当前期刊: Translational Neurodegeneration Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays
    Transl. Neurodegener. (IF 5.534) Pub Date : 2020-01-17
    Niccolo Candelise; Matthias Schmitz; Katrin Thüne; Maria Cramm; Alberto Rabano; Saima Zafar; Erik Stoops; Hugo Vanderstichele; Anna Villar-Pique; Franc Llorens; Inga Zerr

    α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson’s disease (PD) or dementia with Lewy bodies (DLB). Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD. The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies.

    更新日期:2020-01-17
  • Deep brain stimulation for Tourette’s syndrome
    Transl. Neurodegener. (IF 5.534) Pub Date : 2020-01-13
    Wenying Xu; Chencheng Zhang; Wissam Deeb; Bhavana Patel; Yiwen Wu; Valerie Voon; Michael S. Okun; Bomin Sun

    Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. TS usually co-occurs with one or multiple psychiatric disorders. Although behavioral and pharmacological treatments for TS are available, some patients do not respond to the available treatments. For these patients, TS is a severe, chronic, and disabling disorder. In recent years, deep brain stimulation (DBS) of basal ganglia-thalamocortical networks has emerged as a promising intervention for refractory TS with or without psychiatric comorbidities. Three major challenges need to be addressed to move the field of DBS treatment for TS forward: (1) patient and DBS target selection, (2) ethical concerns with treating pediatric patients, and (3) DBS treatment optimization and improvement of individual patient outcomes (motor and phonic tics, as well as functioning and quality of life). The Tourette Association of America and the American Academy of Neurology have recently released their recommendations regarding surgical treatment for refractory TS. Here, we describe the challenges, advancements, and promises of the use of DBS in the treatment of TS. We summarize the results of clinical studies and discuss the ethical issues involved in treating pediatric patients. Our aim is to provide a better understanding of the feasibility, safety, selection process, and clinical effectiveness of DBS treatment for select cases of severe and medically intractable TS.

    更新日期:2020-01-13
  • Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2020-01-07
    Yong Fan; Winanto; Shi-Yan Ng

    Stem cells hold tremendous promise for regenerative medicine because they can be expanded infinitely, giving rise to large numbers of differentiated cells required for transplantation. Stem cells can be derived from fetal sources, embryonic origins (embryonic stem cells or ESCs) or reprogrammed from adult cell types (induced pluripotent stem cells or iPSCs). One unique property of stem cells is their ability to be directed towards specific cell types of clinical interest, and can mature into functional cell types in vivo. While transplantations of fetal or ESC-derived tissues are known to illicit a host immunogenic response, autologous transplantations using cell types derived from one’s own iPSCs eliminate risks of tissue rejection and reduce the need for immunosuppressants. However, even with these benefits, cell therapy comes with significant hurdles that researchers are starting to overcome. In this review, we will discuss the various steps to ensure safety, efficacy and clinical practicality of cell replacement therapy in neurodegenerative diseases, in particular, Parkinson’s disease. Parkinson’s disease (PD) results from a loss of dopaminergic neurons from the substantia nigra and is an ideal target for cell replacement therapy. Early trials using fetal midbrain material in the late 1980s have resulted in long term benefit for some patients, but there were multiple shortcomings including the non-standardization and quality control of the transplanted fetal material, and graft-induced dyskinesia that some patients experience as a result. On the other hand, pluripotent stem cells such as ESCs and iPSCs serve as an attractive source of cells because they can be indefinitely cultured and is an unlimited source of cells. Stem cell technologies and our understanding of the developmental potential of ESCs and iPSCs have deepened in recent years and a clinical trial for iPSC-derived dopaminergic cells is currently undergoing for PD patients in Japan. In this focused review, we will first provide a historical aspect of cell therapies in PD, and then discuss the various challenges pertaining to the safety and efficacy of stem cell-based cell transplantations, and how these hurdles were eventually overcome. With the maturity of the iPSC technology, cell transplantation appears to be a safe and effective therapy. Grafts in non-human primates survive and remain functional for more than 2 years after transplantation, with no signs of tumorigenesis, indicating safety and efficacy of the treatment. However, immunosuppressants are still required because of the lack of “universal stem cells” that would not evoke an immune response. The results of ongoing and upcoming trials by a global consortium known as GForce-PD would be highly anticipated because the success of these trials would open up possibilities for using cell therapy for the treatment of PD and other degenerative diseases.

    更新日期:2020-01-07
  • δ-secretase in neurodegenerative diseases: mechanisms, regulators and therapeutic opportunities
    Transl. Neurodegener. (IF 5.534) Pub Date : 2020-01-06
    Zhentao Zhang; Ye Tian; Keqiang Ye

    Mammalian asparagine endopeptidase (AEP) is a cysteine protease that cleaves its protein substrates on the C-terminal side of asparagine residues. Converging lines of evidence indicate that AEP may be involved in the pathogenesis of several neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia. AEP is activated in the aging brain, cleaves amyloid precursor protein (APP) and promotes the production of amyloid-β (Aβ). We renamed AEP to δ-secretase to emphasize its role in APP fragmentation and Aβ production. AEP also cleaves other substrates, such as tau, α-synuclein, SET, and TAR DNA-binding protein 43, generating neurotoxic fragments and disturbing their physiological functions. The activity of δ-secretase is tightly regulated at both the transcriptional and posttranslational levels. Here, we review the recent advances in the role of δ-secretase in neurodegenerative diseases, with a focus on its biochemical properties and the transcriptional and posttranslational regulation of its activity, and discuss the clinical implications of δ-secretase as a diagnostic biomarker and therapeutic target for neurodegenerative diseases.

    更新日期:2020-01-06
  • Correction to: Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in
    Transl. Neurodegener. (IF 5.534) Pub Date : 2020-01-03
    Jeroen Van Schependom; Kaat Guldolf; Marie Béatrice D’hooghe; Guy Nagels; Miguel D’haeseleer

    In the original publication of this article [1], the following statement should be added in the Acknowledgement section.

    更新日期:2020-01-04
  • Microbiome changes: an indicator of Parkinson’s disease?
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-12-24
    Caroline Haikal; Qian-Qian Chen; Jia-Yi Li

    Parkinson’s disease is characterized by dopaminergic neuron loss and intracellular inclusions composed mainly of alpha synuclein (α-syn), but the mechanism of pathogenesis is still obscure. In recent years, more attention has been given to the gut as a key player in the initiation and progression of PD pathology. Several studies characterizing changes in the microbiome, particularly the gut microbiome, have been conducted. Although many studies found a decrease in the bacterial family Prevotellaceae and in butyrate-producing bacterial genera such as Roseburia and Faecalibacteria, and an increase in the genera Akkermansia many of the studies reported contradictory findings. In this review, we highlight the findings from the different studies and reflect on the future of microbiome studies in PD research.

    更新日期:2019-12-25
  • Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-12-09
    Jeroen Van Schependom; Kaat Guldolf; Marie Béatrice D’hooghe; Guy Nagels; Miguel D’haeseleer

    Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.

    更新日期:2019-12-09
  • Targeting γ-secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-12-05
    Inger Lauritzen; Anaïs Bécot; Alexandre Bourgeois; Raphaëlle Pardossi-Piquard; Maria-Grazia Biferi; Martine Barkats; Fréderic Checler

    We recently demonstrated an endolysosomal accumulation of the β-secretase-derived APP C-terminal fragment (CTF) C99 in brains of Alzheimer disease (AD) mouse models. Moreover, we showed that the treatment with the γ-secretase inhibitor (D6) led to further increased endolysosomal APP-CTF levels, but also revealed extracellular APP-CTF-associated immunostaining. We here hypothesized that this latter staining could reflect extracellular vesicle (EV)-associated APP-CTFs and aimed to characterize these γ-secretase inhibitor-induced APP-CTFs. EVs were purified from cell media or mouse brains from vehicle- or D6-treated C99 or APPswedish expressing cells/mice and analyzed for APP-CTFs by immunoblot. Combined pharmacological, immunological and genetic approaches (presenilin invalidation and C99 dimerization mutants (GXXXG)) were used to characterize vesicle-containing APP-CTFs. Subcellular APP-CTF localization was determined by immunocytochemistry. Purified EVs from both AD cell or mouse models were enriched in APP-CTFs as compared to EVs from control cells/brains. Surprisingly, EVs from D6-treated cells not only displayed increased C99 and C99-derived C83 levels but also higher molecular weight (HMW) APP-CTF-immunoreactivities that were hardly detectable in whole cell extracts. Accordingly, the intracellular levels of HMW APP-CTFs were amplified by the exosomal inhibitor GW4869. By combined pharmacological, immunological and genetic approaches, we established that these HMW APP-CTFs correspond to oligomeric APP-CTFs composed of C99 and/or C83. Immunocytochemical analysis showed that monomers were localized mainly to the trans-Golgi network, whereas oligomers were confined to endosomes and lysosomes, thus providing an anatomical support for the selective recovery of HMW APP-CTFs in EVs. The D6-induced APP-CTF oligomerization and subcellular mislocalization was indeed due to γ-secretase blockade, since it similarly occurred in presenilin-deficient fibroblasts. Further, our data proposed that besides favoring APP-CTF oligomerization by preventing C99 proteolysis, γ-secretase inhibiton also led to a defective SorLA-mediated retrograde transport of HMW APP-CTFs from endosomal compartments to the TGN. This is the first study to demonstrate the presence of oligomeric APP-CTFs in AD mouse models, the levels of which are selectively enriched in endolysosomal compartments including exosomes and amplified by γ-secretase inhibition. Future studies should evaluate the putative contribution of these exosome-associated APP-CTFs in AD onset, progression and spreading.

    更新日期:2019-12-05
  • Clinicopathologic characterization and abnormal autophagy of CSF1R-related leukoencephalopathy
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-12-02
    Wo-Tu Tian; Fei-Xia Zhan; Qing Liu; Xing-Hua Luan; Chao Zhang; Liang Shang; Ben-Yan Zhang; Si-Jian Pan; Fei Miao; Jiong Hu; Ping Zhong; Shi-Hua Liu; Ze-Yu Zhu; Hai-Yan Zhou; Suya Sun; Xiao-Li Liu; Xiao-Jun Huang; Jing-Wen Jiang; Jian-Fang Ma; Ying Wang; Shu-Fen Chen; Hui-Dong Tang; Sheng-Di Chen; Li Cao

    CSF1R-related leukoencephalopathy, also known as hereditary diffuse leukoencephalopathy with spheroids (HDLS), is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few of CSF1R mutations have been functionally testified and the pathogenesis remains unknown. In order to investigate clinical and pathological characteristics of patients with CSF1R-related leukoencephalopathy and explore the potential impact of CSF1R mutations, we analyzed clinical manifestations of 15 patients from 10 unrelated families and performed brain biopsy in 2 cases. Next generation sequencing was conducted for 10 probands to confirm the diagnosis. Sanger sequencing, segregation analysis and phenotypic reevaluation were utilized to substantiate findings. Functional examination of identified mutations was further explored. Clinical and neuroimaging characteristics were summarized. The average age at onset was 35.9 ± 6.4 years (range 24–46 years old). Younger age of onset was observed in female than male (34.2 vs. 39.2 years). The most common initial symptoms were speech dysfunction, cognitive decline and parkinsonian symptoms. One patient also had marked peripheral neuropathy. Brain biopsy of two cases showed typical pathological changes, including myelin loss, axonal spheroids, phosphorylated neurofilament and activated macrophages. Electron microscopy disclosed increased mitochondrial vacuolation and disorganized neurofilaments in ballooned axons. A total of 7 pathogenic variants (4 novel, 3 documented) were identified with autophosphorylation deficiency, among which c.2342C > T remained partial function of autophosphorylation. Western blotting disclosed the significantly lower level of c.2026C > T (p.R676*) than wild type. The level of microtubule associated protein 1 light chain 3-II (LC3-II), a classical marker of autophagy, was significantly lower in mutants expressed cells than wild type group by western blotting and immunofluorescence staining. Our findings support the loss-of-function and haploinsufficiency hypothesis in pathogenesis. Autophagy abnormality may play a role in the disease. Repairing or promoting the phosphorylation level of mutant CSF1R may shed light on therapeutic targets in the future. However, whether peripheral polyneuropathy potentially belongs to CSF1R-related spectrum deserves further study with longer follow-up and more patients enrolled. ChiCTR, ChiCTR1800015295 . Registered 21 March 2018.

    更新日期:2019-12-02
  • Dopaminergic neurons show increased low-molecular-mass protein 7 activity induced by 6-hydroxydopamine in vitro and in vivo
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-08-17
    Ming-Shu Mo; Gui-Hua Li; Cong-Cong Sun; Shu-Xuan Huang; Lei Wei; Li-Min Zhang; Miao-Miao Zhou; Zhuo-Hua Wu; Wen-Yuan Guo; Xin-Ling Yang; Chao-Jun Chen; Shao-Gang Qu; Jian-Xing He; Ping-Yi Xu

    Abnormal expression of major histocompatibility complex class I (MHC-I) is increased in dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson’s disease (PD). Low-molecular-mass protein 7 (β5i) is a proteolytic subunit of the immunoproteasome that regulates protein degradation and the MHC pathway in immune cells. In this study, we investigated the role of β5i in DA neurons using a 6-hydroxydopamine (6-OHDA) model in vitro and vivo. We showed that 6-OHDA upregulated β5i expression in DA neurons in a concentration- and time-dependent manner. Inhibition and downregulation of β5i induced the expression of glucose-regulated protein (Bip) and exacerbated 6-OHDA neurotoxicity in DA neurons. The inhibition of β5i further promoted the activation of Caspase 3-related pathways induced by 6-OHDA. β5i also activated transporter associated with antigen processing 1 (TAP1) and promoted MHC-I expression on DA neurons. Taken together, our data suggest that β5i is activated in DA neurons under 6-OHDA treatment and may play a neuroprotective role in PD.

    更新日期:2019-11-28
  • Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-09-10
    Hua Zhang; Kok Pin Ng; Joseph Therriault; Min Su Kang; Tharick A. Pascoal; Pedro Rosa-Neto; Serge Gauthier

    Visinin-like protein-1 (VILIP-1) and chitinase-3-like protein 1 (CHI3L1 or YKL-40) in cerebrospinal fluid (CSF) are newly discovered markers indicating neuronal damage and microglial activation, respectively. Phosphorylated tau (p-tau) reflects the neuropathology of Alzheimer’s disease (AD) and is useful as diagnostic markers for AD. However, it is unknown whether these biomarkers have similar or complementary information in AD. We stratified 121 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database into cognitively normal (CN), stable mild cognitive impairment (sMCI), progressive MCI (pMCI), and dementia due to AD. Analysis of covariance (ANOVA) and chi-square analyses, Spearman correlation, and logistic regression models were performed to test the demographic, associations between biomarkers, and diagnostic accuracies, respectively. Linear mixed-effects models were used to evaluate the effects of CSF amyloid-β (Aβ) on above biomarkers within diagnostic groups, the combination of diagnostic group and Aβ status as predictor, and CSF biomarkers as predictors of AD features, including cognition measured by Mini–Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI). P-tau, VILIP-1, and YKL-40 were all predictors of AD diagnosis, but combinations of biomarkers did not improve the diagnostic accuracy (AUC 0.924 for p-tau, VILIP-1, and YKL-40) compared to p-tau (AUC 0.922). P-tau and VILIP-1 were highly correlated (r = 0.639, p < 0.001) and strongly associated with Aβ pathology across clinical stages of AD, while YKL-40 was correlated with Aβ pathology in CN and AD groups. VILIP-1 was associated with acceleration of cognitive decline, hippocampal atrophy, and expansion of ventricles in longitudinal analyses. YKL-40 was associated with hippocampal atrophy at baseline and follow-up, while p-tau was only associated with worsening WMH at baseline. CSF levels of p-tau, VILIP-1, and YKL-40 may have utility for discriminating between cognitively normal subjects and patients with AD. Increased levels of both VILIP-1 and YKL-40 may be associated with disease degeneration. These CSF biomarkers should be considered for future assessment in the characterization of the natural history of AD.

    更新日期:2019-11-28
  • Bis(9)-(−)-Meptazinol, a novel dual-binding AChE inhibitor, rescues cognitive deficits and pathological changes in APP/PS1 transgenic mice
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-09-11
    Yuhuan Shi; Wanying Huang; Yu Wang; Rui Zhang; Lina Hou; Jianrong Xu; Zhuibai Qiu; Qiong Xie; Hongzhuan Chen; Yongfang Zhang; Hao Wang

    Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative brain disorder, which is the most common form of dementia. Intensive efforts have been made to find effective and safe treatment against AD. Acetylcholinesterase inhibitors (AChEIs) have been widely used for the treatment of mild to moderate AD. In this study, we investigated the effect of Bis(9)-(−)-Meptazinol (B9M), a novel potential dual-binding acetylcholinesterase (AChE) inhibitor, on learning and memory abilities, as well as the underlying mechanism in the APP/PS1 mouse model of AD. B9M (0.1 μg/kg, 0.3 μg/kg, and 1 μg/kg) was administered by subcutaneous injection into eight-month-old APP/PS1 transgenic mice for four weeks. Morris water maze, nest-building and novel object recognition were used to examine learning and memory ability. Aβ levels and Aβ plaque were evaluated by ELISA and immunochemistry. Our results showed that chronic treatment with B9M significantly improved the cognitive function of APP/PS1 transgenic mice in the Morris water maze test, nest-building test and novel object recognition test. Moreover, B9M improved cognitive deficits in APP/PS1 mice by a mechanism that may be associated with its inhibition of the AChE activity, Aβ plaque burden, levels of Aβ and the consequent activation of astrocytes and microglia in the brain of APP/PS1 transgenic mice. Most of important, the most effective dose of B9M in the present study is 1 μg/kg, which is one thousand of the dosage of Donepezil acted as the control treatment. Furthermore, B9M reduced Aβ plaque burden better than Donepezil. These results indicate that B9M appears to have potential as an effective AChE inhibitor for the treatment of AD with symptom-relieving and disease-modifying properties.

    更新日期:2019-11-28
  • Alpha-synuclein overexpression in the olfactory bulb initiates prodromal symptoms and pathology of Parkinson’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-09-28
    Haichen Niu; Lingyu Shen; Tongzhou Li; Chao Ren; Sheng Ding; Lei Wang; Zhonghai Zhang; Xiaoyu Liu; Qiang Zhang; Deqin Geng; Xiujuan Wu; Haiying Li

    Parkinson’s disease (PD) is a neurodegenerative disease characterized by intraneuronal Lewy Body (LB) aggregates composed of misfolded alpha-synuclein (α-syn). The spread of misfolded α-syn follows a typical pattern: starting in the olfactory bulb (OB) and the gut, this pathology is followed by the progressive invasion of misfolded α-syn to the posterior part of the brain. It is unknown whether the administration of human mutant alpha-synuclein (hm-α-syn, a human mutation which occurs in familial PD) into the OB of rats would trigger similar α-syn propagation and subsequently cause pathological changes in broader brain fields associated to PD and establish an animal model of prodromal PD. hm-α-syn was overexpressed in the OB of rats with an AAV injection. Then motor and non-motor symptoms of the SD rats were tested in different behavioral tasks following the AAV injection. In follow-up studies, pathological mechanisms of α-syn spread were explored at the histological, biochemical and micro-structure levels. The experimental results indicated that hm-α-syn was overexpressed in the OB 3 weeks after the AAV injection. 1) overexpression of the Hm-α-syn in the OB by the AAV injection could transfer to wider adjacent fields beyond the monosynaptic scope. 2) The number of tyrosine hydroxylase positive cells body and fibers was decreased in the substantia nigra (SN) 12 weeks after AAV injection. This was consistent with decreased levels of the DA neurotransmitter. Importantly, behavioral dysfunctions were found that included olfactory impairment after 3 weeks, motor ability impairment and decreased muscular coordination on a rotarod 6 weeks after the AAV injection.3) The morphological level studies found that the Golgi staining revealed the number of neuronal branches and synapses in the OB, prefrontal cortex (PFC), hippocampus (Hip) and striatum caudate putamen (CPU) were decreased. 4) phosphorylated α-syn, at Ser-129 (pSer129), was found to be increased in hm-α-syn injected animals in comparison to controls that overexpressed GFP alone, which was also found in the most of LB stained by the thioflavine S (ThS) in the SN field. 5) A marker of autophagy (LC3B) was increased in serval fields, which was colacolizated with a marker of apoptosis in the SN field. These results demonstrate that expression of exogenous mutant α-syn in the OB induces pathological changes in the sensitive brain fields by transferring pathogenic α-syn to adjacent fields. This method may be useful for establishing an animal model of prodromal PD.

    更新日期:2019-11-28
  • CSF Aβ1–42 level is associated with cognitive decline in early Parkinson’s disease with rapid eye movement sleep behavior disorder
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-10-08
    Maowen Ba; Guoping Yu; Min Kong; Hui Liang; Ling Yu

    Rapid eye movement sleep behavior disorder (RBD) is associated with cognitive decline in early Parkinson’s disease (PD). However, the underlyling basis for this association remains unclear. Parkinson’s Progression Marker’s Initiative (PPMI) subjects underwent baseline RBD testing with RBD sleep questionnaire (RBDSQ). Serial assessments included measures of motor symptoms, non-motor symptoms (NMS), neuropsychological assessment, blood and cerebrospinal fluid (CSF) biomarkers. Up to three years follow-up data were included. We stratified early PD subjects into PD with RBD (RBDSQ score > 5) and PD without RBD groups. Then, we evaluated baseline biomarkers in each group as a predictor of cognitive decline using Montreal Cognitive Assessment (MoCA) score changes over three years in regression models. Four hundred twenty-three PD subjects were enrolled at baseline, and a total of 350 PD subjects had completed 3 years of study follow-up with completely serial assessments. We found that at baseline, only CSF β-amyloid 1–42 (Aβ1–42) was significantly lower in PD subjects with RBD. On three years follow-up analysis, PD subjects with RBD were more likely to develop incident mild cognitive impairment (MCI) and presented greater cognitive decline in MoCA score. Lower baseline CSF Aβ1–42 predicted cognitive decline over 3 years only in PD subjects with RBD (β = − 0.03, P = 0.003). A significant interaction between Aβ1–42 and the 2 groups confirmed that this effect was indeed higher in PD with RBD than the other individual (β = − 2.85, P = 0.014). These findings indicate that CSF Aβ1–42 level is associated with global cognitive decline in early PD with RBD. The addition of CSF Aβ1–42 to RBD testing increase the likelihood of identifying those at high risk for cognitive decline in early PD.

    更新日期:2019-11-28
  • Neurodegeneration-associated FUS is a novel regulator of circadian gene expression
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-10-12
    Xin Jiang; Tao Zhang; Haifang Wang; Tao Wang; Meiling Qin; Puhua Bao; Ruiqi Wang; Yuwei Liu; Hung-Chun Chang; Jun Yan; Jin Xu

    Circadian rhythms are oscillating physiological and behavioral changes governed by an internal molecular clock, and dysfunctions in circadian rhythms have been associated with ageing and various neurodegenerative diseases. However, the evidence directly connecting the neurodegeneration-associated proteins to circadian control at the molecular level remains sparse. Using meta-analysis, synchronized animals and cell lines, cells and tissues from FUS R521C knock-in rats, we examined the role of FUS in circadian gene expression regulation. We found that FUS, an oscillating expressed nuclear protein implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), exerted a novel feedback route to regulate circadian gene expression. Nr1d1-encoded core circadian protein REV-ERBα bound the Fus promoter and regulated the expression of Fus. Meanwhile, FUS was in the same complex as PER/CRY, and repressed the expression of E box-containing core circadian genes, such as Per2, by mediating the promoter occupancy of PSF-HDAC1. Remarkably, a common pathogenic mutant FUS (R521C) showed increased binding to PSF, and caused decreased expression of Per2. Therefore, we have demonstrated FUS as a modulator of circadian gene expression, and provided novel mechanistic insights into the mutual influence between circadian control and neurodegeneration-associated proteins.

    更新日期:2019-11-28
  • Aberrant functional connectivity network in subjective memory complaint individuals relates to pathological biomarkers
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-10-19
    Kaicheng Li; Xiao Luo; Qingze Zeng; Yeerfan Jiaerken; Xiaojun Xu; Peiyu Huang; Zhujing Shen; Jingjing Xu; Chao Wang; Jiong Zhou; Min-Ming Zhang

    Individuals with subjective memory complaints (SMC) feature a higher risk of cognitive decline and clinical progression of Alzheimer’s disease (AD). However, the pathological mechanism underlying SMC remains unclear. We aimed to assess the intrinsic connectivity network and its relationship with AD-related pathologies in SMC individuals. We included 44 SMC individuals and 40 normal controls who underwent both resting-state functional MRI and positron emission tomography (PET). Based on graph theory approaches, we detected local and global functional connectivity across the whole brain by using degree centrality (DC) and eigenvector centrality (EC) respectively. Additionally, we analyzed amyloid deposition and tauopathy via florbetapir-PET imaging and cerebrospinal fluid (CSF) data. The voxel-wise two-sample T-test analysis was used to examine between-group differences in the intrinsic functional network and cerebral amyloid deposition. Then, we correlated these network metrics with pathological results. The SMC individuals showed higher DC in the bilateral hippocampus (HP) and left fusiform gyrus and lower DC in the inferior parietal region than controls. Across all subjects, the DC of the bilateral HP and left fusiform gyrus was positively associated with total tau and phosphorylated tau181. However, no significant between-group difference existed in EC and cerebral amyloid deposition. We found impaired local, but not global, intrinsic connectivity networks in SMC individuals. Given the relationships between DC value and tau level, we hypothesized that functional changes in SMC individuals might relate to pathological biomarkers.

    更新日期:2019-11-28
  • Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-11-05
    Kangmu Ma; Xiaobei Deng; Xiaohuan Xia; Zhaohuan Fan; Xinrui Qi; Yongxiang Wang; Yuju Li; Yizhao Ma; Qiang Chen; Hui Peng; Jianqing Ding; Chunhong Li; Yunlong Huang; Changhai Tian; Jialin C. Zheng

    Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged as a preferred approach for cell transplantation. Mouse astrocytes were reprogrammed into NPCs by the overexpression of transcription factors (TFs) Foxg1, Sox2, and Brn2. The generation of subtypes of neurons was directed by the force expression of cell-type specific TFs Lhx8 or Foxa2/Lmx1a. Astrocyte-derived induced NPCs (AiNPCs) share high similarities, including the expression of NPC-specific genes, DNA methylation patterns, the ability to proliferate and differentiate, with the wild type NPCs. The AiNPCs are committed to the forebrain identity and predominantly differentiated into glutamatergic and GABAergic neuronal subtypes. Interestingly, additional overexpression of TFs Lhx8 and Foxa2/Lmx1a in AiNPCs promoted cholinergic and dopaminergic neuronal differentiation, respectively. Our studies suggest that astrocytes can be converted into AiNPCs and lineage-committed AiNPCs can acquire differentiation potential of other lineages through forced expression of specific TFs. Understanding the impact of the TF sets on the reprogramming and differentiation into specific lineages of neurons will provide valuable strategies for astrocyte-based cell therapy in neurodegenerative diseases.

    更新日期:2019-11-28
  • Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-11-06
    Antonella Tramutola; Chiara Lanzillotta; Eugenio Barone; Andrea Arena; Ilaria Zuliani; Luciana Mosca; Carla Blarzino; D. Allan Butterfield; Marzia Perluigi; Fabio Di Domenico

    Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa) that maximizes brain delivery and reduce systemic side effects. Ts65Dn mice were administered with InRapa for 12 weeks, starting at 6 months of age demonstrating, at the end of the treatment by radial arms maze and novel object recognition testing, rescued cognition. The analysis of mTOR signalling, after InRapa, demonstrated in Ts65Dn mice hippocampus the inhibition of mTOR (reduced to physiological levels), which led, through the rescue of autophagy and insulin signalling, to reduced APP levels, APP processing and APP metabolites production, as well as, to reduced tau hyperphosphorylation. In addition, a reduction of oxidative stress markers was also observed. These findings demonstrate that chronic InRapa administration is able to exert a neuroprotective effect on Ts65Dn hippocampus by reducing AD pathological hallmarks and by restoring protein homeostasis, thus ultimately resulting in improved cognition. Results are discussed in term of a potential novel targeted therapeutic approach to reduce cognitive decline and AD-like neuropathology in DS individuals.

    更新日期:2019-11-28
  • Alterations of brain local functional connectivity in amnestic mild cognitive impairment
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-11-07
    Dan Zheng; Wei Xia; Zhong Quan Yi; Pan Wen Zhao; Jian Guo Zhong; Hai Cun Shi; Hua Liang Li; Zhen Yu Dai; Ping Lei Pan

    Resting-state functional magnetic resonance imaging studies using a regional homogeneity (ReHo) method have reported that amnestic mild cognitive impairment (aMCI) was associated with abnormalities in local functional connectivity. However, their results were not conclusive. Seed-based d Mapping was used to conduct a coordinate-based meta-analysis to identify consistent ReHo alterations in aMCI. We identified 10 studies with 11 datasets suitable for inclusion, including 378 patients with aMCI and 435 healthy controls. This meta-analysis identified significant ReHo alterations in patients with aMCI relative to healthy controls, mainly within the default mode network (DMN) (bilateral posterior cingulate cortex [PCC], right angular gyrus, bilateral middle temporal gyri, and left parahippocampal gyrus/hippocampus), executive control network (right superior parietal lobule and dorsolateral prefrontal cortex), visual network (right lingual gyrus and left middle occipital gyrus), and sensorimotor network (right paracentral lobule/supplementary motor area, right postcentral gyrus and left posterior insula). Significant heterogeneity of ReHo alterations in the bilateral PCC, left parahippocampal gyrus/hippocampus, and right superior parietal lobule/angular gyrus was observed. Exploratory meta-regression analyses indicated that general cognitive function, gender distribution, age, and education level partially contributed to this heterogeneity. This study provides provisional evidence that aMCI is associated with abnormal ReHo within the DMN, executive control network, visual network, and sensorimotor network. These local functional connectivity alterations suggest coexistence of functional deficits and compensation in these networks. These findings contribute to the modeling of brain functional connectomes and to a better understanding of the neural substrates of aMCI. Confounding factors merit much attention and warrant future investigations.

    更新日期:2019-11-28
  • GM604 regulates developmental neurogenesis pathways and the expression of genes associated with amyotrophic lateral sclerosis
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-12-03
    William R. Swindell; Krzysztof Bojanowski; Mark S. Kindy; Raymond M. W. Chau; Dorothy Ko

    Amyotrophic lateral sclerosis (ALS) is currently an incurable disease without highly effective pharmacological treatments. The peptide drug GM604 (GM6 or Alirinetide) was developed as a candidate ALS therapy, which has demonstrated safety and good drug-like properties with a favorable pharmacokinetic profile. GM6 is hypothesized to bolster neuron survival through the multi-target regulation of developmental pathways, but mechanisms of action are not fully understood. This study used RNA-seq to evaluate transcriptome responses in SH-SY5Y neuroblastoma cells following GM6 treatment (6, 24 and 48 h). We identified 2867 protein-coding genes with expression significantly altered by GM6 (FDR < 0.10). Early (6 h) responses included up-regulation of Notch and hedgehog signaling components, with increased expression of developmental genes mediating neurogenesis and axon growth. Prolonged GM6 treatment (24 and 48 h) altered the expression of genes contributing to cell adhesion and the extracellular matrix. GM6 further down-regulated the expression of genes associated with mitochondria, inflammatory responses, mRNA processing and chromatin organization. GM6-increased genes were located near GC-rich motifs interacting with C2H2 zinc finger transcription factors, whereas GM6-decreased genes were located near AT-rich motifs associated with helix-turn-helix homeodomain factors. Such motifs interacted with a diverse network of transcription factors encoded by GM6-regulated genes (STAT3, HOXD11, HES7, GLI1). We identified 77 ALS-associated genes with expression significantly altered by GM6 treatment (FDR < 0.10), which were known to function in neurogenesis, axon guidance and the intrinsic apoptosis pathway. Our findings support the hypothesis that GM6 acts through developmental-stage pathways to influence neuron survival. Gene expression responses were consistent with neurotrophic effects, ECM modulation, and activation of the Notch and hedgehog neurodevelopmental pathways. This multifaceted mechanism of action is unique among existing ALS drug candidates and may be applicable to multiple neurodegenerative diseases.

    更新日期:2019-11-28
  • Rare TBK1 variants in patients with frontotemporal dementia and amyotrophic lateral sclerosis in a Chinese cohort
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-12-04
    Bin Jiao; Qiying Sun; Zhenhua Yuan; Junling Wang; Lin Zhou; Xinxiang Yan; Beisha Tang; Lu Shen

    The TANK-Binding Kinase 1 (TBK1) gene has recently been identified as the third or fourth most frequent cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The aim of this study was to assess the genetic contribution of TBK1 in a Chinese cohort. A total of 270 cases with ALS, FTD, or their combination were recruited into this study. All the coding exons of TBK1 and intron-exon boundaries were sequenced using Sanger sequencing. The frequency of TBK1 variants and the correlation with clinical phenotypes were analyzed. A novel mutation (c.1959_1960insGT, p.E653fs) was identified in a sporadic case with semantic dementia, secondarily developing ALS. Another novel variant (c.2063_2064delTT, p.L688Rfs*14) was found in an ALS-FTD family. Totally, the TBK1 variants could only account for 0.7% of cases. This study enlarges the genetic and phenotypic spectrum of TBK1 mutation in a Chinese cohort. Our data indicates that TBK1 mutation is not a common cause for ALS and FTD in Chinese patients.

    更新日期:2019-11-28
  • Efficacy and safety of rasagiline in Chinese patients with early Parkinson’s disease: a randomized, double-blind, parallel, placebo-controlled, fixed-dose study
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-12-06
    Zhenxin Zhang; Jian Wang; Shengdi Chen; Chunfeng Liu; Baorong Zhang; Rong Peng; Shenggang Sun; Xiangru Sun; Gang Zhao; Qiumin Qu; Yansheng Li; Suiqiang Zhu; Xiaoping Pan; Ming Shao; Yanping Wang

    Rasagiline is a monoamine oxidase-B inhibitor used for Parkinson’s disease (PD) treatment, but its effectiveness on Chinese patients is unclear. This study aimed to evaluate the efficacy and safety of rasagiline monotherapy in Chinese patients with early PD. A 26-weeks, randomized, double-blind, placebo-controlled study has been performed at 15 sites in China and enrolled outpatients (≥35 years old) with idiopathic PD without a history of using any dopaminergic drugs. Participants were randomized 1:1 to receive rasagiline 1 mg once daily or placebo. The primary endpoint was the change of the Unified Parkinson’s Disease Rating Scale (UPDRS) total score from baseline to 26 weeks treatment. Secondary endpoints included changes in UPDRS subscale scores from part I to III. Health status was assessed with the PD Questionnaire (PDQ)-39 and EuroQol-Five-Dimension (EQ-5D) questionnaire. Safety profile was collected until 30 weeks after randomization. A total of 130 patients (n = 65/group) were recruited, and 127 (rasagiline, n = 64; placebo, n = 63) were included in the full analysis set. Baseline characteristics were comparable between the two groups. The decrease in the mean UPDRS total score was greater in the rasagiline group than in the placebo group (− 3.18 ± 0.95 vs. − 0.18 ± 0.98, P = 0.025), and the mean UPDRS part I non-motor symptoms score (− 0.54 ± 0.15 vs. -0.08 ± 0.15, P = 0.003) were significantly decreased in the rasagiline group compared with placebo treated patients. An improvement trend was observed in the active treatment group for the subscales evaluation with parts II and III, while the difference to placebo was not statistically significant. Life quality assessed by the EQ-5D visual analog scale improved in the rasagiline group but worsened in placebo treated patients. The overall incidence of treatment-emergent adverse events (AEs) was slightly lower in the rasagiline group (41.5%) than in the placebo group (46.2%). Rasagiline is effective, safe, and well tolerated as monotherapy for the treatment of Chinese PD patients. Clinicaltrials.gov : NCT01556165 . Registered 13 Mar 2012.

    更新日期:2019-11-28
  • Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-12-21
    Jingjing Zhang; Yufei Liu; Xinyao Liu; Song Li; Cheng Cheng; Sheng Chen; Weidong Le

    Neuron-microglia communication plays a crucial role in the motor neurons (MNs) death in amyotrophic lateral sclerosis (ALS). Neurons can express chemokine (C-X3-C motif) ligand 1 (CX3CL1), which mediates microglial activation via interacting with its sole receptor CX3CR1 in microglia. In the present study, we aimed to investigate the dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and MNs loss in SOD1G93A mouse model of ALS. qPCR, western blot and immunofluorescent staining were used to examine the mRNA and protein levels and localization of CX3CL1/CX3CR1 in the anterior horn region of spinal cord in both SOD1G93A mice and their age-matched wild type (WT) littermates at 40, 60, 90 and 120 days of age. The M1/M2 microglial activation in the spinal cord tissues of SOD1G93A mice and WT mice were evaluated by immunofluorescent staining of M1/M2 markers and further confirmed by qPCR analysis of M1/M2-related cytokines. The immunofluorescent staining revealed that CX3CL1 was predominately expressed in MNs, while CX3CR1 was highly expressed in microglia in the anterior horn region of spinal cord. Compared with age-matched WT mice, CX3CL1 mRNA level was elevated at 40 days but decreased at 90 and 120 days in the anterior horn region of spinal cords in ALS mice. Consistently, CX3CR1 mRNA level was increased at 90 and 120 days. Western blot assay further confirmed the dynamic changes of CX3CL1/CX3CR1 axis in ALS mice. Additionally, the levels of M1/M2 markers of microglia and their related cytokines in the anterior horn region of spinal cord in ALS mice were increased at 90 and 120 days. Moreover, while M1-related cytokines in ALS mice were persistently increased at 120 days, the upregulated M2-related cytokines started to decline at 120 days, suggesting an altered microglial activation. Our data revealed the dynamic changes of CX3CL1/CX3CR1 axis and an imbalanced M1/M2 microglial activation during ALS pathological progression. These findings may help identify potential molecular targets for ALS therapy.

    更新日期:2019-11-28
  • Correction to: Alterations of brain local functional connectivity in amnestic mild cognitive impairment
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-12-24
    Dan Zheng; Wei Xia; Zhong Quan Yi; Pan Wen Zhao; Jian Guo Zhong; Hai Cun Shi; Hua Liang Li; Zhen Yu Dai; Ping Lei Pan

    In the original publication of this article [1] surname of the first author is wrong.

    更新日期:2019-11-28
  • Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease –conformist, nonconformist, and realistic prospects for AD pathogenesis
    Transl. Neurodegener. (IF 5.534) Pub Date : 2018-12-24
    Hongmei Li; Chia-Chen Liu; Hui Zheng; Timothy Y. Huang

    Alzheimer’s disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.

    更新日期:2019-11-28
  • Transcranial direct current stimulation enhances theory of mind in Parkinson’s disease patients with mild cognitive impairment: a randomized, double-blind, sham-controlled study
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-01-07
    Mauro Adenzato; Rosa Manenti; Ivan Enrici; Elena Gobbi; Michela Brambilla; Antonella Alberici; Maria Sofia Cotelli; Alessandro Padovani; Barbara Borroni; Maria Cotelli

    Parkinson’s Disease (PD) with mild cognitive impairment (MCI) (PD-MCI) represents one of the most dreaded complications for patients with PD and is associated with a higher risk of developing dementia. Although transcranial direct current stimulation (tDCS) has been demonstrated to improve motor and non-motor symptoms in PD, to date, no study has investigated the effects of tDCS on Theory of Mind (ToM), i.e., the ability to understand and predict other people’s behaviours, in PD-MCI. In this randomized, double-blind, sham-controlled study, we applied active tDCS over the medial frontal cortex (MFC) to modulate ToM performance in twenty patients with PD-MCI. Twenty matched healthy controls (HC) were also enrolled and were asked to perform the ToM task without receiving tDCS. In the patients with PD-MCI, i) ToM performance was worse than that in the HC, ii) ToM abilities were poorer in those with fronto-executive difficulties, and iii) tDCS over the MFC led to significant shortening of latency for ToM tasks. We show for the first time that active tDCS over the MFC enhances ToM in patients with PD-MCI, and suggest that non-invasive brain stimulation could be used to ameliorate ToM deficits observed in these patients.

    更新日期:2019-11-28
  • Better survival in female SOD1-mutant patients with ALS: a study of SOD1-related natural history
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-01-08
    Lu Tang; Yan Ma; Xiao-lu Liu; Lu Chen; Dong-sheng Fan

    SOD1 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) in non-Caucasian patients. Detailed natural history profiles of SOD1-mutant patients will be beneficial for the strategy and interpretation of future SOD1-targeted clinical practice. Mutational distribution, age at onset (AAO), site of onset, diagnostic delay, disease progression (rate of ALSFRS-R decrease, ΔFS) and survival were analysed. Further comparisons between heredity of disease, gender, and mutations were performed. Sixty-six cases with 43 SOD1 mutations were included and analysed, with p.His47Arg as the leading mutation and seven novel variants identified. The mean (SD) AAO was 43.92 years (9.24) for all subjects, with a significant difference between patients carrying mutations in exon 2 (n = 24,46.83, 8.31) and exon 4 (n = 18, 37.75, 7.67) (p = 0.002). The median (IQR) diagnostic delay from symptom onset was 14.50 (6.00–36.50) months for all SOD1-mutant patients, 9.50 (4.75–24.25) months for males and 24.00 (9.50–47.50) months for females, revealing a gender difference (p = 0.009). Similar advantages in median (IQR) ΔFS [male: female, 0.55 (0.24–0.94) vs 0.19 (0.06–0.90), p = 0.041] and mean (95% CI) survival [57.4 (38.90–75.90) months vs 125.6 (99.80–151.50) months, p = 0.006] were also observed in females, both of which existed in sporadic ALS only when stratified by familiar or sporadic ALS. The results highlight a distinct mutational distribution and natural history spectrum in ALS patients carrying SOD1 mutations in China. A prominent mild disease progression was observed in female patients, which had rarely been reported in the previous literature. This finding, together with the detailed analysis of natural history among each mutation, can have important implications for future genetic counselling and SOD1-targeted clinical trials.

    更新日期:2019-11-28
  • Suppression of astrocytic autophagy by αB-crystallin contributes to α-synuclein inclusion formation
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-01-18
    Shen-zhao Lu; Yong-shun Guo; Pei-zhou Liang; Shu-zhen Zhang; Shu Yin; Yan-qing Yin; Xiao-min Wang; Fei Ding; Xiao-song Gu; Jia-wei Zhou

    Parkinson’s disease (PD) is characterized by a chronic loss of dopaminergic neurons and the presence of proteinaceous inclusions (Lewy bodies) within some remaining neurons in the substantia nigra. Recently, astroglial inclusion body has also been found in some neurodegenerative diseases including PD. However, the underlying molecular mechanisms of how astroglial protein aggregation forms remain largely unknown. Here, we investigated the contribution of αB-crystallin (CRYAB), a small heat shock protein, in α-synuclein inclusion formation in astrocytes. Small interfering RNA (siRNA)-mediated CRYAB (siCRYAB) knockdown or CRYAB overexpression was performed to investigate the impact of CRYAB on the autophagy in human glioblastoma cell line U251 cells. Co-immunoprecipitation (co-IP) and immunoblotting were used to dissect the interaction among multiple proteins. The clearance of α-synuclein in vitro was evaluated by immunocytochemistry. CRYAB transgenic mice and transgenic mice overexpressing A30P mutant form of human α-synuclein were used to examine the influence of CRYAB to α-synuclein accumulation in vivo. We found that knockdown of CRYAB in U251 cells or primary cultured astrocytes resulted in a marked augmentation of autophagy activity. In contrast, exogenous CRYAB disrupted the assembly of the BAG3-HSPB8-HSC70 complex via binding with BAG3, thereby suppressing the autophagy activity. Furthermore, CRYAB-regulated autophagy has relevance to PD pathogenesis. Knockdown of CRYAB remarkably promoted cytoplasmic clearance of α-synuclein preformed fibrils (PFFs). Conversely, selective overexpression of CRYAB in astrocytes markedly suppressed autophagy leading to the accumulation of α-synuclein aggregates in the brain of transgenic mice expressing human α-synuclein A30P mutant. This study reveals a novel function for CRYAB as a natural inhibitor of astrocytic autophagy and shows that knockdown of CYRAB may provide a therapeutic target against proteinopathies such as synucleinopathies.

    更新日期:2019-11-28
  • Hydroxytryptamine transporter gene-linked polymorphic region (5HTTLPR) is associated with delusions in Alzheimer’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-02-01
    Grazia D’Onofrio; Francesco Panza; Daniele Sancarlo; Michele Lauriola; Mariangela P. Dagostino; Giulia Paroni; Madia Lozupone; Antonio Mangiacotti; Paola Bisceglia; Carolina Gravina; Maria Urbano; Filomena Addante; Francesco Paris; Leandro Cascavilla; Antonio Greco; Davide Seripa

    Serotoninergic pathways underlying delusion symptoms in Alzheimer’s disease (AD) have not been fully clarified. 5-Hydroxytryptamine transporter gene-linked polymorphic region (5-HTTLPR) is a variable number tandem repeats in the promoter region of serotonin transporter encoding-gene affecting transcription. We investigated the association of 5-HTTLPR with delusions in a total of 257 consecutive patients clinically diagnosed as AD according to the National Institute on Aging-Alzheimer’s Association criteria. All participants underwent a comprehensive evaluation with a standardized comprehensive geriatric assessment and Neuropsychiatric Inventory. Delusion symptoms were observed in 171 patients (66.54%). In respect to AD patients without delusions, AD patients with delusions showed a low prevalence of S-plus carriers (5-HTTLPR-L/S + 5-HTTLPR-S/S genotypes) [p < 0.001; odds ratio (OR) = 0.240, 95% confidence interval (CI) = 0.121–0.471]. Logistic regression analysis adjusted for the apolipoprotein E polymorphism showed that in AD patients with delusions the presence of an 5-HTTLPR-S allele may reduce disease duration (p = 0.005; OR = 0.680, 95% CI = 0.522–0.886) and increase aberrant motor activity (p = 0.013; OR = 2.257, 95% CI = 1.195–4.260). The present findings suggested that 5-HTTLPR might be associated with delusions in AD. S-plus carriers might be associated with protective effect against delusions in AD. More studies on wider samples of high selected demented patients are needed to confirm our results. However, the present findings suggested that a genetic factor related to serotonin metabolism might exert a protective role on the clinical expression of neuropsychiatric clusters in AD with important implications regarding mechanisms underlying delusions and their possible treatment across the AD and dementia spectrum.

    更新日期:2019-11-28
  • Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-02-04
    Zhi Dong Zhou; Thevapriya Selvaratnam; Ji Chao Tristan Lee; Yin Xia Chao; Eng-King Tan

    Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.

    更新日期:2019-11-28
  • Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-02-06
    Lucia Rota; Carolina Pellegrini; Laura Benvenuti; Luca Antonioli; Matteo Fornai; Corrado Blandizzi; Antonino Cattaneo; Emanuela Colla

    Gastrointestinal dysfunction can affect Parkinson’s disease (PD) patients long before the onset of motor symptoms. However, little is known about the relationship between gastrointestinal abnormalities and the development of PD. Contrary to other animal models, the human A53T alpha-synuclein (αS) transgenic mice, Line G2–3, develops αS-driven neurological and motor impairments after 9 months of age, displaying a long presymptomatic phase free of central nervous system (CNS) dysfunction. To determine whether this line can be suitable to study constipation as it occurs in prodromal PD, gastrointestinal functionality was assessed in young mice through a multidisciplinary approach, based on behavioral and biochemical analysis combined with electrophysiological recordings of mouse intestinal preparations. We found that the A53T αS mice display remarkable signs of gastrointestinal dysfunction that precede motor abnormalities and αS pathology in the CNS by at least 6 months. Young αS mice show a drastic delay in food transit along the gastrointestinal tract, of almost 2 h in 3 months old mice that increased to more than 3 h at 6 months. Such impairment was associated with abnormal formation of stools that resulted in less abundant but longer pellets excreted, suggesting a deficit in the intestinal peristalsis. In agreement with this, electrically evoked contractions of the colon, but not of the ileum, showed a reduced motor response in both longitudinal and circular muscle layers in αS mice already at 3 months of age, that was mainly due to an impaired cholinergic transmission of the underlying enteric nervous system. Interestingly, the presence of insoluble and aggregated αS was found in enteric neurons in both myenteric and submucosal plexi only in the colon of 3 months old αS mice, but not in the small intestine, and exacerbated with age, mimicking the increase in transit delay and the contraction deficit showed by behavioral and electrical recordings data. Gastrointestinal dysfunction in A53T αS mice represents an early sign of αS-driven pathology without concomitant CNS involvement. We believe that this model can be very useful to study disease-modifying strategies that could extend the prodromal phase of PD and halt αS pathology from reaching the brain.

    更新日期:2019-11-28
  • Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-03-01
    Wenyan Zou; Tinglin Pu; Weixi Feng; Ming Lu; Ying Zheng; Renhong Du; Ming Xiao; Gang Hu

    Abnormal aggregation of brain α-synuclein is a central step in the pathogenesis of Parkinson’s disease (PD), thus, it is reliable to promote the clearance of α-synuclein to prevent and treat PD. Recent studies have revealed an essential role of glymphatic system and meningeal lymphatic vessels in the clearance of brain macromolecules, however, their pathophysiological aspects remain elusive. Meningeal lymphatic drainage of 18-week-old A53T mice was blocked via ligating the deep cervical lymph nodes. Six weeks later, glymphatic functions and PD-like phenotypes were systemically analyzed. Glymphatic influx of cerebrospinal fluid tracer was reduced in A53T mice, accompanied with perivascular aggregation of α-synuclein and impaired polarization of aquaporin 4 expression in substantia nigra. Cervical lymphatic ligation aggravated glymphatic dysfunction of A53T mice, causing more severe accumulation of α-synuclein, glial activation, inflammation, dopaminergic neuronal loss and motor deficits. The results suggest that brain lymphatic clearance dysfunction may be an aggravating factor in PD pathology.

    更新日期:2019-11-28
  • Enriched gestation activates the IGF pathway to evoke embryo-adult benefits to prevent Alzheimer’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-03-05
    Enjie Liu; Qiuzhi Zhou; Ao-Ji Xie; Mengzhu Li; Shujuan Zhang; Hezhou Huang; Zhenyu Liuyang; Yali Wang; Bingjin Liu; Xiaoguang Li; Dongsheng Sun; Yuping Wei; Xiaochuan Wang; Qun Wang; Dan Ke; Xifei Yang; Ying Yang; Jian-Zhi Wang

    Building brain reserves before dementia onset could represent a promising strategy to prevent Alzheimer’s disease (AD), while how to initiate early cognitive stimulation is unclear. Given that the immature brain is more sensitive to environmental stimuli and that brain dynamics decrease with ageing, we reasoned that it would be effective to initiate cognitive stimulation against AD as early as the fetal period. After conception, maternal AD transgenic mice (3 × Tg AD) were exposed to gestational environment enrichment (GEE) until the day of delivery. The cognitive capacity of the offspring was assessed by the Morris water maze and contextual fear-conditioning tests when the offspring were raised in a standard environment to 7 months of age. Western blotting, immunohistochemistry, real-time PCR, immunoprecipitation, chromatin immunoprecipitation (ChIP) assay, electrophysiology, Golgi staining, activity assays and sandwich ELISA were employed to gain insight into the mechanisms underlying the beneficial effects of GEE on embryos and 7–10-month-old adult offspring. We found that GEE markedly preserved synaptic plasticity and memory capacity with amelioration of hallmark pathologies in 7–10-m-old AD offspring. The beneficial effects of GEE were accompanied by global histone hyperacetylation, including those at bdnf promoter-binding regions, with robust BDNF mRNA and protein expression in both embryo and progeny hippocampus. GEE increased insulin-like growth factor 1 (IGF1) and activated its receptor (IGF1R), which phosphorylates Ca2+/calmodulin-dependent kinase IV (CaMKIV) at tyrosine sites and triggers its nuclear translocation, subsequently upregulating histone acetyltransferase (HAT) and BDNF transcription. The upregulation of IGF1 mimicked the effects of GEE, while IGF1R or HAT inhibition during pregnancy abolished the GEE-induced CaMKIV-dependent histone hyperacetylation and BDNF upregulation. These findings suggest that activation of IGF1R/CaMKIV/HAT/BDNF signaling by gestational environment enrichment may serve as a promising strategy to delay AD progression.

    更新日期:2019-11-28
  • Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-03-08
    José Aguareles; Juan Paraíso-Luna; Belén Palomares; Raquel Bajo-Grañeras; Carmen Navarrete; Andrea Ruiz-Calvo; Daniel García-Rincón; Elena García-Taboada; Manuel Guzmán; Eduardo Muñoz; Ismael Galve-Roperh

    The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1 receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB2 and nuclear PPARγ receptors, can also be the target of specific cannabinoids. We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.2, in striatal neurodegeneration by using adeno-associated viral expression of mutant huntingtin in vivo and mouse embryonic stem cell differentiation in vitro. Oral administration of VCE-003.2 protected striatal medium spiny neurons from mutant huntingtin-induced damage, attenuated neuroinflammation and improved motor performance. VCE-003.2 bioavailability was characterized and the potential undesired side effects were evaluated by analyzing hepatotoxicity after chronic treatment. VCE-003.2 promoted subventricular zone progenitor mobilization, increased doublecortin-positive migrating neuroblasts towards the injured area, and enhanced effective neurogenesis. Moreover, we demonstrated the proneurogenic activity of VCE-003.2 in embryonic stem cells. VCE-003.2 was able to increase neuroblast formation and striatal-like CTIP2-mediated neurogenesis. The cannabigerol derivative VCE-003.2 improves subventricular zone-derived neurogenesis in response to mutant huntingtin-induced neurodegeneration, and is neuroprotective by oral administration.

    更新日期:2019-11-28
  • Correction to: Better survival in female SOD1-mutant patients with ALS: a study of SOD1-related natural history
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-03-19
    Lu Tang; Yan Ma; Xiao-lu Liu; Lu Chen; Dong-sheng Fan

    Abstract In the original publication of this article [1], a numerical value in the sentence “The mean (SD) AAO was 43.92 years (9.24) for all subjects, with a significant difference between patients carrying mutations in exon 2 (n = 24, 46.83, 8.31) and exon 4 (n = 18, 37.75, 7.67) (p = 0.002).” is wrong.

    更新日期:2019-11-28
  • Loss of CREST leads to neuroinflammatory responses and ALS-like motor defects in mice
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-04-02
    Cheng Cheng; Kan Yang; Xinwei Wu; Yuefang Zhang; Shifang Shan; Aaron Gitler; Anirvan Ghosh; Zilong Qiu

    Amyotrophic lateral sclerosis (ALS) is a late onset neurodegenerative disease with fast progression. ALS has heavy genetic components in which a series of genetic mutations have been identified. In 2013, Mutations of the CREST gene (also known as SS18L1), which functions as a calcium-regulated transcriptional activator, were found in sporadic ALS patients. However, the pathogenic causality and mechanisms of ALS-associated mutations of CREST remain to be determined. In this study, we constructed CREST knockout and Q394X knock-in mice with CRISPR/Cas9 system. Using biochemical and imaging tools, we illustrated core pathological phenotypes in CREST mutant mice and claimed the possible pathogenic mechanisms. Furthermore, we also observed locomotion defects in CREST mutant mice with behavioural tests. We demonstrate that ALS-related CREST-Q388X mutation exhibits loss-of-function effects. Importantly, the microglial activation was prevalent in CREST haploinsufficiency mice and Q394X mice mimicking the human CREST Q388X mutation. Furthermore, we showed that both CREST haploinsufficiency and Q394X mice displayed deficits in motor coordination. Finally, we identified the critical role of CREST-BRG1 complex in repressing the expression of immune-related cytokines including Ccl2 and Cxcl10 in neurons, via histone deacetylation, providing the molecular mechanisms underlying inflammatory responses within mice lack of CREST. Our findings indicate that elevated inflammatory responses in a subset of ALS may be caused by neuron-derived factors, suggesting potential therapeutic methods through inflammation pathways.

    更新日期:2019-11-28
  • No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-04-03
    Franziska Hopfner; Stefanie H. Müller; Dagmar Steppat; Joanna Miller; Nele Schmidt; Klaus-Peter Wandinger; Frank Leypoldt; Daniela Berg; Andre Franke; Wolfgang Lieb; Lukas Tittmann; Monika Balzer-Geldsetzer; Simon Baudrexel; Richard Dodel; Ruediger Hilker-Roggendorf; Elke Kalbe; Jan Kassubek; Thomas Klockgether; Inga Liepelt-Scarfone; Brit Mollenhauer; Petra Neuser; Kathrin Reetz; Oliver Riedel; Claudia Schulte; Jörg B. Schulz; Annika Spottke; Alexander Storch; Claudia Trenkwalder; Hans-Ulrich Wittchen; Karsten Witt; Ullrich Wüllner; Günther Deuschl; Gregor Kuhlenbäumer

    IgG-class autoantibodies to N-Methyl-D-Aspartate (NMDA)-type glutamate receptors define a novel entity of autoimmune encephalitis. Studies examining the prevalence of NMDA IgA/IgM antibodies in patients with Parkinson disease with/without dementia produced conflicting results. We measured NMDA antibodies in a large, well phenotyped sample of Parkinson patients without and with cognitive impairment (n = 296) and controls (n = 295) free of neuropsychiatric disease. Detailed phenotyping and large numbers allowed statistically meaningful correlation of antibody status with diagnostic subgroups as well as quantitative indicators of disease severity and cognitive impairment. NMDA antibodies were analysed in the serum of patients and controls using well established validated assays. We used anti-NMDA antibody positivity as the main independent variable and correlated it with disease status and phenotypic characteristics. The frequency of NMDA IgA/IgM antibodies was lower in Parkinson patients (13%) than in controls (22%) and higher than in previous studies in both groups. NMDA IgA/IgM antibodies were neither significantly associated with diagnostic subclasses of Parkinson disease according to cognitive impairment, nor with quantitative indicators of disease severity and cognitive impairment. A positive NMDA antibody status was positively correlated with age in controls but not in Parkinson patients. It is unlikely albeit not impossible that NMDA antibodies play a significant role in the pathogenesis or progression of Parkinson disease e.g. to Parkinson disease with dementia, while NMDA IgG antibodies define a separate disease of its own.

    更新日期:2019-11-28
  • Cognitive decline is related to high blood glucose levels in older Chinese adults with the ApoE ε3/ε3 genotype
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-04-03
    Qi Qiu; Xiang Lin; Lin Sun; Min-jie Zhu; Tao Wang; Jing-hua Wang; Guan-jun Li; Shi-fu Xiao; Xia Li

    Few studies have investigated the effects of blood glucose (BG) on cognitive function in community-dwelling elderly individuals carrying the apolipoprotein E (APOE) ε3 allele. To explore the effect of high BG levels on cognitive function in APOE ε3-carrying, non-demented, community-dwelling older adults, as compared to their counterparts carrying the APOE ε4 or APOE ε2 alleles. Within the China Longitudinal Ageing Study, we recruited 282 elderly adults without dementia. Data collected included demographic information; psychological measures; laboratory test results, including BG and plasma lipid levels; and APOE genotypes. We divided the participants into APOE ε2(ε2/ε2, ε2/ε3), ε3(ε3/ε3), and ε4(ε3/ε4, ε4/ε4) groups. Partial correlation analyses and multivariate linear regression analyses were utilized to compare the cognitive function and laboratory data between the APOE groups. White matter hyperintensity (WMH) was measured on magnetic resonance images in 77 participants. With adjustment for age, sex, education, and diabetes, higher BG in non-demented community-dwelling older adults was associated with cognitive decline in immediate memory and executive function. In the APOE ε3 group, elevated BG was associated with cognitive decline in immediate memory, executive function, and perceptual reasoning. In the APOE ε4 group, higher BG was also correlated with a decline in abstract reasoning. There was a trend for association between higher BG and more severe WMHs. Worse cognitive function was correlated withApoEε3/ε3 genotype carriers with higher BG in community-dwelling older adults.

    更新日期:2019-11-28
  • DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-05-09
    Luis Bermúdez-Guzmán; Alejandro Leal

    Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3′-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.

    更新日期:2019-11-28
  • Erythrocytic α-Synuclein as a potential biomarker for Parkinson’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-05-15
    Chen Tian; Genliang Liu; Liyan Gao; David Soltys; Catherine Pan; Tessandra Stewart; Min Shi; Zhiying Xie; Na Liu; Tao Feng; Jing Zhang

    Erythrocytes are a major source of peripheral α-synuclein (α-Syn). The goal of the current investigation is to evaluate erythrocytic total, oligomeric/aggregated, and phosphorylated α-Syn species as biomarkers of Parkinson’s disease (PD). PD and healthy control blood samples were collected along with extensive clinical history to determine whether total, phosphorylated, or aggregated α-Syn derived from erythrocytes (the major source of blood α-Syn) are more promising and consistent biomarkers for PD than are free α-Syn species in serum or plasma. Using newly developed electrochemiluminescence assays, concentrations of erythrocytic total, aggregated and phosphorylated at Ser129 (pS129) α-Syn, separated into membrane and cytosolic components, were measured in 225 PD patients and 133 healthy controls and analyzed with extensive clinical measures. The total and aggregated α-Syn levels were significantly higher in the membrane fraction of PD patients compared to healthy controls, but without alterations in the cytosolic component. The pS129 level was remarkably higher in PD subjects than in controls in the cytosolic fraction, and to a lesser extent, higher in the membrane fraction. Combining age, erythrocytic membrane aggregated α-Syn, and cytosolic pS129 levels, a model generated by using logistic regression analysis was able to discriminate patients with PD from neurologically normal controls, with a sensitivity and a specificity of 72 and 68%, respectively. These results suggest that total, aggregated and phosphorylated α-Syn levels are altered in PD erythrocytes and peripheral erythrocytic α-Syn is a potential PD biomarker that needs further validation.

    更新日期:2019-11-28
  • NF-κB/c-Rel deficiency causes Parkinson’s disease-like prodromal symptoms and progressive pathology in mice
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-05-21
    Edoardo Parrella; Arianna Bellucci; Vanessa Porrini; Marina Benarese; Annamaria Lanzillotta; Gaia Faustini; Francesca Longhena; Giulia Abate; Daniela Uberti; Marina Pizzi

    Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic nigrostriatal neuron loss and brain accumulation of Lewy bodies, protein aggregates mainly composed of α-synuclein. We reported that mice deficient for NF-κB/c-Rel (c-rel-/-) develop a late-onset parkinsonism. At 18 months of age, c-rel-/- mice showed nigrostriatal degeneration and accumulation of α-synuclein aggregates associated with a motor impairment responsive to L-DOPA administration. Being c-Rel protein a transcriptional regulator for mitochondrial anti-oxidant and antiapoptotic factors, it has been inferred that its deficiency may affect the resilience of “energy demanding” nigral dopaminergic neurons to the aging process. PD patients manifest a prodromal syndrome that includes olfactory and gastrointestinal dysfunctions years before the frank degeneration of nigrostriatal neurons and appearance of motor symptoms. According to the Braak staging, the onset of non-motor and motor symptoms relates to progressive ascendant diffusion of α-synuclein pathology in the brain. The aim of this study was to identify whether c-rel-/- deficiency is associated with the onset of premotor signs of PD and spatio-temporal progression of cerebral α-synuclein deposition. Intestinal and olfactory functions, intestine and brain α-synuclein deposition as well as striatal alterations, were assessed in c-rel-/- and control mice from 2 to 18 months of age. From 2 months of age, c-rel-/- mice displayed intestinal constipation and increasing olfactory impairment. At 2 months, c-rel-/- mice exhibited a mild α-synuclein accumulation in the distal colon. Moreover, they developed an age-dependent deposition of fibrillary α-synuclein that, starting at 5 months from the olfactory bulbs, dorsal motor nucleus of vagus and locus coeruleus, reached the substantia nigra at 12 months. At this age, the α-synuclein pathology associated with a drop of dopamine transporter in the striatum that anticipated by 6 months the axonal degeneration. From 12 months onwards oxidative/nitrosative stress developed in the striatum in parallel with altered expression of mitochondrial homeostasis regulators in the substantia nigra. In c-rel-/- mice, reproducing a parkinsonian progressive pathology with non-motor and motor symptoms, a Braak-like pattern of brain ascending α-synuclein deposition occurs. The peculiar phenotype of c-rel-/- mice envisages a potential contribution of c-Rel dysregulation to the pathogenesis of PD.

    更新日期:2019-11-28
  • Current progress of mitochondrial transplantation that promotes neuronal regeneration
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-06-14
    Chu-Yuan Chang; Min-Zong Liang; Linyi Chen

    Mitochondria are the major source of intracellular adenosine triphosphate (ATP) and play an essential role in a plethora of physiological functions, including the regulation of metabolism and the maintenance of cellular homeostasis. Mutations of mitochondrial DNA, proteins and impaired mitochondrial function have been implicated in the neurodegenerative diseases, stroke and injury of the central nervous system (CNS). The dynamic feature of mitochondrial fusion, fission, trafficking and turnover have also been documented in these diseases. A major bottleneck of traditional approach to correct mitochondria-related disorders is the difficulty of drugs or gene targeting agents to arrive at specific sub-compartments of mitochondria. Moreover, the diverse nature of mitochondrial mutations among patients makes it impossible to develop one drug for one disease. To this end, mitochondrial transplantation presents a new paradigm of therapeutic intervention that benefits neuronal survival and regeneration for neurodegenerative diseases, stroke, and CNS injury. Supplement of healthy mitochondria to damaged neurons has been reported to promote neuronal viability, activity and neurite re-growth. In this review, we provide an overview of the recent advance and development on mitochondrial therapy. Key parameters for the success of mitochondrial transplantation depend on the source and quality of isolated mitochondria, delivery protocol, and cellular uptake of supplemented mitochondria. To expedite clinical application of the mitochondrial transplantation, current isolation protocol needs optimization to obtain high percentage of functional mitochondria, isolated mitochondria may be packaged by biomaterials for successful delivery to brain allowing for efficient neuronal uptake.

    更新日期:2019-11-28
  • Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-06-15
    Jia-Zhen Wu; Mustafa Ardah; Caroline Haikal; Alexander Svanbergsson; Meike Diepenbroek; Nishant N. Vaikath; Wen Li; Zhan-You Wang; Tiago F. Outeiro; Omar M. El-Agnaf; Jia-Yi Li

    Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson’s disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation processes of α-synuclein. Dysfunction of the CMA pathway impairs α-synuclein degradation and causes cytotoxicity. In the present study, we investigated the effects on the CMA pathway and α-synuclein aggregation using bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal plants. In both cell-free and cellular models of α-synuclein aggregation, after administration of DHM and Sal B, we observed significant inhibition of α-synuclein accumulation and aggregation. Cells were co-transfected with a C-terminal modified α-synuclein (SynT) and synphilin-1, and then treated with DHM (10 μM) and Sal B (50 μM) 16 hours after transfection; levels of α-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B). Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A with α-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and LAMP-2A both in vitro and in vivo, along with decreased levels of α-synuclein. Moreover, DHM and Sal B treatments exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-α-syn-GFP transgenic mice. Our data indicate that DHM and Sal B are effective in modulating α-synuclein accumulation and aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson’s disease.

    更新日期:2019-11-28
  • Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-06-26
    Qiao Wei; Hai-Lin Dong; Li-Ying Pan; Cong-Xin Chen; Yang-Tian Yan; Rou-Min Wang; Hong-Fu Li; Zhi-Jun Liu; Qing-Qing Tao; Zhi-Ying Wu

    Although many causative genes of hereditary spastic paraplegia (HSP) have been uncovered in recent years, there are still approximately 50% of HSP patients without genetically diagnosis, especially in autosomal recessive (AR) HSP patients. Rare studies have been performed to determine the genetic spectrum and clinical profiles of recessive HSP patients in the Chinese population. In this study, we investigated 24 Chinese index AR/sporadic patients by targeted next-generation sequencing (NGS), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). Further functional studies were performed to identify pathogenicity of those uncertain significance variants. We identified 11 mutations in HSP related genes including 7 novel mutations, including two (p.V1979_L1980delinsX, p.F2343 fs) in SPG11, two (p.T55 M, p.S308 T) in AP5Z1, one (p.S242 N) in ALDH18A1, one (p.D597fs) in GBA2, and one (p.Q486X) in ATP13A2 in 8 index patients and their family members. Mutations in ALDH18A1, AP5Z1, CAPN1 and ATP13A2 genes were firstly reported in the Chinese population. Furthermore, the clinical phenotypes of the patients carrying mutations were described in detail. The mutation (p.S242 N) in ALDH18A1 decreased enzyme activity of P5CS and mutations (p.T55 M, p.S308 T) in AP5Z1 induced lysosomal dysfunction. Our results expanded the genetic spectrum and clinical profiles of AR-HSP patients and further demonstrated the efficiency and reliability of targeted NGS diagnosing suspected HSP patients.

    更新日期:2019-11-28
  • How to spot ocular abnormalities in progressive supranuclear palsy? A practical review
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-07-10
    Onanong Phokaewvarangkul; Roongroj Bhidayasiri

    For parkinsonian disorders, progressive supranuclear palsy (PSP) continues to be significant for differential diagnosis. PSP presents a range of ocular abnormalities that have been suggested as optional tools for its early detection, apart from the principal characteristic of postural unsteadiness. Nonetheless, such symptoms may be difficult to identify, particularly during the early onset stage of the disorder. It may also be problematic to recognize these symptoms for general practitioners who lack the required experience or physicians who are not specifically educated and proficient in ophthalmology or neurology. Thus, here, a methodical evaluation was carried out to identify seven oculomotor abnormalities occurring in PSP, comprising square wave jerks, the speed and range of saccades (slow saccades and vertical supranuclear gaze palsy), ‘round the houses’ sign, decreased blink rate, blepharospasm, and apraxia of eyelid opening. Inspections were conducted using direct visual observation. An approach to distinguish these signs during a bedside examination was also established. When presenting in a patient with parkinsonism or dementia, the existence of such ocular abnormalities could increase the risk of PSP. For the distinction between PSP and other parkinsonian disorders, these signs hold significant value for physicians. The authors urge all concerned physicians to check for such abnormalities with the naked eye in patients with parkinsonism. This method has advantages, including ease of application, reduced time-consumption, and requirement of minimal resources. It will also help physicians to conduct efficient diagnoses since many patients with PSP could intially present with ocular symptoms in busy outpatient clinics.

    更新日期:2019-11-28
  • Alzheimer’s in a dish – induced pluripotent stem cell-based disease modeling
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-07-12
    Sherida de Leeuw; Christian Tackenberg

    Since the discovery of the induced pluripotent stem cell (iPSC) technique more than a decade ago, extensive progress has been made to develop clinically relevant cell culture systems. Alzheimer’s disease (AD) is the most common neurodegenerative disease, accounting for approximately two thirds of all cases of dementia. The massively increasing number of affected individuals explains the major interest of research in this disease as well as the strong need for better understanding of disease mechanisms. IPSC-derived neural cells have been widely used to recapitulating key aspects of AD. In this Review we highlight the progress made in studying AD pathophysiology and address the currently available techniques, such as specific differentiation techniques for AD-relevant cell types as well as 2D and 3D cultures. Finally, we critically discuss the key challenges and future directions of this field and how some of the major limitations of the iPSC technique may be overcome. Stem cell-based disease models have the potential to induce a paradigm shift in biomedical research. In particular, the combination of the iPSC technology with recent advances in gene editing or 3D cell cultures represents a breakthrough for in vitro disease modeling and provides a platform for a better understanding of disease mechanisms in human cells and the discovery of novel therapeutics.

    更新日期:2019-11-28
  • Parkinson’s disease in China: a forty-year growing track of bedside work
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-07-31
    Gen Li; Jianfang Ma; Shishuang Cui; Yixi He; Qin Xiao; Jun Liu; Shengdi Chen

    The number and health burden of Parkinson’s disease increase rapidly in China. It is estimated that China will have nearly half of the Parkinson’s disease population in the world in 2030. In this review, we present an overview of epidemiology and health economics status of Parkinson’s disease across China and discuss the risk factors of Parkinson’s disease and related complications. From the view of clinical research, we also discuss the current status of clinical trials, diagnostic biomarkers, treatment of Parkinson’s disease, tertiary network and post-occupation education in Chinese Parkinson’s disease clinics.

    更新日期:2019-11-28
  • Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-08-08
    Chiara Maria Giulia De Luca; Antonio Emanuele Elia; Sara Maria Portaleone; Federico Angelo Cazzaniga; Martina Rossi; Edoardo Bistaffa; Elena De Cecco; Joanna Narkiewicz; Giulia Salzano; Olga Carletta; Luigi Romito; Grazia Devigili; Paola Soliveri; Pietro Tiraboschi; Giuseppe Legname; Fabrizio Tagliavini; Roberto Eleopra; Giorgio Giaccone; Fabio Moda

    Parkinson’s disease (PD) is a neurodegenerative disorder whose diagnosis is often challenging because symptoms may overlap with neurodegenerative parkinsonisms. PD is characterized by intraneuronal accumulation of abnormal α-synuclein in brainstem while neurodegenerative parkinsonisms might be associated with accumulation of either α-synuclein, as in the case of Multiple System Atrophy (MSA) or tau, as in the case of Corticobasal Degeneration (CBD) and Progressive Supranuclear Palsy (PSP), in other disease-specific brain regions. Definite diagnosis of all these diseases can be formulated only neuropathologically by detection and localization of α-synuclein or tau aggregates in the brain. Compelling evidence suggests that trace-amount of these proteins can appear in peripheral tissues, including receptor neurons of the olfactory mucosa (OM). We have set and standardized the experimental conditions to extend the ultrasensitive Real Time Quaking Induced Conversion (RT-QuIC) assay for OM analysis. In particular, by using human recombinant α-synuclein as substrate of reaction, we have assessed the ability of OM collected from patients with clinical diagnoses of PD and MSA to induce α-synuclein aggregation, and compared their seeding ability to that of OM samples collected from patients with clinical diagnoses of CBD and PSP. Our results showed that a significant percentage of MSA and PD samples induced α-synuclein aggregation with high efficiency, but also few samples of patients with the clinical diagnosis of CBD and PSP caused the same effect. Notably, the final RT-QuIC aggregates obtained from MSA and PD samples owned peculiar biochemical and morphological features potentially enabling their discrimination. Our study provide the proof-of-concept that olfactory mucosa samples collected from patients with PD and MSA possess important seeding activities for α-synuclein. Additional studies are required for (i) estimating sensitivity and specificity of the technique and for (ii) evaluating its application for the diagnosis of PD and neurodegenerative parkinsonisms. RT-QuIC analyses of OM and cerebrospinal fluid (CSF) can be combined with the aim of increasing the overall diagnostic accuracy of these diseases, especially in the early stages.

    更新日期:2019-11-28
  • The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-08-16
    Shirley Yin-Yu Pang; Philip Wing-Lok Ho; Hui-Fang Liu; Chi-Ting Leung; Lingfei Li; Eunice Eun Seo Chang; David Boyer Ramsden; Shu-Leong Ho

    Parkinson’s disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta and intracellular inclusions called Lewy bodies (LB). During the course of disease, misfolded α-synuclein, the major constituent of LB, spreads to different regions of the brain in a prion-like fashion, giving rise to successive non-motor and motor symptoms. Etiology is likely multifactorial, and involves interplay among aging, genetic susceptibility and environmental factors. The prevalence of PD rises exponentially with age, and aging is associated with impairment of cellular pathways which increases susceptibility of dopaminergic neurons to cell death. However, the majority of those over the age of 80 do not have PD, thus other factors in addition to aging are needed to cause disease. Discovery of neurotoxins which can result in parkinsonism led to efforts in identifying environmental factors which may influence PD risk. Nevertheless, the causality of most environmental factors is not conclusively established, and alternative explanations such as reverse causality and recall bias cannot be excluded. The lack of geographic clusters and conjugal cases also go against environmental toxins as a major cause of PD. Rare mutations as well as common variants in genes such as SNCA, LRRK2 and GBA are associated with risk of PD, but Mendelian causes collectively only account for 5% of PD and common polymorphisms are associated with small increase in PD risk. Heritability of PD has been estimated to be around 30%. Thus, aging, genetics and environmental factors each alone is rarely sufficient to cause PD for most patients. PD is a multifactorial disorder involving interplay of aging, genetics and environmental factors. This has implications on the development of appropriate animal models of PD which take all these factors into account. Common converging pathways likely include mitochondrial dysfunction, impaired autophagy, oxidative stress and neuroinflammation, which are associated with the accumulation and spread of misfolded α-synuclein and neurodegeneration. Understanding the mechanisms involved in the initiation and progression of PD may lead to potential therapeutic targets to prevent PD or modify its course.

    更新日期:2019-11-28
  • Kallikrein-related peptidases 6 and 10 are elevated in cerebrospinal fluid of patients with Alzheimer’s disease and associated with CSF-TAU and FDG-PET
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-08-27
    Oliver Goldhardt; Inanna Warnhoff; Igor Yakushev; Ilijana Begcevic; Hans Förstl; Viktor Magdolen; Antoninus Soosaipillai; Eleftherios Diamandis; Panagiotis Alexopoulos; Timo Grimmer

    Alterations in the expression of human kallikrein-related peptidases (KLKs) have been described in patients with Alzheimer’s disease (AD). We elucidated the suitability of KLK6, KLK8 and KLK10 to distinguish AD from NC and explored associations with established AD biomarkers. KLK levels in cerebrospinal fluid (CSF), as determined by ELISA, were compared between 32 AD patients stratified to A/T/(N) system with evidence for amyloid pathology and of 23 normal controls with normal AD biomarkers. Associations between KLK levels and clinical severity, CSF and positron emission tomography (PET) based AD biomarkers were tested for. Levels of KLK6 and KLK10 were significantly increased in AD. KLK6 differed significantly between AD A+/T+/N+ and AD A+/T−/N+ or NC with an AUC of 0.922. CSF pTau and tTau levels were significantly associated with KLK6 in AD. KLK6 deserves further investigations as a potential biomarker of Tau pathology in AD.

    更新日期:2019-11-28
  • Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43G298S ALS mouse model
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-08-30
    Hans-Peter Müller; David Brenner; Francesco Roselli; Diana Wiesner; Alireza Abaei; Martin Gorges; Karin M. Danzer; Albert C. Ludolph; William Tsao; Philip C. Wong; Volker Rasche; Jochen H. Weishaupt; Jan Kassubek

    In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). Ten mice with TDP-43G298S overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent longitudinal DTI scans at 11.7 T, including one baseline and one follow-up scan with an interval of about 5 months. Whole brain-based spatial statistics (WBSS) of DTI-based parameter maps was used to identify longitudinal alterations of TDP-43G298S mice compared to wt at the cohort level. Results were supplemented by tractwise fractional anisotropy statistics (TFAS) and histological evaluation of motor cortex for signs of neuronal loss. Alterations at the cohort level in TDP-43G298S mice were observed cross-sectionally and longitudinally in motor areas M1/M2 and in transcallosal fibers but not in the corticospinal tract. Neuronal loss in layer V of motor cortex was detected in TDP-43G298S at the later (but not at the earlier) timepoint compared to wt. DTI mapping of TDP-43G298S mice demonstrated progression in motor areas M1/M2. WBSS and TFAS are useful techniques to localize TDP-43G298S associated alterations over time in this ALS mouse model, as a biological marker.

    更新日期:2019-11-28
  • Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-09-04
    Naomi P. Visanji; Anthony E. Lang; Gabor G. Kovacs

    The fundamental role that alpha-synuclein (aSyn) plays in the pathogenesis of neurodegenerative synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, is a well-accepted fact. A wealth of experimental evidence has linked this relatively small but ubiquitously expressed protein to a plethora of cytopathologic mechanisms and suggests that aSyn may be capable of seeding the progressive spread of synucleinopathy throughout the brain. Beyond the synucleinopathies, the abnormal deposition of aSyn is frequently seen in a variety of other neurodegenerative proteinopathies including Alzheimer’s disease. In spite of the fact that the frequency of concomitant aSyn pathology in these disorders is such that it can be considered the rule rather than the exception, the potential role that aSyn may have in these disorders has received relatively little attention. In this article we postulate that aSyn may in fact be a key protein in driving the pathogenic processes in neurodegenerative comorbidities. In addition to reviewing the frequency of concomitant deposition of aSyn in the neurodegenerative proteinopathies, we also consider our current understanding of the interaction of aSyn with other neurodegenerative disease-associated proteins, including tau, TDP-43, amyloid-β and prion protein, in the context of neuropathologic studies describing the anatomical sites of potential concomitant pathology. We conclude that a growing body of evidence, encompassing neuropathology studies in human brain, animal models of concomitant proteinopathies and studies employing sophisticated methods of probing protein-protein interaction, cumulatively suggest that aSyn is well positioned to exert a strong influence on the pathogenesis of the neurodegenerative comorbidities. We hope to stimulate research in this emerging field and consider that future studies exploring the contribution of aSyn to the pathogenic processes in neurodegenerative comorbidities may provide critical information pertaining to diagnosis and the development of vital disease modifying treatments for these devastating diseases.

    更新日期:2019-11-28
  • Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-09-05
    Pei-Jiun Tsai; Chang-Ching Yeh; Wan-Jhen Huang; Ming-Yuan Min; Tzu-Hao Huang; Tsui-Ling Ko; Pei-Yu Huang; Tien-Hua Chen; Sanford P. C. Hsu; Bing-Wen Soong; Yu-Show Fu

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in ATXN1 gene resulting in an expansion of polyglutamine repeats in the ATXN1 protein. Unfortunately, there has yet been any effective treatment so far for SCA1. This study investigated the feasibility of transplanting human umbilical mesenchymal stem cells (HUMSCs) into transgenic SCA1 mice containing an expanded uninterrupted allele with 82 repeats in the ATXN1-coding region. 106 human umbilical mesenchymal stem cells were transplanted into the cerebella at 1 month of age. HUMSCs displayed significant ameliorating effects in SCA1 mice in terms of motor behaviors in balance beam test and open field test as compared with the untransplanted SCA1 mice. HUMSCs transplantation effectively reduced the cerebellar atrophy, salvaged Purkinje cell death, and alleviated molecular layer shrinkage. Electrophysiological studies showed higher amplitudes of compound motor action potentials as indicated by increasing neuronal-muscular response strength to stimuli after stem cell transplantation. At 5 months after transplantation, HUMSCs scattering in the mice cerebella remained viable and secreted cytokines without differentiating into neuronal or glia cells. Our findings provide hope for a new therapeutic direction for the treatment of SCA1.

    更新日期:2019-11-28
  • A longitudinal assessment of retinal function and structure in the APP/PS1 transgenic mouse model of Alzheimer’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-10-01
    Dana Georgevsky; Stephanie Retsas; Newsha Raoufi; Olga Shimoni; S. Mojtaba Golzan

    A great body of evidence suggests that there are retinal functional and structural changes that occur in Alzheimer’s disease (AD). However, whether such changes are primary or secondary remains to be elucidated. We studied a range of retinal functional and structural parameters in association with AD- specific pathophysiological markers in the double transgenic APP/PS1 and control mice across age. Electroretinogram (ERG) and optical coherence tomography (OCT) was performed in APP/PS1 and wild type (WT) control mice every 3 months from 3 to 12 months of age. For functional assessment, the a- and b-wave of the ERG, amplitude of oscillatory potentials (OP) and the positive scotopic threshold response (pSTR) were quantified at each time point. For structural assessment, the inner and outer retinal thickness was segmented and measured from OCT scans. Episodic memory was evaluated at 6, 9 and 12 months of age using the novel object recognition test. Amyloid beta (Aβ) distribution in the hippocampus and the retina were visualised at 3, 6 and 12 months of age. Inter- and intra- group analysis was performed to study rate of change for each parameter between the two groups. Inter-group analysis revealed a significant difference in b-wave and OPs of APP/PS1 compared to WT controls starting from 3 months (p < 0.001). There was also a significant difference in the amplitude of pSTR between the two groups starting from 6 months (p < 0.001). Furthermore, a significant difference in the inner retinal thickness, between the two groups, was observed starting from 9 months (p < 0.001). We observed an age-related decline in retinal functional and structural parameters in both APP/PS1 and WT controls, however, inter-group analysis revealed that inner retinal functional and structural decline is exacerbated in APP/PS1 mice, and that retinal functional changes precede structural changes in this strain. Further studies are required to confirm whether such phenomenon occurs in humans and if studying retinal functional changes can aid-in early assessment of AD.

    更新日期:2019-11-28
  • Bee venom phospholipase A2 ameliorates amyloidogenesis and neuroinflammation through inhibition of signal transducer and activator of transcription-3 pathway in Tg2576 mice
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-10-02
    Hyeon Joo Ham; Sang-Bae Han; Jaesuk Yun; In Jun Yeo; Young Wan Ham; Se Hyun Kim; Pil-Hoon Park; Dong-Young Choi; Jin Tae Hong

    Neuroinflammation and accumulation of β-amyloid (Aβ) play a significant role in the onset and progression of Alzheimer’s disease (AD). Our previous study demonstrated that signal transducer and activator of transcription-3 (STAT3) plays a major role in neuroinflammation and amyloidogenesis. In the present study, we investigated the inhibitory effect of bee venom phospholipase A2 (bvPLA2) on memory deficiency in Tg2576 mice, which demonstrate genetic characteristics of AD and the mechanism of its action at the cellular and animal level. For in vivo study, we examined the effect of bvPLA2 on improving memory by conducting several behavioral tests with the administration of bvPLA2 (1 mg/kg) to Tg2576 mice. For in vitro study, we examined the effect of bvPLA2 on amyloidogenesis and neuroinflammation by treating bvPLA2 on LPS-activated BV2 cells. We found that bvPLA2 alleviated memory impairment in Tg2576 mice, as demonstrated in the behavioral tests assessing memory. In the bvPLA2-treated group, Aβ, amyloid precursor protein (APP), and β-secretase 1 (BACE1) levels and β-secretase activity were significantly decreased. Expression of pro-inflammatory cytokines and inflammation-related proteins decreased in the brain of bvPLA2-treated group, whereas anti-inflammatory cytokines increased. In addition, bvPLA2 reduced STAT3 phosphorylation in the brains of the bvPLA2-treated group. At the cellular level, bvPLA2 inhibits production of nitric oxide, pro-inflammatory cytokines, and inflammation-related proteins including p-STAT3. Additionally, bvPLA2 inhibits the production of Aβ in cultured BV-2 cells. Results from the docking experiment, pull-down assay, and the luciferase assay show that bvPLA2 directly binds STAT3 and, thus, regulates gene expression levels. Moreover, when the STAT3 inhibitor and bvPLA2 were administered together, the anti-amyloidogenic and anti-inflammatory effects were further enhanced than when they were administered alone. These results suggest that bvPLA2 could restore memory by inhibiting the accumulation of Aβ and inflammatory responses via blockage of STAT3 activity.

    更新日期:2019-11-28
  • Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-10-04
    Ana Gámez-Valero; Jaume Campdelacreu; Dolores Vilas; Lourdes Ispierto; Ramón Reñé; Ramiro Álvarez; M. Pilar Armengol; Francesc E. Borràs; Katrin Beyer

    Because of the increasing life expectancy in our society, aging-related neurodegenerative disorders are one of the main issues in global health. Most of these diseases are characterized by the deposition of misfolded proteins and a progressive cognitive decline. Among these diseases, Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are the most common types of degenerative dementia. Although both show specific features, an important neuropathological and clinical overlap between them hampers their correct diagnosis. In this work, we identified molecular biomarkers aiming to improve the misdiagnosis between both diseases. Plasma extracellular vesicles (EVs) -from DLB, AD and healthy controls- were isolated using size-exclusion chromatography (SEC) and characterized by flow cytometry, Nanoparticle Tracking Analysis (NTA) and cryo-electron microscopy. Next Generation Sequencing (NGS) and related bibliographic search was performed and a selected group of EV-associated microRNAs (miRNAs) was analysed by qPCR. Results uncovered two miRNAs (hsa-miR-451a and hsa-miR-21-5p) significantly down-regulated in AD samples respect to DLB patients, and a set of four miRNAs (hsa-miR-23a-3p, hsa-miR-126-3p, hsa-let-7i-5p, and hsa-miR-151a-3p) significantly decreased in AD respect to controls. The two miRNAs showing decreased expression in AD in comparison to DLB provided area under the curve (AUC) values of 0.9 in ROC curve analysis, thus suggesting their possible use as biomarkers to discriminate between both diseases. Target gene analysis of these miRNAs using prediction online tools showed accumulation of phosphorylation enzymes, presence of proteasome-related proteins and genes involved in cell death among others. Our data suggest that plasma-EV associated miRNAs may reflect a differential profile for a given dementia-related disorder which, once validated in larger cohorts of patients, could help to improve the differential diagnosis of DLB versus AD.

    更新日期:2019-11-28
  • Transplantation of bone marrow derived macrophages reduces markers of neuropathology in an APP/PS1 mouse model
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-10-14
    Luís Costa-Marques; Katrin Arnold; Marie-Christine Pardon; Christiane Leovsky; Samantha Swarbrick; Claire Fabian; Alexandra Stolzing

    We investigated early hallmarks of putative therapeutic effects following systemic transplantation of bone marrow derived macrophages (BM-M) in APP/PS1 transgenic mice. BM-M were transplanted into the tail vein and the animals analysed 1 month later. BM-M transplantation promoted the reduction of the amyloid beta [37-42] plaque number and size in the cortex and hippocampus of the treated mice, but no change in the more heavily modified pyroglutamate amyloid beta E3 plaques. The number of phenotypically ‘small’ microglia increased in the hippocampus. Astrocyte size decreased overall, indicating a reduction of activated astrocytes. Gene expression of interleukin 6 and 10, interferon-gamma, and prostaglandin E receptor 2 was significantly lower in the hippocampus, while interleukin 10 expression was elevated in the cortex of the treated mice. BM-M systemically transplanted, promote a decrease in neuroinflammation and a limited reversion of amyloid pathology. This exploratory study may support the potential of BM-M or microglia-like cell therapy and further illuminates the mechanisms of action associated with such transplants.

    更新日期:2019-11-28
  • Lower serum expression of miR-181c-5p is associated with increased plasma levels of amyloid-beta 1–40 and cerebral vulnerability in normal aging
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-11-04
    Marta Manzano-Crespo; Mercedes Atienza; Jose L. Cantero

    Previous studies have shown that expression levels of miR-181c are downregulated by amyloid-β (Aβ) deposition and chronic cerebral hypoperfusion, both factors largely associated with the development of AD. Moreover, reduced 2-[18F]fluoro-2-deoxy-D-glucose (FDG)-PET brain metabolism and volume loss of regions of the medial temporal lobe have been generally recognized as hallmarks of AD. Based on this evidence, we have here investigated potential associations between serum levels of miR-181c-5p and these AD signatures in asymptomatic elderly subjects. Ninety-five normal elderly subjects underwent clinical, cognitive, structural MRI, and FDG-PET explorations. Serum expression levels of miR-181c-5p and plasma Aβ concentrations were further analyzed in this cohort. Regression analyses were performed to assess associations between serum miR-181c-5p levels and cognitive functioning, plasma Aβ, structural and metabolic brain changes. Decreased serum expression of miR-181c-5p was associated with increased plasma levels of Aβ1–40, deficits in cortical glucose metabolism, and volume reduction of the entorhinal cortex. No significant associations were found between lower miR-181c-5p levels and cognitive deficits or cortical thinning. These findings suggest that deregulation of serum miR-181c-5p may indicate cerebral vulnerability in late life.

    更新日期:2019-11-28
  • Oscillation-specific nodal alterations in early to middle stages Parkinson’s disease
    Transl. Neurodegener. (IF 5.534) Pub Date : 2019-11-15
    Xiaojun Guan; Tao Guo; Qiaoling Zeng; Jiaqiu Wang; Cheng Zhou; Chunlei Liu; Hongjiang Wei; Yuyao Zhang; Min Xuan; Quanquan Gu; Xiaojun Xu; Peiyu Huang; Jiali Pu; Baorong Zhang; Min-Ming Zhang

    Different oscillations of brain networks could carry different dimensions of brain integration. We aimed to investigate oscillation-specific nodal alterations in patients with Parkinson’s disease (PD) across early stage to middle stage by using graph theory-based analysis. Eighty-eight PD patients including 39 PD patients in the early stage (EPD) and 49 patients in the middle stage (MPD) and 36 controls were recruited in the present study. Graph theory-based network analyses from three oscillation frequencies (slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz; slow-3: 0.073–0.198 Hz) were analyzed. Nodal metrics (e.g. nodal degree centrality, betweenness centrality and nodal efficiency) were calculated. Our results showed that (1) a divergent effect of oscillation frequencies on nodal metrics, especially on nodal degree centrality and nodal efficiency, that the anteroventral neocortex and subcortex had high nodal metrics within low oscillation frequencies while the posterolateral neocortex had high values within the relative high oscillation frequency was observed, which visually showed that network was perturbed in PD; (2) PD patients in early stage relatively preserved nodal properties while MPD patients showed widespread abnormalities, which was consistently detected within all three oscillation frequencies; (3) the involvement of basal ganglia could be specifically observed within slow-5 oscillation frequency in MPD patients; (4) logistic regression and receiver operating characteristic curve analyses demonstrated that some of those oscillation-specific nodal alterations had the ability to well discriminate PD patients from controls or MPD from EPD patients at the individual level; (5) occipital disruption within high frequency (slow-3) made a significant influence on motor impairment which was dominated by akinesia and rigidity. Coupling various oscillations could provide potentially useful information for large-scale network and progressive oscillation-specific nodal alterations were observed in PD patients across early to middle stages.

    更新日期:2019-11-28
  • Nicotine from cigarette smoking and diet and Parkinson disease: a review.
    Transl. Neurodegener. (IF 5.534) Pub Date : 2017-07-07
    Chaoran Ma,Yesong Liu,Samantha Neumann,Xiang Gao

    Evidence from epidemiological studies suggest a relationship between cigarette smoking and low risk of Parkinson disease (PD). As a major component of tobacco smoke, nicotine has been proposed to be a substance for preventing against PD risk, with a key role in regulating striatal activity and behaviors mediated through the dopaminergic system. Animal studies also showed that nicotine could modulate dopamine transmission and reduce levodopa-induced dyskinesias. However, previous clinical trials yield controversial results regarding nicotine treatment. In this review, we updated epidemiological, preclinical and clinical data, and studies on nicotine from diet. We also reviewed interactions between genetic factors and cigarette smoking. As a small amount of nicotine can saturate a substantial portion of nicotine receptors in the brain, nicotine from other sources, such as diet, could be a promising therapeutic substance for protection against PD.

    更新日期:2019-11-01
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug