primary driver of exo-focal post-ischemic cell death. Moreover, nigral substance P (SP) expression indicated intact striato-nigral innervation after PTS, whereas opposing effects on SP expression after striatal infarcts argue against a critical role of SP in neurodegenerative or inflammatory processes during exo-focal neurodegeneration.

    更新日期:2020-01-24
  • l-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-24
    Jing Cheng; Jun-Chun Tang; Meng-Xian Pan; Song-Feng Chen; Dan Zhao; Ya Zhang; Hua-Bao Liao; Yang Zhuang; Rui-Xue Lei; Shu Wang; An-Chun Liu; Juan Chen; Zhao-Hui Zhang; Huan-Ting Li; Qi Wan; Qian-Xue Chen

    l-lysine is a basic amino acid that has been shown to exert neuroprotective effect. However, the underlying mechanism remains to be elucidated. In this study, we investigate how l-lysine exerts its neuroprotective effect in hemin-insulted mouse cortical neurons in vitro and the mouse model of intracerebral hemorrhage (ICH) in vivo. We demonstrate that l-lysine treatment promotes M2 microglial polarization and reduces inflammatory response both in vitro and in vivo, suggesting that l-lysine may play a neuroprotective role in ICH injury. Indeed, we show that l-lysine treatment reduces cortical neuronal death after hemin insult in vitro and decrease the number of degenerating neurons after ICH in vivo. l-lysine also improves the functional recovery of ICH animals in neurobehavioral tests. Consistent with the role of PTEN in regulating inflammatory response, we find that PTEN inhibition promotes M2 microglial polarization and suppresses pro-inflammatory response in mouse ICH injury, which contribute to the neuroprotective effect of l-lysine. Moreover, our results reveal that microRNA-575 directly suppressed PTEN to promote M2 microglial polarization and mediate the neuroprotective effect of l-lysine in ICH injury. Together, our results suggest that l-lysine confers neuroprotection after ICH injury through enhancing M2 microglial polarization and reducing inflammatory response, which is mediated by microRNA-575 upregulation and subsequent PTEN downregulation.

    更新日期:2020-01-24
  • Ryanodine receptors drive neuronal loss and regulate synaptic proteins during epileptogenesis
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-24
    Pedro Xavier Royero; Guilherme Shigueto Vilar Higa; Daiane Soares Kostecki; Bianca Araújo dos Santos; Cayo Almeida; Kézia Accioly Andrade; Erika Reime Kinjo; Alexandre Hiroaki Kihara

    Status epilepticus (SE) is a clinical emergency that can lead to the development of temporal lobe epilepsy (TLE). The development and maintenance of spontaneous seizures in TLE are linked to calcium (Ca+2)-dependent processes such as neuronal cell loss and pathological synaptic plasticity. It has been shown that SE produces an increase in ryanodine receptor-dependent intracellular Ca+2 levels in hippocampal neurons, which remain elevated during the progression of the disease. However, the participation of ryanodine receptors (RyRs) in the neuronal loss and circuitry rewiring that take place in the hippocampus after SE remains unknown. In this context, we first investigated the functional role of RyRs on the expression of synaptic and plasticity-related proteins during epileptogenesis induced by pilocarpine in Wistar rats. Intrahippocampal injection of dantrolene, a selective pharmacological blocker of RyRs, caused the increase of the presynaptic protein synapsin I (SYN) and synaptophysin (SYP) 48 h after SE induction. Specifically, we observed that SYN and SYP were regulated in hippocampal regions known to receive synaptic inputs, revealing that RyRs could be involved in network changes and/or neuronal protection after SE induction. In order to investigate whether the changes in SYN and SYP were related to neuroplastic changes that could contribute to pathological processes that occur after SE, we evaluated the levels of activity-regulated cytoskeleton-associated protein (ARC) and mossy fiber sprouting in the dentate gyrus (DG). Interestingly, we observed that although SE induced the appearance of intense ARC-positive cells, dantrolene treatment did not change the levels of ARC in both western blot and immunofluorescence analyses. Accordingly, in the same experimental conditions, we were not able to detect changes in the levels of both pre- and post-synaptic plasticity-related proteins, growth associated protein-43 (GAP-43) and postsynaptic density protein-95 (PSD-95), respectively. Additionally, the density of mossy fiber sprouting in the DG was not increased by dantrolene treatment. We next examined the effects of intrahippocampal injection of dantrolene on neurodegeneration. Notably, dantrolene promoted neuroprotective effects by decreasing neuronal cell loss in CA1 and CA3, which explains the increased levels of synaptic proteins, and the apparent lack of positive effect on pathological plasticity. Taken together, our results revealed that RyRs may have a major role in the hippocampal neurodegeneration associated to the development of acquired epilepsy.

    更新日期:2020-01-24
  • Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-18
    Mark E. Maynard; John B. Redell; Jing Zhao; Kimberly N. Hood; Sydney M. Vita; Nobuhide Kobori; Pramod K. Dash

    One of the consistent pathologies associated with both clinical and experimental traumatic brain injury is axonal injury, especially following mild traumatic brain injury (or concussive injury). Several lines of experimental evidence have demonstrated a role for NAD+ metabolism in axonal degeneration. One of the enzymes that metabolizes NAD+ in axons is Sarm1 (Sterile Alpha and TIR Motif Containing 1), and its activity is thought to play a key role in axonal degeneration. Using a Sarm1 knock-out mouse, we examined if loss of Sarm1 offers axonal injury protection and improves cognitive outcome after repeated mild closed head injury (rmCHI). Our results indicate that rmCHI caused white matter damage that can be observed in the corpus callosum, cingulum bundle, alveus of the hippocampus, and fimbria of the fornix of wild-type mice. These pathological changes were markedly reduced in injured Sarm1−/− mice. Interestingly, the activation of astrocytes and microglia was also attenuated in the areas with white matter damage, suggesting reduced inflammation. Associated with these improved pathological outcomes, injured Sarm1−/− mice performed significantly better in both motor and cognitive tasks. Taken together, our results suggest that strategies aimed at inhibiting Sarm1 and/or restoring NAD+ levels in injured axons may have therapeutic utility.

    更新日期:2020-01-21
  • Chemogenetics-mediated acute inhibition of excitatory neuronal activity improves stroke outcome
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-18
    Ya-chao Wang; Francesca Galeffi; Wei Wang; Xuan Li; Liping Lu; Huaxin Sheng; Ulrike Hoffmann; Dennis A. Turner; Wei Yang

    Background and purpose Ischemic stroke significantly perturbs neuronal homeostasis leading to a cascade of pathologic events causing brain damage. In this study, we assessed acute stroke outcome after chemogenetic inhibition of forebrain excitatory neuronal activity. Methods We generated hM4Di-TG transgenic mice expressing the inhibitory hM4Di, a Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic receptor, in forebrain excitatory neurons. Clozapine-N-oxide (CNO) was used to activate hM4Di DREADD. Ischemic stroke was induced by transient occlusion of the middle cerebral artery. Neurologic function and infarct volumes were evaluated. Excitatory neuronal suppression in the hM4Di-TG mouse forebrain was assessed electrophysiologically in vitro and in vivo, based on evoked synaptic responses, and in vivo based on occurrence of potassium-induced cortical spreading depolarizations. Results Detailed characterization of hM4Di-TG mice confirmed that evoked synaptic responses in both in vitro hippocampal slices and in vivo motor cortex were significantly reduced after CNO-mediated activation of the inhibitory hM4Di DREADD. Further, CNO treatment had no obvious effects on physiology and motor function in either control or hM4Di-TG mice. Importantly, hM4Di-TG mice treated with CNO at either 10 min before ischemia or 30 min after reperfusion exhibited significantly improved neurologic function and smaller infarct volumes compared to CNO-treated control mice. Mechanistically, we showed that potassium-induced cortical spreading depression episodes were inhibited, including frequency and duration of DC shift, in CNO-treated hM4Di-TG mice. Conclusions Our data demonstrate that acute inhibition of a subset of excitatory neurons after ischemic stroke can prevent brain injury and improve functional outcome. This study, together with the previous work in optogenetic neuronal modulation during the chronic phase of stroke, supports the notion that targeting neuronal activity is a promising strategy in stroke therapy.

    更新日期:2020-01-21
  • Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-18
    Elizabeth A. Dugan; Stanislava Jergova; Jacqueline Sagen

    Spinal cord injury (SCI) produces both locomotor deficits and sensory dysfunction that greatly reduce the overall quality of life. Mechanisms underlying chronic pain include increased neuro-inflammation and changes in spinal processing of sensory signals, with reduced inhibitory GABAergic signaling a likely key player. Our previous research demonstrated that spinal transplantation of GABAergic neural progenitor cells (NPCs) reduced neuropathic pain while intensive locomotor training (ILT) could reduce development of pain and partially reverse already established pain behaviors. Therefore, we evaluate the potential mutually beneficial anti-hypersensitivity effects of NPC transplants cells in combination with early or delayed ILT. NPC transplants were done at 4 weeks post-SCI. ILT, using a progressive ramping treadmill protocol, was initiated either 5 days post-SCI (early: pain prevention group) or at 5 weeks post-SCI (delayed: to reverse established pain) in male Sprague Dawley rats. Results showed that either ILT alone or NPCs alone could partially attenuate SCI neuropathic pain behaviors in both prevention and reversal paradigms. However, the combination of ILT with NPC transplants significantly enhanced neuropathic pain reduction on most of the outcome measures including tests for allodynia, hyperalgesia, and ongoing pain. Immunocytochemical and neurochemical analyses showed decreased pro-inflammatory markers and spinal pathology with individual treatments; these measures were further improved by the combination of either early or delayed ILT and GABAergic cellular transplantation. Lumbar dorsal horn GABAergic neuronal and process density were nearly restored to normal levels by the combination treatment. Together, these interventions may provide a less hostile and more supportive environment for promoting functional restoration in the spinal dorsal horn and attenuation of neuropathic pain following SCI. These findings suggest mutually beneficial effects of ILT and NPC transplants for reducing SCI neuropathic pain.

    更新日期:2020-01-21
  • Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-16
    Pinar Eser Ocak; Umut Ocak; Prativa Sherchan; Marcin Gamdzyk; Jiping Tang; John H. Zhang

    Introduction Disruption of the blood brain barrier (BBB) and subsequent cerebral edema formation is one of the major adverse effects of brain surgery, leading to postoperative neurological dysfunction. Recently, Mfsd2a has been shown to have a crucial role for the maintenance of BBB functions. In this study, we aimed to evaluate the role of Mfsd2a on BBB disruption following surgical brain injury (SBI) in rats. Materials and methods Rats were subjected to SBI by partial resection of the right frontal lobe. To evaluate the effect of Mfsd2a on BBB permeability and neurobehavior outcome following SBI, Mfsd2a was either overexpressed or downregulated in the brain by administering Mfsd2a CRISPR activation or knockout plasmids, respectively. The potential mechanism of Mfsd2a-mediated BBB protection through the cav-1/Nrf-2/HO-1 signaling pathway was evaluated. Results Mfsd2a levels were significantly decreased while cav-1, Nrf-2 and HO-1 levels were increased in the right frontal perisurgical area following SBI. When overexpressed, Mfsd2a attenuated brain edema and abolished neurologic impairment caused by SBI while downregulation of Mfsd2a expression further deteriorated BBB functions and worsened neurologic performance following SBI. The beneficial effect of Mfsd2a overexpression on BBB functions was associated with diminished expression of cav-1, increased Keap-1/Nrf-2 dissociation and further augmented levels of Nrf-2 and HO-1 in the right frontal perisurgical area, leading to enhanced levels of tight junction proteins following SBI. The BBB protective effect of Mfsd2a was blocked by selective inhibitors of Nrf-2 and HO-1. Conclusions Mfsd2a attenuates BBB disruption through cav-1/Nrf-2/HO-1 signaling pathway in rats subjected to experimental SBI.

    更新日期:2020-01-16
  • Depletion of CD4 T cells provides therapeutic benefits in aged mice after ischemic stroke
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-15
    Nia M. Harris; Meaghan Roy-O'Reilly; Rodney M. Ritzel; Aleah Holmes; Lauren H. Sansing; Lena M. O'Keefe; Louise D. McCullough; Anjali Chauhan

    T-lymphocytes have a multifaceted role in ischemic stroke, but the majority of studies have been conducted in young mice, which may limit the translational value of these findings. Previous studies have shown that aging results in T cell dysfunction, leading to enhanced production of pro-inflammatory cytokines and chemokines, including interferon gamma (IFN-γ) and interferon-gamma-inducible protein (IP-10). This study assessed the role of T cells and pro-inflammatory factors on histologic and functional outcomes in an aged mouse model. Levels of IP-10 were measured in the brain and serum of young and aged male mice following middle cerebral artery occlusion (MCAo) or sham surgery. Additionally, IP-10 levels were evaluated in stroke patients. To directly determine the role of brain-infiltrating T cells after stroke, a separate cohort of aged male and female animals received either an anti-CD4 depletion antibody or IgG isotype control at 72 and 96 h following experimental stroke. Behavioral assessments were performed on day 7 post-MCAo. CD4 T cell depletion resulted in improved behavioral outcomes, despite the lack of differences in infarct size between the isotype control and anti-CD4 antibody treated stroke groups. Circulating IP-10 levels were increased in both humans and mice with age and stroke, and depletion of CD4 T cells led to a reduction in IFN-γ and IP-10 levels in mice. Since anti-CD4 treatment was administered three days after stroke onset, targeting this inflammatory pathway may be beneficial to aged stroke patients who present outside of the current time window for thrombolysis and thrombectomy.

    更新日期:2020-01-15
  • Medial gastrocnemius muscles fatigue but do not atrophy in paralyzed cat hindlimb after long-term spinal cord hemisection and unilateral deafferentation
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-15
    Tessa Gordon; Neil Tyreman; Luke R. Harris; F. Rafuse Victor

    This study of medial gastrocnemius (MG) muscle and motor units (MUs) after spinal cord hemisection and deafferentation (HSDA) in adult cats, asked 1) whether the absence of muscle atrophy and unaltered contractile speed demonstrated previously in HSDA-paralyzed peroneus longus (PerL) muscles, was apparent in the unloaded HSDA-paralyzed MG muscle, and 2) how ankle unloading impacts MG muscle and MUs after dorsal root sparing (HSDA-SP) with foot placement during standing and locomotion. Chronic isometric contractile forces and speeds were maintained for up to 12 months in all conditions, but fatigability increased exponentially. MU recordings at 8–11½ months corroborated the unchanged muscle force and speed with significantly increased fatigability; normal weights of MG muscle confirmed the lack of disuse atrophy. Fast MUs transitioned from fatigue resistant and intermediate to fatigable accompanied by corresponding fiber type conversion to fast oxidative (FOG) and fast glycolytic (FG) accompanied by increased GAPDH enzyme activity in absolute terms and relative to oxidative citrate synthase enzyme activity. Myosin heavy chain composition, however, was unaffected. MG muscle behaved like the PerL muscle after HSDA with maintained muscle and MU contractile force and speed but with a dramatic increase in fatigability, irrespective of whether all the dorsal roots were transected. We conclude that reduced neuromuscular activity accounts for increased fatigability but is not, in of itself, sufficient to promote atrophy and slow to fast conversion. Position and relative movements of hindlimb muscles are likely contributors to sustained MG muscle and MU contractile force and speed after HSDA and HSDA-SP surgeries.

    更新日期:2020-01-15
  • Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-11
    Cheryl Clarkson; Roy M. Smeal; Meredith G. Hasenoehrl; John A. White; Maria E. Rubio; Karen S. Wilcox

    The persistent unresponsiveness of many of the acquired epilepsies to traditional antiseizure medications has motivated the search for prophylactic drug therapies that could reduce the incidence of epilepsy in this at risk population. These studies are based on the idea of a period of epileptogenesis that can follow a wide variety of brain injuries. Epileptogenesis is hypothesized to involve changes in the brain not initially associated with seizures, but which result finally in seizure prone networks. Understanding these changes will provide crucial clues for the development of prophylactic drugs. Using the repeated low-dose kainate rat model of epilepsy, we have studied the period of epileptogenesis following status epilepticus, verifying the latent period with continuous EEG monitoring. Focusing on ultrastructural properties of the tripartite synapse in the CA1 region of hippocampus we found increased astrocyte ensheathment around both the presynaptic and postsynaptic elements, reduced synaptic AMPA receptor subunit and perisynaptic astrocyte GLT-1 expression, and increased number of docked vesicles at the presynaptic terminal. These findings were associated with an increase in frequency of the mEPSCs observed in patch clamp recordings of CA1 pyramidal cells. The results suggest a complex set of changes, some of which have been associated with increasingly excitable networks such as increased vesicles and mEPSC frequency, and some associated with compensatory mechanisms, such as increased astrocyte ensheathment. The diversity of ultrastructural and electrophysiological changes observed during epileptogeneiss suggests that potential drug targets for this period should be broadened to include all components of the tripartite synapse.

    更新日期:2020-01-13
  • The effects of mild closed head injuries on tauopathy and cognitive deficits in rodents: Primary results in wild type and rTg4510 mice, and a systematic review
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-11
    Adam D. Bachstetter; Josh M. Morganti; Colleen N. Bodnar; Scott J. Webster; Emma K. Higgins; Kelly N. Roberts; Henry Snider; Shelby E. Meier; Grant K. Nation; Danielle S. Goulding; Matthew Hamm; David K. Powell; Moriel Vandsburger; Linda J. Van Eldik; Jose F. Abisambra

    In humans, the majority of sustained traumatic brain injuries (TBIs) are classified as ‘mild’ and most often a result of a closed head injury (CHI). The effects of a non-penetrating CHI are not benign and may lead to chronic pathology and behavioral dysfunction, which could be worsened by repeated head injury. Clinical-neuropathological correlation studies provide evidence that conversion of tau into abnormally phosphorylated proteotoxic intermediates (p-tau) could be part of the pathophysiology triggered by a single TBI and enhanced by repeated TBIs. However, the link between p-tau and CHI in rodents remains controversial. To address this question experimentally, we induced a single CHI or two CHIs to WT or rTg4510 mice. We found that 2× CHI increased tau phosphorylation in WT mice and rTg4510 mice. Behavioral characterization in WT mice found chronic deficits in the radial arm water maze in 2× CHI mice that had partially resolved in the 1× CHI mice. Moreover, using Manganese-Enhanced Magnetic Resonance Imaging with R1 mapping – a novel functional neuroimaging technique – we found greater deficits in the rTg4510 mice following 2× CHI compared to 1× CHI. To integrate our findings with prior work in the field, we conducted a systematic review of rodent mild repetitive CHI studies. Following Prisma guidelines, we identified 25 original peer-reviewed papers. Results from our experiments, as well as our systematic review, provide compelling evidence that tau phosphorylation is modified by experimental mild TBI studies; however, changes in p-tau levels are not universally reported. Together, our results provide evidence that repetitive TBIs can result in worse and more persistent neurological deficits compared to a single TBI, but the direct link between the worsened outcome and elevated p-tau could not be established.

    更新日期:2020-01-11
  • Bioenergetic adaptations to HIV infection. Could modulation of energy substrate utilization improve brain health in people living with HIV-1?
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-11
    Pragney Deme; Camilo Rojas; Barbara S. Slusher; Zahra Afghah; Jonathan D. Geiger; Norman J. Haughey

    The human brain consumes more energy than any other organ in the body and it relies on an uninterrupted supply of energy in the form of adenosine triphosphate (ATP) to maintain normal cognitive function. This constant supply of energy is made available through an interdependent system of metabolic pathways in neurons, glia and endothelial cells that each have specialized roles in the delivery and metabolism of multiple energetic substrates. Perturbations in brain energy metabolism is associated with a number of different neurodegenerative conditions including impairments in cognition associated with infection by the Human Immunodeficiency Type 1 Virus (HIV-1). Adaptive changes in brain energy metabolism are apparent early following infection, do not fully normalize with the initiation of antiretroviral therapy (ART), and often worsen with length of infection and duration of anti-retroviral therapeutic use. There is now a considerable amount of cumulative evidence that suggests mild forms of cognitive impairments in people living with HIV-1 (PLWH) may be reversible and are associated with specific modifications in brain energy metabolism. In this review we discuss brain energy metabolism with an emphasis on adaptations that occur in response to HIV-1 infection. The potential for interventions that target brain energy metabolism to preserve or restore cognition in PLWH are also discussed.

    更新日期:2020-01-11
  • Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-10
    Ling-Yun Wu; Budbazar Enkhjargal; Zhi-Yi Xie; Zachary D. Travis; Cheng-Mei Sun; Ke-Ren Zhou; Tong-Yu Zhang; Qi-Quan Zhu; Chun-Hua Hang; John H. Zhang

    Subarachnoid hemorrhage (SAH) is the most devastating form of stroke. Reducing neuronal apoptosis is an important countermeasure against early brain injury (EBI) after SAH. Recent evidence indicates that OX40-OX40L coupling is critical for cell survival and proliferation. Current study was performed to detect the role of recombinant OX40 (ReOX40) against neuronal apoptosis after SAH. The endovascular perforation model of SAH was performed on Sprague-Dawley (SD) rats. ReOX40 was injected intracerebroventricularly (i.c.v) 1 h after SAH induction and the following methods were employed: neurological function evaluation, immunofluorescence staining, fluoro-Jade C staining, and western blot. To study the underlying precise molecular mechanism, small interfering ribonucleic acid (siRNA) for OX40L and a specific inhibitor of PI3K, LY294002, were injected i.c.v. into SAH + ReOX40 rats before induction of SAH. When compared with sham rats, the expression of OX40 and OX40L was seen to decrease in the brain at 24 h after SAH induction. Administration of ReOX40 (5 μg/kg) increased expression of the OX40L, reduced the neuronal apoptosis, and improved short and long-term neurological function deficits. Furthermore, ReOx40 heightened activation of OX40L/PI3K/AKT axis, increased the downstream anti-apoptotic protein (Bcl2, Bcl-XL), and depressed the apoptotic protein (cleaved caspase 3, Bax). However, the protective effects of ReOX40 were abolished by the administration of OX40L siRNA and LY294002, respectively. These results demonstrate that ReOX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT pathway in EBI after SAH.

    更新日期:2020-01-11
  • Chronic periodontitis induces microbiota-gut-brain axis disorders and cognitive impairment in mice
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-08
    Li Xue; Xiao Zou; Xue-Qin Yang; Fu Peng; Dong-Ke Yu; Jun-Rong Du

    Epidemiological studies suggest that chronic periodontitis (CP) is closely associated with the incidence and progression of cognitive impairment. The present study investigated the causal relationship between CP and cognitive decline and the underlying mechanism in mice. Long-term ligature around the left second maxillary molar tooth was used to induce CP in mice. Severe alveolar bone loss and inflammatory changes were observed in gingival tissues, accompanied by progressive cognitive deficits during a 12-month period. We also observed cerebral neuronal and synaptic injury and glial activation in this mouse model of CP. Furthermore, CP mice exhibited significant dysbiosis of the oral and gut microbiota, disruption of the intestinal barrier and blood-brain barrier, increases in the serum contents of proinflammatory cytokines and lipopolysaccharide (LPS), and increases in brain LPS levels, Toll-like receptor 4 (TLR4) expression, nuclear factor-κB (NF-κB) nuclear translocation and proinflammatory cytokine mRNA levels. These results indicate that CP may directly induce progressive cognitive decline and its mechanism is probably related to microbiota-gut-brain axis disorders, LPS/TLR4/NF-κB signaling activation and neuroinflammatory responses in mice. Therefore, the microbiota-gut-brain axis may provide the potential strategy for the prevention and treatment of CP-associated cognitive impairment.

    更新日期:2020-01-09
  • Anxiety-like behavior induced by salicylate depends on age and can be prevented by a single dose of 5-MeO-DMT
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-08
    Jessica Winne; Barbara C. Boerner; Thawann Malfatti; Elis Brisa; Jhulimar Doerl; Ingrid Nogueira; Katarina E. Leão; Richardson N. Leão

    Salicylate intoxication is a cause of tinnitus and comorbidly associated with anxiety in humans. In a previous work, we showed that salicylate induces anxiety-like behavior and hippocampal type 2 theta oscillations (theta2) in mice. Here we investigate if the anxiogenic effect of salicylate is dependent on age and previous tinnitus experience. We also tested whether a single dose of DMT can prevent this effect. Using microwire electrode arrays, we recorded local field potential in young (4–5- month-old) and old (11–13-month-old) mice to study the electrophysiological effect of tinnitus in the ventral hippocampus (vHipp) and medial prefrontal cortex (mPFC) in an open field arena and elevated plus maze 1 h after salicylate (300 mg/kg) injection. We found that anxiety-like behavior and increase in theta2 oscillations (4–6 Hz), following salicylate pre-treatment, only occurs in young (normal hearing) mice. We also show that theta2 and slow gamma oscillations increase in the vHipp and mPFC in a complementary manner during anxiety tests in the presence of salicylate. Finally, we show that pre-treating mice with a single dose of the hallucinogenic 5-MeO-DMT prevents anxiety-like behavior and the increase in theta2 and slow gamma oscillations after salicylate injection in normal hearing young mice. This work further support the hypothesis that anxiety-like behavior after salicylate injection is triggered by tinnitus and require normal hearing. Moreover, our results show that hallucinogenic compounds can be effective in treating tinnitus-related anxiety.

    更新日期:2020-01-08
  • Alteration in global DNA methylation status following preconditioning injury influences axon growth competence of the sensory neurons
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-08
    Hae Young Shin; Kyung Kim; Min Jung Kwon; Young Joo Oh; Eun Hye Kim; Hyung Soon Kim; Chang Pyo Hong; Jae-Hyung Lee; KiYoung Lee; Byung Gon Kim

    Preconditioning peripheral nerve injury primes the sensory neurons in the dorsal root ganglia (DRGs) to acquire axon regeneration competence. Transcription of a large set of regeneration-associated-genes (RAGs) contributes to the enhanced intrinsic axonal regeneration capacity. However, the mechanism underlying the coordinated upregulation of RAGs orchestrated by preconditioning injury is unclear. We sought to determine potential influence of DNA methylation change on transcriptional activation of RAGs in the L4-L6 DRGs following sciatic nerve injury. Genome-wide sequencing revealed that about 20% of the methylated DNA fragments were differentially methylated, and >3000 genes contained differentially methylated regions. Not only demethylation but also increased methylation was observed to a similar extent. The change in the global DNA methylation did not correlate with the gene expression level of most genes, including the well-documented RAGs. However, pharmacological inhibition or activation of DNA methylation markedly attenuated the axon growth capacity of the preconditioned DRG neurons. Pharmacological perturbation of DNA methylation resulted in simultaneous downregulation of many highly overlapping non-transcription factor RAGs, which was accompanied by a concurrent, robust upregulation of SOCS3 and Serpine1. Overexpression of SOCS3 and Serpine1 in the DRG neurons overrode injury-induced axon growth competence, corroborating their roles as the negative regulators of axon regeneration. We conclude that the injury-induced global alteration of DNA methylome strongly influences the axon growth competence in preconditioned DRG neurons. Our results also suggest a possibility that perturbing DNA methylome changes might lead to the upregulation of negative regulator RAGs thereby attenuating axon growth capacity.

    更新日期:2020-01-08
  • The benefits of voluntary physical exercise after traumatic brain injury on rat's object recognition memory: A comparison of different temporal schedules
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-08
    Laura Amorós-Aguilar; Isabel Portell-Cortés; David Costa-Miserachs; Meritxell Torras-Garcia; Èlia Riubugent; Beatriz Almolda; Margalida Coll-Andreu
    更新日期:2020-01-08
  • Cuprizone-induced demyelination under physiological and post-stroke condition leads to decreased neurogenesis response in adult mouse brain
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-02
    Fucheng Luo; Zhen Zhang; Austin Barnett; Tania J. Bellinger; Flavia Turcato; Kelly Schmidt; Yu Luo

    Due to the limitation in treatment window of the rtPA (recombinant tissue plasminogen activator), the development of delayed treatment for stroke is needed. We previously reported that there is a difference in neurogenesis and neuroblast migration patterns in different mouse stroke models (proximal and distal middle cerebral artery occlusion models, pMCAo or dMCAo). Specifically, compared to robust neurogenesis and substantial migration of newly born neuroblasts in pMCAo model, dMCAo only illicit limited neurogenesis and migration of neuroblasts towards ischemic area. One potential reason for this difference is the relative location of ischemic area to white matter and the neurogenic niche (subventricular zone, SVZ). Specifically, white matter could serve as a physical barrier or inhibitory factor to neurogenesis and migration in the dMCAo model. Given that a major difference in human and rodent brains is the content of white matter in the brain, in this study, we further characterize these two models and test the important hypothesis that white matter is an important contributing inhibitory factor for the limited neurogenesis in the dMCAo model. We utilized a genetically inducible NSC-specific reporter mouse line (nestin-CreERT2-R26R-YFP) to label and track NSC proliferation, survival and differentiation in ischemic brain. To test whether myelin is inhibitory to neurogenesis in dMCAo model, we demyelinated mouse brains using cuprizone treatment after stroke and examined whether there is enhanced neurogenesis or migration of neuroblasts cells in stroke mice treated with cuprizone. Our data suggests that demyelination of the brain does not result in enhanced neurogenesis or migration of neuroblasts, supporting that myelin is not a major inhibitory factor for stroke-induced neurogenesis. In addition, our results suggest that in non-stroke mice, demyelination causes decreased neurogenesis in adult brain, indicating a potential positive role of myelin in maintenance of adult neural stem cell niche.

    更新日期:2020-01-02
  • Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury
    Exp. Neurol. (IF 4.562) Pub Date : 2020-01-02
    Wissam Chiha; Carole Bartlett; Steven Petratos; Melinda Fitzgerald; Alan R. Harvey

    Secondary degeneration following an initial injury to the central nervous system (CNS) results in increased tissue loss and is associated with increasing functional impairment. Unilateral partial dorsal transection of the adult rat optic nerve (ON) has proved to be a useful experimental model in which to study factors that contribute to secondary degenerative events. Using this injury model, we here quantified the protective effects of intravitreally administered bi-cistronic adeno-associated viral (AAV2) vectors encoding either brain derived neurotrophic factor (BDNF) or a mutant, phospho-resistant, version of collapsin response mediator protein 2 (CRMP2T555A) on retinal ganglion cells (RGCs), their axons, and associated myelin. To test for potential synergistic interactions, some animals received combined injections of both vectors. Three months post-injury, all treatments maintained RGC numbers in central retina, but only AAV2-BDNF significantly protected ventrally located RGCs exclusively vulnerable to secondary degeneration. Behaviourally, treatments that involved AAV2-BDNF significantly restored the number of smooth-pursuit phases of optokinetic nystagmus. While all therapeutic regimens preserved axonal density and proportions of typical complexes, including heminodes and single nodes, BDNF treatments were generally more effective in maintaining the length of the node of Ranvier in myelin surrounding ventral ON axons after injury. Both AAV2-BDNF and AAV2-CRMP2T555A prevented injury-induced changes in G-ratio and overall myelin thickness, but only AAV2-BDNF administration protected against large-scale myelin decompaction in ventral ON. In summary, in a model of secondary CNS degeneration, both BDNF and CRMP2T555A vectors were neuroprotective, however different efficacies were observed for these overexpressed proteins in the retina and ON, suggesting disparate cellular and molecular targets driving responses for neural repair. The potential use of these vectors to treat other CNS injuries and pathologies is discussed.

    更新日期:2020-01-02
  • Neuronal ablation of mt-AspRS in mice induces immune pathway activation prior to severe and progressive cortical and behavioral disruption
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-27
    Christina L. Nemeth; Sophia N. Tomlinson; Melissa Rosen; Brett M. O'Brien; Oscar Larraza; Mahim Jain; Connor F. Murray; Joel S. Marx; Michael Delannoy; Amena S. Fine; Dan Wu; Aleksandra Trifunovic; Ali Fatemi

    Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a rare, slowly progressive white matter disease caused by mutations in the mitochondrial aspartyl-tRNA synthetase (mt-AspRS, or DARS2). While patients show characteristic MRI T2 signal abnormalities throughout the cerebral white matter, brain stem, and spinal cord, the phenotypic spectrum is broad and a multitude of gene variants have been associated with the disease. Here, Dars2 deletion from CamKIIα-expressing cortical and hippocampal neurons results in slowly progressive increases in behavioral activity at 5 months, and culminating by 9 months as severe brain atrophy, behavioral dysfunction, reduced corpus callosum thickness, and microglial morphology indicative of neuroinflammation. Interestingly, RNAseq based gene expression studies performed prior to the presentation of this severe phenotype reveal the upregulation of several pathways involved in immune activation, cytokine production and signaling, and the defense response regulation. RNA transcript analysis demonstrates that activation of immune and cell stress pathways are initiated in advance of a behavioral phenotype and cerebral deficits. An understanding of these pathways and their contribution to significant neuronal loss in CamKII-Dars2 KO mice may aid in deciphering mechanisms of LBSL pathology.

    更新日期:2019-12-27
  • Prenatal intermittent hypoxia sensitizes the laryngeal chemoreflex, blocks serotoninergic shortening of the reflex, and reduces 5-HT3 receptor binding in the NTS in anesthetized rat pups
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-27
    William T. Donnelly; Robin L. Haynes; Kathryn G. Commons; Drexel Erickson; Chris M. Panzini; Luxi Xia; Q. Joyce Han; J.C. Leiter

    We tested the hypothesis that exposure to intermittent hypoxia (IH) during pregnancy would prolong the laryngeal chemoreflex (LCR) and diminish the capacity of serotonin (5-hydroxytryptamine; 5-HT) to terminate the LCR. Prenatal exposure to IH was associated with significant prolongation of the LCR in younger, anesthetized, postnatal day (P) rat pups age P8 to P16 compared to control, room air (RA)-exposed rat pups of the same age. Serotonin microinjected into the NTS shortened the LCR in rat pups exposed to RA during gestation, but 5-HT failed to shorten the LCR in rat pups exposed to prenatal IH. Given these observations, we tested the hypothesis that prenatal hypoxia would decrease binding to 5-HT3 receptors in the nucleus of the solitary tract (NTS) where 5-HT acts to shorten the LCR. Serotonin 3 receptor binding was reduced in younger rat pups exposed to IH compared to control, RA-exposed rat pups in the age range P8 to P12. Serotonin 3 receptor binding was similar in older animals (P18-P24) regardless of gas exposure during gestation. The failure of the 5-HT injected into the NTS to shorten the LCR was correlated with a developmental decrease in 5-HT3 receptor binding in the NTS associated with exposure to prenatal IH. In summary, prenatal IH sensitized reflex apnea and blunted processes that terminate reflex apneas in neonatal rat pups, processes that are essential to prevent death following apneas such as those seen in babies who died of SIDS.

    更新日期:2019-12-27
  • Take a deep breath and wake up: The protean role of serotonin in preventing sudden death in infancy
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-27
    Kevin J. Cummings; James C. Leiter

    Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal are all modulated by serotonin. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models – all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.

    更新日期:2019-12-27
  • Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-24
    Christopher G. Hart; Scott M. Dyck; Hardeep Kataria; Arsalan Alizadeh; Pandian Nagakannan; James A. Thliveris; Eftekhar Eftekharpour; Soheila Karimi-Abdolrezaee

    Traumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events. Here, we demonstrate that the active form of bone morphogenetic protein-4 (BMP4) is robustly and transiently upregulated in acute SCI in rats. BMP4 is a key morphogen in neurodevelopment; however, its role in SCI is not fully defined. Thus, we elucidated the ramification of BMP4 upregulation in a preclinical model of compressive/contusive SCI in the rat by employing noggin, an endogenous antagonist of BMP ligands, and LDN193189, an intracellular inhibitor of BMP signaling. In parallel, we studied cell-specific effects of BMP4 on neural precursor cells (NPCs), oligodendrocyte precursor cells (OPCs), neurons and astrocytes in vitro. We demonstrate that activation of BMP4 inhibits differentiation of spinal cord NPCs and OPCs into mature myelin-expressing oligodendrocytes, and acute blockade of BMPs promotes oligodendrogenesis, oligodendrocyte preservation and remyelination after SCI. Importantly, we report for the first time that BMP4 directly induces caspase-3 mediated apoptosis in neurons and oligodendrocytes in vitro, and noggin and LDN193189 remarkably attenuate caspase-3 activation and lipid peroxidation in acute SCI. BMP4 also enhances the production of inhibitory chondroitin sulfate proteoglycans (CSPGs) in activated astrocytes in vitro and after SCI. Interestingly, our work reveals that despite the beneficial effects of BMP inhibition in acute SCI, neither noggin nor LDN193189 treatment resulted in long-term functional recovery. Collectively, our findings suggest a role for BMP4 in regulating acute secondary injury mechanisms following SCI, and a potential target for combinatorial approaches to improve endogenous cell response and remyelination.

    更新日期:2019-12-25
  • Zn2+ entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-24
    Sung G. Ji; Yuliya V. Medvedeva; John H. Weiss

    Excitotoxic Ca2+ accumulation contributes to ischemic neurodegeneration, and Ca2+ can enter the mitochondria through the mitochondrial calcium uniporter (MCU) to promote mitochondrial dysfunction. Yet, Ca2+-targeted therapies have met limited success. A growing body of evidence has highlighted the underappreciated importance of Zn2+, which also accumulates in neurons after ischemia and can induce mitochondrial dysfunction and cell death. While studies have indicated that Zn2+ can also enter the mitochondria through the MCU, the specificity of the pore's role in Zn2+-triggered injury is still debated. Present studies use recently available MCU knockout mice to examine how the deletion of this channel impacts deleterious effects of cytosolic Zn2+ loading. In cultured cortical neurons from MCU knockout mice, we find significantly reduced mitochondrial Zn2+ accumulation. Correspondingly, these neurons were protected from both acute and delayed Zn2+-triggered mitochondrial dysfunction, including mitochondrial reactive oxygen species generation, depolarization, swelling and inhibition of respiration. Furthermore, when toxic extramitochondrial effects of Ca2+ entry were moderated, both cultured neurons (exposed to Zn2+) and CA1 neurons of hippocampal slices (subjected to prolonged oxygen glucose deprivation to model ischemia) from MCU knockout mice displayed decreased neurodegeneration. Finally, to examine the therapeutic applicability of these findings, we added an MCU blocker after toxic Zn2+ exposure in wildtype neurons (to induce post-insult MCU blockade). This significantly attenuated the delayed evolution of both mitochondrial dysfunction and neurotoxicity. These data—combining both genetic and pharmacologic tools—support the hypothesis that Zn2+ entry through the MCU is a critical contributor to ischemic neurodegeneration that could be targeted for neuroprotection.

    更新日期:2019-12-25
  • Central serotonin and autoresuscitation capability in mammalian neonates
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-24
    Jeffery T. Erickson

    Autoresuscitation is an important cardiorespiratory protective mechanism that allows neonatal mammals to recover from primary apnea. It begins with hypoxia-induced gasping and ends, if successful, with the recovery of rhythmic breathing and normal heart rate. Many factors influence the efficacy of autoresuscitation, including the availability of serotonin (5-HT) in the brain. Since the early 2000s, there has been mounting interest in the role of 5-HT in promoting autoresuscitation, driven in large part by the recognition that both failed autoresuscitation and a deficiency of central 5-HT correlate with Sudden Infant Death Syndrome in humans. Within this timeframe, newly developed animal models with a central 5-HT deficiency have examined experimentally the role of 5-HT in autoresuscitation capability. The purpose of this review is to discuss some of the methodological considerations associated with 5-HT-deficient animal models, to summarize major findings arising from their use, and to highlight several key issues related to 5-HT involvement in gasping and the autoresuscitation response.

    更新日期:2019-12-25
  • Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-19
    Aina Calls; Valentina Carozzi; Xavier Navarro; Laura Monza; Jordi Bruna

    One of the most relevant dose-limiting adverse effects of platinum drugs is the development of a sensory peripheral neuropathy that highly impairs the patients' quality of life. Nowadays there are no available efficacy strategies for the treatment of platinum-induced peripheral neurotoxicity (PIPN), and the only way to prevent its development and progression is by reducing the dose of the cytostatic drug or even withdrawing the chemotherapy regimen. This clinical issue has been the main focus of hundreds of preclinical research works during recent decades. As a consequence, dozens of in vitro and in vivo models of PIPN have been developed to elucidate the molecular mechanisms involved in its development and to find neuroprotective targets. The apoptosis of peripheral neurons has been identified as the main mechanism involved in PIPN pathogenesis. This mechanism of DRG sensory neurons cell death is triggered by the nuclear and mitochondrial DNA platination together with the increase of the oxidative cellular status induced by the depletion of cytoplasmic antioxidant mechanisms. However, since there has been no successful transfer of preclinical results to clinical practise in terms of therapeutic approaches, some mechanisms of PIPN pathogenesis still remain to be elucidated. This review is focused on the pathogenic mechanisms underlying PIPN described up to now, provided by the critical analysis of in vitro and in vivo models.

    更新日期:2019-12-20
  • Serotonin and sudden unexpected death in epilepsy
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-19
    AlexandraN. Petrucci; Katelyn G. Joyal; Benton S. Purnell; Gordon F. Buchanan

    Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of the understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.

    更新日期:2019-12-19
  • Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology?
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-18
    Matthew T. Goodus; Dana M. McTigue

    The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.

    更新日期:2019-12-19
  • Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-15
    Jordi Bruna; Paola Alberti; Aina Calls-Cobos; Martial Caillaud; M. Imad Damaj; Xavier Navarro

    Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.

    更新日期:2019-12-17
  • 更新日期:2019-12-17
  • Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-16
    Batsheva R. Rubin; Teresa A. Milner; Virginia M. Pickel; Christal G. Coleman; Jose Marques-Lopes; Tracey A. Van Kempen; Syed Faraz Kazim; Bruce S. McEwen; Jason D. Gray; Ana C. Pereira

    Obstructive sleep apnea (OSA), a chronic sleep disorder characterized by repetitive reduction or cessation of airflow during sleep, is widely prevalent and is associated with adverse neurocognitive sequelae including increased risk of Alzheimer's disease (AD). In humans, OSA is more common in elderly males. OSA is characterized by sleep fragmentation and chronic intermittent hypoxia (CIH) and recent epidemiological studies point to CIH as the best predictor of neurocognitive sequelae associated with OSA. The sex- and age- specific effects of OSA-associated CIH on specific cell populations such as γ-aminobutyric acid (GABA)-ergic neurons in the hippocampus and the medial prefrontal cortex (mPFC), regions important for cognitive function, remain largely unknown. The present study examined the effect of 35 days of either moderate (10% oxygen) or severe (5% oxygen) CIH on GABAergic neurons in the mPFC and hippocampus of young and aged male and female mice as well as post-accelerated ovarian failure (AOF) female mice. In the mPFC and hippocampus, the number of GABA-labeled neurons increased in aged and young severe CIH males compared to controls but not in young moderate CIH males. This change was not representative of the individual GABAergic cell subpopulations, as the number of parvalbumin-labeled neurons decreased while the number of somatostatin-labeled neurons increased in the hippocampus of severe CIH young males only. In all female groups, the number of GABA-labeled cells was not different between CIH and controls. However, in the mPFC, CIH increased the number of parvalbumin-labeled neurons in young females and the number of somatostatin-labeled cells in AOF females but decreased the number of somatostatin-labeled cells in aged females. In the hippocampus, CIH decreased the number of somatostatin-labeled neurons in young females. CIH decreased the density of vesicular GABA transporter in the mPFC of AOF females only. These findings suggest sex-specific changes in GABAergic neurons in the hippocampus and mPFC with males showing an increase of this cell population as compared to their female counterparts following CIH. Age at exposure and severity of CIH also differentially affect the GABAergic cell population in mice.

    更新日期:2019-12-17
  • Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson's disease
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-13
    Dimitri N. Koutzoumis; Macarena Vergara; Jose Pino; Julia Buddendorff; Habibeh Khoshbouei; Ronald J. Mandel; Gonzalo E. Torres

    Parkinson's disease (PD) is a debilitating condition resulting in motor and non-motor symptoms affecting approximately 10 million people worldwide. Currently, there are no pharmacological treatments that can cure the condition or effectively halt its progression. The focus of PD research has been primarily on the neurobiological basis and consequences of dopamine (DA) neuron degeneration given that the loss of DA neurons projecting from the substantia nigra to the dorsal striatum results in the development of cardinal PD motor symptoms. Alternatively, gastrointestinal dysfunction is well recognized in PD patients, and often occurs prior to the development of motor symptoms. The gut microbiota, which contains thousands of bacterial species, play important roles in intestinal barrier integrity and function, metabolism, immunity and brain function. Pre-clinical and clinical studies suggest an important link between alterations in the composition of the gut microbiota and psychiatric and neurological conditions, including PD. Several reports have documented gut dysbiosis and alterations in the composition of the gut microbiota in PD patients. Therefore, the goal of this study was to explore the contribution of the gut microbiota to the behavioral and neurochemical alterations in a rodent toxin model of DA depletion that reproduces the motor symptoms associated with PD. We observed that chronic treatment of adult rats with non-absorbable antibiotics ameliorates the neurotoxicity of 6-hydroxydopamine (6-OHDA) in a unilateral lesion model. Specifically, immunohistochemistry against the dopaminergic neuron marker tyrosine hydroxylase (TH) showed an attenuation of the degree of 6-OHDA-induced dopaminergic neuron loss in antibiotic treated animals compared to control animals. In addition, we observed a reduction in the expression of pro-inflammatory markers in the striatum of antibiotic-treated animals. The degree of motor dysfunction after 6-OHDA was also attenuated in antibiotic-treated animals as measured by paw-rearing measurements in the cylinder test, forepaw stepping test, and ipsilateral rotations observed in the amphetamine-induced rotation test. These results implicate the gut microbiota as a potential contributor to pathology in the development of PD. Further studies are necessary to understand the specific mechanisms involved in transducing alterations in the gut microbiota to changes in dopaminergic neuron loss and motor dysfunction.

    更新日期:2019-12-17
  • Inhibition of the transcription factor ROR-γ reduces pathogenic Th17 cells in acetylcholine receptor antibody positive myasthenia gravis
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-12
    John S. Yi; Melissa A. Russo; Shruti Raja; Janice M. Massey; Vern C. Juel; Jay Shin; Lisa D. Hobson-Webb; Karissa Gable; Jeffrey T. Guptill

    IL-17 producing CD4 T cells (Th17) cells increase significantly with disease severity in myasthenia gravis (MG) patients. To suppress the generation of Th17 cells, we examined the effect of inhibiting retinoic acid receptor-related-orphan-receptor-C (RORγ), a Th17-specific transcription factor critical for differentiation. RORγ inhibition profoundly reduced Th17 cell frequencies, including IFN-γ and IL-17 co-producing pathogenic Th17 cells. Other T helper subsets were not affected. In parallel, CD8 T cell subsets producing IL-17 and IL-17/IFN-γ were increased in MG patients and inhibited by the RORγ inhibitor. These findings provide rationale for exploration of targeted Th17 therapies, including ROR-γ inhibitors, to treat MG patients.

    更新日期:2019-12-13
  • Conditioning electrical stimulation is superior to postoperative electrical stimulation, resulting in enhanced nerve regeneration and functional recovery
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-11
    Jenna-Lynn Senger, K. Ming Chan, Christine A. Webber

    Postoperative electrical stimulation (PES) improves nerve regeneration by decreasing staggered regeneration at the coaptation site. By contrast, conditioning (preoperative) electrical stimulation (CES) accelerates axon extension. Given that both techniques can be delivered at the bedside, a direct comparison of outcomes is of significant clinical importance. In this study, we compared regeneration and reinnervation outcomes of CES, PES, a combination of CES and PES, and a no stimulation control. Sprague Dawley rats were randomly divided into i) CES, ii) PES, iii) CES + PES, and iv) no stimulation. CES was delivered one week prior to nerve cut/coaptation, and PES was delivered immediately following nerve repair. Length of nerve regeneration was assessed at 7 days post-coaptation (n = 6/cohort), and behavioral testing was performed biweekly between 6 and 8 weeks post-coaptation (n = 8/cohort). Animals treated with CES had significantly longer axon extension and improved sensorimotor recovery compared to all other cohorts. CES treated axons extended 8.5 ± 0.6 mm, significantly longer than PES (5.5 ± 0.5 mm), CES + PES (3.6 ± 0.7 mm), or no stimulation (2.7 ± 0.5 mm) (p < .001). Sensory recovery (von Frey filament testing, intraepidermal nerve fiber reinnervation) (p < .001) and motor reinnervation (horizontal ladder, gait analysis, nerve conduction studies, neuromuscular junction analysis) (p < .05 - p < .001) were significantly improved in CES animals. CES significantly improves regeneration and reinnervation beyond the current clinical paradigm of PES. The combination of CES and PES does not have a synergistic effect. CES alone therefore may be a more promising treatment to improve outcomes in patients undergoing nerve repair surgeries.

    更新日期:2019-12-11
  • Modeling chemotherapy induced peripheral neuropathy (CIPN) in vitro: Prospects and limitations
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-05
    Helmar C. Lehmann, Nathan P. Staff, Ahmet Hoke

    Neuronal cell cultures have been used as an essential tool for studying pathomechanisms of toxicity of chemotherapeutic drugs and to develop neuroprotective approaches. They offer the opportunity to dissect disease mechanisms and molecular pathways while allowing precise control of a variety of confounding factors of the physio-chemical environment. As such, a growing number of in vitro studies are published each year to decipher mechanisms of neurotoxicity of taxanes, vinca alcaloids, proteasome inhibitors and platin derivatives and/or to test neuroprotective strategies. Here, we provide a review of cell culture techniques and outcome measures that have been used in the past or are currently employed to model chemotherapy induced neuropathy in vitro. Furthermore, we discuss their advantages as well as their limitations and ways to enhance efficiency and reproducibility of cell culture studies in the field of toxic neuropathy.

    更新日期:2019-12-05
  • Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2
    Exp. Neurol. (IF 4.562) Pub Date : 2019-12-05
    Tuo Yang, Yang Sun, Qianqian Li, Senmiao Li, Yejie Shi, Rehana K. Leak, Jun Chen, Feng Zhang
    更新日期:2019-12-05
  • The piriform cortex in epilepsy: What we learn from the kindling model
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-30
    Heming Cheng, Yi Wang, Junzi Chen, Zhong Chen

    Epilepsy is a circuit-level brain disorder characterized by excessive or hypersynchronous epileptic seizures involving a complex epileptogenic network. Cumulative evidence suggests that the piriform cortex (PC) is a crucial site in seizure initiation, propagation, and generalization in epilepsy. The kindling model is a classic animal model of complex partial seizures with secondarily generalized tonic seizures, which is usually used for the study of epilepsy pathogenesis and preclinical anti-epilepsy drug evaluation. Various essential functions of the PC in epilepsy were discovered in the kindling model, therefore, this review focuses on discussing the role of the PC in the kindling model. We review what pathological changes happen in the PC in the kindling model, how the PC is involved in the kindling model through different interventions, and finally we also provide perspectives on some possible research directions for future studies.

    更新日期:2019-11-30
  • Histone deacetylase 6 inhibition restores autophagic flux to promote functional recovery after spinal cord injury
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-30
    Zhilong Zheng, Yajiao Zhou, Luxia Ye, Qi Lu, Kairui Zhang, Jing Zhang, Lin Xie, Yanqing Wu, Ke Xu, Hongyu Zhang, Jian Xiao
    更新日期:2019-11-30
  • Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-30
    Ji Liang, Qiang Wang, Jun-Qi Li, Tie Guo, Dan Yu

    Objective Inflammasome contributes to ischemic brain injury by inducing pyroptosis and inflammation. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3)-mediated regulation of absent in melanoma 2 (AIM2) inflammasome during cerebral ischemia/reperfusion (I/R). Methods In vivo middle cerebral artery occlusion (MCAO) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes model were generated. TTC, H&E staining and TUNEL were performed to assess the cerebral ischemic injury. LDH and MTT assays were used to detect cell viability and cytotoxicity. qRT-PCR was used to detect the expression levels of MEG3, miR-485 and AIM2. Immunohistochemistry (IHC) and immunofluorescence were conducted to detect the AIM2 expression. ELISA and Western blotting were performed to determine the secretion and protein levels of inflammasome signaling proteins. Dual luciferase reporter assay and Ago2-RIP were used to validate the direct interaction among MEG3, miR-485 and AIM2. Results In both MCAO rats and OGD/R-treated neurocytes, MEG3 and AIM2 were significantly up-regulated, whereas miR-485 was down-regulated. MCAO induces pyroptosis and release of IL-1β and IL-18 in ischemia brain. MEG3 acted as a molecular sponge to suppress miR-485, and AIM2 was identified as a direct target of miR-485. Knockdown of MEG3 inhibited OGD/R-induced pyroptosis and inflammation, and lack of MEG3 inhibited caspase1 signaling and decreased the expression of AIM2, ASC, cleaved-caspase1 and GSDMD-N. While overexpression of MEG3 exerted opposite effects. Conclusion MEG3/miR-485/AIM2 axis contributes to pyroptosis via activating caspase1 signaling during cerebral I/R, suggesting that this axis may be a potent therapeutic target in ischemic stroke.

    更新日期:2019-11-30
  • Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-28
    Nicholas J. Batty, Abel Torres-Espín, Romana Vavrek, Pamela Raposo, Karim Fouad

    Low neuronal cAMP levels in adults and a further decline following traumatic central nervous system (CNS) injury has been associated with the limited ability of neurons to regenerate. An approach to increase neuronal cAMP levels post injury is electrical stimulation. Stimulation as a tool to promote neuronal growth has largely been studied in the peripheral nervous system or in spared fibers of the CNS and this research suggests that a single session of electrical stimulation is sufficient to initiate a long-lasting axonal growth program. Here, we sought to promote plasticity and growth of the injured corticospinal tract with electrical cortical stimulation immediately after its spinal injury. Moreover, given the importance of rehabilitative motor training in the clinical setting and in translating plasticity into functional recovery, we applied training as a standard treatment to all rats (i.e., with or without electrical stimulation). Our findings show that electrical cortical stimulation did improve recovery in forelimb function compared to the recovery in unstimulated animals. This recovery is likely linked to increased corticospinal tract plasticity as evidenced by a significant increase in sprouting of collaterals above the lesion site, but not to increased regenerative growth through the lesion itself.

    更新日期:2019-11-29
  • The p53 inactivators pifithrin-μ and pifithrin-α mitigate TBI-induced neuronal damage through regulation of oxidative stress, neuroinflammation, autophagy and mitophagy
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-26
    Ling-Yu Yang, Nigel H. Greig, David Tweedie, Yoo Jin Jung, Yung-Hsiao Chiang, Barry J. Hoffer, Jonathan P. Miller, Ke-Hui Chang, Jia-Yi Wang

    Traumatic brain injury (TBI) is one of the most common causes of death and disability worldwide. We investigated whether inhibition of p53 using pifithrin (PFT)-α or PFT-μ provides neuroprotective effects via p53 transcriptional dependent or -independent mechanisms, respectively. Sprague Dawley rats were subjected to controlled cortical impact TBI followed by the administration of PFTα or PFT-μ (2 mg/kg, i.v.) at 5 h after TBI. Brain contusion volume, as well as sensory and motor functions were evaluated at 24 h after TBI. TBI-induced impairments were mitigated by both PFT-α and PFT-μ. Fluoro-Jade C staining was used to label degenerating neurons within the TBI-induced cortical contusion region that, together with Annexin V positive neurons, were reduced by PFT-μ. Double immunofluorescence staining similarly demonstrated that PFT-μ significantly increased HO-1 positive neurons and mRNA expression in the cortical contusion region as well as decreased numbers of 4-hydroxynonenal (4HNE)-positive cells. Levels of mRNA encoding for p53, autophagy, mitophagy, anti-oxidant, anti-inflammatory related genes and proteins were measured by RT-qPCR and immunohistochemical staining, respectively. PFT-α, but not PFT-μ, significantly lowered p53 mRNA expression. Both PFT-α and PFT-μ lowered TBI-induced pro-inflammatory cytokines (IL-1β and IL-6) mRNA levels as well as TBI-induced autophagic marker localization (LC3 and p62). Finally, treatment with PFT-μ mitigated TBI-induced declines in mRNA levels of PINK-1 and SOD 2. Our data suggest that both PFT-μ and PFT-α provide neuroprotective actions through regulation of oxidative stress, neuroinflammation, autophagy, and mitophagy mechanisms, and that PFT-μ, in particular, holds promise as a TBI treatment strategy.

    更新日期:2019-11-26
  • Globotriaosylceramide-induced reduction of KCa1.1 channel activity and activation of the Notch1 signaling pathway in skin fibroblasts of male Fabry patients with pain
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-25
    Vanessa Rickert, Daniela Kramer, Anna-Lena Schubert, Claudia Sommer, Erhard Wischmeyer, Nurcan Üçeyler

    Background Fabry disease (FD) is an X-linked lysosomal storage disorder that leads to cellular globotriaosylceramide (Gb3) accumulation due to mutations in the gene encoding α-galactosidase A. Trigger-induced acral burning pain is an early FD symptom of unknown pathophysiology. We aimed at investigating the potential role of skin fibroblasts in nociceptor sensitization. Patients and methods We enrolled 40 adult FD patients and ten healthy controls, who underwent a 6-mm skin punch biopsy at the lower leg. Dermal fibroblasts were cultivated and analyzed for Gb3 load. Fibroblast electrical activity was assessed using patch-clamp analysis at baseline and upon incubation with agalsidase-α for 24 h. We investigated gene expression of CC motif chemokine ligand 2 (CCL2), Ca2+activated K+-channel 1.1 (KCa1.1), interferone-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), and transmembrane receptor notch homolog 1 (Notch1) using quantitative real-time-PCR, and protein levels of KCa1.1 by ELISA. Gene expression was determined at baseline and after fibroblast stimulation with tumor necrosis factor-α (TNF), modeling inflammation as a common pain trigger in FD. Results Total Gb3 load was higher in FD fibroblasts than in control fibroblasts (p < .01). Upon increase of intracellular Ca2+ concentrations, we detected differential electrical activity of KCa1.1 in fibroblasts obtained from patients with FD. Gene expression (p < .05) and protein levels of KCa1.1 (p < .05) were higher in fibroblasts from FD patients compared to control fibroblasts, whereas electric channel activity was lower in FD fibroblasts. After incubation with agalsidase-α, we observed an over-proportionate increase of KCa1.1 activity in FD fibroblasts reaching 7-fold the currents of control cells (p < .01). Gene expression studies revealed higher mRNA levels of CCL2, INF-γ, and Notch1 in FD fibroblasts compared to controls at baseline and after TNF incubation (p < .05 each), while TGF-β1 was higher in FD fibroblasts only after incubation with TNF (p < .05). Conclusions Gb3 deposition in skin fibroblasts may impair KCa1.1 activity and activate the Notch1 signaling pathway. The resulting increase in pro-inflammatory mediator expression may contribute to cutaneous nociceptor sensitization as a potential mechanism of FD-associated pain.

    更新日期:2019-11-26
  • Antiepileptic effects of electrical stimulation of the piriform cortex
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-25
    Lalitha Kurada, Arezou Bayat, Sweta Joshi, Ahmad Chahine, Mohamad Z. Koubeissi

    Deep brain stimulation (DBS) may help control seizures in individuals with medically intractable epilepsy who are not candidates for resective surgery. The current review focuses on some preclinical studies of DBS of the piriform cortex (PC), an area involved in the generation and maintenance of seizures, as a potential therapeutic option for refractory epilepsy. We also present findings suggesting the safety of low frequency stimulation (LFS) of the PC on memory. A variety of LFS parameters have been suggested as an effective treatment strategy for refractory epilepsy. In generalized epilepsy, however, recent studies suggest that LFS may exacerbate seizures and high frequency stimulation (HFS) might be an alternative. Hence, further studies are required to explore the potential therapeutic targets and proper stimulation parameters for the successful translation of DBS of the PC to the clinic.

    更新日期:2019-11-26
  • Pharmacological hypothermia induced neurovascular protection after severe stroke of transient middle cerebral artery occlusion in mice
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-23
    Yingying Zhao, Zheng Zachory Wei, Jin Hwan Lee, Xiaohuan Gu, Jinmei Sun, Thomas A. Dix, Ling Wei, Shan P. Yu

    Therapeutic hypothermia is a potential protective strategy after stroke. The present study evaluated the neurovascular protective potential of pharmacological hypothermia induced by the neurotensin receptor 1 agonist HPI-201 after severe ischemic stroke. Adult C57BL/6 mice were subjected to filament insertion-induced occlusion of the middle cerebral artery (60 min MCAO). HPI-201 was i.p. injected 120 min after the onset of MCAO to initiate and maintain the body temperature at 32-33°C for 6 hrs. The infarct volume, cell death, integrity of the blood brain barrier (BBB) and neurovascular unit (NVU), inflammation, and functional outcomes were evaluated. The hypothermic treatment significantly suppressed the infarct volume and neuronal cell death, accompanied with reduced caspase-3 activation and BAX expression while Bcl-2 increased in the peri-infarct region. The cellular integrity of the BBB and NVU was significantly improved and brain edema was attenuated in HPI-201-treated mice compared to stroke controls. The hypothermic treatment decreased the expression of inflammatory factors including tumor necrosis factor-α (TNF-α), MMP-9, interleukin-1β (IL-1β), the M1 microglia markers IL-12 and inducible nitric oxide synthase (iNOS), while increased the M2 marker arginase-1 (Arg-1). Stroke mice received the hypothermic treatment showed lower neurological severity score (NSS), performed significantly better in functional tests, the mortality rate in the hypothermic group was noticeably lower compared with stroke controls. Taken together, HPI-201 induced pharmacological hypothermia is protective for different neurovascular cells after a severely injured brain, mediated by multiple mechanisms.

    更新日期:2019-11-26
  • microRNA-592 blockade inhibits oxidative stress injury in Alzheimer's disease astrocytes via the KIAA0319-mediated Keap1/Nrf2/ARE signaling pathway
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-21
    Guo-De Wu, Zhen-Hua Li, Xin Li, Ting Zheng, De-Kui Zhang

    MicroRNA-592 (miR-592) has been reported to play a significant role in mediating neuronal activity, but its possible link with Alzheimer's disease (AD) remains unclear. We aimed to explore the mechanism of miR-592 in oxidative stress (OS) injury of astrocytes (ASTs) from AD rat models induced by D-galactose or Aβ25–35 injection. Bioinformatics website and dual-luciferase reporter gene assay clarified the binding affinity between miR-592 and KIAA0319. KIAA0319 was identified as a target gene of miR-592. The mechanism of miR-592, KIAA0319 and the Keap1/Nrf2/ARE signaling pathway in AD was examined after transducing miR-592 mimic, miR-592 inhibitor and siRNA-KIAA0319 into ASTs to query cell viability, OS injury and reactive oxygen species (ROS). The rat models of AD Exhibited highly expressed miR-592 and poorly expressed KIAA0319. Furthermore, inhibition of miR-592 diminished C-Keap1 expression and enhanced N-Nrf2 and NQO1 expression, thus promoting cell viability and reducing OS injury of ASTs. Taken together, these findings suggested that the downregulation of miR-592 inhibited OS injury of ASTs in rat models of AD by up-regulating KIAA0319 through the activation of the Keap1/Nrf2/ARE signaling pathway.

    更新日期:2019-11-22
  • Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-21
    Nathan P. Staff, Jill C. Fehrenbacher, Martial Caillaud, M. Imad Damaj, Rosalind A. Segal, Sandra Rieger

    Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.

    更新日期:2019-11-21
  • Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-19
    Benjamin Ongnok, Nipon Chattipakorn, Siriporn C. Chattipakorn
    更新日期:2019-11-20
  • A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-18
    Jeremy Anderson, Misaal Patel, Xin Ai, Catherine Cai, Quinn Wade, Rebecca Risman, Li Cai
    更新日期:2019-11-18
  • FTY720-mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases GDNF expression in multiple system atrophy mice
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-18
    Guadalupe Vidal-Martinez, Ismael Segura-Ulate, Barbara Yang, Valeria Diaz-Pacheco, Jose A. Barragan, Jocelyn De-Leon Esquivel, Stephanie A. Chaparro, Javier Vargas-Medrano, Ruth G. Perez
    更新日期:2019-11-18
  • Increased severity of the CHIMERA model induces acute vascular injury, sub-acute deficits in memory recall, and chronic white matter gliosis
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-15
    Asma Bashir, Zelalem A. Abebe, Kurt A. McInnes, Emily B. Button, Igor Tatarnikov, Wai Hang Cheng, Margalit Haber, Anna Wilkinson, Carlos Barron, Ramon Diaz-Arrastia, Sophie Stukas, Peter A. Cripton, Cheryl L. Wellington

    Traumatic brain injury (TBI) is a leading cause of death and disability in modern societies. Diffuse axonal and vascular injury are nearly universal consequences of mechanical energy impacting the head and contribute to disability throughout the injury severity spectrum. CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a non-surgical, impact-acceleration model of rodent TBI that reliably produces diffuse axonal injury characterized by white matter gliosis and axonal damage. At impact energies up to 0.7 joules, which result in mild TBI in mice, CHIMERA does not produce detectable vascular or grey matter injury. This study was designed to expand CHIMERA's capacity to induce more severe injuries, including vascular damage and grey matter gliosis. This was made possible by designing a physical interface positioned between the piston and animal's head to allow higher impact energies to be transmitted to the head without causing skull fracture. Here, we assessed interface-assisted single CHIMERA TBI at 2.5 joules in wild-type mice using a study design that spanned 6 h–60 d time points. Injured animals displayed robust acute neurological deficits, elevated plasma total tau and neurofilament-light levels, transiently increased proinflammatory cytokines in brain tissue, blood-brain barrier (BBB) leakage and microstructural vascular abnormalities, and grey matter microgliosis. Memory deficits were evident at 30 d and resolved by 60 d. Intriguingly, white matter injury was not remarkable at acute time points but evolved over time, with white matter gliosis being most extensive at 60 d. Interface-assisted CHIMERA thus enables experimental modeling of distinct endophenotypes of TBI that include acute vascular and grey matter injury in addition to chronic evolution of white matter damage, similar to the natural history of human TBI.

    更新日期:2019-11-15
  • Inhibition of excessive kallikrein-8 improves neuroplasticity in Alzheimer's disease mouse model
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-14
    Yvonne Münster, Kathy Keyvani, Arne Herring
    更新日期:2019-11-14
  • Therapeutic use of extracellular mitochondria in CNS injury and disease
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-14
    Yoshihiko Nakamura, Ji-Hyun Park, Kazuhide Hayakawa

    In the central nervous system (CNS), neuronal functionality is highly dependent on mitochondrial integrity and activity. In the context of a damaged or diseased brain, mitochondrial dysfunction leads to reductions in ATP levels, thus impairing ATP-dependent neural firing and neurotransmitter dynamics. Restoring mitochondrial ability to generate ATP may be a basic premise to restore neuronal functionality. Recently, emerging data in rodent and human studies suggest that mitochondria and its components are surprisingly released into extracellular space and potentially transferred between cells. Transferred mitochondria may support oxidative phosphorylation in recipient cells. In this mini-review, we (a) survey recent findings in cell to cell mitochondrial transfer and the presence of cell-free extracellular mitochondria and its components, (b) review experimental details of how to detect extracellular mitochondria and mitochondrial transfer in the CNS, (c) discuss strategies and tissue sources for mitochondria isolation, and (d) explore exogenous mitochondrial transplantation as a novel approach for CNS therapies.

    更新日期:2019-11-14
  • Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-14
    Silvia Carloni, Walter Balduini

    Previous studies have shown that simvastatin (Sim) has neuroprotective effects in a neonatal model of hypoxia-ischemia (HI)-induced brain injury when administered before but not after HI, pointing to the preconditioning (PC)-like effects of the statin. The present study aimed to gain more insight into the PC-like effect of Sim by studying the role of autophagy and its modulation by mTOR and SIRT1 in neuroprotection. Sim potentiated the autophagy response induced by neonatal HI, as shown by the increased expression of both microtubule-associated protein 1 light chain 3 (LC3) and beclin 1, increased monodansylcadaverine (MDC) labeling, and reduced expression of p62. The autophagy inhibitor 3-methyladenine (3MA) completely blocked the neuroprotective effect of Sim. Two hours after HI, there was a reduction in the activity of mTORC1 and a concomitant increase in that of mTORC2. Sim preconditioning further decreased the activity of mTORC1, but did not affect that of mTORC2. However, 24 h after injury, mTORC2 activity was significantly preserved in Sim-treated rats. Sim preconditioning also prevented the depletion of SIRT1 induced by HI, an effect that was completely blocked by 3MA. These data show that Sim preconditioning may modulate autophagy and survival pathways by affecting mTORC1, mTORC2, and SIRT1 activities. This study provides further preclinical evidence of the PC-like effect of statins in brain tissue, supporting their beneficial effects in improving stroke outcome after prophylactic treatments.

    更新日期:2019-11-14
  • Neurotrophic and neuroprotective effects of a monomeric GLP-1/GIP/Gcg receptor triagonist in cellular and rodent models of mild traumatic brain injury
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-12
    Yazhou Li, Elliot J. Glotfelty, Inbar Namdar, David Tweedie, Lars Olson, Barry J. Hoffer, Richard D. DiMarchi, Chagi G. Pick, Nigel H. Greig
    更新日期:2019-11-13
  • Neural stem cell therapy for neurovascular injury in Alzheimer's disease
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-12
    Austin C. Boese, Milton H. Hamblin, Jean-Pyo Lee

    Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration leading to severe cognitive decline and eventual death. AD pathophysiology is complex, but neurotoxic accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau are believed to be main drivers of neurodegeneration in AD. The formation and deposition of Aβ plaques occurs in the brain parenchyma as well as in the cerebral vasculature. Thus, proper blood-brain barrier (BBB) and cerebrovascular functioning are crucial for clearance of Aβ from the brain, and neurovascular dysfunction may be a critical component of AD development. Further, neuroinflammation and dysfunction of angiogenesis, neurogenesis, and neurorestorative capabilities play a role in AD pathophysiology. Currently, there is no effective treatment to prevent or restore loss of brain tissue and cognitive decline in patients with AD. Based on multifactorial and complex pathophysiological cascades in multiple Alzheimer's disease stages, effective AD therapies need to focus on targeting early AD pathology and preserving cerebrovascular function. Neural stem cells (NSCs) participate extensively in mammalian brain homeostasis and repair and exhibit pleiotropic intrinsic properties that likely make them attractive candidates for the treatment of AD. In the review, we summarize the current advances in knowledge regarding neurovascular aspects of AD-related neurodegeneration and discuss multiple actions of NSCs from preclinical studies of AD to evaluate their potential for future clinical treatment of AD.

    更新日期:2019-11-13
  • AAVshRNA-mediated PTEN knockdown in adult neurons attenuates activity-dependent immediate early gene induction
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-09
    Oswald Steward, Aminata P. Coulibaly, Mariajose Metcalfe, Jennifer M. Yonan, Kelly M. Yee

    Genetic deletion or knockdown of PTEN enables regeneration of CNS axons, enhances sprouting of intact axons after injury, and induces de novo growth of uninjured adult neurons. It is unknown, however how PTEN deletion in mature neurons alters neuronal physiology. As a first step to address this question, we used immunocytochemistry for activity-dependent markers to assess consequences of PTEN knockdown in cortical neurons and granule cells of the dentate gyrus. Adult rats received unilateral intra-cortical injections of AAV expressing shRNA against PTEN and were allowed to survive for 2 months. Immunostaining for c-fos under resting conditions (home cage, HC) and after 1 h of exploration of a novel enriched environment (EE) revealed no hot spots of c-fos expression that would suggest abnormal activity. Counts revealed similar numbers of c-fos positive neurons in the area of PTEN deletion vs. homologous areas in the contralateral cortex in the HC and similar induction of c-fos with EE. However, IEG induction in response to high frequency stimulation (HFS) of the cortex was attenuated in areas of PTEN deletion. In rats with AAVshRNA-mediated PTEN deletion in the dentate gyrus, induction of the IEGs c-fos and Arc with HFS of the perforant path was abrogated in areas of PTEN deletion. Immunostaining using phosphospecific antibodies for phospho-S6 (a downstream marker for mTOR activation) and phospho-ERK1/2 revealed abrogation of S6 phosphorylation in PTEN-deleted areas but preserved activation of phosphosphorylation of ERK1/2. Significance statement Deletion or knockdown of the tumor suppressor gene PTEN enables regenerative growth of adult CNS axons after injury, which is accompanied by enhanced recovery of function. Consequently, PTEN represents a potential target for therapeutic interventions to enhance recovery after CNS injury. Here we show that activity-dependent IEG induction is attenuated in PTEN-depleted neurons. These findings raise the intriguing possibility that functional recovery due to regenerative growth may be limited by the disruption of plasticity-related signaling pathways, and that recovery might be enhanced by restoring PTEN expression after regenerative growth has been achieved.

    更新日期:2019-11-11
  • The role of BTBD9 in the cerebral cortex and the pathogenesis of restless legs syndrome
    Exp. Neurol. (IF 4.562) Pub Date : 2019-11-09
    Shangru Lyu, Hong Xing, Mark P. DeAndrade, Pablo D. Perez, Keer Zhang, Yuning Liu, Fumiaki Yokoi, Marcelo Febo, Yuqing Li

    Restless legs syndrome (RLS) is a nocturnal neurological disorder affecting up to 10% of the population. It is characterized by an urge to move and uncomfortable sensations in the legs which can be relieved by movements. Mutations in BTBD9 may confer a higher risk of RLS. We developed Btbd9 knockout mice as an animal model. Functional alterations in the cerebral cortex, especially the sensorimotor cortex, have been found in RLS patients in several imaging studies. However, the role of cerebral cortex in the pathogenesis of RLS remains unclear. To explore this, we used in vivo manganese-enhanced MRI and found that the Btbd9 knockout mice had significantly increased neural activities in the primary somatosensory cortex (S1) and the rostral piriform cortex. Morphometry study revealed a decreased thickness in a part of S1 representing the hindlimb (S1HL) and M1. The electrophysiological recording showed Btbd9 knockout mice had enhanced short-term plasticity at the corticostriatal terminals to D1 medium spiny neurons (MSNs). Furthermore, we specifically knocked out Btbd9 in the cerebral cortex of mice (Btbd9 cKO). The Btbd9 cKO mice showed a rest-phase specific motor restlessness, decreased thermal sensation, and a thinner S1HL and M1. Both Btbd9 knockout and Btbd9 cKO exhibited motor deficits. Our results indicate that systematic BTBD9 deficiency leads to both functional and morphometrical changes of the cerebral cortex, and an alteration in the corticostriatal pathway to D1 MSNs. Loss of BTBD9 only in the cerebral cortex is sufficient to cause similar phenotypes as observed in the Btbd9 complete knockout mice.

    更新日期:2019-11-11
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug