当前期刊: Journal of NeuroEngineering and Rehabilitation Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • The effects of cerebrospinal fluid tap-test on idiopathic normal pressure hydrocephalus: an inertial sensors based assessment
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-16
    Alberto Ferrari; David Milletti; Giulia Giannini; Sabina Cevoli; Federico Oppi; Giorgio Palandri; Luca Albini-Riccioli; Paolo Mantovani; Laura Anderlucci; Pietro Cortelli; Lorenzo Chiari

    Gait disturbances are typical of persons with idiopathic normal pressure hydrocephalus (iNPH) without signs distinctive from other neurodegenerative and vascular conditions. Cerebrospinal fluid tap-test (CSF-TT) is expected to improve the motor performance of iNPH patients and is a prognostic indicator in their surgical management. This observational prospective study aims to determine which spatio-temporal gait parameter(s), measured during instrumented motor tests, and clinical scale(s) may provide a relevant contribution in the evaluation of motor performance pre vs. post CSF-TT on iNPH patients with and without important vascular encephalopathy. Seventy-six patients (20 with an associated vascular encephalopathy) were assessed before, and 24 and 72 h after the CSF-TT by a timed up and go test (TUG) and an 18 m walking test (18 mW) instrumented using inertial sensors. Tinetti Gait, Tinetti Balance, Gait Status Scale, and Grading Scale were fulfilled before and 72 h after the CSF-TT. Stride length, cadence and total time were selected as the outcome measures. Statistical models with mixed effects were implemented to determine the relevant contribution to response variables of each quantitative gait parameter and clinical scales. From baseline to 72 h post CSF-TT patients improved significantly by increasing cadence in 18 mW and TUG (on average of 1.7 and 2.4 strides/min respectively) and stride length in 18 mW (on average of 3.1 cm). A significant reduction of gait apraxia was reflected by modifications in double support duration and in coordination index. Tinetti Gait, Tinetti Balance and Gait Status Scale were able to explain part of the variability of response variables not covered by instrumental data, especially in TUG. Grading Scale revealed the highest affinity with TUG total time and cadence when considering clinical scales alone. Patients with iNPH and an associated vascular encephalopathy showed worst performances compared to pure iNPH but without statistical significance. Gait improvement following CSF-TT was comparable in the two groups. Overall these results suggest that, in order to augment CSF-TT accuracy, is key to assess the gait pattern by analyzing the main spatio-temporal parameters and set post evaluation at 72 h. Approved by ethics committee: CE 14131 23/02/2015.

    更新日期:2020-01-17
  • Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-15
    Jente Willaert; Aijse Willem De Vries; Julie Tavernier; Jaap H. Van Dieen; Ilse Jonkers; Sabine Verschueren

    Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these novel exergames as training tool for elderly and, more specifically whether these games can elicit more challenging weight shifts and higher levels of muscle activity compared to existing off-the-shelf exergames. Furthermore, the motivational pull in these new games was studied. Sixteen healthy older adults were recruited to play the novel games and two reference games that were found to be the most challenging ones in terms of weight shifts or muscle activity in previous studies. Weight shifts were expressed relative to participants’ Functional Limits of Stability (FLOS). Muscular challenge of the games was quantified by dividing the signal into 200 ms blocks and determining the average muscle activity within these blocks. The muscle activity was normalized to maximal voluntary contractions (MVC) to categorize the blocks in zones of < 40, 40–60, 60–80 and > 80% MVC. Subsequently, the number of blocks per intensity level and the number of consecutive blocks above 40% were determined. Motivation to play the games was assessed using the Intrinsic Motivation Inventory (IMI) and scores between the games were analyzed using Generalized Estimated Equations (GEE). The novel exergames successfully elicited center of mass (COM) displacements with medians of around 80% of FLOS or higher for all directions. Furthermore, the COM displacements in the novel games were larger for each direction than in the reference games, although for one game the sideward left direction reached significance only at the third trial. Compared to the existing games, longer blocks of muscle activation above 40% MVC were found, but overall intensity remained low. IMI scores were high on all subscales, indicating that older adults experienced the games as motivating. We conclude that affordable hardware can be used to create challenging and enjoyable balance training programs using exergames. The exergames that were successful in eliciting challenging weight shifts and muscle activity should now be further studied in longitudinal randomized controlled interventions, to assess effects on balance, muscle strength and eventually fall risk in healthy older adults.

    更新日期:2020-01-15
  • Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: a cross-sectional study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-13
    Jianhua Lin; Guojiong Hu; Jun Ran; Linyu Chen; Xian Zhang; Yanxin Zhang

    Locomat is a robotic exoskeleton providing guidance force and bodyweight support to facilitate intensive walking training for people with stroke. Although the Locomat has been reported to be effective in improving walking performance, the effects of training parameters on the neuromuscular control remain unclear. This study aimed to compare the muscle activities between Locomat walking and treadmill walking at a normal speed, as well as to investigate the effects of varying bodyweight support and guidance force on muscle activation patterns during Locomat walking in people with stroke. A cross-sectional study design was employed. Participants first performed an unrestrained walking on a treadmill and then walked in the Locomat with different levels of bodyweight support (30% or 50%) and guidance force (40% or 70%) at the same speed (1.2 m/s). Surface electromyography (sEMG) of seven muscles of the affected leg was recorded. The sEMG envelope was time-normalised and averaged over gait cycles. Mean sEMG amplitude was then calculated by normalising the sEMG amplitude with respect to the peak amplitude during treadmill walking for statistical analysis. A series of Non-parametric test and post hoc analysis were performed with a significance level of 0.05. Fourteen participants with stroke were recruited at the Yangzhi Affiliated Rehabilitation Hospital of Tongji University (female n = 1; mean age 46.1 ± 11.1 years). Only the mean sEMG amplitude of vastus medialis oblique during Locomat walking (50% bodyweight support and 70% guidance force) was significantly lower than that during treadmill walking. Reducing both bodyweight and guidance increased muscle activity of gluteus medius and tibialis anterior. Activity of vastus medialis oblique muscle increased as bodyweight support reduced, while that of rectus femoris increased as guidance force decreased. The effects of Locomat on reducing muscle activity in people with stroke were minimized when walking at a normal speed. Reducing bodyweight support and guidance force increased the activity of specific muscles during Locomat walking. Effects of bodyweight support, guidance force and speed should be taken into account when developing individualized Locomat training protocols for clients with stroke.

    更新日期:2020-01-14
  • Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-10
    Daniel Pinto; Mauricio Garnier; Jason Barbas; Shuo-Hsiu Chang; Susan Charlifue; Edelle Field-Fote; Catherine Furbish; Candy Tefertiller; Chaithanya K. Mummidisetty; Heather Taylor; Arun Jayaraman; Allen W. Heinemann

    We know little about the budget impact of integrating robotic exoskeleton over-ground training into therapy services for locomotor training. The purpose of this study was to estimate the budget impact of adding robotic exoskeleton over-ground training to existing locomotor training strategies in the rehabilitation of people with spinal cord injury. A Budget Impact Analysis (BIA) was conducted using data provided by four Spinal Cord Injury (SCI) Model Systems rehabilitation hospitals. Hospitals provided estimates of therapy utilization and costs about people with spinal cord injury who participated in locomotor training in the calendar year 2017. Interventions were standard of care walking training including body-weight supported treadmill training, overground training, stationary robotic systems (i.e., treadmill-based robotic gait orthoses), and overground robotic exoskeleton training. The main outcome measures included device costs, training costs for personnel to use the device, human capital costs of locomotor training, device demand, and the number of training sessions per person with SCI. Robotic exoskeletons for over-ground training decreased hospital costs associated with delivering locomotor training in the base case analysis. This analysis assumed no difference in intervention effectiveness across locomotor training strategies. Providing robotic exoskeleton overground training for 10% of locomotor training sessions over the course of the year (range 226–397 sessions) results in decreased annual locomotor training costs (i.e., net savings) between $1114 to $4784 per annum. The base case shows small savings that are sensitive to parameters of the BIA model which were tested in one-way sensitivity analyses, scenarios analyses, and probability sensitivity analyses. The base case scenario was more sensitive to clinical utilization parameters (e.g., how often devices sit idle and the substitution of high cost training) than device-specific parameters (e.g., robotic exoskeleton device cost or device life). Probabilistic sensitivity analysis simultaneously considered human capital cost, device cost, and locomotor device substitution. With probabilistic sensitivity analysis, the introduction of a robotic exoskeleton only remained cost saving for one facility. Providing robotic exoskeleton for over-ground training was associated with lower costs for the locomotor training of people with SCI in the base case analyses. The analysis was sensitive to parameter assumptions.

    更新日期:2020-01-11
  • Correction to: A suite of automated tools to quantify hand and wrist motor function after cervical spinal cord injury
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-07
    Katelyn M. Grasse; Seth A. Hays; Kimiya C. Rahebi; Victoria S. Warren; Elizabeth A. Garcia; Jane G. Wigginton; Michael P. Kilgard; Robert L. Rennaker

    The original article [1] contains several errors which the authors would like to rectify:

    更新日期:2020-01-07
  • Clinician awareness of brain computer interfaces: a Canadian national survey
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-06
    Sasha Letourneau; Ephrem Takele Zewdie; Zeanna Jadavji; John Andersen; Lee M. Burkholder; Adam Kirton

    Individuals with severe neurological disabilities but preserved cognition, including children, are often precluded from connecting with their environments. Brain computer interfaces (BCI) are a potential solution where advancing technologies create new clinical opportunities. We evaluated clinician awareness as a modifiable barrier to progress and identified eligible populations. We executed a national, population-based, cross-sectional survey of physician specialists caring for persons with severe disability. An evidence- and experience-based survey had three themes: clinician BCI knowledge, eligible populations, and potential impact. A BCI knowledge index was created and scored. Canadian adult and pediatric neurologists, physiatrists and a subset of developmental pediatricians were contacted. Secure, web-based software administered the survey via email with online data collection. Of 922 valid emails (664 neurologists, 253 physiatrists), 137 (15%) responded. One third estimated that ≥10% of their patients had severe neurological disability with cognitive capacity. BCI knowledge scores were low with > 40% identifying as less than “vaguely aware” and only 15% as “somewhat familiar” or better. Knowledge did not differ across specialties. Only 6 physicians (4%) had patients using BCI. Communication and wheelchair control rated highest for potentially improving quality of life. Most (81%) felt BCI had high potential to improve quality of life. Estimates suggested that > 13,000 Canadians (36 M population) might benefit from BCI technologies. Despite high potential and thousands of patients who might benefit, BCI awareness among clinicians caring for disabled persons is poor. Further, functional priorities for BCI applications may differ between medical professionals and potential BCI users, perhaps reflecting that clinicians possess a less accurate understanding of the desires and needs of potential end-users. Improving knowledge and engaging both clinicians and patients could facilitate BCI program development to improve patient outcomes.

    更新日期:2020-01-06
  • Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2020-01-03
    Marco Germanotta; Valerio Gower; Dionysia Papadopoulou; Arianna Cruciani; Cristiano Pecchioli; Rita Mosca; Gabriele Speranza; Catuscia Falsini; Francesca Cecchi; Federica Vannetti; Angelo Montesano; Silvia Galeri; Furio Gramatica; Irene Aprile

    The majority of stroke survivors experiences significant hand impairments, as weakness and spasticity, with a severe impact on the activity of daily living. To objectively evaluate hand deficits, quantitative measures are needed. The aim of this study is to assess the reliability, the validity and the discriminant ability of the instrumental measures provided by a robotic device for hand rehabilitation, in a sample of patients with subacute stroke. In this study, 120 patients with stroke and 40 controls were enrolled. Clinical evaluation included finger flexion and extension strength (using the Medical Research Council, MRC), finger spasticity (using the Modified Ashworth Scale, MAS) and motor control and dexterity during ADL performance (by means of the Frenchay Arm Test, FAT). Robotic evaluations included finger flexion and extension strength, muscle tone at rest, and instrumented MAS and Modified Tardieu Scale. Subjects were evaluated twice, one day apart, to assess the test-retest reliability of the robotic measures, using the Intraclass Correlation Coefficient (ICC). To estimate the response stability, the standard errors of measurement and the minimum detectable change (MDC) were also calculated. Validity was assessed by analyzing the correlations between the robotic metrics and the clinical scales, using the Spearman’s Correlation Coefficient (r). Finally, we investigated the ability of the robotic measures to distinguish between patients with stroke and healthy subjects, by means of Mann-Whitney U tests. All the investigated measures were able to discriminate patients with stroke from healthy subjects (p < 0.001). Test-retest reliability was found to be excellent for finger strength (in both flexion and extension) and muscle tone, with ICCs higher than 0.9. MDCs were equal to 10.6 N for finger flexion, 3.4 N for finger extension, and 14.3 N for muscle tone. Conversely, test-retest reliability of the spasticity measures was poor. Finally, finger strength (in both flexion and extension) was correlated with the clinical scales (r of about 0.7 with MRC, and about 0.5 with FAT). Finger strength (in both flexion and extension) and muscle tone, as provided by a robotic device for hand rehabilitation, are reliable and sensitive measures. Moreover, finger strength is strongly correlated with clinical scales. Changes higher than the obtained MDC in these robotic measures could be considered as clinically relevant and used to assess the effect of a rehabilitation treatment in patients with subacute stroke.

    更新日期:2020-01-04
  • Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-30
    Hyun-Joon Yoo; Sangbaek Lee; Jongheon Kim; Chanki Park; Boreom Lee

    Spinal cord injury (SCI) is a severe medical condition affecting the hand and locomotor function. New medical technologies, including various wearable devices, as well as rehabilitation treatments are being developed to enhance hand function in patients with SCI. As three-dimensional (3D) printing has the advantage of being able to produce low-cost personalized devices, there is a growing appeal to apply this technology to rehabilitation equipment in conjunction with scientific advances. In this study, we proposed a novel 3D-printed hand orthosis that is controlled by electromyography (EMG) signals. The orthosis was designed to aid the grasping function for patients with cervical SCI. We applied this hand exoskeleton system to individuals with tetraplegia due to SCI and validated its effectiveness. The 3D architecture of the device was designed using computer-aided design software and printed with a polylactic acid filament. The dynamic hand orthosis enhanced the tenodesis grip to provide sufficient grasping function. The root mean square of the EMG signal was used as the input for controlling the device. Ten subjects with hand weakness due to chronic cervical SCI were enrolled in this study, and their hand function was assessed before and after wearing the orthosis. The Toronto Rehabilitation Institute Hand Function Test (TRI-HFT) was used as the primary outcome measure. Furthermore, improvements in functional independence in daily living and device usability were evaluated. The newly developed orthosis improved hand function of subjects, as determined using the TRI-HFT (p < 0.05). Furthermore, participants obtained immediate functionality on eating after wearing the orthosis. Moreover, most participants were satisfied with the device as determined by the usability test. There were no side effects associated with the experiment. The 3D-printed myoelectric hand orthosis was intuitive, easy to use, and showed positive effects in its ability to handle objects encountered in daily life. This study proved that combining simple EMG-based control strategies and 3D printing techniques was feasible and promising in rehabilitation engineering. Clinical Research Information Service (CRiS), Republic of Korea. KCT0003995. Registered 2 May 2019 - Retrospectively registered.

    更新日期:2019-12-31
  • The nature and extent of upper limb associated reactions during walking in people with acquired brain injury
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-27
    Michelle B. Kahn; Ross A. Clark; Gavin Williams; Kelly J. Bower; Megan Banky; John Olver; Benjamin F. Mentiplay

    Upper limb associated reactions (ARs) are common in people with acquired brain injury (ABI). Despite this, there is no gold-standard outcome measure and no kinematic description of this movement disorder. The aim of this study was to determine the upper limb kinematic variables most frequently affected by ARs in people with ABI compared with a healthy cohort at matched walking speed intention. A convenience sample of 36 healthy control adults (HCs) and 42 people with ABI who had upper limb ARs during walking were recruited and underwent assessment of their self-selected walking speed using the criterion-reference three dimensional motion analysis (3DMA) at Epworth Hospital, Melbourne. Shoulder flexion, abduction and rotation, elbow flexion, forearm rotation and wrist flexion were assessed. The mean angle, standard deviation (SD), peak joint angles and total joint angle range of motion (ROM) were calculated for each axis across the gait cycle. On a group level, ANCOVA was used to assess the between-group differences for each upper limb kinematic outcome variable. To quantify abnormality prevalence on an individual participant level, the percentage of ABI participants that were outside of the 95% confidence interval of the HC sample for each variable were calculated. There were significant between-group differences for all elbow and shoulder abduction outcome variables (p < 0.01), most shoulder flexion variables (except for shoulder extension peak), forearm rotation SD and ROM and for wrist flexion ROM. Elbow flexion and shoulder abduction were the axes most frequently affected by ARs. Despite the elbow being the most prevalently affected (38/42, 90%), a large proportion of participants had abnormality, defined as ±1.96 SD of the HC mean, present at the shoulder (32/42, 76%), forearm (20/42, 48%) and wrist joints (10/42, 24%). This study provides valuable information on ARs, and highlights the need for clinical assessment of ARs to include all of the major joints of the upper limb. This may inform the development of a criterion-reference outcome measure or classification system specific to ARs.

    更新日期:2019-12-30
  • Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-27
    Alisa Berger; Fabian Horst; Fabian Steinberg; Fabian Thomas; Claudia Müller-Eising; Wolfgang I. Schöllhorn; Michael Doppelmayr

    Gait disorders are major symptoms of neurological diseases affecting the quality of life. Interventions that restore walking and allow patients to maintain safe and independent mobility are essential. Robot-assisted gait training (RAGT) proved to be a promising treatment for restoring and improving the ability to walk. Due to heterogenuous study designs and fragmentary knowlegde about the neural correlates associated with RAGT and the relation to motor recovery, guidelines for an individually optimized therapy can hardly be derived. To optimize robotic rehabilitation, it is crucial to understand how robotic assistance affect locomotor control and its underlying brain activity. Thus, this study aimed to investigate the effects of robotic assistance (RA) during treadmill walking (TW) on cortical activity and the relationship between RA-related changes of cortical activity and biomechanical gait characteristics. Twelve healthy, right-handed volunteers (9 females; M = 25 ± 4 years) performed unassisted walking (UAW) and robot-assisted walking (RAW) trials on a treadmill, at 2.8 km/h, in a randomized, within-subject design. Ground reaction forces (GRFs) provided information regarding the individual gait patterns, while brain activity was examined by measuring cerebral hemodynamic changes in brain regions associated with the cortical locomotor network, including the sensorimotor cortex (SMC), premotor cortex (PMC) and supplementary motor area (SMA), using functional near-infrared spectroscopy (fNIRS). A statistically significant increase in brain activity was observed in the SMC compared with the PMC and SMA (p < 0.05), and a classical double bump in the vertical GRF was observed during both UAW and RAW throughout the stance phase. However, intraindividual gait variability increased significantly with RA and was correlated with increased brain activity in the SMC (p = 0.05; r = 0.57). On the one hand, robotic guidance could generate sensory feedback that promotes active participation, leading to increased gait variability and somatosensory brain activity. On the other hand, changes in brain activity and biomechanical gait characteristics may also be due to the sensory feedback of the robot, which disrupts the cortical network of automated walking in healthy individuals. More comprehensive neurophysiological studies both in laboratory and in clinical settings are necessary to investigate the entire brain network associated with RAW.

    更新日期:2019-12-30
  • Robotic body weight support enables safe stair negotiation in compliance with basic locomotor principles
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-23
    M. Bannwart; E. Rohland; C. A. Easthope; G. Rauter; M. Bolliger

    After a neurological injury, mobility focused rehabilitation programs intensively train walking on treadmills or overground. However, after discharge, quite a few patients are not able to independently negotiate stairs, a real-world task with high physical and psychological demands and a high injury risk. To decrease fall risk and improve patients’ capacity to navigate typical environments, early stair negotiation training can help restore competence and confidence in safe stair negotiation. One way to enable early training in a safe and permissive environment is to unload the patient with a body weight support system. We here investigated if unloaded stair negotiation complies with basic locomotor principles, in terms of enabling performance of a physiological movement pattern with minimal compensation. Seventeen able-bodied participants were unloaded with 0–50% bodyweight during self-paced ascent and descent of a 4-tread staircase. Spatio-temporal parameters, joint ranges of motion, ground reaction forces and myoelectric activity in the main lower limb muscles of participants were compared between unloading levels. Likelihood ratio tests of separated linear mixed models of the investigated outcomes assessed if unloading affects the parameters in general. Subsequent post-hoc testing revealed which levels of unloading differed from unsupported stair negotiation. Unloading affected walking velocity, joint ranges of motion, vertical ground reaction force parameters and myoelectric activity in all investigated muscles for stair ascent and descent while step width and single support duration were only affected during ascent. A reduction with increasing levels of body weight support was seen in walking velocity (0.07–0.12 m/s), ranges of motion of the knee and hip (2–10°), vertical ground reaction force peaks (10–70%) and myoelectric activity (17–70%). An increase with unloading was only seen during ascent for ankle range of motion and tibialis anterior activity at substantial unloading. Body weight support facilitates stair negotiation by providing safety and support against gravity. Although unloading effects are present in most parameters, up to 30% body weight support these changes are small, and no dysfunctional patterns are introduced. Body weight support therefore fulfills all the necessary requirements for early stair negotiation training.

    更新日期:2019-12-23
  • Individualized feedback to change multiple gait deficits in chronic stroke
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-23
    Kevin A. Day; Kendra M. Cherry-Allen; Amy J. Bastian

    Walking deficits in people post-stroke are often multiple and idiosyncratic in nature. Limited patient and therapist resources necessitate prioritization of deficits such that some may be left unaddressed. More efficient delivery of therapy may alleviate this challenge. Here, we look to determine the utility of a novel principal component-based visual feedback system that targets multiple, patient-specific features of gait in people post-stroke. Ten individuals with stroke received two sessions of visual feedback to attain a walking goal. This goal consisted of bilateral knee and hip joint angles of a typical ‘healthy’ walking pattern. The feedback system uses principal component analysis (PCA) to algorithmically weight each of the input features so that participants received one stream of performance feedback. In the first session, participants had to explore different patterns to achieve the goal, and in the second session they were informed of the goal walking pattern. Ten healthy, age-matched individuals received the same paradigm, but with a hemiparetic goal (i.e. to produce the pattern of an exemplar stroke participant). This was to distinguish the extent to which performance limitations in stroke were due neurological injury or the PCA based visual feedback itself. Principal component-based visual feedback can differentially bias multiple features of walking toward a prescribed goal. On average, individuals with stroke typically improved performance via increased paretic knee and hip flexion, and did not perform better with explicit instruction. In contrast, healthy people performed better (i.e. could produce the desired exemplar stroke pattern) in both sessions, and were best with explicit instruction. Importantly, the feedback for stroke participants accommodated a heterogeneous set of walking deficits by individually weighting each feature based on baseline walking. People with and without stroke are able to use this novel visual feedback to train multiple, specific features of gait. Important for stroke, the PCA feedback allowed for targeting of patient-specific deficits. This feedback is flexible to any feature of walking in any plane of movement, thus providing a potential tool for therapists to simultaneously target multiple aberrant features of gait.

    更新日期:2019-12-23
  • Effects of supraspinal feedback on human gait: rhythmic auditory distortion
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-23
    Arturo Forner-Cordero; João Pedro Pinho; Guilherme Umemura; João Carlos Lourenço; Bruno Mezêncio; Cinthia Itiki; Hermano Igo Krebs

    Different types of sound cues have been used to adapt the human gait rhythm. We investigated whether young healthy volunteers followed subliminal metronome rhythm changes during gait. Twenty-two healthy adults walked at constant speed on a treadmill following a metronome sound cue (period 566 msec). The metronome rhythm was then either increased or decreased, without informing the subjects, at 1 msec increments or decrements to reach, respectively, a low (596 msec) or a high frequency (536 msec) plateaus. After 30 steps at one of these isochronous conditions, the rhythm returned to the original period with decrements or increments of 1 msec. Motion data were recorded with an optical measurement system to determine footfall. The relative phase between sound cue (stimulus) and foot contact (response) were compared. Gait was entrained to the rhythmic auditory stimulus and subjects subconsciously adapted the step time and length to maintain treadmill speed, while following the rhythm changes. In most cases there was a lead error: the foot contact occurred before the sound cue. The mean error or the absolute mean relative phase increased during the isochronous high (536 msec) or low frequencies (596 msec). These results showed that the gait period is strongly “entrained” with the first metronome rhythm while subjects still followed metronome changes with larger error. This suggests two processes: one slow-adapting, supraspinal oscillator with persistence that predicts the foot contact to occur ahead of the stimulus, and a second fast process linked to sensory inputs that adapts to the mismatch between peripheral sensory input (foot contact) and supraspinal sensory input (auditory rhythm).

    更新日期:2019-12-23
  • Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-10
    Meike Annika Wilke; Christian Niethammer; Britta Meyer; Dario Farina; Strahinja Dosen

    A prosthetic system should ideally reinstate the bidirectional communication between the user’s brain and its end effector by restoring both motor and sensory functions lost after an amputation. However, current commercial prostheses generally do not incorporate somatosensory feedback. Even without explicit feedback, grasping using a prosthesis partly relies on sensory information. Indeed, the prosthesis operation is characterized by visual and sound cues that could be exploited by the user to estimate the prosthesis state. However, the quality of this incidental feedback has not been objectively evaluated. In this study, the psychometric properties of the auditory and visual feedback of prosthesis motion were assessed and compared to that of a vibro-tactile interface. Twelve able-bodied subjects passively observed prosthesis closing and grasping an object, and they were asked to discriminate (experiment I) or estimate (experiment II) the closing velocity of the prosthesis using visual (VIS), acoustic (SND), or combined (VIS + SND) feedback. In experiment II, the subjects performed the task also with a vibrotactile stimulus (VIB) delivered using a single tactor. The outcome measures for the discrimination and estimation experiments were just noticeable difference (JND) and median absolute estimation error (MAE), respectively. The results demonstrated that the incidental sources provided a remarkably good discrimination and estimation of the closing velocity, significantly outperforming the vibrotactile feedback. Using incidental sources, the subjects could discriminate almost the minimum possible increment/decrement in velocity that could be commanded to the prosthesis (median JND < 2% for SND and VIS + SND). Similarly, the median MAE in estimating the prosthesis velocity randomly commanded from the full working range was also low, i.e., approximately 5% in SND and VIS + SND. Since the closing velocity is proportional to grasping force in state-of-the-art myoelectric prostheses, the results of the present study imply that the incidental feedback, when available, could be usefully exploited for grasping force control. Therefore, the impact of incidental feedback needs to be considered when designing a feedback interface in prosthetics, especially since the quality of estimation using supplemental sources (e.g., vibration) can be worse compared to that of the intrinsic cues.

    更新日期:2019-12-11
  • A high-performance 8 nV/√Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-10
    Konstantinos Petkos; Simos Koutsoftidis; Thomas Guiho; Patrick Degenaar; Andrew Jackson; Stephen E. Greenwald; Peter Brown; Timothy Denison; Emmanuel M. Drakakis

    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5–500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments.

    更新日期:2019-12-11
  • Stretch reflex excitability in contralateral limbs of stroke survivors is higher than in matched controls
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-05
    Taimoor Afzal; Matthieu K. Chardon; William Z. Rymer; Nina L. Suresh

    Spasticity, characterized by hyperreflexia, is a motor impairment that can arise following a hemispheric stroke. While the neural mechanisms underlying spasticity in chronic stroke survivors are unknown, one probable cause of hyperreflexia is increased motoneuron (MN) excitability. Potential sources of increased spinal MN excitability after a stroke include increased vestibulospinal (VS) and/or reticulospinal (RS) drive. Spasticity, as clinically assessed in stroke survivors, is highly lateralized, thus RS contributions to stroke-induced spasticity are more difficult to reconcile, as RS nuclei routinely project bilaterally to the spinal cord. Yet studies in stroke survivors suggest that there may also be changes in neuromodulation at the spinal level, indicative of RS tract influence. We hypothesize that after hemispheric stroke, alterations in the excitability of the RS nuclei affect both sides of the spinal cord, and thereby contribute to increased MN excitability on both paretic/spastic and contralateral sides of stroke survivors, as compared to neurologically intact subjects. We estimated stretch reflex thresholds of the biceps brachii (BB) muscle using a position-feedback controlled linear motor to progressively indent the BB distal tendon in both spastic and contralateral limbs of hemispheric stroke survivors and in age-matched intact subjects. Our previously reported results show a significant difference between reflex thresholds of spastic and contralateral limbs of stroke survivors recorded from BB-medial (p < 0.005) and BB-lateral (p < 0.001). For this study, we report that there is also a significant difference between the reflex thresholds in the contralateral limb of stroke subjects and the dominant arm of intact subjects, again measured from both BB-medial (p < 0.05) and BB-lateral (p < 0.05). The reduction in stretch reflex thresholds in the contralateral limb of stroke survivors, based here on comparisons with thresholds of intact subjects, suggests an increased MN excitability on contralateral sides of stroke survivors as compared to intact subjects. This in turn supports our contention that RS tract activation, which has bilateral descending influences, is at least partially responsible for increased stretch reflex excitability, post-stroke, as both contralateral and affected sides show increased MN excitability as compared to intact subjects. Still, spasticity, presently diagnosed only on the affected side, with increased MN excitability on the affected side as compared to the contralateral side (our previous study), may be due to a different strongly lateralized pathway, such as the VS tract, which has not been directly tested here. Currently available clinical methods of spasticity assessment, such as the Modified Ashworth Scale, lack the resolution to quantify this phenomenon of a bilateral increase in MN excitability.

    更新日期:2019-12-05
  • Actigraphic measurement of the upper limbs movements in acute stroke patients
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-12-04
    Chiara Iacovelli; Pietro Caliandro; Marco Rabuffetti; Luca Padua; Chiara Simbolotti; Giuseppe Reale; Maurizio Ferrarin; Paolo Maria Rossini

    Stroke units provide patients with a multiparametric monitoring of vital functions, while no instruments are actually available for a continuous monitoring of patients motor performance. Our aim was to develop an actigraphic index able both to identify the paretic limb and continuously monitor the motor performance of stroke patients in the stroke unit environment. Twenty consecutive acute stroke patients (mean age 69.2 years SD 10.1, 8 males and 12 females) and 17 bed-restrained patients (mean age 70.5 years SD 7.3, 7 males and 10 females) hospitalized for orthopedic diseases of the lower limbs, but not experiencing neurological symptoms, were enrolled. This last group represented our control group. The motor activity of arms was recorded for 24 h using two programmable actigraphic systems showing off as wrist-worn watches. The firmware segmented the acquisition in epochs of 1 minute and for each epoch calculates two motor activity indices: MAe1 (Epoch-related Motor Activity index) and MAe2 (Epoch-related Motor Activity index 2). MAe1 is defined as the standard deviation of the acceleration module and MAe2 as the module of the standard deviation of acceleration components. To describe the 24 h motor performance of each limb, we calculated the mean value of MAe1 and MAe2 (respectively MA1_24h and MA2_24h). Then we obtained two Asymmetry Rate Indices: AR1_24h and AR2_24h to show the motor activity prevalence. AR1_24h refers to the asymmetry index between the values of MAe1 of both arms and AR2_24h to MAe2 values. The stroke patients were clinically evaluated by NIHSS at the beginning (NIHSST0) and at the end (NIHSST1) of the 24 h actigraphic recordings. Both MA1_24h and MA2_24h indices were smaller in the paretic than in the unaffected arm (respectively p = 0.004 and p = 0.004). AR2_24h showed a better capability (95% of paretic arms correctly identified, Phi Coefficient: 0.903) to discriminate the laterality of the clinical deficit than AR1_24h (85% of paretic arms correctly identified, Phi Coefficient: 0,698). We also found that AR1_24h did not differ between the two groups of patients while AR2_24h was greater in stroke patients than in controls and positively correlated with NIHSS total scores (r: 0.714, p < 0.001 for NIHSS, IC95%: 0.42–0.90) and with the sub-score relative to the paretic upper limb (r: 0.812, p < 0.001, IC95%: 0.62–0.96). Our data show that actigraphic monitoring of upper limbs can detect the laterality of the motor deficit and measure the clinical severity. These findings suggest that the above described actigraphic system could implement the existing multiparametric monitoring in stroke units.

    更新日期:2019-12-04
  • Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-29
    Andrea Brandt; He ( Helen) Huang

    Individuals with lower limb amputation commonly exhibit large gait asymmetries that are associated with secondary health issues. It has been shown that they are capable of attaining improved temporal and propulsive symmetry when walking with a powered knee prosthesis and visual feedback, but they perceive this pattern of gait to be more difficult. Rather than improving the efficiency of gait, improved gait symmetry may be increasing individuals’ effort associated with maintaining lateral balance. In this study, we used a simple visual feedback paradigm to increase the prosthesis-side stance time of six individuals with unilateral TFA or KD as they walked on a powered knee prosthesis at their self-selected speed. As they walked more symmetrically, we evaluated changes in medial-lateral center-of-mass excursion, lateral margin of stability, stride width, and hip abductor activity. As the subjects increased their prosthesis-side stance time, their center-of-mass excursion and hip abductor activity significantly increased, while their lateral margin of stability significantly decreased on the prosthesis-side only. Stride width remained relatively unchanged with testing condition. Extended stance time on a powered knee prosthesis (yielding more symmetric gait) challenged the lateral balance of individuals with lower limb amputation. Lateral stability may be a reason they prefer an asymmetric gait, even with more advanced technology. Hip muscular changes post-amputation may contribute to the decline in stability on the prosthesis side. Interventions and advancements in prosthesis control aimed at improving their control of lateral balance may ameliorate the difficulty in walking with improved gait symmetry.

    更新日期:2019-11-30
  • Development of a new high sensitivity mechanical switch for augmentative and alternative communication access in people with amyotrophic lateral sclerosis
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-29
    M. Caligari; M. Godi; M. Giardini; R. Colombo

    People with Amyotrophic Lateral Sclerosis (PwALS) in the advanced phase are critically affected by an almost total loss of mobility and severe communication problems. Scanning access based on the patient’s interaction with a sensor (or switch) that intercepts even a weak body movement is a valid communication aid. However, its use becomes limited with the progressive decline of residual movements. To overcome this problem, we designed a new sensor, the Lever Magnetic-spring Mechanical Switch (LeMMS), allowing repeated activation/release cycles requiring a very small activation force. The LeMMS was applied and validated in a group of 20 PwALS in an advanced stage of disease. All subjects were regular users of communication aids employing other sensors, but which they could no longer operate their sensors (different from LeMMS). Patients were assessed at baseline (t0) and after one (t1), 6 (t2) and 12 (t3) months. Assessment at t0 included administration of standardized clinical scales, the Click-Test-30 counting the maximum number of LeMMS activations in 30 s, and thumb/fingers strength assessment with the Kendall scale. The QUEST 2.0-Dev questionnaire was administered at t1. Some use-related information and the Click-Test-30 were collected at t1, t2 and t3. After one training session, all patients could operate the LeMMS with minimal residual movement of one finger. At t1, they used it on average 5.45 h/day. The mean score of the QUEST 2.0-Dev was 4.63, suggesting strong satisfaction with the LeMMS. Regarding Click-Test-30 scores, no significant difference was found between t0 and t1, but performance at t2 and t3 declined significantly (p < 0.005 vs. t0). At t3, 9/20 patients were still able to use their communication aid. This new switch sensor can enable PwALS to use their communication aids for a prolonged time even in the advanced phase of disease. It is easy to use, reliable and cheap, thus representing an intermediate alternative to more sophisticated and costly devices.

    更新日期:2019-11-30
  • Myoelectric signal from below the level of spinal cord injury as a command source for an implanted upper extremity neuroprosthesis - a case report
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-02
    Elizabeth Heald; Kevin Kilgore; Ronald Hart; Christa Moss; P. Hunter Peckham

    Implanted motor neuroprostheses offer significant restoration of function for individuals with spinal cord injury. Providing adequate user control for these devices is a challenge but is crucial for successful performance. Electromyographic (EMG) signals can serve as effective control sources, but the number of above-injury muscles suitable to provide EMG-based control signals is very limited. Previous work has shown the presence of below-injury volitional myoelectric signals even in subjects diagnosed with motor complete spinal cord injury. In this case report, we present a demonstration of a hand grasp neuroprosthesis being controlled by a user with a C6 level, motor complete injury through EMG signals from their toe flexor. These signals were successfully translated into a functional grasp output, which performed similarly to the participant’s usual shoulder position control in a grasp-release functional test. This proof-of-concept demonstrates the potential for below-injury myoelectric activity to serve as a novel form of neuroprosthesis control.

    更新日期:2019-11-28
  • Tarsal fusion for pes equinovarus deformity improves gait capacity in chronic stroke patients
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-02
    Jorik Nonnekes; Maartje Kamps; Jasper den Boer; Hanneke van Duijnhoven; Frits Lem; Jan Willem K. Louwerens; Noël Keijsers; Alexander C. H. Geurts

    Gait impairments are common and disabling in chronic stroke patients. Pes equinovarus deformity is one of the primary motor deficits underlying reduced gait capacity after stroke. It predisposes to stance-phase instability and subsequent ankle sprain or falls. This instability is most pronounced when walking barefoot. Tarsal fusion is a recommended treatment option for varus deformity, but scientific evidence is sparse. We therefore evaluated whether a tarsal fusion improved barefoot walking capacity in chronic stroke patients with pes equinovarus deformity. Ten patients with a pes equinovarus deformity secondary to supratentorial stroke underwent surgical correction involving a tarsal fusion of one or more joints. Instrumented gait analysis was performed pre- and postoperatively using a repeated-measures design. Primary outcome measure was gait speed. Walking speed significantly improved by 32% after surgery (0.38 m/s ± 0.20 to 0.50 m/s ± 0.17, p = 0.007). Significant improvement was also observed when looking at cadence (p = 0.028), stride length (p = 0.016), and paretic step length (p = 0.005). Step length on the nonparetic side did not change. Peak ankle moment increased significantly on the nonparetic side (p = 0.021), but not on the paretic side (p = 0.580). In addition, functional ambulation scores increased significantly (p = 0.008), as did satisfaction with gait performance (p = 0.017). Tarsal fusion for equinovarus deformity in chronic stroke patients improves gait capacity, and the degree of improvement is of clinical relevance. Our results suggest that the improved gait capacity may be related to better prepositioning and loading of the paretic foot, leading to larger paretic step length and nonparetic ankle kinetics.

    更新日期:2019-11-28
  • Mobility assessment in people with Alzheimer disease using smartphone sensors
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-14
    Pilar Serra-Añó; José Francisco Pedrero-Sánchez; Juan Hurtado-Abellán; Marta Inglés; Gemma Victoria Espí-López; Juan López-Pascual

    Understanding the functional status of people with Alzheimer Disease (AD), both in a single (ST) and cognitive dual task (DT) activities is essential for identifying signs of early-stage neurodegeneration. This study aims to compare the performance quality of several tasks using sensors embedded in an Android device, among people at different stages of Alzheimer and people without dementia. The secondary aim is to analyze the effect of cognitive task performance on mobility tasks. This is a cross-sectional study including 22 participants in the control group (CG), 18 in the group with mild AD and 22 in the group with moderate AD. They performed two mobility tests, under ST and DT conditions, which were registered using an Android device. Postural control was measured by medial-lateral and anterior-posterior displacements of the COM (MLDisp and APDisp, respectively) and gait, with the vertical and medial-lateral range of the COM (Vrange and MLrange). Further, the sit-to-stand (PStand) and turning and sit power (PTurnSit), the total time required to complete the test and the reaction time were measured. There were no differences between the two AD stages either for ST or DT in any of the variables (p > 0.05). Nevertheless, people at both stages showed significantly lower values of PStand and PTurnSit and larger Total time and Reaction time compared to CG (p < 0.05). Further, Vrange is also lower in CDR1G than in CG (p < 0.05). The DT had a significant deleterious effect on MLDisp in all groups (p < 0.05) and on APDisp only in moderate AD for DT. Our findings indicate that AD patients present impairments in some key functional abilities, such as gait, turning and sitting, sit to stand, and reaction time, both in mild and moderate AD. Nevertheless, an exclusively cognitive task only influences the postural control in people with AD.

    更新日期:2019-11-28
  • Disentangling stability and flexibility degrees in Parkinson’s disease using a computational postural control model
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-14
    Zahra Rahmati; Alfred C. Schouten; Saeed Behzadipour; Ghorban Taghizadeh; Keikhosrow Firoozbakhsh

    Impaired postural control in Parkinson’s disease (PD) seriously compromises life quality. Although balance training improves mobility and postural stability, lack of quantitative studies on the neurophysiological mechanisms of balance training in PD impedes the development of patient-specific therapies. We evaluated the effects of a balance-training program using functional balance and mobility tests, posturography, and a postural control model. Center-of-pressure (COP) data of 40 PD patients before and after a 12-session balance-training program, and 20 healthy control subjects were recorded in four conditions with two tasks on a rigid surface (R-tasks) and two on foam. A postural control model was fitted to describe the posturography data. The model comprises a neuromuscular controller, a time delay, and a gain scaling the internal disturbance torque. Patients’ axial rigidity before training resulted in slower COP velocity in R-tasks; which was reflected as lower internal torque gain. Furthermore, patients exhibited poor stability on foam, remarked by abnormal higher sway amplitude. Lower control parameters as well as higher time delay were responsible for patients’ abnormal high sway amplitude. Balance training improved all clinical scores on functional balance and mobility. Consistently, improved ‘flexibility’ appeared as enhanced sway velocity (increased internal torque gain). Balance training also helped patients to develop the ‘stability degree’ (increase control parameters), and to respond more quickly in unstable condition of stance on foam. Projection of the common posturography measures on a postural control model provided a quantitative framework for unraveling the neurophysiological factors and different recovery mechanisms in impaired postural control in PD.

    更新日期:2019-11-28
  • Three distinct physical behavior types in fatigued patients with multiple sclerosis
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-23
    H. E. M. Braakhuis; M. A. M. Berger; G. A. van der Stok; J. van Meeteren; V. de Groot; H. Beckerman; J. B. J. Bussmann

    Multiple sclerosis often leads to fatigue and changes in physical behavior (PB). Changes in PB are often assumed as a consequence of fatigue, but effects of interventions that aim to reduce fatigue by improving PB are not sufficient. Since the heterogeneous nature of MS related symptoms, levels of PB of fatigued patients at the start of interventions might vary substantially. Better understanding of the variability by identification of PB subtypes in fatigued patients may help to develop more effective personalized rehabilitation programs in the future. This study aimed to identify PB subtypes in fatigued patients with multiple sclerosis based on multidimensional PB outcome measures. Baseline accelerometer (Actigraph) data, demographics and clinical characteristics of the TREFAMS-ACE participants (n = 212) were used for secondary analysis. All patients were ambulatory and diagnosed with severe fatigue based on a score of ≥35 on the fatigue subscale of the Checklist Individual Strength (CIS20r). Fifteen PB measures were used derived from 7 day measurements with an accelerometer. Principal component analysis was performed to define key outcome measures for PB and two-step cluster analysis was used to identify PB types. Analysis revealed five key outcome measures: percentage sedentary behavior, total time in prolonged moderate-to-vigorous physical activity, number of sedentary bouts, and two types of change scores between day parts (morning, afternoon and evening). Based on these outcomes three valid PB clusters were derived. Patients with severe MS-related fatigue show three distinct and homogeneous PB subtypes. These PB subtypes, based on a unique set of PB outcome measures, may offer an opportunity to design more individually-tailored interventions in rehabilitation. Clinical trial registration no ISRCTN 82353628 , ISRCTN 69520623 and ISRCTN 58583714 .

    更新日期:2019-11-28
  • Relearning functional and symmetric walking after stroke using a wearable device: a feasibility study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-28
    Seok Hun Kim; David E. Huizenga; Ismet Handzic; Rebecca Edgeworth Ditwiler; Matthew Lazinski; Tyagi Ramakrishnan; Andrea Bozeman; David Z. Rose; Kyle B. Reed

    Gait impairment is a common consequence of stroke and typically involves a hemiparetic or asymmetric walking pattern. Asymmetric gait patterns are correlated with decreased gait velocity and efficiency as well as increased susceptibility to serious falls and injuries. This paper presents an innovative device worn on a foot for gait rehabilitation post stroke. The device generates a backward motion to the foot, which is designed to exaggerate the existing step length asymmetry while walking over ground. We hypothesize this motion will decrease gait asymmetry and improve functional walking in individuals with chronic stroke. Six participants with chronic stroke, more than one year post stroke, received four weeks of gait training with three sessions per week. Each session included 30 min of walking over ground using the wearable device. Gait symmetry and functional walking were assessed before and after training. All participants improved step length symmetry, and four participants improved double limb support symmetry. All participants improved on all three functional outcomes (gait velocity, Timed Up and Go Test, and 6-Minute Walk Test), and five participants improved beyond the minimal detectable change or meaningful change in at least one functional outcome. The results indicate that the presented device may help improve stroke patients’ walking ability and warrant further study. A gait training approach using this new device may enable and expand long-term continuous gait rehabilitation outside the clinic following stroke. NCT02185404. Registered July 9, 2014, https://clinicaltrials.gov/ct2/show/NCT02185404

    更新日期:2019-11-28
  • Improvements in skilled walking associated with kinematic adaptations in people with spinal cord injury
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-28
    Raza N. Malik; Gevorg Eginyan; Andrea K. Lynn; Tania Lam

    Individuals with motor-incomplete SCI (m-iSCI) remain limited community ambulators, partly because they have difficulty with the skilled walking requirements of everyday life that require adaptations in inter-joint coordination and range of motion of the lower limbs. Following locomotor training, individuals with SCI show improvements in skilled walking and walking speed, however there is limited understanding of how adaptations in lower limb kinematics following training contribute to improvements in walking. To determine the relationship between changes in lower limb kinematics (range of motion and inter-joint coordination) and improvements in walking function (walking speed and skilled walking) following locomotor training. Lower limb kinematics were recorded from 8 individuals with chronic m-iSCI during treadmill walking before and after a 3-month locomotor training program. Data were also collected from 5 able-bodied individuals to provide normative values. In individuals with SCI, muscle strength was used to define the stronger and weaker limb. Motion analysis was used to determine, hip, knee and ankle angles. Joint angle-angle plots (cyclograms) were used to quantify inter-joint coordination. Shape differences between pre-and post-training cyclograms were used to assess the changes in coordination and their relation to improvements in walking function. Walking function was assessed using the 10MWT for walking speed and the SCI-FAP for skilled walking. Comparing pre- and post-training cyclograms to the able-bodied pattern was used to understand the extent to which changes in coordination involved the recovery of normative motor patterns. Following training, improvements in skilled walking were significantly related to changes in hip-ankle coordination (ρ = − .833, p = 0.010) and knee range of motion (ρ = .833, p = 0.010) of the weaker limb. Inter-joint coordination tended to revert towards normative patterns, but not completely. No relationships were observed with walking speed. Larger changes in hip-ankle coordination and a decrease in knee range of motion in the weaker limb during treadmill walking were related to improvements in skilled walking following locomotor training in individuals with SCI. The changes in coordination seem to reflect some restoration of normative patterns and the adoption of compensatory strategies, depending on the participant.

    更新日期:2019-11-28
  • Enhancing general spatial skills of young visually impaired people with a programmable distance discrimination training: a case control study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-28
    Fabrizio Leo; Elisabetta Ferrari; Caterina Baccelliere; Juan Zarate; Herbert Shea; Elena Cocchi; Aleksander Waszkielewicz; Luca Brayda

    The estimation of relative distance is a perceptual task used extensively in everyday life. This important skill suffers from biases that may be more pronounced when estimation is based on haptics. This is especially true for the blind and visually impaired, for which haptic estimation of distances is paramount but not systematically trained. We investigated whether a programmable tactile display, used autonomously, can improve distance discrimination ability in blind and severely visually impaired youngsters between 7 and 22 years-old. Training consisted of four weekly sessions in which participants were asked to haptically find, on the programmable tactile display, the pairs of squares which were separated by the shortest and longest distance in tactile images with multiple squares. A battery of haptic tests with raised-line drawings was administered before and after training, and scores were compared to those of a control group that did only the haptic battery, without doing the distance discrimination training on the tactile display. Both blind and severely impaired youngsters became more accurate and faster at the task during training. In haptic battery results, blind and severely impaired youngsters who used the programmable display improved in three and two tests, respectively. In contrast, in the control groups, the blind control group improved in only one test, and the severely visually impaired in no tests. Distance discrimination skills can be trained equally well in both blind and severely impaired participants. More importantly, autonomous training with the programmable tactile display had generalized effects beyond the trained task. Participants improved not only in the size discrimination test but also in memory span tests. Our study shows that tactile stimulation training that requires minimal human assistance can effectively improve generic spatial skills.

    更新日期:2019-11-28
  • Impact of game mode in multi-user serious games for upper limb rehabilitation: a within-person randomized trial on engagement and social involvement
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-08-30
    Fábio Pereira; Sergi Bermúdez i Badia; Rúben Ornelas; Mónica S. Cameirão

    Serious games have been increasingly used for motor rehabilitation. However, it is not well known how different game features can be used to impact specific skills properly. Here, we study how the mode (competitive, co-active, collaborative) in which a multi-user game is presented impacts engagement and social involvement. We collected data from 20 pairs of community-dwelling older adults (71.5 ± 8.7 years) in a study following a within-persons design. The participants performed a two-player upper limb rehabilitation game with three conditions (Competitive, Co-active, and Collaborative modes). Engagement and social involvement were assessed through the Core Module and Social Presence Module, respectively, from the Game Experience Questionnaire. To infer the impact of personality and cognitive function, users answered the International Personality Item Pool (short version) and the Montreal Cognitive Assessment, respectively. Results show that the Collaborative game mode promotes more social involvement when compared to Competitive and Co-active modes. This result is mostly explained by those participants with higher cognitive skills, and those that are more extrovert. Extrovert participants feel more empathy and are behaviorally more involved when playing the Collaborative mode. Also, the Collaborative mode is shown to be appropriate to promote interaction with participants that previously had a distant relationship, while the Competitive mode seems to be more beneficial to promote empathy between players with a closer relationship. The Collaborative game mode elicited significantly higher social involvement in terms of Empathy, Positive Affect, and Behavioral Involvement. Hence, this game mode seems to be the most adequate choice to be used in multiplayer rehabilitation settings, where social interaction is intended.

    更新日期:2019-11-28
  • Movement smoothness during a functional mobility task in subjects with Parkinson’s disease and freezing of gait – an analysis using inertial measurement units
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-05
    Camila Pinto; Clarissa Pedrini Schuch; Gustavo Balbinot; Ana Paula Salazar; Ewald Max Hennig; Ana Francisca Rozin Kleiner; Aline Souza Pagnussat

    Impairments of functional mobility may affect locomotion and quality of life in subjects with Parkinson’s disease (PD). Movement smoothness measurements, such as the spectral arc length (SPARC), are novel approaches to quantify movement quality. Previous studies analyzed SPARC in simple walking conditions. However, SPARC outcomes during functional mobility tasks in subjects with PD and freezing of gait (FOG) were never investigated. This study aimed to analyze SPARC during the Timed Up and Go (TUG) test in individuals with PD and FOG. Thirty-one participants with PD and FOG and six healthy controls were included. SPARC during TUG test was calculated for linear and angular accelerations using an inertial measurement unit system. SPARC data were correlated with clinical parameters: motor section of the Unified Parkinson’s Disease Rating Scale, Hoehn & Yahr scale, Freezing of Gait Questionnaire, and TUG test. We reported lower SPARC values (reduced smoothness) during the entire TUG test, turn and stand to sit in subjects with PD and FOG, compared to healthy controls. Unlike healthy controls, individuals with PD and FOG displayed a broad spectral range that encompassed several dominant frequencies. SPARC metrics also correlated with all the above-mentioned clinical parameters. SPARC values provide valid and relevant clinical data about movement quality (e.g., smoothness) of subjects with PD and FOG during a functional mobility test.

    更新日期:2019-11-28
  • Fore-aft resistance applied at the center of mass using a novel robotic interface proportionately increases propulsive force generation in healthy nonimpaired individuals walking at a constant speed
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-06
    Avantika Naidu; Sarah A. Graham; David A. Brown

    Past studies have utilized external interfaces like resistive bands and motor-generated pulling systems to increase limb propulsion during walking on a motorized treadmill. However, assessing changes in limb propulsion against increasing resistance demands during self-controlled walking has not been undertaken. We assessed limb propulsion against increasing fore-aft loading demands by applying graded fore-aft (FA) resistance at the center of mass during walking in a novel, intent-driven treadmill environment that allowed participants to control their walking speeds. We hypothesized that to maintain a target speed against progressively increasing resistance, participants would proportionately increase their limb propulsion without increasing vertical force production, with accompanying increases in trailing limb angle and positive joint work. Seventeen healthy-nonimpaired participants (mean age 52 yrs., SD = 11) walked at a target, self-controlled speed of 1.0 m/s against 10, 15, 20, and 25% (% body weight) FA resistance levels. We primarily assessed linear slope values across FA resistance levels for mean propulsive force and impulse and vertical impulse of the dominant limb using one-sample t-tests. We further assessed changes in trailing and leading limb angles and joint work using one-way ANOVAs. Participants maintained their target velocity within an a priori defined acceptable range of 1.0 m/s ± 0.2. They significantly increased propulsion proportional to FA resistance (propulsive force mean slope = 2.45, SD = 0.7, t (16) =14.44, p < 0.01; and propulsive impulse mean slope = 0.7, SD = 0.25, t (16) = 11.84, p < 0.01), but had no changes in vertical impulse (mean slope = − 0.04, SD =0.17, p > 0.05) across FA resistance levels. Mean trailing limb angle increased from 24.3° at 10% resistance to 27.4° at 25% (p < 0.05); leading limb angle decreased from − 18.4° to − 12.6° (p < 0.05). We also observed increases in total positive limb work (F (1.7, 26) = 16.88, p ≤ 0.001, η2 = 0.5), primarily attributed to the hip and ankle joints. FA resistance applied during self-driven walking resulted in increased propulsive-force output of healthy-nonimpaired individuals with accompanying biomechanical changes that facilitated greater limb propulsion. Future rehabilitation interventions for neurological populations may be able to utilize this principle to design task-specific interventions like progressive strength training and workload manipulation during aerobic training for improving walking function.

    更新日期:2019-11-28
  • Effects of extended powered knee prosthesis stance time via visual feedback on gait symmetry of individuals with unilateral amputation: a preliminary study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-11
    Andrea Brandt; William Riddick; Jonathan Stallrich; Michael Lewek; He Helen Huang

    Establishing gait symmetry is a major aim of amputee rehabilitation and may be more attainable with powered prostheses. Though, based on previous work, we postulate that users transfer a previously-learned motor pattern across devices, limiting the functionality of more advanced prostheses. The objective of this study was to preliminarily investigate the effect of increased stance time via visual feedback on amputees’ gait symmetry using powered and passive knee prostheses. Five individuals with transfemoral amputation or knee disarticulation walked at their self-selected speed on a treadmill. Visual feedback was used to promote an increase in the amputated-limb stance time. Individuals were fit with a commercially-available powered prosthesis by a certified prosthetist and practiced walking during a prior visit. The same protocol was completed with a passive knee and powered knee prosthesis on separate days. We used repeated-measures, two-way ANOVA (alpha = 0.05) to test for significant effects of the feedback and device factors. Our main outcome measures were stance time asymmetry, peak anterior-posterior ground reaction forces, and peak anterior propulsion asymmetry. Increasing the amputated-limb stance time via visual feedback significantly improved the stance time symmetry (p = 0.012) and peak propulsion symmetry (p = 0.036) of individuals walking with both prostheses. With the powered knee prosthesis, the highest feedback target elicited 36% improvement in stance time symmetry, 22% increase in prosthesis-side peak propulsion, and 47% improvement in peak propulsion symmetry compared to a no feedback condition. The changes with feedback were not different with the passive prosthesis, and the main effects of device/ prosthesis type were not statistically different. However, subject by device interactions were significant, indicating individuals did not respond consistently with each device (e.g. prosthesis-side propulsion remained comparable to or was greater with the powered versus passive prosthesis for different subjects). Overall, prosthesis-side peak propulsion averaged across conditions was 31% greater with the powered prosthesis and peak propulsion asymmetry improved by 48% with the powered prosthesis. Increasing prosthesis-side stance time via visual feedback favorably improved individuals’ temporal and propulsive symmetry. The powered prosthesis commonly enabled greater propulsion, but individuals adapted to each device with varying behavior, requiring further investigation.

    更新日期:2019-11-28
  • Locomotor skill acquisition in virtual reality shows sustained transfer to the real world
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-14
    Aram Kim; Nicolas Schweighofer; James M. Finley

    Virtual reality (VR) is a potentially promising tool for enhancing real-world locomotion in individuals with mobility impairment through its ability to provide personalized performance feedback and simulate real-world challenges. However, it is unknown whether novel locomotor skills learned in VR show sustained transfer to the real world. Here, as an initial step towards developing a VR-based clinical intervention, we study how young adults learn and transfer a treadmill-based virtual obstacle negotiation skill to the real world. On Day 1, participants crossed virtual obstacles while walking on a treadmill, with the instruction to minimize foot clearance during obstacle crossing. Gradual changes in performance during training were fit via non-linear mixed effect models. Immediate transfer was measured by foot clearance during physical obstacle crossing while walking over-ground. Retention of the obstacle negotiation skill in VR and retention of over-ground transfer were assessed after 24 h. On Day 1, participants systematically reduced foot clearance throughout practice by an average of 5 cm (SD 4 cm) and transferred 3 cm (SD 1 cm) of this reduction to over-ground walking. The acquired reduction in foot clearance was also retained after 24 h in VR and over-ground. There was only a small, but significant 0.8 cm increase in foot clearance in VR and no significant increase in clearance over-ground on Day 2. Moreover, individual differences in final performance at the end of practice on Day 1 predicted retention both in VR and in the real environment. Overall, our results support the use of VR for locomotor training as skills learned in a virtual environment readily transfer to real-world locomotion. Future work is needed to determine if VR-based locomotor training leads to sustained transfer in clinical populations with mobility impairments, such as individuals with Parkinson’s disease and stroke survivors.

    更新日期:2019-11-28
  • Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-14
    Rubén Hernández de Paz; Diego Serrano-Muñoz; Soraya Pérez-Nombela; Elisabeth Bravo-Esteban; Juan Avendaño-Coy; Julio Gómez-Soriano

    Transcranial direct-current stimulation (tDCS) is an easy-to-apply, cheap, and safe technique capable of affecting cortical brain activity. However, its effectiveness has not been proven for many clinical applications. The aim of this systematic review was to determine whether the effect of different strategies for gait training in patients with neurological disorders can be enhanced by the combined application of tDCS compared to sham stimulation. Additionally, we attempted to record and analyze tDCS parameters to optimize its efficacy. A search in Pubmed, PEDro, and Cochrane databases was performed to find randomized clinical trials that combined tDCS with gait training. A chronological filter from 2010 to 2018 was applied and only studies with variables that quantified the gait function were included. A total of 274 studies were found, of which 25 met the inclusion criteria. Of them, 17 were rejected based on exclusion criteria. Finally, 8 trials were evaluated that included 91 subjects with stroke, 57 suffering from Parkinson’s disease, and 39 with spinal cord injury. Four of the eight assessed studies did not report improved outcomes for any of its variables compared to the placebo treatment. There are no conclusive results that confirm that tDCS can enhance the effect of the different strategies for gait training. Further research for specific pathologies, with larger sample sizes and adequate follow-up periods, are required to optimize the existing protocols for applying tDCS.

    更新日期:2019-11-28
  • Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-14
    Claudia Ramos Claret; Georg W. Herget; Lukas Kouba; Daniel Wiest; Jochen Adler; Vinzenz von Tscharner; Thomas Stieglitz; Cristian Pasluosta

    Following an amputation, the human postural control system develops neuromuscular adaptations to regain an effective postural control. We investigated the compensatory mechanisms behind these adaptations and how sensorimotor integration is affected after a lower-limb transfemoral amputation. Center of pressure (CoP) data of 12 unilateral transfemoral amputees and 12 age-matched able-bodied subjects were recorded during quiet standing with eyes open (EO) and closed (EC). CoP adjustments under each leg were recorded to study their contribution to posture control. The spatial structure of the CoP displacements was characterized by measuring the mean distance, the mean velocity of the CoP adjustments, and the sway area. The Entropic Half-Life (EnHL) quantifies the temporal structure of the CoP adjustments and was used to infer disrupted sensory feedback loops in amputees. We expanded the analysis with measures of weight-bearing imbalance and asymmetry, and with two standardized balance assessments, the Berg Balance Scale (BBS) and Timed Up-and-Go (TUG). There was no difference in the EnHL values of amputees and controls when combining the contributions of both limbs (p = 0.754). However, amputees presented significant differences between the EnHL values of the intact and prosthetic limb (p < 0.001). Suppressing vision reduced the EnHL values of the intact (p = 0.001) and both legs (p = 0.028), but not in controls. Vision feedback in amputees also had a significant effect (increase) on the mean CoP distance (p < 0.001), CoP velocity (p < 0.001) and sway area (p = 0.007). Amputees presented an asymmetrical stance. The EnHL values of the intact limb in amputees were positively correlated to the BBS scores (EO: ρ = 0.43, EC: ρ = 0.44) and negatively correlated to the TUG times (EO: ρ = − 0.59, EC: ρ = − 0.69). These results suggest that besides the asymmetry in load distribution, there exist neuromuscular adaptations after an amputation, possibly related to the loss of sensory feedback and an altered sensorimotor integration. The EnHL values suggest that the somatosensory system predominates in the control of the intact leg. Further, suppressing the visual system caused instability in amputees, but had a minimal impact on the CoP dynamics of controls. These findings points toward the importance of providing somatosensory feedback in lower-limb prosthesis to reestablish a normal postural control. DRKS00015254 , registered on September 20th, 2018.

    更新日期:2019-11-28
  • Paving the way for a better understanding of the pathophysiology of gait impairment in myotonic dystrophy: a pilot study focusing on muscle networks
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-09-18
    Antonino Naro; Simona Portaro; Demetrio Milardi; Luana Billeri; Antonino Leo; David Militi; Placido Bramanti; Rocco Salvatore Calabrò

    A proper rehabilitation program targeting gait is mandatory to maintain the quality of life of patients with Myotonic dystrophy type 1 (DM1). Assuming that gait and balance impairment simply depend on the degree of muscle weakness is potentially misleading. In fact, the involvement of the Central Nervous System (CNS) in DM1 pathophysiology calls into account the deterioration of muscle coordination in gait impairment. Our study aimed at demonstrating the presence and role of muscle connectivity deterioration in patients with DM1 by a CNS perspective by investigating signal synergies using a time-frequency spectral coherence and multivariate analyses on lower limb muscles while walking upright. Further, we sought at determining whether muscle networks were abnormal secondarily to the muscle impairment or primarily to CNS damage (as DM1 is a multi–system disorder also involving the CNS). In other words, muscle network deterioration may depend on a weakening in signal synergies (that express the neural drive to muscles deduced from surface electromyography data). Such an innovative approach to estimate muscle networks and signal synergies was carried out in seven patients with DM1 and ten healthy controls (HC). Patients with DM1 showed a commingling of low and high frequencies among muscle at both within– and between–limbs level, a weak direct neural coupling concerning inter–limb coordination, a modest network segregation, high integrative network properties, and an impoverishment in the available signal synergies, as compared to HCs. These network abnormalities were independent from muscle weakness and myotonia. Our results suggest that gait impairment in patients with DM1 depends also on a muscle network deterioration that is secondary to signal synergy deterioration (related to CNS impairment). This suggests that muscle network deterioration may be a primary trait of DM1 rather than a maladaptive mechanism to muscle degeneration. This information may be useful concerning the implementation of proper rehabilitative strategies in patients with DM1. It will be indeed necessary not only addressing muscle weakness but also gait-related muscle connectivity to improve functional ambulation in such patients.

    更新日期:2019-11-28
  • Reducing the energy cost of walking in older adults using a passive hip flexion device
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-15
    Fausto A. Panizzolo; Chiara Bolgiani; Laura Di Liddo; Eugenio Annese; Giuseppe Marcolin

    Elevated energy cost is a hallmark feature of gait in older adults. As such, older adults display a general avoidance of walking which contributes to declining health status and risk of morbidity. Exoskeletons offer a great potential for lowering the energy cost of walking, however their complexity and cost often limit their use. To overcome some of these issues, in the present work we propose a passive wearable assistive device, namely Exoband, that applies a torque to the hip flexors thus reducing the net metabolic power of wearers. Nine participants (age: 62.1 ± 5.6 yr; height: 1.71 ± 0.05 m; weight: 76.3 ± 11.9 kg) walked on a treadmill at a speed of 1.1 m/s with and without the Exoband. Metabolic power was measured by indirect calorimetry and spatio-temporal parameters measured using an optical measurement system. Heart rate and ratings of perceived exertion were recorded during data collection to monitor relative intensity of the walking trials. The Exoband was able to provide a consistent torque (~ 0.03–0.05 Nm/kg of peak torque) to the wearers. When walking with the Exoband, participants displayed a lower net metabolic power with respect to free walking (− 3.3 ± 3.0%; p = 0.02). There were no differences in spatio-temporal parameters or relative intensities when walking with or without the Exoband. This study demonstrated that it is possible to reduce metabolic power during walking in older adults with the assistance of a passive device that applies a torque to the hip joint. Wearable, lightweight and low-cost devices such as the Exoband have the potential to make walking less metabolically demanding for older individuals.

    更新日期:2019-11-28
  • A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-17
    Corbin M. Rasmussen; Nathaniel H. Hunt

    Task-specific perturbation training is a widely studied means of fall prevention, utilizing techniques that induce slips or slip-like perturbations during gait. Though effective, these methods only simulate narrow ranges within the larger space of possible slipping conditions encountered in daily life. Here we describe and test a novel, wearable apparatus designed to address these limitations and simulate a diverse range of slipping disturbances. The device consists of wireless triggering and detachable outsole components that provide adequate friction with the floor when secured to the wearer’s foot, but suddenly create a low-friction surface underfoot upon release. “Benchtop” tests were carried out to quantify device triggering characteristics (i.e. cutting temperature, release delay) and the resulting friction reduction. The device was also tested on six healthy young adults (3 female, age 23 ± 2.4 years), who walked with and without the device to observe how gait kinematics and spatiotemporal parameters were influenced, then performed 12 walking trials ending with a slip delivered by the device. Each participant also completed a survey to obtain opinions on device safety, device comfort, slip realism, and slip difficulty. A linear mixed effects analysis was employed to compare subject spatiotemporal parameters with and without the apparatus, as well as correlation coefficients and root mean square errors (RMSE) to assess the impact of the device on lower limb gait kinematics. Slip onset phases, distances, directions, velocities, and recovery step locations were also calculated. This device rapidly diminishes available friction from static coefficients of 0.48 to 0.07, albeit after a substantial delay (0.482 ± 0.181 s) between signal reception and outsole release. Strong correlations (R > 0.93) and small RMSE between gait kinematics with and without the device indicate minimal effects on natural gait patterns, however some spatiotemporal parameters were significantly impacted. A diverse range of slip perturbations and recovery steps were successfully elicited by the device. Our results highlight the efficacy and utility of a wearable slipping device to deliver diverse slip conditions. Such an apparatus enables the study of unconstrained slips administered across the gait cycle, as well as during different locomotor behaviors like turning, negotiating slopes, and level changes.

    更新日期:2019-11-28
  • Advantages of using 3D virtual reality based training in persons with Parkinson’s disease: a parallel study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-17
    Imre Cikajlo; Karmen Peterlin Potisk

    Parkinson’s disease (PD) is a slowly progressive neurodegenerative disease. There are mixed reports on success of physiotherapy in patients with PD. Our objective was to investigate the functional improvements, motivation aspects and clinical effectiveness when using immersive 3D virtual reality versus non-immersive 2D exergaming. We designed a randomized parallel study with 97 patients, but only 20 eligible participants were randomized in 2 groups; the one using 3D Oculus Rift CV1 and the other using a laptop. Both groups participated in the 10-session 3 weeks training with a pick and place task in the virtual world requiring precise hand movement to manipulate the virtual cubes. The kinematics of the hand was traced with Leap motion controller, motivation effect was assessed with modified Intrinsic Motivation Inventory and clinical effectiveness was evaluated with Box & Blocks Test (BBT) and shortened Unified Parkinson’s disease rating scale (UPDRS) before and after the training. Mack-Skilling non-parametrical statistical test was used to identify statistically significant differences (p < 0.05) and Cohen’s U3 test to find the effect sizes. Participants in the 3D group demonstrated statistically significant and substantially better performance in average time of manipulation (group x time, p = 0.009), number of successfully placed cubes (group x time, p = 0.028), average tremor (group x time, p = 0.002) and UPDRS for upper limb (U3 = 0.35). The LCD and 3D groups substantially improved their BBT score with training (U3 = 0.7, U3 = 0.6, respectively). However, there were no statistically significant differences in clinical tests between the groups (group x time, p = 0.2189, p = 0.2850, respectively). In addition the LCD group significantly decreased the pressure/tension (U3 = 0.3), the 3D did not show changes (U3 = 0.5) and the differences between the groups were statistically different (p = 0.037). The 3D group demonstrated important increase in effort (U3 = 0.75) and perceived competences (U3 = 0.9). The outcomes of the study demonstrated that the immersive 3D technology may bring increased interests/enjoyment score resulting in faster and more efficient functional performance. But the 2D technology demonstrated lower pressure/tension score providing similar clinical progress. A study with much larger sample size may also confirm the clinical effectiveness of the approaches. The small scale randomized pilot study has been registered at ClinicalTrials.gov Identifier: NCT03515746 , 4 May 2018

    更新日期:2019-11-28
  • Modifying ankle foot orthosis stiffness in patients with calf muscle weakness: gait responses on group and individual level
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-17
    Niels F. J. Waterval; Frans Nollet; Jaap Harlaar; Merel-Anne Brehm

    To improve gait, persons with calf muscle weakness can be provided with a dorsal leaf spring ankle foot orthosis (DLS-AFO). These AFOs can store energy during stance and return this energy during push-off, which, in turn, reduces walking energy cost. Simulations indicate that the effect of the DLS-AFO on walking energy cost and gait biomechanics depends on its stiffness and on patient characteristics. We therefore studied the effect of varying DLS-AFO stiffness on reducing walking energy cost, and improving gait biomechanics and AFO generated power in persons with non-spastic calf muscle weakness, and whether the optimal AFO stiffness for maximally reducing walking energy cost varies between persons. Thirty-seven individuals with neuromuscular disorders and non-spastic calf muscle weakness were included. Participants were provided with a DLS-AFO of which the stiffness could be varied. For 5 stiffness configurations (ranging from 2.8 to 6.6 Nm/degree), walking energy cost (J/kg/m) was assessed using a 6-min comfortable walk test. Selected gait parameters, e.g. maximal dorsiflexion angle, ankle power, knee angle, knee moment and AFO generated power, were derived from 3D gait analysis. On group level, no significant effect of DLS-AFO stiffness on reducing walking energy cost was found (p = 0.059, largest difference: 0.14 J/kg/m). The AFO stiffness that reduced energy cost the most varied between persons. The difference in energy cost between the least and most efficient AFO stiffness was on average 10.7%. Regarding gait biomechanics, increasing AFO stiffness significantly decreased maximal ankle dorsiflexion angle (− 1.1 ± 0.1 degrees per 1 Nm/degree, p < 0.001) and peak ankle power (− 0.09 ± 0.01 W/kg, p < 0.001). The reduction in minimal knee angle (− 0.3 ± 0.1 degrees, p = 0.034), and increment in external knee extension moment in stance (− 0.01 ± 0.01 Nm/kg, p = 0.016) were small, although all stiffness’ substantially affected knee angle and knee moment compared to shoes only. No effect of stiffness on AFO generated power was found (p = 0.900). The optimal efficient DLS-AFO stiffness varied largely between persons with non-spastic calf muscle weakness. Results indicate this is caused by an individual trade-off between ankle angle and ankle power affected differently by AFO stiffness. We therefore recommend that the AFO stiffness should be individually optimized to best improve gait. Nederlands Trial Register 5170. Registration date: May 7th 2015. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5170

    更新日期:2019-11-28
  • Learning and transfer of complex motor skills in virtual reality: a perspective review
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-18
    Danielle E. Levac; Meghan E. Huber; Dagmar Sternad

    The development of more effective rehabilitative interventions requires a better understanding of how humans learn and transfer motor skills in real-world contexts. Presently, clinicians design interventions to promote skill learning by relying on evidence from experimental paradigms involving simple tasks, such as reaching for a target. While these tasks facilitate stringent hypothesis testing in laboratory settings, the results may not shed light on performance of more complex real-world skills. In this perspective, we argue that virtual environments (VEs) are flexible, novel platforms to evaluate learning and transfer of complex skills without sacrificing experimental control. Specifically, VEs use models of real-life tasks that afford controlled experimental manipulations to measure and guide behavior with a precision that exceeds the capabilities of physical environments. This paper reviews recent insights from VE paradigms on motor learning into two pressing challenges in rehabilitation research: 1) Which training strategies in VEs promote complex skill learning? and 2) How can transfer of learning from virtual to real environments be enhanced? Defining complex skills by having nested redundancies, we outline findings on the role of movement variability in complex skill acquisition and discuss how VEs can provide novel forms of guidance to enhance learning. We review the evidence for skill transfer from virtual to real environments in typically developing and neurologically-impaired populations with a view to understanding how differences in sensory-motor information may influence learning strategies. We provide actionable suggestions for practicing clinicians and outline broad areas where more research is required. Finally, we conclude that VEs present distinctive experimental platforms to understand complex skill learning that should enable transfer from therapeutic practice to the real world.

    更新日期:2019-11-28
  • Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-24
    Mina Park; Myoung-Hwan Ko; Sang-Wook Oh; Ji-Yeong Lee; Yeajin Ham; Hyoseok Yi; Younggeun Choi; Dokyeong Ha; Joon-Ho Shin

    Virtual reality (VR)-based rehabilitation is considered a beneficial therapeutic option for stroke rehabilitation. This pilot study assessed the clinical feasibility of a newly developed VR-based planar motion exercise apparatus (Rapael Smart Board™ [SB]; Neofect Inc., Yong-in, Korea) for the upper extremities as an intervention and assessment tool. This single-blinded, randomized, controlled trial included 26 stroke survivors. Patients were randomized to the intervention group (SB group) or control (CON) group. During one session, patients in the SB group completed 30 min of intervention using the SB and an additional 30 min of standard occupational therapy; however, those in the CON group completed the same amount of conventional occupational therapy. The primary outcome was the change in the Fugl–Meyer assessment (FMA) score, and the secondary outcomes were changes in the Wolf motor function test (WMFT) score, active range of motion (AROM) of the proximal upper extremities, modified Barthel index (MBI), and Stroke Impact Scale (SIS) score. A within-group analysis was performed using the Wilcoxon signed-rank test, and a between-group analysis was performed using a repeated measures analysis of covariance. Additionally, correlations between SB assessment data and clinical scale scores were analyzed by repeated measures correlation. Assessments were performed three times (baseline, immediately after intervention, and 1 month after intervention). All functional outcome measures (FMA, WMFT, and MBI) showed significant improvements (p < 0.05) in the SB and CON groups. AROM showed greater improvements in the SB group, especially regarding shoulder abduction and internal rotation. There was a significant effect of time × group interactions for the SIS overall score (p = 0.038). Some parameters of the SB assessment, such as the explored area ratio, mean reaching distance, and smoothness, were significantly associated with clinical upper limb functional measurements with moderate correlation coefficients. The SB was available for improving upper limb function and health-related quality of life and useful for assessing upper limb ability in stroke survivors. The study was registered with the clinical research information service (CRIS) ( KCT0003783 , registered 15 April 2019; retrospectively registered).

    更新日期:2019-11-28
  • Cervical trans-spinal direct current stimulation: a modelling-experimental approach
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-25
    Sofia Rita Fernandes; Mariana Pereira; Ricardo Salvador; Pedro Cavaleiro Miranda; Mamede de Carvalho

    Trans-spinal direct current stimulation (tsDCS) is a non-invasive technique with promising neuromodulatory effects on spinal cord (SC) circuitry. Computational studies are essential to guide effective tsDCS protocols for specific clinical applications. This study aims to combine modelling and experimental studies to determine the electrode montage that maximizes electric field (E-field) delivery during cervical tsDCS. Current and E-field distributions in the cervical SC were predicted for four electrode montages in a human realistic model using computational methods. A double-blind crossover and randomized exploratory study was conducted using the montage that maximized E-field delivery. tsDCS was applied for 15 min in 10 healthy subjects (anodal, cathodal, sham, with polarity assigned to the cervical electrode), with a current intensity of 2.5 mA, resulting in a total current charge density delivery of 90 mC/cm2. Upper limb motor (transcranial magnetic stimulation) and sensory evoked potentials (MEP, SEP), M-waves, H-reflex and F-wave responses were analysed. Central and peripheral conduction times were determined using MEP. Repeated measures ANOVA and Friedman test were used for statistical analysis (significance level α = 0.05). All montages presented higher current density and E-field magnitudes in the cervical SC region between the electrodes. However, electrodes at C3 and T3 spinous processes (C3-T3) originated the highest E-field magnitude (0.50 V/m). Using C3-T3 montage we observed significant changes in N9 SEP latency (p = 0.006), but significance did not persist in pairwise comparisons (sham-anodal: p = 0.022; sham-cathodal: p = 0.619; anodal-cathodal: p = 0.018; α = 0.017, Bonferroni corrected). MEP latency and central motor conduction time (CMCT) modified significantly on stimulation (p = 0.007 and p = 0.015, respectively). In addition, pairwise comparisons confirmed significant differences between sham and cathodal conditions after Bonferroni correction for MEP latency (sham-anodal: p = 0.868; sham-cathodal: p = 0.011; anodal-cathodal: p = 0.023) and CMCT (sham-anodal: p = 0.929; sham-cathodal: p = 0.010; anodal-cathodal: p = 0.034). Computational models predicted higher E-field delivery in the cervical SC for the C3-T3 montage. Polarity-dependent effects in motor responses were reported using this montage consistent with spinal motor modulation. tsDCS experimental protocol designs should be guided by modelling studies to improve effectiveness.

    更新日期:2019-11-28
  • Integrated robotics platform with haptic control differentiates subjects with Parkinson’s disease from controls and quantifies the motor effects of levodopa
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-26
    Pauline Gaprielian; Stephen H. Scott; Catherine Lowrey; Stuart Reid; Giovanna Pari; Ron Levy

    The use of integrated robotic technology to quantify the spectrum of motor symptoms of Parkinson’s Disease (PD) has the potential to facilitate objective assessment that is independent of clinical ratings. The purpose of this study is to use the KINARM exoskeleton robot to (1) differentiate subjects with PD from controls and (2) quantify the motor effects of dopamine replacement therapies (DRTs). Twenty-six subjects (Hoehn and Yahr mean 2.2; disease duration 0.5 to 15 years) were evaluated OFF (after > 12 h of their last dose) and ON their DRTs with the Unified Parkinson’s Disease Rating Scale (UPDRS) and the KINARM exoskeleton robot. Bilateral upper extremity bradykinesia, rigidity, and postural stability were quantified using a repetitive movement task to hit moving targets, a passive stretch task, and a torque unloading task, respectively. Performance was compared against healthy age-matched controls. Mean hand speed was 41% slower and 25% fewer targets were hit in subjects with PD OFF medication than in controls. Receiver operating characteristic (ROC) area for hand speed was 0.94. The torque required to stop elbow movement during the passive stretch task was 34% lower in PD subjects versus controls and resulted in an ROC area of 0.91. The torque unloading task showed a maximum displacement that was 29% shorter than controls and had an ROC area of 0.71. Laterality indices for speed and end total torque were correlated to the most affected side. Hand speed laterality index had an ROC area of 0.80 against healthy controls. DRT administration resulted in a significant reduction in a cumulative score of parameter Z-scores (a measure of global performance compared to healthy controls) in subjects with clinically effective levodopa doses. The cumulative score was also correlated to UPDRS scores for the effect of DRT. Robotic assessment is able to objectively quantify parkinsonian symptoms of bradykinesia, rigidity and postural stability similar to the UPDRS. This integrated testing platform has the potential to aid clinicians in the management of PD and help assess the effects of novel therapies.

    更新日期:2019-11-28
  • Detection of body postures and movements in ambulatory adults with cerebral palsy: a novel and valid measure of physical behaviour
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-29
    Everett A. Claridge; Rita J. G. van den Berg-Emons; Herwin L. D. Horemans; Wilma M. A. van der Slot; Nick van der Stam; Ada Tang; Brian W. Timmons; Jan Willem Gorter; Johannes B. J. Bussmann

    Accurate measurement of physical behaviour is paramount to better understand lifestyle, health, and functioning, particularly in adults with physical disability as they may be at higher risk of sedentary lifestyle and subsequent negative health consequences. This study aimed: 1) to evaluate the criterion validity of a novel and clinically applicable activity monitor (AM, Activ8), in the detection of body postures and movements in adults with spastic cerebral palsy (CP); and 2) to evaluate the extent that the AM’s positioning affects validity. In this cross-sectional study, 14 ambulatory adults with CP [9 men; mean (SD) age, 35.4 (13.1) years] performed standardized activities while wearing three Activ8 monitors - frontolateral thigh (primary position), frontal thigh, and pant pocket - and being video recorded (criterion measure). AM activity output was compared to synchronized video recordings. Absolute (seconds) and relative [(video time–AM time)/mean time, %] time differences between methods were calculated. Relative time differences of < 10% were indicative of good validity. Comparison of AM attachment positions was completed using Spearman Rho correlation coefficients and Meng’s tests. Criterion validity of the AM (frontolateral thigh) was good (average relative time differences: 0.25% for sitting, 4.69% for standing, 2.46% for walking, 1.96% for upright activity, 3.19% for cycling), except for running (34.6%). Spearman Rho correlation coefficients were greater between video/frontolateral thigh position than video/frontal thigh position and video/pant pocket position for body posture and movement categories sitting, standing, walking, and upright activity (p < 0.01 for all). The AM, positioned on the frontolateral thigh, demonstrated good criterion validity in ambulatory adults with CP. Though the Activ8 offers potential as an objective measure of physical activity, appropriate positioning is paramount for valid measurement.

    更新日期:2019-11-28
  • Neural stimulation systems for the control of refractory epilepsy: a review
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-29
    Matthew D. Bigelow; Abbas Z. Kouzani

    Epilepsy affects nearly 1% of the world’s population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.

    更新日期:2019-11-28
  • Harnessing smartphone technology and three dimensional printing to create a mobile rehabilitation system, mRehab: assessment of usability and consistency in measurement
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-29
    Sutanuka Bhattacharjya; Matthew C. Stafford; Lora Anne Cavuoto; Zhuolin Yang; Chen Song; Heamchand Subryan; Wenyao Xu; Jeanne Langan

    Residual sensorimotor deficits are common following stroke. While it has been demonstrated that targeted practice can result in improvements in functional mobility years post stroke, there is little to support rehabilitation across the lifespan. The use of technology in home rehabilitation provides an avenue to better support self-management of recovery across the lifespan. We developed a novel mobile technology, capable of quantifying quality of movement with the purpose of providing feedback to augment rehabilitation and improve functional mobility. This mobile rehabilitation system, mRehab, consists of a smartphone embedded in three dimensional printed items representing functional objects found in the home. mRehab allows individuals with motor deficits to practice activities of daily living (ADLs) and receive feedback on their performance. The aim of this study was to assess the usability and consistency of measurement of the mRehab system. To assess usability of the mRehab system, four older adults and four individuals with stroke were recruited to use the system, and complete surveys to discuss their opinions on the user interface of the smartphone app and the design of the 3D printed items. To assess the consistency of measurement by the mRehab system, 12 young adults were recruited and performed mRehab ADLs in three lab sessions within 1 week. Young adults were chosen for their expected high level of consistency in motor performance. Usability ratings from older adults and individuals with stroke led us to modify the design of the 3D printed items and improve the clarity of the mRehab app. The modified mRehab system was assessed for consistency of measurement and six ADLs resulted in coefficient of variation (CV) below 10%. This is a commonly used CV goal for consistency. Two ADLs ranged between 10 and 15% CV. Only two ADLs demonstrated high CV. mRehab is a client-centered technology designed for home rehabilitation that consistently measures performance. Development of the mRehab system provides a support for individuals working on recovering functional upper limb mobility that they can use across their lifespan.

    更新日期:2019-11-28
  • Home used, patient self-managed, brain-computer interface for the management of central neuropathic pain post spinal cord injury: usability study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-30
    M. K. H. Al-Taleb; M. Purcell; M. Fraser; N. Petric-Gray; A. Vuckovic

    Central Neuropathic Pain (CNP) is a frequent chronic condition in people with spinal cord injury (SCI). Previously, we showed that using laboratory brain-computer interface (BCI) technology for neurofeedback (NFB) training, it was possible to reduce CNP in people with SCI. In this study, we show results of patient self-managed treatment in their homes with a BCI-NFB using a consumer EEG device. Users: People with chronic SCI (17 M, 3 F, 50.6 ± 14.1 years old), and CNP ≥4 on a Visual Numerical Scale. Location: Laboratory training (up to 4 sessions) followed by home self-managed NFB. User Activity: Upregulating the EEG alpha band power by 10% above a threshold and at the same time downregulating the theta and upper beta (20-30 Hz) band power by 10% at electrode location C4. Technology: A consumer grade multichannel EEG headset (Epoch, Emotiv, USA), a tablet computer and custom made NFB software. Evaluation: EEG analysis, before and after NFB assessment, interviews and questionnaires. Effectiveness: Out of 20 initially assessed participants, 15 took part in the study. Participants used the system for 6.9 ± 5.5 (median 4) weeks. Twelve participants regulated their brainwaves in a frequency specific manner and were most successful upregulating the alpha band power. However they typically upregulated power around their individual alpha peak (7.6 ± 0.8 Hz) that was lower than in people without CNP. The reduction in pain experienced was statistically significant in 12 and clinically significant (greater than 30%) in 8 participants. Efficiency: The donning was between 5 and 15 min, and approximately 10–20% of EEG data recorded in the home environment was noise. Participants were mildly stressed when self-administering NFB at home (2.4 on a scale 1–10). User satisfaction: Nine participants who completed the final assessment reported a high level of satisfaction (QUESQ, 4.5 ± 0.8), naming effectiveness, ease of use and comfort as main priorities. The main factors influencing frequency of NFB training were: health related issues, free time and pain intensity. Portable NFB is a feasible solution for home-based self-managed treatment of CNP. Compared to pharmacological treatments, NFB has less side effects and provides users with active control over pain. GN15NE124 , Registered 9th June 2016.

    更新日期:2019-11-28
  • Vision does not always help stroke survivors compensate for impaired limb position sense
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-30
    Troy M. Herter; Stephen H. Scott; Sean P. Dukelow

    Position sense is commonly impaired after stroke. Traditional rehabilitation methods instruct patients to visualize their limbs to compensate for impaired position sense. Our goal was to evaluate how the use of vision influences impaired position sense. We examined 177 stroke survivors, an average of 12.7 days (+/− 10 days (SD)) post-stroke, and 133 neurologically-intact controls with a robotic assessment of position sense. The robot positioned one limb (affected) and subjects attempted to mirror-match the position using the opposite limb (unaffected). Subjects completed the test without, then with vision of their limbs. We examined three measures of position sense: variability (Var), contraction/expansion (C/E) and systematic shift (Shift). We classified stroke survivors as having full compensation if they performed the robotic task abnormally without vision but corrected performance within the range of normal with vision. Stroke survivors were deemed to have partial compensation if they performed the task outside the range of normal without and with vision, but improved significantly with vision. Those with absent compensation performed the task abnormally in both conditions and did not improve with vision. Many stroke survivors demonstrated impaired position sense with vision occluded [Var: 116 (66%), C/E: 91 (51%), Shift: 52 (29%)]. Of those stroke survivors with impaired position sense, some exhibited full compensation with vision [Var: 23 (20%), C/E: 42 (46%), Shift: 32 (62%)], others showed partial compensation [Var: 37 (32%), C/E: 8 (9%), Shift: 3 (6%)] and many displayed absent compensation (Var: 56 (48%), C/E: 41 (45%), Shift: 17 (33%)]. Stroke survivors with an affected left arm, visuospatial neglect and/or visual field defects were less likely to compensate for impaired position sense using vision. Our results indicate that vision does not help many stroke survivors compensate for impaired position sense, at least within the current paradigm. This contrasts with historical reports that vision helps compensate for proprioceptive loss following neurologic injuries.

    更新日期:2019-11-28
  • JNER at 15 years: analysis of the state of neuroengineering and rehabilitation
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-10-30
    David J. Reinkensmeyer

    On JNER’s 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms – wearable devices, the Cybathlon competition, and human augmentation studies – indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation.

    更新日期:2019-11-28
  • Model for prompt and effective classification of motion recovery after stroke considering muscle strength and coordination factors
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-04
    Álvaro Costa-García; Ken-ichi Ozaki; Hiroshi Yamasaki; Matti Itkonen; Fady Alnajjar S.; Shotaro Okajima; Masanori Tanimoto; Izumi Kondo; Shingo Shimoda

    Muscle synergies are now widely discussed as a method for evaluating the existence of redundant neural networks that can be activated to enhance stroke rehabilitation. However, this approach was initially conceived to study muscle coordination during learned motions in healthy individuals. After brain damage, there are several neural adaptations that contribute to the recovery of motor strength, with muscle coordination being one of them. In this study, a model is proposed that assesses motion based on surface electromyography (sEMG) according to two main factors closely related to the neural adaptations underlying motor recovery: (1) the correct coordination of the muscles involved in a particular motion and (2) the ability to tune the effective strength of each muscle through muscle fiber contractions. These two factors are hypothesized to be affected differently by brain damage. Therefore, their independent evaluation will play an important role in understanding the origin of stroke-related motor impairments. The model proposed was validated by analyzing sEMG data from 18 stroke patients with different paralysis levels and 30 healthy subjects. While the factors necessary to describe motion were stable across heathy subjects, there was an increasing disassociation for stroke patients with severe motor impairment. The clear dissociation between the coordination of muscles and the tuning of their strength demonstrates the importance of evaluating these factors in order to choose appropriate rehabilitation therapies. The model described in this research provides an efficient approach to promptly evaluate these factors through the use of two intuitive indexes.

    更新日期:2019-11-28
  • Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-04
    Siqi Cai; Guofeng Li; Xiaoya Zhang; Shuangyuan Huang; Haiqing Zheng; Ke Ma; Longhan Xie

    Compensatory movements are commonly employed by stroke survivors during seated reaching and may have negative effects on their long-term recovery. Detecting compensation is useful for coaching the patient to reduce compensatory trunk movements and improving the motor function of the paretic arm. Sensor-based and camera-based systems have been developed to detect compensatory movements, but they still have some limitations, such as causing object obstructions, requiring complex setups and raising privacy concerns. To overcome these drawbacks, this paper proposes a compensatory movement detection system based on pressure distribution data and is unobtrusive, simple and practical. Machine learning algorithms were applied to classify compensatory movements automatically. Therefore, the purpose of this study was to develop and test a pressure distribution-based system for the automatic detection of compensation movements of stroke survivors using machine learning algorithms. Eight stroke survivors performed three types of reaching tasks (back-and-forth, side-to-side, and up-and-down reaching tasks) with both the healthy side and the affected side. The pressure distribution data were recorded, and five features were extracted for classification. The k-nearest neighbor (k-NN) and support vector machine (SVM) algorithms were applied to detect and categorize the compensatory movements. The surface electromyography (sEMG) signals of nine trunk muscles were acquired to provide a detailed description and explanation of compensatory movements. Cross-validation yielded high classification accuracies (F1-score>0.95) for both the k-NN and SVM classifiers in detecting compensation movements during all the reaching tasks. In detail, an excellent performance was achieved in discriminating between compensation and noncompensation (NC) movements, with an average F1-score of 0.993. For the multiclass classification of compensatory movement patterns, an average F1-score of 0.981 was achieved in recognizing the NC, trunk lean-forward (TLF), trunk rotation (TR) and shoulder elevation (SE) movements. Good classification performance in detecting and categorizing compensatory movements validated the feasibility of the proposed pressure distribution-based system. Reliable classification accuracy achieved by the machine learning algorithms indicated the potential to monitor compensation movements automatically by using the pressure distribution-based system when stroke survivors perform seated reaching tasks.

    更新日期:2019-11-28
  • Modular motor control of the sound limb in gait of people with trans-femoral amputation
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-06
    Cristiano De Marchis; Simone Ranaldi; Mariano Serrao; Alberto Ranavolo; Francesco Draicchio; Francesco Lacquaniti; Silvia Conforto

    The above-knee amputation of a lower limb is a severe impairment that affects significantly the ability to walk; considering this, a complex adaptation strategy at the neuromuscular level is needed in order to be able to move safely with a prosthetic knee. In literature, it has been demonstrated that muscle activity during walking can be described via the activation of a small set of muscle synergies. The analysis of the composition and the time activation profiles of such synergies have been found to be a valid tool for the description of the motor control schemes in pathological subjects. In this study, we used muscle synergy analysis techniques to characterize the differences in the modular motor control schemes between a population of 14 people with trans-femoral amputation and 12 healthy subjects walking at two different (slow and normal self-selected) speeds. Muscle synergies were extracted from a 12 lower-limb muscles sEMG recording via non-negative matrix factorization. Equivalence of the synergy vectors was quantified by a cross-validation procedure, while differences in terms of time activation coefficients were evaluated through the analysis of the activity in the different gait sub-phases. Four synergies were able to reconstruct the muscle activity in all subjects. The spatial component of the synergy vectors did not change in all the analysed populations, while differences were present in the activity during the sound limb’s stance phase. Main features of people with trans-femoral amputation’s muscle synergy recruitment are a prolonged activation of the module composed of calf muscles and an additional activity of the hamstrings’ module before and after the prosthetic heel strike. Synergy-based results highlight how, although the complexity and the spatial organization of motor control schemes are the same found in healthy subjects, substantial differences are present in the synergies’ recruitment of people with trans femoral amputation. In particular, the most critical task during the gait cycle is the weight transfer from the sound limb to the prosthetic one. Future studies will integrate these results with the dynamics of movement, aiming to a complete neuro-mechanical characterization of people with trans-femoral amputation’s walking strategies that can be used to improve the rehabilitation therapies.

    更新日期:2019-11-28
  • Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: a feasibility study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-06
    Pilar Fernández-González; María Carratalá-Tejada; Esther Monge-Pereira; Susana Collado-Vázquez; Patricia Sánchez-Herrera Baeza; Alicia Cuesta-Gómez; Edwin Daniel Oña-Simbaña; Alberto Jardón-Huete; Francisco Molina-Rueda; Carlos Balaguer-Bernaldo de Quirós; Juan Carlos Miangolarra-Page; Roberto Cano-de la Cuerda

    Non-immersive video games are currently being used as technological rehabilitation tools for individuals with Parkinson’s disease (PD). The aim of this feasibility study was to evaluate the effectiveness of the Leap Motion Controller® (LMC) system used with serious games designed for the upper limb (UL), as well as the levels of satisfaction and compliance among patients in mild-to-moderate stages of the disease. A non-probabilistic sampling of non-consecutive cases was performed. 23 PD patients, in stages II-IV of the Hoehn & Yahr scale, were randomized into two groups: an experimental group (n = 12) who received treatment based on serious games designed by the research team using the LMC system for the UL, and a control group (n = 11) who received a specific intervention for the UL. Grip muscle strength, coordination, speed of movements, fine and gross UL dexterity, as well as satisfaction and compliance, were assessed in both groups pre-treatment and post-treatment. Within the experimental group, significant improvements were observed in all post-treatment assessments, except for Box and Blocks test for the less affected side. Clinical improvements were observed for all assessments in the control group. Statistical intergroup analysis showed significant improvements in coordination, speed of movements and fine motor dexterity scores on the more affected side of patients in the experimental group. The LMC system and the serious games designed may be a feasible rehabilitation tool for the improvement of coordination, speed of movements and fine UL dexterity in PD patients. Further studies are needed to confirm these preliminary findings.

    更新日期:2019-11-28
  • SenseJoy, a pluggable solution for assessing user behavior during powered wheelchair driving tasks
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-06
    Olivier Rabreau; Sylvain Chevallier; Luc Chassagne; Eric Monacelli

    The complex task of Electric Powered Wheelchairs (EPW) prescription relies mainly on personal experience and subjective observations despite standardized processes and protocols. The most informative measurements come from joystick monitoring, but recording direct joystick outputs require to disassemble the joystick. We propose a new solution called “SenseJoy” that is easy to plug on a joystick and is suitable to characterize the driver behavior by estimating the joystick command. SenseJoy is a pluggable system embedded on EPW built with a 3D accelerometer and a 2D gyrometer placed within the joystick and another 3D accelerometer located at the basis of the joystick. Data is sampled at 39 Hz and processed offline. First, SenseJoy sensitivity is assessed on wheelchair driving tasks performed by a group of 8 drivers (31 ± 8 years old, including one driver with left hemiplegia, one with cerebral palsy) in a lab environment. Direct joystick measurements are compared with SenseJoy estimations in different driving exercises. A second group of 5 drivers is recorded in the ecological context of a rehabilitation center (41 ± 10 years old, with two tetraplegic drivers, one tetraplegic driver with cognitive disorder, one driver post-stroke, one driver with right hemiplegia). The measurements from all groups of drivers are evaluated with an unsupervised statistical analysis, to estimate driving profile clusters. The SenseJoy is able to measure the EPW joystick inclination angles with a resolution of 1.31% and 1.23% in backward/forward and left/right directions respectively. A statistical validation ensures that the classical joystick-based indicators are equivalent when acquired with the SenseJoy or with a direct joystick output connection. Using an unsupervised methodology, based on a similarity matrix between subjects, it is possible to characterize the driver profile from real data. SenseJoy is a pluggable system for assessing the joystick controls during EPW driving tasks. This system can be plugged on any EPW equipped with a joystick control interface. We demonstrate that it correctly estimates the performance indicators and it is able to characterize driving profile. The system is suitable and efficient to assist therapists in their recommendation, by providing objective measures with a fast installation process.

    更新日期:2019-11-28
  • An extension of Phase Linearity Measurement for revealing cross frequency coupling among brain areas
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-07
    Pierpaolo Sorrentino; Michele Ambrosanio; Rosaria Rucco; Fabio Baselice

    Brain areas need to coordinate their activity in order to enable complex behavioral responses. Synchronization is one of the mechanisms neural ensembles use to communicate. While synchronization between signals operating at similar frequencies is fairly straightforward, the estimation of synchronization occurring between different frequencies of oscillations has proven harder to capture. One specifically hard challenge is to estimate cross-frequency synchronization between broadband signals when no a priori hypothesis is available about the frequencies involved in the synchronization. In the present manuscript, we expand upon the phase linearity measurement, an iso-frequency synchronization metrics previously developed by our group, in order to provide a conceptually similar approach able to detect the presence of cross-frequency synchronization between any components of the analyzed broadband signals. The methodology has been tested on both synthetic and real data. We first exploited Gaussian process realizations in order to explore the properties of our new metrics in a synthetic case study. Subsequently, we analyze real source-reconstructed data acquired by a magnetoencephalographic system from healthy controls in a clinical setting to study the performance of our metrics in a realistic environment. In the present paper we provide an evolution of the PLM methodology able to reveal the presence of cross-frequency synchronization between broadband data.

    更新日期:2019-11-28
  • Offline effects of transcranial direct current stimulation on reaction times of lower extremity movements in people after stroke: a pilot cross-over study
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-07
    Milou J. M. Coppens; Wouter H. A. Staring; Jorik Nonnekes; Alexander C. H. Geurts; Vivian Weerdesteyn

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has shown promise for rehabilitation after stroke. Ipsilesional anodal tDCS (a-tDCS) over the motor cortex increases corticospinal excitability, while contralesional cathodal tDCS (c-tDCS) restores interhemispheric balance, both resulting in offline improved reaction times of delayed voluntary upper-extremity movements. We aimed to investigate whether tDCS would also have a beneficial effect on delayed leg motor responses after stroke. In addition, we identified whether variability in tDCS effects was associated with the level of leg motor function. In a cross-over design, 13 people with chronic stroke completed three 15-min sessions of anodal, cathodal and sham stimulation over the primary motor cortex on separate days in an order balanced across participants. Directly after stimulation, participants performed a comprehensive set of lower-extremity tasks involving the paretic tibialis anterior (TA): voluntary ankle-dorsiflexion, gait initiation, and backward balance perturbation. For all tasks, TA onset latencies were determined. In addition, leg motor function was determined by the Fugl-Meyer Assessment – leg score (FMA-L). Repeated measures ANOVA was used to reveal tDCS effects on reaction times. Pearson correlation coefficients were used to establish the relation between tDCS effects and leg motor function. For all tasks, TA reaction times did not differ across tDCS sessions. For gait initiation and backward balance perturbation, differences between sham and active stimulation (a-tDCS or c-tDCS) did not correlate with leg motor function. Yet, for ankle dorsiflexion, individual reaction time differences between c-tDCS and sham were strongly associated with FMA-L, with more severely impaired patients exhibiting slower paretic reaction times following c-tDCS. We found no evidence for offline tDCS-induced benefits. Interestingly, we found that c-tDCS may have unfavorable effects on voluntary control of the paretic leg in severely impaired patients with chronic stroke. This finding points at potential vicarious control from the unaffected hemisphere to the paretic leg. The absence of tDCS-induced effects on gait and balance, two functionally relevant tasks, shows that such motor behavior is inadequately stimulated by currently used tDCS applications. The study is registered in the Netherlands Trial Register (NL5684; April 13th, 2016).

    更新日期:2019-11-28
  • Interaction between position sense and force control in bimanual tasks
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-08
    Giulia Ballardini; Valentina Ponassi; Elisa Galofaro; Giorgio Carlini; Francesca Marini; Laura Pellegrino; Pietro Morasso; Maura Casadio

    Several daily living activities require people to coordinate the motion and the force produced by both arms, using their position sense and sense of effort. However, to date, the interaction in bimanual tasks has not been extensively investigated. We focused on bimanual tasks where subjects were required: The arm motions and forces required for accomplishing these tasks were in the vertical direction. We enrolled a healthy population of 20 subjects for Experiment 1 and 25 for Experiment 2. Our primary outcome was the systematic difference between the two hands at the end of each trial in terms of position for Experiment 1 and force for Experiment 2. In both experiments using repeated measure ANOVA we evaluated the effect of each specific condition, namely loading in the former case and hand configuration in the latter. In the first experiment, the difference between the hands’ positions was greater when they were concurrently loaded with different weights. Conversely, in the second experiment, when subjects were asked to exert equal forces with both arms, the systematic difference between left and right force was not influenced by symmetric or asymmetric arm configurations, but by the position of the left hand, regardless of the right hand position. The performance was better when the left hand was in the higher position. The experiments report the reciprocal interaction between position sense and sense of effort inbimanual tasks performed by healthy subjects. Apart for the intrinsic interest for a better understanding of basic sensorimotor processes, the results are also relevant to clinical applications, for defining functional evaluation and rehabilitative protocols for people with neurological diseases or conditions that impair the ability to sense and control concurrently position and force.

    更新日期:2019-11-28
  • Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-13
    Matthieu Guemann; Sandra Bouvier; Christophe Halgand; Florent Paclet; Leo Borrini; Damien Ricard; Eric Lapeyre; Daniel Cattaert; Aymar de Rugy

    Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated. We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found. Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors’ activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement. These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.

    更新日期:2019-11-28
  • Correction to: Does transcranial direct current stimulation improve functional locomotion in people with Parkinson’s disease? A systematic review and meta-analysis
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-14
    Hyo Keun Lee; Se Ji Ahn; Yang Mi Shin; Nyeonju Kang; James H. Cauraugh

    In the original article [1], we mentioned that some study characteristics of the article by Dagan and colleagues [2] were unavailable.

    更新日期:2019-11-28
  • Improving bimanual interaction with a prosthesis using semi-autonomous control
    J. Neuroeng. Rehabil. (IF 3.582) Pub Date : 2019-11-14
    Robin Volkmar; Strahinja Dosen; Jose Gonzalez-Vargas; Marcus Baum; Marko Markovic

    The loss of a hand is a traumatic experience that substantially compromises an individual’s capability to interact with his environment. The myoelectric prostheses are state-of-the-art (SoA) functional replacements for the lost limbs. Their overall mechanical design and dexterity have improved over the last few decades, but the users have not been able to fully exploit these advances because of the lack of effective and intuitive control. Bimanual tasks are particularly challenging for an amputee since prosthesis control needs to be coordinated with the movement of the sound limb. So far, the bimanual activities have been often neglected by the prosthetic research community. We present a novel method to prosthesis control, which uses a semi-autonomous approach in order to simplify bimanual interactions. The approach supplements the commercial SoA two-channel myoelectric control with two additional sensors. Two inertial measurement units were attached to the prosthesis and the sound hand to detect the movement of both limbs. Once a bimanual interaction is detected, the system mimics the coordination strategies of able-bodied subjects to automatically adjust the prosthesis wrist rotation (pronation, supination) and grip type (lateral, palmar) to assist the sound hand during a bimanual task. The system has been evaluated in eight able-bodied subjects performing functional uni- and bi-manual tasks using the novel method and SoA two-channel myocontrol. The outcome measures were time to accomplish the task, semi-autonomous system misclassification rate, subjective rating of intuitiveness, and perceived workload (NASA TLX). The results demonstrated that the novel control interface substantially outperformed the SoA myoelectric control. While using the semi-autonomous control the time to accomplish the task and the perceived workload decreased for 25 and 27%, respectively, while the subjects rated the system as more intuitive then SoA myocontrol. The novel system uses minimal additional hardware (two inertial sensors) and simple processing and it is therefore convenient for practical implementation. By using the proposed control scheme, the prosthesis assists the user’s sound hand in performing bimanual interactions while decreasing cognitive burden.

    更新日期:2019-11-28
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug