当前期刊: Journal of Cardiovascular Magnetic Resonance Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Imaging of the pulmonary vasculature in congenital heart disease without gadolinium contrast: Intraindividual comparison of a novel Compressed SENSE accelerated 3D modified REACT with 4D contrast-enhanced magnetic resonance angiography
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-23
    Lenhard Pennig; Anton Wagner; Kilian Weiss; Simon Lennartz; Jan-Peter Grunz; David Maintz; Kai Roman Laukamp; Tilman Hickethier; Claas Philip Naehle; Alexander Christian Bunck; Jonas Doerner

    Patients with Congenital heart disease (CHD) require repetitive imaging of the pulmonary vasculature throughout their life. In this study, we compared a novel Compressed SENSE accelerated (factor 9) electrocardiogram (ECG)- and respiratory-triggered 3D modified Relaxation-Enhanced Angiography without Contrast and Triggering (modified REACT-non-contrast-enhanced magnetic resonance angiography (modified REACT-non-CE-MRA)) with standard non-ECG-triggered time-resolved 4D CE-MRA for imaging of the pulmonary arteries and veins in patients with CHD. This retrospective analysis of 25 patients (June 2018–April 2019) with known or suspected CHD was independently conducted by two radiologists executing measurements on modified REACT-non-CE-MRA and 4D CE-MRA on seven dedicated points (inner edge): Main pulmonary artery (MPA), right and left pulmonary artery, right superior and inferior pulmonary vein, left superior (LSPV) and inferior pulmonary vein. Image quality for arteries and veins was evaluated on a four-point scale in consensus. Twenty-three of the 25 included patients presented a CHD. There was a high interobserver agreement for both methods of imaging at the pulmonary arteries (ICC ≥ 0.96); at the pulmonary veins, modified REACT-non-CE-MRA showed a slightly higher agreement, pronounced at LSPV (ICC 0.946 vs. 0.895). Measurements in 4D CE-MRA showed higher diameter values compared to modified REACT-non-CE-MRA, at the pulmonary arteries reaching significant difference (e.g. MPA: mean 0.408 mm, p = 0.002). Modified REACT-non-CE-MRA (average acquisition time 07:01 ± 02:44 min) showed significant better image quality than 4D CE-MRA at the pulmonary arteries (3.84 vs. 3.32, p < 0.001) and veins (3.32 vs. 2.72, p = 0.015). Compressed SENSE accelerated (factor 9) ECG- and respiratory-triggered 3D modified REACT-non-CE-MRA allows for reliable and fast imaging of the pulmonary arteries and veins with higher image quality and slightly higher interobserver agreement than 4D CE-MRA without contrast agent and associated disadvantages. Therefore, it represents a clinically suitable technique for patients requiring repetitive imaging of the pulmonary vasculature, e.g. patients with CHD.

    更新日期:2020-01-23
  • Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: Normal behavior and validation in patients with amyloidosis
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-20
    Riccardo Kranzusch; Fabian aus dem Siepen; Stephanie Wiesemann; Leonora Zange; Sarah Jeuthe; Tiago Ferreira da Silva; Titus Kuehne; Burkert Pieske; Christoph Tillmanns; Matthias G. Friedrich; Jeanette Schulz-Menger; Daniel R. Messroghli

    T1 mapping using modified Look-Locker inversion recovery (MOLLI) provides quantitative information on myocardial tissue composition. T1 results differ between sites due to variations in hardware and software equipment, limiting the comparability of results. The aim was to test if Z-scores can be used to compare the results of MOLLI T1 mapping from different cardiovascular magnetic resonance (CMR) platforms. First, healthy subjects (n = 15) underwent 11 combinations of native short-axis T1 mapping (four CMR systems from two manufacturers at 1.5 T and 3 T, three MOLLI schemes). Mean and standard deviation (SD) of septal myocardial T1 were derived for each combination. T1 maps were transformed into Z-score maps based on mean and SD values using a prototype post-processing module. Second, Z-score mapping was applied to a validation sample of patients with cardiac amyloidosis at 1.5 T (n = 25) or 3 T (n = 13). In conventional T1 analysis, results were confounded by variations in field strength, MOLLI scheme, and manufacturer-specific system characteristics. Z-score-based analysis yielded consistent results without significant differences between any two of the combinations in part 1 of the study. In the validation sample, Z-score mapping differentiated between patients with cardiac amyloidosis and healthy subjects with the same diagnostic accuracy as standard T1 analysis regardless of field strength. T1 analysis based on Z-score mapping provides consistent results without significant differences due to field strengths, CMR systems, or MOLLI variants, and detects cardiac amyloidosis with the same diagnostic accuracy as conventional T1 analysis. Z-score mapping provides a means to compare native T1 results acquired with MOLLI across different CMR platforms.

    更新日期:2020-01-21
  • Highly accelerated 4D flow cardiovascular magnetic resonance using a pseudo-spiral Cartesian acquisition and compressed sensing reconstruction for carotid flow and wall shear stress
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-20
    Eva S. Peper; Lukas M. Gottwald; Qinwei Zhang; Bram F. Coolen; Pim van Ooij; Aart J. Nederveen; Gustav J. Strijkers

    4D flow cardiovascular magnetic resonance (CMR) enables visualization of complex blood flow and quantification of biomarkers for vessel wall disease, such as wall shear stress (WSS). Because of the inherently long acquisition times, many efforts have been made to accelerate 4D flow acquisitions, however, no detailed analysis has been made on the effect of Cartesian compressed sensing accelerated 4D flow CMR at different undersampling rates on quantitative flow parameters and WSS. We implemented a retrospectively triggered 4D flow CMR acquisition with pseudo-spiral Cartesian k-space filling, which results in incoherent undersampling of k-t space. Additionally, this strategy leads to small jumps in k-space thereby minimizing eddy current related artifacts. The pseudo-spirals were rotated in a tiny golden-angle fashion, which provides optimal incoherence and a variable density sampling pattern with a fully sampled center. We evaluated this 4D flow protocol in a carotid flow phantom with accelerations of R = 2–20, as well as in carotids of 7 healthy subjects (27 ± 2 years, 4 male) for R = 10–30. Fully sampled 2D flow CMR served as a flow reference. Arteries were manually segmented and registered to enable voxel-wise comparisons of both velocity and WSS using a Bland-Altman analysis. Magnitude images, velocity images, and pathline reconstructions from phantom and in vivo scans were similar for all accelerations. For the phantom data, mean differences at peak systole for the entire vessel volume in comparison to R = 2 ranged from − 2.3 to − 5.3% (WSS) and − 2.4 to − 2.2% (velocity) for acceleration factors R = 4–20. For the in vivo data, mean differences for the entire vessel volume at peak systole in comparison to R = 10 were − 9.9, − 13.4, and − 16.9% (WSS) and − 8.4, − 10.8, and − 14.0% (velocity), for R = 20, 25, and 30, respectively. Compared to single slice 2D flow CMR acquisitions, peak systolic flow rates of the phantom showed no differences, whereas peak systolic flow rates in the carotid artery in vivo became increasingly underestimated with increasing acceleration. Acquisition of 4D flow CMR of the carotid arteries can be highly accelerated by pseudo-spiral k-space sampling and compressed sensing reconstruction, with consistent data quality facilitating velocity pathline reconstructions, as well as quantitative flow rate and WSS estimations. At an acceleration factor of R = 20 the underestimation of peak velocity and peak WSS was acceptable (< 10%) in comparison to an R = 10 accelerated 4D flow CMR reference scan. Peak flow rates were underestimated in comparison with 2D flow CMR and decreased systematically with higher acceleration factors.

    更新日期:2020-01-21
  • Three-dimensional assessment of coronary high-intensity plaques with T1-weighted cardiovascular magnetic resonance imaging to predict periprocedural myocardial injury after elective percutaneous coronary intervention
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-16
    Hayato Hosoda; Yasuhide Asaumi; Teruo Noguchi; Yoshiaki Morita; Yu Kataoka; Fumiyuki Otsuka; Kazuhiro Nakao; Masashi Fujino; Toshiyuki Nagai; Michikazu Nakai; Kunihiro Nishimura; Atsushi Kono; Yoshiaki Komori; Tomoya Hoshi; Akira Sato; Tomohiro Kawasaki; Chisato Izumi; Kengo Kusano; Tetsuya Fukuda; Satoshi Yasuda

    Periprocedural myocardial injury (pMI) is a common complication of elective percutaneous coronary intervention (PCI) that reduces some of the beneficial effects of coronary revascularization and impacts the risk of cardiovascular events. We developed a 3-dimensional volumetric cardiovascular magnetic resonance (CMR) method to evaluate coronary high intensity plaques and investigated their association with pMI after elective PCI. Between October 2012 and October 2016, 141 patients with stable coronary artery disease underwent T1-weighted CMR imaging before PCI. A conventional 2-dimensional CMR plaque-to-myocardial signal intensity ratio (2D-PMR) and the newly developed 3-dimensional integral of PMR (3Di-PMR) were measured. 3Di-PMR was determined as the sum of PMRs above a threshold of > 1.0 for voxels in a target plaque. pMI was defined as high-sensitivity cardiac troponin T > 0.07 ng/mL. pMI following PCI was observed in 46 patients (33%). 3Di-PMR was significantly higher in patients with pMI than those without pMI. The optimal 3Di-PMR cutoff value for predicting pMI was 51 PMR*mm3 and the area under the receiver operating characteristic curve (0.753) was significantly greater than that for 2D-PMR (0.683, P = 0.015). 3Di-PMR was positively correlated with lipid volume (r = 0.449, P < 0.001) based on intravascular ultrasound. Stepwise multivariable analysis showed that 3Di-PMR ≥ 51 PMR*mm3 and the presence of a side branch at the PCI target lesion site were significant predictors of pMI (odds ratio [OR], 11.9; 95% confidence interval [CI], 4.6–30.4, P < 0.001; and OR, 4.14; 95% CI, 1.6–11.1, P = 0.005, respectively). 3Di-PMR coronary assessment facilitates risk stratification for pMI after elective PCI. retrospectively registered.

    更新日期:2020-01-16
  • Co-existing cerebrovascular atherosclerosis predicts subsequent vascular event: a multi-contrast cardiovascular magnetic resonance imaging study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-13
    Jin Li; Dongye Li; Dandan Yang; Ran Huo; Xiaoyi Chen; Yilan Xu; Wei Dai; Dan Zhou; Xihai Zhao

    It is still unknown that whether co-existing intracranial stenosis and extracranial carotid vulnerable plaques have higher predictive value for subsequent vascular events. This study aimed to determine the relationship between co-existing extracranial carotid vulnerable plaques and intracranial stenosis and subsequent vascular events utilizing cardiovascular magnetic resonance (CMR) vessel wall imaging. Patients who had recent cerebrovascular symptoms in anterior circulation (< 2 weeks) were consecutively enrolled and underwent multi-contrast CMR vessel wall imaging for extracranial carotid arteries and 3D time-of flight CMR angiography for intracranial arteries at baseline. After baseline examination, all patients were followed-up for at least 1 year to determined recurrence of vascular events. The co-existing cerebrovascular atherosclerosis was defined as presence of both intracranial artery stenosis and at least one the following measures of extracranial artery atherosclerosis: plaque, calcification, lipid-rich necrotic core (LRNC), or intraplaque hemorrhage. Univariate and multivariate Cox regressions were used to calculate the hazard ratio (HR) and corresponding 95% confidence interval (CI) of co-existing plaques in predicting subsequent vascular events. In total, 150 patients (mean age: 61.8 ± 11.9 years; 109 males) were recruited. During the median follow-up time of 12.1 months, 41 (27.3%) patients experienced vascular events. Co-existing intracranial artery stenosis and extracranial carotid plaque (HR, 3.57; 95% CI, 1.63–7.82; P = 0.001) and co-existing intracranial artery stenosis and extracranial carotid LRNC (HR, 4.47; 95% CI, 2.15–9.27; P < 0.001) were significantly associated with subsequent vascular events, respectively. After adjusted for confounding factors and carotid stenosis, these associations remained statistically significant (HR, 5.12; 95% CI, 1.36–19.24; P = 0.016 and HR, 8.12; 95% CI, 2.41–27.31; P = 0.001, respectively). The co-existing cerebrovascular atherosclerotic diseases, particularly co-existing carotid lipid-rich necrotic core and intracranial stenosis, are independent predictors for subsequent vascular events.

    更新日期:2020-01-13
  • Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-09
    Mohammad Alkhalil; Alessandra Borlotti; Giovanni Luigi De Maria; Mathias Wolfrum; Sam Dawkins; Gregor Fahrni; Lisa Gaughran; Jeremy P. Langrish; Andrew Lucking; Vanessa M. Ferreira; Rajesh K. Kharbanda; Adrian P. Banning; Erica Dall’Armellina; Keith M. Channon; Robin P. Choudhury

    Myocardial recovery after primary percutaneous coronary intervention in acute myocardial infarction is variable and the extent and severity of injury are difficult to predict. We sought to investigate the role of cardiovascular magnetic resonance T1 mapping in the determination of myocardial injury very early after treatment of ST-segment elevation myocardial infarction (STEMI). STEMI patients underwent 3 T cardiovascular magnetic resonance (CMR), within 3 h of primary percutaneous intervention (PPCI). T1 mapping determined the extent (area-at-risk as %left ventricle, AAR) and severity (average T1 values of AAR) of acute myocardial injury, and related these to late gadolinium enhancement (LGE), and microvascular obstruction (MVO). The characteristics of myocardial injury within 3 h was compared with changes at 24-h to predict final infarct size. Forty patients were included in this study. Patients with average T1 values of AAR ≥1400 ms within 3 h of PPCI had larger LGE at 24-h (33% ±14 vs. 18% ±10, P = 0.003) and at 6-months (27% ±9 vs. 12% ±9; P < 0.001), higher incidence and larger extent of MVO (85% vs. 40%, P = 0.016) & [4.0 (0.5–9.5)% vs. 0 (0–3.0)%, P = 0.025]. The average T1 value was an independent predictor of acute LGE (β 0.61, 95%CI 0.13 to 1.09; P = 0.015), extent of MVO (β 0.22, 95%CI 0.03 to 0.41, P = 0.028) and final infarct size (β 0.63, 95%CI 0.21 to 1.05; P = 0.005). Receiver-operating-characteristic analysis showed that T1 value of AAR obtained within 3-h, but not at 24-h, predicted large infarct size (LGE > 9.5%) with 100% positive predictive value at the optimal cut-off of 1400 ms (area-under-the-curve, AUC 0.88, P = 0.006). Hyper-acute T1 values of the AAR (within 3 h post PPCI, but not 24 h) predict a larger extent of MVO and infarct size at both 24 h and 6 months follow-up. Delayed CMR scanning for 24 h could not substitute the significant value of hyper-acute average T1 in determining infarct characteristics.

    更新日期:2020-01-09
  • Left ventricular function recovery in peripartum cardiomyopathy: a cardiovascular magnetic resonance study by myocardial T1 and T2 mapping
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-06
    Yao-Dan Liang; Yuan-Wei Xu; Wei-Hao Li; Ke Wan; Jia-Yu Sun; Jia-Yi Lin; Qing Zhang; Xiao-Yue Zhou; Yu-Cheng Chen

    Peripartum cardiomyopathy (PPCM) is rare and potentially life-threatening; its etiology remains unclear. Imaging characteristics on cardiovascular magnetic resonance (CMR) and their prognostic significance have rarely been studied. We sought to determine CMR’s prognostic value in PPCM by using T1 and T2 mapping techniques. Data from 21 PPCM patients from our CMR registry database were analyzed. The control group comprised 20 healthy age-matched females. All subjects underwent comprehensive contrast-enhanced CMR. T1 and T2 mapping using modified Look-Locker inversion recovery and T2 prep balanced steady-state free precession sequences, respectively. Ventricular size and function, late gadolinium enhancement (LGE), myocardial T1 value, extracellular volume (ECV), and T2 value were analyzed. Transthoracic echocardiography was performed at baseline and during follow-up. The recovered left ventricular ejection fraction (LVEF) was defined as LVEF ≥50% on echocardiography follow-up after at least 6 months of the diagnosis. CMR imaging showed that the PPCM patients had severely impaired LVEF and right ventricular ejection fraction (LVEF: 26.8 ± 10.6%; RVEF: 33.9 ± 14.6%). LGE was seen in eight (38.1%) cases. PPCM patients had significantly higher native T1 and ECV (1345 ± 79 vs. 1212 ± 32 ms, P < 0.001; 33.9 ± 5.2% vs. 27.1 ± 3.1%, P < 0.001; respectively) and higher myocardial T2 value (42.3 ± 3.7 vs. 36.8 ± 2.3 ms, P < 0.001) than did the normal controls. After a median 2.5-year follow-up (range: 8 months-5 years), six patients required readmission for heart failure, two died, and 10 showed left ventricular function recovery. The LVEF-recovered group showed significantly lower ECV (30.7 ± 2.1% vs. 36.8 ± 5.6%, P = 0.005) and T2 (40.6 ± 3.0 vs. 43.9 ± 3.7 ms, P = 0.040) than the unrecovered group. Multivariable logistic regression analysis showed ECV (OR = 0.58 for per 1% increase, P = 0.032) was independently associated with left ventricular recovery in PPCM. Compared to normal controls, PPCM patients showed significantly higher native T1, ECV, and T2. Native T1, ECV, and T2 were associated with LVEF recovery in PPCM. Furthermore, ECV could independently predict left ventricular function recovery in PPCM.

    更新日期:2020-01-06
  • Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2020-01-02
    Yingxia Yang; Gang Yin; Yong Jiang; Lei Song; Shihua Zhao; Minjie Lu

    Atrial fibrillation (AF) is the most common arrhythmia in hypertrophic cardiomyopathy (HCM) and is associated with adverse outcomes in HCM patients. Although the left atrial (LA) diameter has consistently been identified as a strong predictor of AF in HCM patients, the relationship between LA dysfunction and AF still remains unclear. The aim of this study is to evaluate the LA function in patients with non-obstructive HCM (NOHCM) utilizing cardiovascular magnetic resonance feature tracking (CMR-FT). Thirty-three patients with NOHCM and 28 healthy controls were studied. The global and regional LA function and left ventricular (LV) function were compared between the two groups. The following LA global functional parameters were quantitively analyzed: reservoir function (total ejection fraction [LA total EF], total strain [εs], peak positive strain rate [SRs]), conduit function (passive ejection fraction [LA passive EF], passive strain [εe], peak early-negative SR [SRe]), and booster pump function (active ejection fraction [LA active EF], active strain [εa], peak late-negative SR [SRa]). The LA wall was automatically divided into 6 segments: anterior, antero-roof, inferior, septal, septal-roof and lateral. Three LA strain parameters (εs, εe, εa) and their corresponding strain rate parameters (SRs, SRe, SRa) during the reservoir, conduit and booster pump LA phases were segmentally measured and analyzed. The LA reservoir (LA total EF: 57.6 ± 8.2% vs. 63.9 ± 6.4%, p < 0.01; εs: 35.0 ± 12.0% vs. 41.5 ± 11.2%, p = 0.03; SRs: 1.3 ± 0.4 s− 1 vs. 1.5 ± 0.4 s− 1, p = 0.02) and conduit function (LA passive EF: 28.7 ± 9.1% vs. 37.1 ± 10.0%, p < 0.01; εe: 18.7 ± 7.9% vs. 25.9 ± 10.0%, p < 0.01; SRe: − 0.8 ± 0.3 s− 1 vs. -1.1 ± 0.4 s− 1, p < 0.01) were all impaired in patients with NOHCM when compared with healthy controls, while LA booster pump function was preserved. The LA segmental strain and strain rate analysis demonstrated that the εs, εe, SRe of inferior, SRs, SRe of septal-roof, and SRa of antero-roof walls (all p < 0.05) were all decreased in the NOHCM cohort. Correlations between LA functional parameters and LV conventional function and LA functional parameters and baseline parameters (age, body surface area and NYHA classification) were weak. The two strongest relations were between εs and LA total EF(r = 0.84, p < 0.01), εa and LA active EF (r = 0.83, p < 0.01). Compared with healthy controls, patients with NOHCM have LA reservoir and conduit dysfunction, and regional LA deformation before LA enlargement. CMR-FT identifies LA dysfunction and deformation at an early stage.

    更新日期:2020-01-02
  • Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-12-30
    Warren J. Manning

    There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82. In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a “State of our JCMR.” This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was “ahead of the curve” and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!

    更新日期:2019-12-30
  • Clinical practice of cardiovascular magnetic resonance: position statement of the Society for Cardiovascular Magnetic Resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-12-23

    The Society for Cardiovascular Magnetic Resonance (SCMR) is the international professional society that strives to improve cardiovascular health by advancing the field of cardiovascular magnetic resonance (CMR). Through education, research, and advocacy, the Society promotes the highest standards of quality in CMR. As such, the Society works to ensure that CMR professionals are educated and well-qualified to safely perform and accurately interpret CMR studies for our patients. Professional competency is key to our mission and is fostered in every activity promoted by the Society. The Society is the home for all CMR professionals (clinicians, scientists, engineers, technologists, nurses, administrators, and trainees) including those involved with CMR sequence development, basic and clinical research, procedural planning, image acquisition and analysis, interpretation, and the delivery of a clinical service. All these professionals are equally valued and supported by our Society, and we champion those who work collaboratively with a patient-centered approach. The Society recognizes that CMR is part of both the radiology and cardiology curricula, and that the appropriate interpretation of CMR studies requires training in aspects of both radiology and cardiology. By statute, the board of the Society has a balanced representation of cardiologists and radiologists aimed at supporting both in the clinical practice of CMR. The Society aims to advance the field by qualifying and empowering suitably trained physicians to deliver on the promise of CMR to improve cardiovascular health across practice settings. The Society has published guidelines for training in CMR, which complement international training curricula in both radiology and cardiology. The Society supports laboratory accreditation and encourages imaging physicians, regardless of specialty, to earn CMR certification. The Society encourages training in multidisciplinary competencies for radiologists, cardiologists, and other imaging physicians wishing to practice clinical CMR. Varied practice models for delivering clinical CMR services exist around the world led by radiologists, cardiologists, or jointly, in the public and private sectors. The Society supports all of these organizational models and it objects to practices that place barriers to CMR participation based solely on specialty. The Society strongly believes that clinical safety and optimal patient care can be best achieved when appropriately trained and qualified physicians provide CMR imaging services regardless of their specialty. Not applicable. CMR: Cardiovascular magnetic resonance SCMR: Society for Cardiovascular Magnetic Resonance None. Funding Not applicable. Affiliations Society for Cardiovascular Magnetic Resonance (SCMR), 19 Mantua Rd, Mt. Royal, NJ, 08061, USA Consortia The SCMR Board of Trustees Contributions All authors contributed equally. Ethics approval and consent to participate Not applicable. Consent for publication Not applicable. Competing interests The authors declare that they have no competing interest. Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Reprints and Permissions Cite this article Clinical practice of cardiovascular magnetic resonance: position statement of the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson 21, 78 (2019) doi:10.1186/s12968-019-0592-x Download citation Received 04 December 2019 Accepted 10 December 2019 Published 23 December 2019 DOI https://doi.org/10.1186/s12968-019-0592-x

    更新日期:2019-12-23
  • Ferumoxytol-enhanced cardiovascular magnetic resonance detection of early stage acute myocarditis
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-12-16
    Yuko Tada; Atsushi Tachibana; Shahriar Heidary; Phillip C. Yang; Michael V. McConnell; Rajesh Dash

    The diagnostic utility of cardiovascular magnetic resonance (CMR) is limited during the early stages of myocarditis. This study examined whether ferumoxytol-enhanced CMR (FE-CMR) could detect an earlier stage of acute myocarditis compared to gadolinium-enhanced CMR. Lewis rats were induced to develop autoimmune myocarditis. CMR (3 T, GE Signa) was performed at the early- (day 14, n = 7) and the peak-phase (day 21, n = 8) of myocardial inflammation. FE-CMR was evaluated as % myocardial dephasing signal loss on gradient echo images at 6 and 24 h (6 h- & 24 h-FE-CMR) following the administration of ferumoxytol (300μmolFe/kg). Pre- and post-contrast T2* mapping was also performed. Early (EGE) and late (LGE) gadolinium enhancement was obtained after the administration of gadolinium-DTPA (0.5 mmol/kg) on day 14 and 21. Healthy rats were used as control (n = 6). Left ventricular ejection fraction (LVEF) was preserved at day 14 with inflammatory cells but no fibrosis seen on histology. EGE and LGE at day 14 both showed limited myocardial enhancement (EGE: 11.7 ± 15.5%; LGE: 8.7 ± 8.7%; both p = ns vs. controls). In contrast, 6 h-FE-CMR detected extensive myocardial signal loss (33.2 ± 15.0%, p = 0.02 vs. EGE and p < 0.01 vs. LGE). At day 21, LVEF became significantly decreased (47.4 ± 16.4% vs control: 66.2 ± 6.1%, p < 0.01) with now extensive myocardial involvement detected on EGE, LGE, and 6 h-FE-CMR (41.6 ± 18.2% of LV). T2* mapping also detected myocardial uptake of ferumoxytol both at day 14 (6 h R2* = 299 ± 112 s− 1vs control: 125 ± 26 s− 1, p < 0.01) and day 21 (564 ± 562 s− 1, p < 0.01 vs control). Notably, the myocardium at peak-phase myocarditis also showed significantly higher pre-contrast T2* (27 ± 5 ms vs control: 16 ± 1 ms, p < 0.001), and the extent of myocardial necrosis had a strong positive correlation with T2* (r = 0.86, p < 0.001). FE-CMR acquired at 6 h enhance detection of early stages of myocarditis before development of necrosis or fibrosis, which could potentially enable appropriate therapeutic intervention.

    更新日期:2019-12-17
  • Comparison of different methods for the estimation of aortic pulse wave velocity from 4D flow cardiovascular magnetic resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-12-12
    Sophia Houriez--Gombaud-Saintonge; Elie Mousseaux; Ioannis Bargiotas; Alain De Cesare; Thomas Dietenbeck; Kevin Bouaou; Alban Redheuil; Gilles Soulat; Alain Giron; Umit Gencer; Damian Craiem; Emmanuel Messas; Emilie Bollache; Yasmina Chenoune; Nadjia Kachenoura

    Arterial pulse wave velocity (PWV) is associated with increased mortality in aging and disease. Several studies have shown the accuracy of applanation tonometry carotid-femoral PWV (Cf-PWV) and the relevance of evaluating central aorta stiffness using 2D cardiovascular magnetic resonance (CMR) to estimate PWV, and aortic distensibility-derived PWV through the theoretical Bramwell-Hill model (BH-PWV). Our aim was to compare various methods of aortic PWV (aoPWV) estimation from 4D flow CMR, in terms of associations with age, Cf-PWV, BH-PWV and left ventricular (LV) mass-to-volume ratio while evaluating inter-observer reproducibility and robustness to temporal resolution. We studied 47 healthy subjects (49.5 ± 18 years) who underwent Cf-PWV and CMR including aortic 4D flow CMR as well as 2D cine SSFP for BH-PWV and LV mass-to-volume ratio estimation. The aorta was semi-automatically segmented from 4D flow data, and mean velocity waveforms were estimated in 25 planes perpendicular to the aortic centerline. 4D flow CMR aoPWV was calculated: using velocity curves at two locations, namely ascending aorta (AAo) and distal descending aorta (DAo) aorta (S1, 2D-like strategy), or using all velocity curves along the entire aortic centreline (3D-like strategies) with iterative transit time (TT) estimates (S2) or a plane fitting of velocity curves systolic upslope (S3). For S1 and S2, TT was calculated using three approaches: cross-correlation (TTc), wavelets (TTw) and Fourier transforms (TTf). Intra-class correlation coefficients (ICC) and Bland-Altman biases (BA) were used to evaluate inter-observer reproducibility and effect of lower temporal resolution. 4D flow CMR aoPWV estimates were significantly (p < 0.05) correlated to the CMR-independent Cf-PWV, BH-PWV, age and LV mass-to-volume ratio, with the strongest correlations for the 3D-like strategy using wavelets TT (S2-TTw) (R = 0.62, 0.65, 0.77 and 0.52, respectively, all p < 0.001). S2-TTw was also highly reproducible (ICC = 0.99, BA = 0.09 m/s) and robust to lower temporal resolution (ICC = 0.97, BA = 0.15 m/s). Reproducible 4D flow CMR aoPWV estimates can be obtained using full 3D aortic coverage. Such 4D flow CMR stiffness measures were significantly associated with Cf-PWV, BH-PWV, age and LV mass-to-volume ratio, with a slight superiority of the 3D strategy using wavelets transit time (S2-TTw).

    更新日期:2019-12-13
  • Long term CMR follow up of patients with right ventricular abnormality and clinically suspected arrhythmogenic right ventricular cardiomyopathy (ARVC)
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-12-12
    Giuseppe Femia; Christopher Semsarian; Mark McGuire; Raymond W. Sy; Rajesh Puranik

    The Task Force Criteria (TFC) for arrhythmogenic right ventricular cardiomyopathy (ARVC) was updated in 2010 to improve specificity. There was concern however that the revised cardiovascular magnetic resonance (CMR) criteria was too restrictive and not sensitive enough to detect early forms of the condition. We previously described patients with clinically suspected ARVC who satisfied criteria from non-imaging TFC categories and fulfilled parameters from the original but not the revised CMR criteria; as a result, these patients were not confirmed as definite ARVC but may represent an early phenotype. Patients scanned between 2008 and 2015 who had either right ventricular (RV) dilatation or regional dyskinesia satisfying at least minor imaging parameters from the original criteria and without contra-indication underwent serial CMR scanning using a 1.5 T scanner. The aims were to assess the risk of progressive RV abnormalities, evaluate the accuracy of the revised CMR criteria and the need for guideline directed CMR surveillance in at-risk individuals. Overall, 48 patients were re-scanned; 24 had a first-degree relative diagnosed with ARVC using the revised TFC or a first-degree relative with premature sudden death from suspected ARVC and 24 patients had either left bundle branch morphology ventricular tachycardia or > 500 ventricular extra-systoles in 24-h. Mean follow up was 69+/− 25 months. The indexed RV end-diastolic, end-systolic volumes and ejection fraction were calculated for both scans. There was significant reduction in RV volumes and improvement in RV ejection fraction (EF) irrespective of changes to body surface area; − 11.7+/− 15.2 mls/m2, − 6.4+/− 10.5 mls/m2 and + 3.3 +/− 7.9% (p = 0.01, 0.01 and 0.04). Applying the RV parameters to the revised CMR criteria, two patients from the family history group (one with confirmed ARVC and one with a premature death) had progressive RV abnormalities satisfying major criteria. The remaining patients (n = 46) did not satisfy the criteria and either had normal RV parameters with regression of structural abnormalities (27,56.3%) or stable abnormalities (19,43.7%). The revised CMR criteria represents a robust tool in the evaluation of patients with clinical suspicion of ARVC, especially for those with ventricular arrhythmias without a family history for ARVC. For patients with RV abnormalities that do not fulfill the revised criteria but have a family history of ARVC or an ARVC associated gene mutation, a surveillance CMR scan should be considered as part of the clinical follow up protocol.

    更新日期:2019-12-13
  • Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-11-28
    Daniel Salehi; Liqun Sun; Katarina Steding-Ehrenborg; Sebastian Bidhult; Fabian Kording; Christian Ruprecht; Christopher K. Macgowan; Michael Seed; Anthony H. Aletras; Håkan Arheden; Erik Hedström

    Fetal cardiovascular magnetic resonance (CMR) imaging is used clinically and for research, but has been previously limited due to lack of direct gating methods. A CMR-compatible Doppler ultrasound (DUS) gating device has resolved this. However, the DUS-gating method is not validated against the current reference method for fetal phase-contrast blood flow measurements, metric optimized gating (MOG). Further, we investigated how different methods for vessel delineation affect flow volumes and observer variability in fetal flow acquisitions. To 1) validate DUS gating versus MOG for quantifying fetal blood flow; 2) assess repeatability of DUS gating; 3) assess impact of region of interest (ROI) size on flow volume; and 4) compare time-resolved and static delineations for flow volume and observer variability. Phase-contrast CMR was acquired in the fetal descending aorta (DAo) and umbilical vein by DUS gating and MOG in 22 women with singleton pregnancy in gestational week 360 (265–400) with repeated scans in six fetuses. Impact of ROI size on measured flow was assessed for ROI:s 50–150% of the vessel diameter. Four observers from two centers provided time-resolved and static delineations. Bland-Altman analysis was used to determine agreement between both observers and methods. DAo flow was 726 (348–1130) ml/min and umbilical vein flow 366 (150–782) ml/min by DUS gating. Bias±SD for DUS-gating versus MOG were − 45 ± 122 ml/min (−6 ± 15%) for DAo and 19 ± 136 ml/min (2 ± 24%) for umbilical vein flow. Repeated flow measurements in the same fetus showed similar volumes (median CoV = 11% (DAo) and 23% (umbilical vein)). Region of interest 50–150% of vessel diameter yielded flow 35–120%. Bias±SD for time-resolved versus static DUS-gated flow was 33 ± 39 ml/min (4 ± 6%) for DAo and 11 ± 84 ml/min (2 ± 15%) for umbilical vein flow. Quantification of blood flow in the fetal DAo and umbilical vein using DUS-gated phase-contrast CMR is feasible and agrees with the current reference method. Repeatability was generally high for CMR fetal blood flow assessment. An ROI similar to the vessel area or slightly larger is recommended. A static ROI is sufficient for fetal flow quantification using currently available CMR sequences.

    更新日期:2019-11-30
  • Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-04-25
    Sören J. Backhaus; Wieland Staab; Michael Steinmetz; Christian O. Ritter; Joachim Lotz; Gerd Hasenfuß; Andreas Schuster; Johannes T. Kowallick

    Cardiovascular magnetic resonance (CMR) represents the clinical gold standard for the assessment of biventricular morphology and function. Since manual post-processing is time-consuming and prone to observer variability, efforts have been directed towards automated volumetric quantification. In this study, we sought to validate the accuracy of a novel approach providing fully automated quantification of biventricular volumes and function in a “real-world” clinical setting. Three-hundred CMR examinations were randomly selected from the local data base. Fully automated quantification of left ventricular (LV) mass, LV and right ventricular (RV) end-diastolic and end-systolic volumes (EDV/ESV), stroke volume (SV) and ejection fraction (EF) were performed overnight using commercially available software (suiteHEART®, Neosoft, Pewaukee, Wisconsin, USA). Parameters were compared to manual assessments (QMass®, Medis Medical Imaging Systems, Leiden, Netherlands). Sub-group analyses were further performed according to image quality, scanner field strength, the presence of implanted aortic valves and repaired Tetralogy of Fallot (ToF). Biventricular automated segmentation was feasible in all 300 cases. Overall agreement between fully automated and manually derived LV parameters was good (LV-EF: intra-class correlation coefficient [ICC] 0.95; bias − 2.5% [SD 5.9%]), whilst RV agreement was lower (RV-EF: ICC 0.72; bias 5.8% [SD 9.6%]). Lowest agreement was observed in case of severely altered anatomy, e.g. marked RV dilation but normal LV dimensions in repaired ToF (LV parameters ICC 0.73–0.91; RV parameters ICC 0.41–0.94) and/or reduced image quality (LV parameters ICC 0.86–0.95; RV parameters ICC 0.56–0.91), which was more common on 3.0 T than on 1.5 T. Fully automated assessments of biventricular morphology and function is robust and accurate in a clinical routine setting with good image quality and can be performed without any user interaction. However, in case of demanding anatomy (e.g. repaired ToF, severe LV hypertrophy) or reduced image quality, quality check and manual re-contouring are still required.

    更新日期:2019-11-28
  • Subclinical myocardial injury in patients with Facioscapulohumeral muscular dystrophy 1 and preserved ejection fraction – assessment by cardiovascular magnetic resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-04-29
    Edyta Blaszczyk; Ulrike Grieben; Florian von Knobelsdorff-Brenkenhoff; Peter Kellman; Luisa Schmacht; Stephanie Funk; Simone Spuler; Jeanette Schulz-Menger

    Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is an autosomal dominant and the third most common inherited muscle disease. Cardiac involvement is currently described in several muscular dystrophies (MD), but there are conflicting reports in FSHD1. Mostly, FSHD1 is recognized as MD with infrequent cardiac involvement, but sudden cardiac deaths are reported in single cases. The aim of this study is to investigate whether subclinical cardiac involvement in FSHD1 patients is detectable in preserved left ventricular systolic function applying cardiovascular magnetic resonance (CMR). We prospectively included patients with genetically confirmed FSHD1 (n = 52, 48 ± 15 years) and compared them with 29 healthy age-matched controls using a 1.5 T CMR scanner. Myocardial tissue differentiation was performed qualitatively using focal fibrosis imaging (late gadolinium enhancement (LGE)), fat imaging (multi-echo sequence for fat/water-separation) and parametric T2- and T1-mapping for quantifying inflammation and diffuse fibrosis. Extracellular volume fraction was calculated. A 12-lead electrocardiogram and 24-h Holter were performed for the assessment of MD-specific Groh-criteria and arrhythmia. Focal fibrosis by LGE was present in 13 patients (25%,10 men), fat infiltration in 7 patients (13%,5 men). T2 values did not differ between FSHD1 and healthy controls. Native T1 mapping revealed significantly higher values in patients (global native myocardial T1 values basal: FSHD1: 1012 ± 26 ms vs. controls: 985 ± 28 ms, p < 0.01, medial FSHD1: 994 ± 37 ms vs. controls: 982 ± 28 ms, p = 0.028). This was also evident in regions adjacent to focal fibrosis, indicating diffuse fibrosis. Groh-criteria were positive in 1 patient. In Holter, arrhythmic events were recorded in 10/43 subjects (23%). Patients with FSHD1 and preserved left ventricular ejection fraction present focal and diffuse myocardial injury. Longitudinal multi-center trials are needed to define the impact of myocardial changes as well as a relation between myocardial injury and arrhythmias on long-term prognosis and therapeutic decision-making. ISRCTN registry with study ID ISRCTN13744381 .

    更新日期:2019-11-28
  • Myocardial fibrosis by late gadolinium enhancement cardiovascular magnetic resonance in myotonic muscular dystrophy type 1: highly prevalent but not associated with surface conduction abnormality
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-05-02
    Andrea Cardona; William D. Arnold; John T. Kissel; Subha V. Raman; Karolina M. Zareba

    Conduction disease and arrhythmias represent a major cause of mortality in myotonic muscular dystrophy type 1 (MMD1). Permanent pacemaker (PPM) implantation is the cornerstone of therapy to reduce cardiovascular mortality in MMD1. Cardiovascular magnetic resonance (CMR) studies demonstrate a high prevalence of myocardial fibrosis in MMD1, however the association between CMR myocardial fibrosis with late gadolinium enhancement (CMR-LGE) and surface conduction abnormality is not well established in MMD1. We investigated whether myocardial fibrosis by CMR-LGE is associated with surface conduction abnormalities meeting criteria for PPM implantation according to current guidelines in a cohort of patients with genetically confirmed MMD1. Patients with genetically confirmed MMD1 were retrospectively evaluated. 12-lead electrocardiography (ECG) performed within 6 months of CMR was necessary for inclusion. The severity and extent of MMD1 was quantified using a validated Muscular Impairment Rating Scale (MIRS). Based on current guidelines for device-based therapy of cardiac rhythm abnormalities, we defined surface conduction abnormality as the presence of ECG alterations meeting criteria for PPM implant (class I or II indications): PR interval > 200 ms (type I atrioventricular (AV) block) and/or mono or bifascicular block (QRS > 120 ms), or evidence of advanced AV block. Balanced steady-state free precession sequences (bSSFP) were used for assessment of left ventricular (LV) volumes and ejection fraction. MOdified Look-Locker Inversion Recovery (MOLLI) acquisition schemes were used to acquire T1 maps. Patients’ charts were reviewed up to 12 months post-CMR for occurrence of PPM implantation. Fifty-two patients (38% male, 41 ± 14 years) were included. Overall, 31 (60%) patients had a surface conduction abnormality and 22 (42%) demonstrated midwall myocardial fibrosis by CMR-LGE. After a median of 57 days from CMR exam, 15 patients (29%) underwent PPM implantation. Subjects with vs. without surface conduction abnormality had significantly longer disease length (15.5 vs. 7.8 years, p = 0.015) and higher disease severity on the MIRS scale (p = 0.041). High prevalence of myocardial fibrosis by CMR-LGE was detected in subjects with and without surface conduction abnormality with no significant difference between the two cohorts (42% vs. 43%, p = 0.999). By multivariate logistic regression analysis, disease length was the only independent variable associated with surface conduction abnormality (OR 1.071, 95%CI 1.003–1.144, p = 0.040); while CMR-LGE was not associated with conduction abnormality (ρ = − 0.009, p = 0.949). Myocardial fibrosis by CMR-LGE is highly prevalent in MMD1 but not related to surface conduction abnormality meeting current guideline criteria for PPM implantation .

    更新日期:2019-11-28
  • Quantification of aortic pulse wave velocity from a population based cohort: a fully automatic method
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-05-13
    Rahil Shahzad; Arun Shankar; Raquel Amier; Robin Nijveldt; Jos J. M. Westenberg; Albert de Roos; Boudewijn P. F. Lelieveldt; Rob J. van der Geest

    Aortic pulse wave velocity (PWV) is an indicator of aortic stiffness and is used as a predictor of adverse cardiovascular events. PWV can be non-invasively assessed using magnetic resonance imaging (MRI). PWV computation requires two components, the length of the aortic arch and the time taken for the systolic pressure wave to travel through the aortic arch. The aortic length is calculated using a multi-slice 3D scan and the transit time is computed using a 2D velocity encoded MRI (VE) scan. In this study we present and evaluate an automatic method to quantify the aortic pulse wave velocity using a large population-based cohort. For this study 212 subjects were retrospectively selected from a large multi-center heart-brain connection cohort. For each subject a multi-slice 3D scan of the aorta was acquired in an oblique-sagittal plane and a 2D VE scan acquired in a transverse plane cutting through the proximal ascending and descending aorta. PWV was calculated in three stages: (i) a multi-atlas-based segmentation method was developed to segment the aortic arch from the multi-slice 3D scan and subsequently estimate the length of the proximal aorta, (ii) an algorithm that delineates the proximal ascending and descending aorta from the time-resolved 2D VE scan and subsequently obtains the velocity-time flow curves was also developed, and (iii) automatic methods that can compute the transit time from the velocity-time flow curves were implemented and investigated. Finally the PWV was obtained by combining the aortic length and the transit time. Quantitative evaluation with respect to the length of the aortic arch as well as the computed PWV were performend by comparing the results of the novel automatic method to those obtained manually. The mean absolute difference in aortic length obtained automatically as compared to those obtained manually was 3.3 ± 2.8 mm (p < 0.05), the manual inter-observer variability on a subset of 45 scans was 3.4 ± 3.4 mm (p = 0.49). Bland-Altman analysis between the automataic method and the manual methods showed a bias of 0.0 (-5.0,5.0) m/s for the foot-to-foot approach, -0.1 (-1.2, 1.1) and -0.2 (-2.6, 2.1) m/s for the half-max and the cross-correlation methods, respectively. We proposed and evaluated a fully automatic method to calculate the PWV on a large set of multi-center MRI scans. It was observed that the overall results obtained had very good agreement with manual analysis. Our proposed automatic method would be very beneficial for large population based studies, where manual analysis requires a lot of manpower.

    更新日期:2019-11-28
  • Association of cardiovascular magnetic resonance-derived circumferential strain parameters with the risk of ventricular arrhythmia and all-cause mortality in patients with prior myocardial infarction and primary prevention implantable cardioverter defibrillator
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-05-16
    Elisabeth H. M. Paiman; Alexander F. A. Androulakis; Rahil Shahzad; Qian Tao; Katja Zeppenfeld; Hildo J. Lamb; Rob J. van der Geest

    Impaired left ventricular (LV) contraction and relaxation may further promote adverse remodeling and may increase the risk of ventricular arrhythmia (VA) in ischemic cardiomyopathy. We aimed to examine the association of cardiovascular magnetic resonance (CMR)-derived circumferential strain parameters for LV regional systolic function, LV diastolic function and mechanical dispersion with the risk of VA in patients with prior myocardial infarction and primary prevention implantable cardioverter defibrillator (ICD). Patients with an ischemic cardiomyopathy who underwent CMR prior to primary prevention ICD implantation, were retrospectively identified. LV segmental circumferential strain curves were extracted from short-axis cine CMR. For LV regional strain analysis, the extent of moderately and severely impaired strain (percentage of LV segments with strain between − 10% and − 5% and > − 5%, respectively) were calculated. LV diastolic function was quantified by the early and late diastolic strain rate. Mechanical dispersion was defined as the standard deviation in delay time between each strain curve and the patient-specific reference curve. Cox proportional hazard ratios (HR) (95%CI) were calculated to assess the association between LV strain parameters and appropriate ICD therapy. A total of 121 patients (63 ± 11 years, 84% men, LV ejection fraction (LVEF) 27 ± 9%) were included. During a median (interquartile range) follow-up of 47 (27;69) months, 30 (25%) patients received appropriate ICD therapy. The late diastolic strain rate (HR 1.1 (1.0;1.2) per − 0.25 1/s, P = 0.043) and the extent of moderately impaired strain (HR 1.5 (1.0;2.2) per + 10%, P = 0.048) but not the extent of severely impaired strain (HR 0.9 (0.6;1.4) per + 10%, P = 0.685) were associated with appropriate ICD therapy, independent of LVEF, late gadolinium enhancement (LGE) scar border size and acute revascularization. Mechanical dispersion was not related to appropriate ICD therapy (HR 1.1 (0.8;1.6) per + 25 ms, P = 0.464). In an ischemic cardiomyopathy population referred for primary prevention ICD implantation, the extent of moderately impaired strain and late diastolic strain rate were associated with the risk of appropriate ICD therapy, independent of LVEF, scar border size and acute revascularization. These findings suggest that disturbed LV contraction and relaxation may contribute to an increased risk of VA after myocardial infarction.

    更新日期:2019-11-28
  • In-vivo validation of interpolation-based phase offset correction in cardiovascular magnetic resonance flow quantification: a multi-vendor, multi-center study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-05-20
    Mark B. M. Hofman; Manouk J. A. Rodenburg; Karin Markenroth Bloch; Beat Werner; Jos J. M. Westenberg; Emanuela R. Valsangiacomo Buechel; Robin Nijveldt; Onno A. Spruijt; Philip J. Kilner; Albert C. van Rossum; Peter D. Gatehouse

    A velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier studies have shown that this offset error is clinically relevant over different systems, and cannot be removed by protocol optimization. Correction methods using phantom measurements are time consuming, and assume reproducibility of the offsets which is not the case for all systems. An alternative previously published solution is to correct the in-vivo data in post-processing, interpolating the velocity offset from stationary tissue within the field-of-view. This study aims to validate this interpolation-based offset correction in-vivo in a multi-vendor, multi-center setup. Data from six 1.5 T CMR systems were evaluated, with two systems from each of the three main vendors. At each system aortic and main pulmonary artery 2D flow studies were acquired during routine clinical or research examinations, with an additional phantom measurement using identical acquisition parameters. To verify the phantom acquisition, a region-of-interest (ROI) at stationary tissue in the thorax wall was placed and compared between in-vivo and phantom measurements. Interpolation-based offset correction was performed on the in-vivo data, after manually excluding regions of spatial wraparound. Correction performance of different spatial orders of interpolation planes was evaluated. A total of 126 flow measurements in 82 subjects were included. At the thorax wall the agreement between in-vivo and phantom was − 0.2 ± 0.6 cm/s. Twenty-eight studies were excluded because of a difference at the thorax wall exceeding 0.6 cm/s from the phantom scan, leaving 98. Before correction, the offset at the vessel as assessed in the phantom was − 0.4 ± 1.5 cm/s, which resulted in a − 5 ± 16% error in cardiac output. The optimal order of the interpolation correction plane was 1st order, except for one system at which a 2nd order plane was required. Application of the interpolation-based correction revealed a remaining offset velocity of 0.1 ± 0.5 cm/s and 0 ± 5% error in cardiac output. This study shows that interpolation-based offset correction reduces the offset with comparable efficacy as phantom measurement phase offset correction, without the time penalty imposed by phantom scans. The study was registered in The Netherlands National Trial Register (NTR) under TC 4865 . Registered 19 September 2014. Retrospectively registered.

    更新日期:2019-11-28
  • Fetal XCMR: a numerical phantom for fetal cardiovascular magnetic resonance imaging
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-05-23
    Christopher W. Roy; Davide Marini; William Paul Segars; Mike Seed; Christopher K. Macgowan

    Validating new techniques for fetal cardiovascular magnetic resonance (CMR) is challenging due to random fetal movement that precludes repeat measurements. Consequently, fetal CMR development has been largely performed using physical phantoms or postnatal volunteers. In this work, we present an open-source simulation designed to aid in the development and validation of new approaches for fetal CMR. Our approach, fetal extended Cardiac-Torso cardiovascular magnetic resonance imaging (Fetal XCMR), builds on established methods for simulating CMR acquisitions but is tailored toward the dynamic physiology of the fetal heart and body. We present comparisons between the Fetal XCMR phantom and data acquired in utero, resulting in image quality, anatomy, tissue signals and contrast. Existing extended Cardiac-Torso models are modified to create maternal and fetal anatomy, combined according to simulated motion, mapped to CMR contrast, and converted to CMR data. To provide a comparison between the proposed simulation and experimental fetal CMR images acquired in utero, images from a typical scan of a pregnant woman are included and simulated acquisitions were generated using matching CMR parameters, motion and noise levels. Three reconstruction (static, real-time, and CINE), and two motion estimation methods (translational motion, fetal heart rate) from data acquired in transverse, sagittal, coronal, and short-axis planes of the fetal heart were performed to compare to in utero acquisitions and demonstrate feasibility of the proposed simulation framework. Overall, CMR contrast, morphologies, and relative proportions of the maternal and fetal anatomy are well represented by the Fetal XCMR images when comparing the simulation to static images acquired in utero. Additionally, visualization of maternal respiratory and fetal cardiac motion is comparable between Fetal XCMR and in utero real-time images. Finally, high quality CINE image reconstructions provide excellent delineation of fetal cardiac anatomy and temporal dynamics for both data types. The fetal CMR phantom provides a new method for evaluating fetal CMR acquisition and reconstruction methods by simulating the underlying anatomy and physiology. As the field of fetal CMR continues to grow, new methods will become available and require careful validation. The fetal CMR phantom is therefore a powerful and convenient tool in the continued development of fetal cardiac imaging.

    更新日期:2019-11-28
  • Correction to: The aorta after coarctation repair – effects of calibre and curvature on arterial haemodynamics
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-05-23
    Michael A. Quail; Patrick Segers; Jennifer A. Steeden; Vivek Muthurangu

    In the original version of this article [1], published on 11 April 2019, there is 1 error in the ‘Conclusion’ paragraph of the abstract.

    更新日期:2019-11-28
  • Correction to: Subclinical myocardial injury in patients with Facioscapulohumeral muscular dystrophy 1 and preserved ejection fraction – assessment by cardiovascular magnetic resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-06-03
    Edyta Blaszczyk; Ulrike Grieben; Florian von Knobelsdorff-Brenkenhoff; Peter Kellman; Luisa Schmacht; Stephanie Funk; Simone Spuler; Jeanette Schulz-Menger

    In the original version of this article [1], published on 29 April 2019, there is 1 error in the ‘Method’ section of the article.

    更新日期:2019-11-28
  • Impact of caffeine on myocardial perfusion reserve assessed by semiquantitative adenosine stress perfusion cardiovascular magnetic resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-06-24
    Andreas Seitz; Philipp Kaesemann; Maria Chatzitofi; Stephanie Löbig; Gloria Tauscher; Raffi Bekeredjian; Udo Sechtem; Heiko Mahrholdt; Simon Greulich

    Adenosine is used in stress perfusion cardiac imaging to reveal myocardial ischemia by its vasodilator effects. Caffeine is a competitive antagonist of adenosine. However, previous studies reported inconsistent results about the influence of caffeine on adenosine's vasodilator effect. This study assessed the impact of caffeine on the myocardial perfusion reserve index (MPRI) using adenosine stress cardiovascular magnetic resonance imaging (CMR). Moreover, we sought to evaluate if the splenic switch-off sign might be indicative of prior caffeine consumption. Semiquantitative perfusion analysis was performed in 25 patients who underwent: 1) caffeine-naïve adenosine stress CMR demonstrating myocardial ischemia and, 2) repeat adenosine stress CMR after intake of caffeine. MPRI (global; remote and ischemic segments), and splenic perfusion ratio (SPR) were assessed and compared between both exams. Global MPRI after caffeine was lower vs. caffeine-naïve conditions (1.09 ± 0.19 vs. 1.24 ± 0.19; p < 0.01). MPRI in remote myocardium decreased by caffeine (1.24 ± 0.19 vs. 1.49 ± 0.19; p < 0.001) whereas MPRI in ischemic segments (0.89 ± 0.18 vs. 0.95 ± 0.23; p = 0.23) was similar, resulting in a lower MPRI ratio (=remote/ischemic segments) after caffeine consumption vs. caffeine-naïve conditions (1.41 ± 0.19 vs. 1.64 ± 0.35, p = 0.01). The SPR was unaffected by caffeine (SPR 0.38 ± 0.19 vs. 0.38 ± 0.18; p = 0.92). Caffeine consumption prior to adenosine stress CMR results in a lower global MPRI, which is driven by the decreased MPRI in remote myocardium and underlines the need of abstinence from caffeine. The splenic switch-off sign is not affected by prior caffeine intake.

    更新日期:2019-11-28
  • A simple measure of the extent of Ebstein valve rotation with cardiovascular magnetic resonance gives a practical guide to feasibility of surgical cone reconstruction
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-06-27
    Marina L. Hughes; Beatrice Bonello; Preeti Choudhary; Jan Marek; Victor Tsang

    Once surgical management is indicated, variation of Ebstein valve morphology affects surgical strategy. This study explored practical, easily measureable, cardiovascular magnetic resonance (CMR)-derived attributes that may contribute to the complexity and risk of cone reconstruction. A retrospective assessment was performed of Ebstein anomaly patients older than 12 years age, with pre-operative CMR, undergoing cone surgical reconstruction by one surgeon. In addition to clinical data, the CMR-derived Ebstein valve rotation angle (EVRA), area ratios of chamber size, indexed functional RV (RVEDVi) and left ventricular (LV) volumes, tricuspid valve regurgitant fraction (TR%) and other valve attributes were related to early surgical outcome; including death, significant residual TR% or breakdown of repair. Of 26 operated patients older than 12 years age, since program start, 20 had pre-op CMR and underwent surgery at median (range) age 20 (14–57) years. TR% was improved in all patients. Four of the 20 CMR patients (20%) experienced early surgical dehiscence of the paravalve tissue, with cone-shaped tricuspid valve intact; one of whom died. A larger EVRA correlated with Carpentier category and was significantly related to dehiscence. If EVRA >60o, relative risk of dehiscence was 3.2 (CI 1.3–4.9, p = 0.03). Those with dehiscence had thickened, more tethered anterior leaflet edges (RR 17, CI 3–100, p < 0.01), smaller pre-operative functional RVEDVi; (132 vs 177 mL/m2, p = 0.04), and were older (median 38 vs 19 years, p = 0.01). TR %, chamber area ratios and LV parameters were not different. Comprehensive CMR assessment characterizes patients prior to cone surgical reconstruction of Ebstein anomaly. Pragmatic observation of larger EVRA, smaller RVEDVi and leaflet thickening, suggests risk of repair tension and dehiscence, and may require specific modification of cone surgical technique, such as leaflet augmentation.

    更新日期:2019-11-28
  • Resolving the natural myocardial remodelling brought upon by cardiac contraction; a porcine ex-vivo cardiovascular magnetic resonance study of the left and right ventricle
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-01
    Camilla Omann; Peter Agger; Nikolaj Bøgh; Christoffer Laustsen; Steffen Ringgaard; Robert S. Stephenson; Robert H. Anderson; Vibeke E. Hjortdal; Morten Smerup

    The three-dimensional rearrangement of the right ventricular (RV) myocardium during cardiac deformation is unknown. Previous in-vivo studies have shown that myocardial left ventricular (LV) deformation is driven by rearrangement of aggregations of cardiomyocytes that can be characterised by changes in the so-called E3-angle. Ex-vivo imaging offers superior spatial resolution compared with in-vivo measurements, and can thus provide novel insight into the deformation of the myocardial microstructure in both ventricles. This study sought to describe the dynamic changes of the orientations of the cardiomyocytes in both ventricles brought upon by cardiac contraction, with particular interest in the thin-walled RV, which has not previously been described in terms of its micro-architecture. The hearts of 14 healthy 20 kg swine were excised and preserved in either a relaxed state or a contracted state. Myocardial architecture was assessed and compared between the two contractional states by quantification of the helical, transmural and E3-angles of the cardiomyocytes using high-resolution diffusion tensor imaging. The differences between the two states of contraction were most pronounced in the endocardium where the E3-angle decreased from 78.6° to 24.8° in the LV and from 82.6° to 68.6° in the RV. No significant change in neither the helical nor the transmural angle was found in the cardiomyocytes of the RV. In the endocardium of the LV, however, the helical angle increased from 35.4° to 47.8° and the transmural angle increased from 3.1° to 10.4°. The entire myocardium rearranges through the cardiac cycle with the change in the orientation of the aggregations of cardiomyocytes being the predominant mediator of myocardial wall thickening. Interestingly, differences also exist between the RV and LV, which helps in the explanation of the different physiological capabilities of the ventricles.

    更新日期:2019-11-28
  • Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-01
    Yang Liu; Maoxue Wang; Bing Zhang; Wei Wang; Yun Xu; Yongjun Han; Chun Yuan; Xihai Zhao

    To determine the usefulness of the size of carotid artery intraplaque hemorrhage (IPH) in discriminating the risk of acute ischemic stroke using cardiovascular magnetic resonance (CMR) vessel wall imaging. Symptomatic patients with carotid atherosclerotic plaque who participated in a cross-sectional, multicenter study of CARE-II (NCT02017756) were included. All patients underwent carotid and brain CMR imaging. Carotid plaque burden and the size of plaque compositions including calcification, lipid-rich necrotic core (LRNC), and IPH were measured. Presence of acute cerebral infarct (ACI) in ipsilateral hemisphere of carotid plaque was determined. The relationship between carotid plaque features and presence of ipsilateral ACI was then analyzed. Of 687 recruited patients (62.7 ± 10.1 years; 69.4% males) with carotid plaque, 28.5% had ACI in ipsilateral hemispheres. Logistic regression revealed that carotid plaque burden was significantly associated with the presence of ACI before and after adjusted for clinical confounding factors. The volume of LRNC, %LRNC volume, volume of IPH, and %IPH volume were significantly associated with ACI before (volume of LRNC: OR = 1.297, p = 0.005; %LRNC volume: OR = 1.119, p = 0.018; volume of IPH: OR = 2.514, p = 0.003; %IPH volume: OR = 2.202, p = 0.003) and after (volume of LRNC: OR = 1.312, p = 0.006; %LRNC volume: OR = 1.90, p = 0.034; volume of IPH: OR = 2.907, p = 0.007; % IPH volume: OR = 2.374, p = 0.004) adjusted for clinical confounding factors. The association between volume of IPH and ACI remained statistically significant after further adjusted for plaque volume (OR = 2.813, p = 0.016) or both plaque volume and volume of LRNC (OR = 4.044, p = 0.024). In symptomatic patients with carotid atherosclerotic plaques, the size of IPH is independently associated with ipsilateral ACI, suggesting the size of IPH might be a useful indicator for the risk of ACI. Clinical Trial Registration-URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02017756.

    更新日期:2019-11-28
  • Diffusion weighted cardiovascular magnetic resonance imaging for discriminating acute from non-acute deep venous Thrombus
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-08
    Gang Wu; John Morelli; Yan Xiong; Xuanlin Liu; Xiaoming Li

    The importance of discriminating acute from non-acute thrombus is highlighted. The study aims to investigate the feasibility of readout-segmented diffusion weighted (DW) cardiovascular magnetic resonance (CMR) for discrimination of acute from non-acute deep venous thrombus (DVT). For this prospective study from December 2015 to December 2017, 85 participants (mean age = 53 years, age range = 34~74) with DVT of lower extremities underwent readout-segmented DW CMR. DVT of ≤14 days were defined as acute (n = 55) and > 14 days as non-acute (n = 30). DVT visualization on b = 0, b = 800, and apparent diffusion coefficient (ADC) images were assessed using a 4-point scale (0~3, poor~excellent). DW CMR parameters were measured using region of interest (ROI). Relative signal intensity (rSI) and ADC were compared between acute and non-acute DVT using a Mann Whitney test. Sensitivity and specificity for ADC and rSI were calculated. ADC maps had higher visualization scores than b = 0 and b = 800 images (2.7 ± 0.5, 2.5 ± 0.6, and 2.4 ± 0.6 respectively, P<0.05). The mean ADC was higher in acute DVT than non-acute DVT (0.56 ± 0.17 × 10− 3 vs. 0.22 ± 0.12 × 10− 3 mm2/s, P<0.001). Using 0.32 × 10− 3 mm2/s as the cutoff, sensitivity and specificity for ADC to discriminate acute from non-acute DVT were 93 and 90% respectively. Sensitivity and specificity were 73 and 60% for rSI on b = 0, and 75 and 63% for rSI on b = 800. Readout segmented diffusion-weighted CMR derived ADC distinguishes acute from non-acute DVT. This study is retrospectively registered. Trial registration number: HUST-TJH-2015-146 .

    更新日期:2019-11-28
  • Noncontrast free-breathing respiratory self-navigated coronary artery cardiovascular magnetic resonance angiography at 3 T using lipid insensitive binomial off-resonant excitation (LIBRE)
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-11
    Jessica A. M. Bastiaansen; Ruud B. van Heeswijk; Matthias Stuber; Davide Piccini

    Robust and homogeneous lipid suppression is mandatory for coronary artery cardiovascular magnetic resonance (CMR) imaging since the coronary arteries are commonly embedded in epicardial fat. However, effective large volume lipid suppression becomes more challenging when performing radial whole-heart coronary artery CMR for respiratory self-navigation and the problem may even be exacerbated at increasing magnetic field strengths. Incomplete fat suppression not only hinders a correct visualization of the coronary vessels and generates image artifacts, but may also affect advanced motion correction methods. The aim of this study was to evaluate a recently reported lipid insensitive CMR method when applied to a noncontrast self-navigated coronary artery CMR acquisitions at 3 T, and to compare it to more conventional fat suppression techniques. Lipid insensitive binomial off resonant excitation (LIBRE) radiofrequency excitation pulses were included into a self-navigated 3D radial GRE coronary artery CMR sequence at 3 T. LIBRE was compared against a conventional CHESS fat saturation (FS) and a binomial 1–180°-1 water excitation (WE) pulse. First, fat suppression of all techniques was numerically characterized using Matlab and experimentally validated in phantoms and in legs of human volunteers. Subsequently, free-breathing self-navigated coronary artery CMR was performed using the LIBRE pulse as well as FS and WE in ten healthy subjects. Myocardial, arterial and chest fat signal-to-noise ratios (SNR), as well as coronary vessel conspicuity were quantitatively compared among those scans. The results obtained in the simulations were confirmed by the experimental validations as LIBRE enabled near complete fat suppression for 3D radial imaging in vitro and in vivo. For self-navigated whole-heart coronary artery CMR at 3 T, fat SNR was significantly attenuated using LIBRE compared with conventional FS. LIBRE increased the right coronary artery (RCA) vessel sharpness significantly (37 ± 9% (LIBRE) vs. 29 ± 8% (FS) and 30 ± 8% (WE), both p < 0.05) and led to a significant increase in the measured RCA vessel length to (83 ± 31 mm (LIBRE) vs. 56 ± 12 mm (FS) and 59 ± 27 (WE) p < 0.05). Applied to a respiratory self-navigated noncontrast 3D radial whole-heart sequence, LIBRE enables robust large volume fat suppression and significantly improves coronary artery image quality at 3 T compared to the use of conventional FS and WE.

    更新日期:2019-11-28
  • Increased extracellular volume in the liver of pediatric Fontan patients
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-15
    Charlotte de Lange; Marjolein J. E. Reichert; Joseph J. Pagano; Mike Seed; Shi-Joon Yoo; Craig S. Broberg; Christopher Z. Lam; Lars Grosse-Wortmann

    Patients with single ventricle physiology are at increased risk for developing liver fibrosis. Its extent and prevalence in children with bidirectional cavopulmonary connection (BCPC) and Fontan circulation are unclear. Extracellular volume fraction (ECV), derived from cardiovascular magnetic resonance (CMR) and T1 relaxometry, reflect fibrotic remodeling and/or congestion in the liver. The aim of this study was to investigate whether pediatric patients with single ventricle physiology experience increased native T1 and ECV as markers of liver fibrosis/congestion. Hepatic native T1 times and ECV, using a cardiac short axis modified Look-Locker inversion recovery sequence displaying the liver, were measured retrospectively in children with BCPC- and Fontan circulations and compared to pediatric controls. Hepatic native T1 time were increased in Fontan patients (n = 62, 11.4 ± 4.4 years, T1 762 ± 64 ms) versus BCPC patients (n = 20, 2.8 ± 0.9 years, T1 645 ± 43 ms, p = 0.04). Both cohorts had higher T1 than controls (n = 44, 13.7 ± 2.9 years, T1 604 ± 54 ms, p < 0.001 for both). ECV was 41.4 ± 4.8% in Fontan and 36.4 ± 4.8% in BCPC patients, respectively (p = 0.02). In Fontan patients, T1 values correlated with exposure to cardiopulmonary bypass time (R = 0.3, p = 0.02), systolic and end diastolic volumes (R = 0.3, p = 0.04 for both) and inversely with oxygen saturations and body surface area (R = -0.3, p = 0.04 for both). There were no demonstrable associations of T1 or ECV with central venous pressure or age after Fontan. Fontan and BCPC patients have elevated CMR markers suggestive of hepatic fibrosis and/or congestion, even at a young age. The tissue changes do not appear to be related to central venous pressures. Retrospectively registered data.

    更新日期:2019-11-28
  • Diagnostic performance of cardiovascular magnetic resonance native T1 and T2 mapping in pediatric patients with acute myocarditis
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-15
    Matthew D. Cornicelli; Cynthia K. Rigsby; Karen Rychlik; Elfriede Pahl; Joshua D. Robinson

    Multiple studies in adult patients suggest that tissue mapping performed by cardiovascular magnetic resonance (CMR) has excellent diagnostic accuracy in acute myocarditis, however, these techniques have not been studied in depth in children. CMR data on 23 consecutive pediatric patients from 2014 to 2017 with a clinical diagnosis of acute myocarditis were retrospectively analyzed and compared to 39 healthy controls. The CMR protocol included native T1, T2, and extracellular volume fraction (ECV) in addition to standard Lake Louise Criteria (LLC) parameters on a 1.5 T scanner. Mean global values for novel mapping parameters were significantly elevated in patients with clinically suspected acute myocarditis compared to controls, with native T1 1098 ± 77 vs 990 ± 34 ms, T2 52.8 ± 4.6 ms vs 46.7 ± 2.6 ms, and ECV 29.8 ± 5.1% vs 23.3 ± 2.6% (all p-values < 0.001). Ideal cutoff values were generated using corresponding ROC curves and were for global T1 1015 ms (AUC 0.936, sensitivity 91%, specificity 86%), for global T2 48.5 ms (AUC 0.908, sensitivity 91%, specificity 74%); and for ECV 25.9% (AUC 0.918, sensitivity 86%, specificity 89%). While the diagnostic yield of the LLC was 57% (13/23) in our patient cohort, 70% (7/10) of patients missed by the LLC demonstrated abnormalities across all three global mapping parameters (native T1, T2, and ECV) and another 20% (2/10) of patients demonstrated at least one abnormal mapping value. Similar to findings in adults, pediatric patients with acute myocarditis demonstrate abnormal CMR tissue mapping values compared to controls. Furthermore, we found CMR parametric mapping techniques measurably increased CMR diagnostic yield when compared with conventional LLC alone, providing additional sensitivity and specificity compared to historical references. Routine integration of these techniques into imaging protocols may aid diagnosis in children.

    更新日期:2019-11-28
  • Right ventricular shape and function: cardiovascular magnetic resonance reference morphology and biventricular risk factor morphometrics in UK Biobank
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-18
    Charlène Mauger; Kathleen Gilbert; Aaron M. Lee; Mihir M. Sanghvi; Nay Aung; Kenneth Fung; Valentina Carapella; Stefan K. Piechnik; Stefan Neubauer; Steffen E. Petersen; Avan Suinesiaputra; Alistair A. Young

    The associations between cardiovascular disease (CVD) risk factors and the biventricular geometry of the right ventricle (RV) and left ventricle (LV) have been difficult to assess, due to subtle and complex shape changes. We sought to quantify reference RV morphology as well as biventricular variations associated with common cardiovascular risk factors. A biventricular shape atlas was automatically constructed using contours and landmarks from 4329 UK Biobank cardiovascular magnetic resonance (CMR) studies. A subdivision surface geometric mesh was customized to the contours using a diffeomorphic registration algorithm, with automatic correction of slice shifts due to differences in breath-hold position. A reference sub-cohort was identified consisting of 630 participants with no CVD risk factors. Morphometric scores were computed using linear regression to quantify shape variations associated with four risk factors (high cholesterol, high blood pressure, obesity and smoking) and three disease factors (diabetes, previous myocardial infarction and angina). The atlas construction led to an accurate representation of 3D shapes at end-diastole and end-systole, with acceptable fitting errors between surfaces and contours (average error less than 1.5 mm). Atlas shape features had stronger associations than traditional mass and volume measures for all factors (p < 0.005 for each). High blood pressure was associated with outward displacement of the LV free walls, but inward displacement of the RV free wall and thickening of the septum. Smoking was associated with a rounder RV with inward displacement of the RV free wall and increased relative wall thickness. Morphometric relationships between biventricular shape and cardiovascular risk factors in a large cohort show complex interactions between RV and LV morphology. These can be quantified by z-scores, which can be used to study the morphological correlates of disease.

    更新日期:2019-11-28
  • Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-22
    Jonas Walheim; Hannes Dillinger; Sebastian Kozerke

    Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting. We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times. Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data. The scan time of 5D Flow CMR was set to 4 min. 5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5 m/s per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed. While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with 5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%). Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in the aorta in 4 min.

    更新日期:2019-11-28
  • Stress increases intracardiac 4D flow cardiovascular magnetic resonance -derived energetics and vorticity and relates to VO2max in Fontan patients
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-25
    Vivian P. Kamphuis; Mohammed S. M. Elbaz; Pieter J. van den Boogaard; Lucia J. M. Kroft; Hildo J. Lamb; Mark G. Hazekamp; Monique R. M. Jongbloed; Nico A. Blom; Willem A. Helbing; Arno A. W. Roest; Jos J. M. Westenberg

    We hypothesize that dobutamine-induced stress impacts intracardiac hemodynamic parameters and that this may be linked to decreased exercise capacity in Fontan patients. Therefore, the purpose of this study was to assess the effect of pharmacologic stress on intraventricular kinetic energy (KE), viscous energy loss (EL) and vorticity from four-dimensional (4D) Flow cardiovascular magnetic resonance (CMR) imaging in Fontan patients and to study the association between stress response and exercise capacity. Ten Fontan patients underwent whole-heart 4D flow CMR before and during 7.5 μg/kg/min dobutamine infusion and cardiopulmonary exercise testing (CPET) on the same day. Average ventricular KE, EL and vorticity were computed over systole, diastole and the total cardiac cycle (vorticity_volavg cycle, KEavg cycle, ELavg cycle). The relation to maximum oxygen uptake (VO2 max) from CPET was tested by Pearson’s correlation or Spearman’s rank correlation in case of non-normality of the data. Dobutamine stress caused a significant 88 ± 52% increase in KE (KEavg cycle: 1.8 ± 0.5 vs 3.3 ± 0.9 mJ, P < 0.001), a significant 108 ± 49% increase in EL (ELavg cycle: 0.9 ± 0.4 vs 1.9 ± 0.9 mW, P < 0.001) and a significant 27 ± 19% increase in vorticity (vorticity_volavg cycle: 3441 ± 899 vs 4394 ± 1322 mL/s, P = 0.002). All rest-stress differences (%) were negatively correlated to VO2 max (KEavg cycle: r = − 0.83, P = 0.003; ELavg cycle: r = − 0.80, P = 0.006; vorticity_volavg cycle: r = − 0.64, P = 0.047). 4D flow CMR-derived intraventricular kinetic energy, viscous energy loss and vorticity in Fontan patients increase during pharmacologic stress and show a negative correlation with exercise capacity measured by VO2 max.

    更新日期:2019-11-28
  • Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-29
    Robert J. Holtackers; Caroline M. Van De Heyning; Muhummad Sohaib Nazir; Imran Rashid; Ioannis Ntalas; Haseeb Rahman; René M. Botnar; Amedeo Chiribiri

    For two decades, bright-blood late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been considered the reference standard for the non-invasive assessment of myocardial viability. While bright-blood LGE can clearly distinguish areas of myocardial infarction from viable myocardium, it often suffers from poor scar-to-blood contrast, making subendocardial scar difficult to detect. Recently, we proposed a novel dark-blood LGE approach that increases scar-to-blood contrast and thereby improves subendocardial scar conspicuity. In the present study we sought to assess the clinical value of this novel approach in a large patient cohort with various non-congenital ischemic and non-ischemic cardiomyopathies on both 1.5 T and 3 T CMR scanners of different vendors. Three hundred consecutive patients referred for clinical CMR were randomly assigned to a 1.5 T or 3 T scanner. An entire short-axis stack and multiple long-axis views were acquired using conventional phase sensitive inversion recovery (PSIR) LGE with TI set to null myocardium (bright-blood) and proposed PSIR LGE with TI set to null blood (dark-blood), in a randomized order. The bright-blood LGE and dark-blood LGE images were separated, anonymized, and interpreted in a random order at different time points by one of five independent observers. Each case was analyzed for the type of scar, per-segment transmurality, papillary muscle enhancement, overall image quality, observer confidence, and presence of right ventricular scar and intraventricular thrombus. Dark-blood LGE detected significantly more cases with ischemic scar compared to conventional bright-blood LGE (97 vs 89, p = 0.008), on both 1.5 T and 3 T, and led to a significantly increased total scar burden (3.3 ± 2.4 vs 3.0 ± 2.3 standard AHA segments, p = 0.015). Overall image quality significantly improved using dark-blood LGE compared to bright-blood LGE (81.3% vs 74.0% of all segments were of highest diagnostic quality, p = 0.006). Furthermore, dark-blood LGE led to significantly higher observer confidence (confident in 84.2% vs 78.4%, p = 0.033). The improved detection of ischemic scar makes the proposed dark-blood LGE method a valuable diagnostic tool in the non-invasive assessment of myocardial scar. The applicability in routine clinical practice is further strengthened, as the present approach, in contrast to other recently proposed dark- and black-blood LGE techniques, is readily available without the need for scanner adjustments, extensive optimizations, or additional training.

    更新日期:2019-11-28
  • Cardiac MRI improves cardiovascular risk stratification in hazardous occupations
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-07-29
    David A. Holdsworth; Iain T. Parsons; Rebecca Chamley; Joseph Britton; Christopher Pavitt; A. John Baksi; Stefan Neubauer; Joanna d’Arcy; Edward D. Nicol

    The benefit of cardiovascular magnetic resonance Imaging (CMR) in assessing occupational risk is unknown. Pilots undergo frequent medical assessment for occult disease, which threatens incapacitation or distraction during flight. ECG and examination anomalies often lead to lengthy restriction, pending full investigation. CMR provides a sensitive, specific assessment of cardiac anatomy, tissue characterisation, perfusion defects and myocardial viability. We sought to determine if CMR, when added to standard care, would alter occupational outcome. A retrospective review was conducted of all personnel attending the RAF Aviation Medicine Consultation Service (AMCS) for assessment of a cardiac anomaly, over a 2-year period. Those undergoing standard of care (history, examination, exercise ECG, 24 h-Holter and transthoracic echocardiography), and those undergoing a CMR in addition, were identified. The influence of CMR upon the final decision regarding flying restriction was determined by comparing the diagnosis reached with standard of care plus CMR vs. standard of care alone. Of the ~ 8000 UK military aircrew, 558 personnel were seen for cardiovascular assessment. Fifty-two underwent CMR. A normal TTE did not reliably exclude abnormalities subsequently detected by CMR. Addition of CMR resulted in an upgraded occupational status in 62% of those investigated, with 37% returning to unrestricted duties. Only 8% of referrals were undiagnosed following CMR. All these were cases of borderline chamber dilatation and reduction in systolic function in whom diagnostic uncertainty remained between physiological exercise adaptation and early cardiomyopathy. CMR increases the likelihood of a definitive diagnosis and of return to flying. This study supports early use of CMR in occupational assessment for high-hazard occupations.

    更新日期:2019-11-28
  • Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic resonance in Fabry disease: relationship to T1 mapping, late gadolinium enhancement and hypertrophy
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-01
    Shobhit Mathur; John G. Dreisbach; Gauri R. Karur; Robert M. Iwanochko; Chantal F. Morel; Syed Wasim; Elsie T. Nguyen; Bernd J. Wintersperger; Kate Hanneman

    Cardiac involvement is common and is the leading cause of mortality in Fabry disease (FD). We explored the association between cardiovascular magnetic resonance (CMR) myocardial strain, T1 mapping, late gadolinium enhancement (LGE) and left ventricular hypertrophy (LVH) in patients with FD. In this prospective study, 38 FD patients (45.0 ± 14.5 years, 37% male) and 8 healthy controls (40.1 ± 13.7 years, 63% male) underwent 3 T CMR including cine balanced steady-state free precession (bSSFP), LGE and modified Look-Locker Inversion recovery (MOLLI) T1 mapping. Global longitudinal (GLS) and circumferential (GCS) strain and base-to-apex longitudinal strain (LS) and circumferential strain (CS) gradients were derived from cine bSSFP images using feature tracking analysis. Among FD patients, 8 had LVH (FD LVH+, 21%) and 17 had LGE (FD LGE+, 45%). Nineteen FD patients (50%) had neither LVH nor LGE (FD LVH- LGE-). None of the healthy controls had LVH or LGE. FD patients and healthy controls did not differ significantly with respect to GLS (− 15.3 ± 3.5% vs. − 16.3 ± 1.5%, p = 0.45), GCS (− 19.4 ± 3.0% vs. -19.5 ± 2.9%, p = 0.84) or base-to-apex LS gradient (7.5 ± 3.8% vs. 9.3 ± 3.5%, p = 0.24). FD patients had significantly lower base-to-apex CS gradient (2.1 ± 3.7% vs. 6.5 ± 2.2%, p = 0.002) and native T1 (1170.2 ± 37.5 ms vs. 1239.0 ± 18.0 ms, p < 0.001). Base-to-apex CS gradient differentiated FD LVH- LGE- patients from healthy controls (OR 0.42, 95% CI: 0.20 to 0.86, p = 0.019), even after controlling for native T1 (OR 0.24, 95% CI: 0.06 to 0.99, p = 0.049). In a nested logistic regression model with native T1, model fit was significantly improved by the addition of base-to-apex CS gradient (χ2(df = 1) = 11.04, p < 0.001). Intra- and inter-observer agreement were moderate to good for myocardial strain parameters: GLS (ICC 0.849 and 0.774, respectively), GCS (ICC 0.831 and 0.833, respectively), and base-to-apex CS gradient (ICC 0.737 and 0.613, respectively). CMR reproducibly identifies myocardial strain abnormalities in FD. Loss of base-to-apex CS gradient may be an early marker of cardiac involvement in FD, with independent and incremental value beyond native T1.

    更新日期:2019-11-28
  • High-energy external defibrillation and transcutaneous pacing during MRI: feasibility and safety
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-05
    Vladimir Shusterman; Denice Hodgson-Zingman; Daniel Thedens; Xiaodong Zhu; Stacy Hoffman; Jessica C. Sieren; Gina M. Morgan; Anthony Faranesh; Barry London

    Rapid application of external defibrillation, a crucial first-line therapy for ventricular fibrillation and cardiac arrest, is currently unavailable in the setting of magnetic resonance imaging (MRI), raising concerns about patient safety during MRI tests and MRI-guided procedures, particularly in patients with cardiovascular diseases. The objective of this study was to examine the feasibility and safety of defibrillation/pacing for the entire range of clinically useful shock energies inside the MRI bore and during scans, using defibrillation/pacing outside the magnet as a control. Experiments were conducted using a commercial defibrillator (LIFEPAK 20, Physio-Control, Redmond, Washington, USA) with a custom high-voltage, twisted-pair cable with two mounted resonant floating radiofrequency traps to reduce emission from the defibrillator and the MRI scanner. A total of 18 high-energy (200-360 J) defibrillation experiments were conducted in six swine on a 1.5 T MRI scanner outside the magnet bore, inside the bore, and during scanning, using adult and pediatric defibrillation pads. Defibrillation was followed by cardiac pacing (with capture) in a subset of two animals. Monitored signals included: high-fidelity temperature (0.01 °C, 10 samples/sec) under the pads and 12-lead electrocardiogram (ECG) using an MRI-compatible ECG system. Defibrillation/pacing was successful in all experiments. Temperature was higher during defibrillation inside the bore and during scanning compared with outside the bore, but the differences were small (ΔT: 0.5 and 0.7 °C, p = 0.01 and 0.04, respectively). During scans, temperature after defibrillation tended to be higher for pediatric vs. adult pads (p = 0.08). MR-image quality (signal-to-noise ratio) decreased by ~ 10% when the defibrillator was turned on. Our study demonstrates the feasibility and safety of in-bore defibrillation for the full range of defibrillation energies used in clinical practice, as well as of transcutaneous cardiac pacing inside the MRI bore. Methods for Improving MR-image quality in the presence of a working defibrillator require further study.

    更新日期:2019-11-28
  • Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-08
    Jennifer Erley; Davide Genovese; Natalie Tapaskar; Nazia Alvi; Nina Rashedi; Stephanie A. Besser; Keigo Kawaji; Neha Goyal; Sebastian Kelle; Roberto M. Lang; Victor Mor-Avi; Amit R. Patel

    We sought to: (1) determine the agreement in cardiovascular magnetic resonance (CMR) and speckle tracking echocardiography (STE) derived strain measurements, (2) compare their reproducibility, (3) determine which approach is best related to CMR late gadolinium enhancement (LGE). While STE-derived strain is routinely used to assess left ventricular (LV) function, CMR strain measurements are not yet standardized. Strain can be measured using dedicated pulse sequences (strain-encoding, SENC), or post-processing of cine images (feature tracking, FT). It is unclear whether these measurements are interchangeable, and whether strain can be used as an alternative to LGE. Fifty patients underwent 2D echocardiography and 1.5 T CMR. Global longitudinal strain (GLS) was measured by STE (Epsilon), FT (NeoSoft) and SENC (Myocardial Solutions) and circumferential strain (GCS) by FT and SENC. GLS showed good inter-modality agreement (r-values: 0.71–0.75), small biases (< 1%) but considerable limits of agreement (− 7 to 8%). The agreement between the CMR techniques was better for GLS than GCS (r = 0.81 vs 0.67; smaller bias). Repeated measurements showed low intra- and inter-observer variability for both GLS and GCS (intraclass correlations 0.86–0.99; coefficients of variation 3–13%). LGE was present in 22 (44%) of patients. Both SENC- and FT-derived GLS and GCS were associated with LGE, while STE-GLS was not. Irrespective of CMR technique, this association was stronger for GCS (AUC 0.77–0.78) than GLS (AUC 0.67–0.72) and STE-GLS (AUC = 0.58). There is good inter-technique agreement in strain measurements, which were highly reproducible, irrespective of modality or analysis technique. GCS may better reflect the presence of underlying LGE than GLS.

    更新日期:2019-11-28
  • mDixon ECG-gated 3-dimensional cardiovascular magnetic resonance angiography in patients with congenital cardiovascular disease
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-08
    Soultana Kourtidou; Marty R. Jones; Ryan A. Moore; Justin T. Tretter; Nicholas J. Ollberding; Eric J. Crotty; Mantosh S. Rattan; Robert J. Fleck; Michael D. Taylor

    Cardiovascular magnetic resonance (CMR) angiography (CMRA) is an important non-invasive imaging tool for congenital heart disease (CHD) and aortopathy patients. The conventional 3D balanced steady-state free precession (bSSFP) sequence is often confounded by imaging artifacts. We sought to compare the respiratory navigated and electrocardiogram (ECG) gated modified Dixon (mDixon) CMRA sequence to conventional non-gated dynamic multi-phase contrast enhanced CMRA (CE-CMRA) and bSSFP across a variety of diagnoses. We included 24 patients with CHD or aortopathy with CMR performed between September 2017 to December 2017. Each patient had undergone CE-CMRA, followed by a bSSFP and mDixon angiogram. Patients with CMR-incompatible implants or contraindications to contrast were excluded. The studies were rated according to image quality at a scale from 1 (poor) to 4 (excellent) based on diagnostic adequacy, artifact burden, vascular border delineation, myocardium-blood pool contrast, and visualization of pulmonary and systemic veins and coronaries. Contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantitative vascular measurements were compared between the two gated sequences. Bland-Altman plots were generated to compare paired measures. All scans were diagnostically adequate. Mean (SD) quality scores were 3.4 (0.7) for the mDixon, 3.2 (0.5) for the bSSFP and 3.4 (0.5) for the CE-CMRA. Qualitatively, the intracardiac anatomy and myocardium-blood pool definition were better in the bSSFP; however, mDixon images showed enhanced vessel wall sharpness with less blurring surrounding the anatomical borders distally. Coronary origins were identified in all cases. Pulmonary veins were visualized in 92% of mDixon sequences, 75% of bSSFP and 96% of CE-CMRA. Similarly, neck veins were identified in 92, 83 and 96% respectively. Artifacts prevented vascular measurement in 6/192 (3%) and 4/192 (2%) of total vascular measurements for the mDixon and bSSFP, respectively. However, the size of signal void and field distortion were significantly worse in the latter, particularly for flow and metal induced artifacts. In patients with congenital heart disease, ECG gated mDixon angiography yields high fidelity vascular images including better delineation of head and neck vasculature and pulmonary veins and fewer artifacts than the comparable bSSFP sequence. It should be considered as the preferred strategy for successful CHD imaging in patients with valve stenosis, vascular stents, or metallic implants.

    更新日期:2019-11-28
  • Neural-network classification of cardiac disease from 31P cardiovascular magnetic resonance spectroscopy measures of creatine kinase energy metabolism
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-12
    Meiyappan Solaiyappan; Robert G. Weiss; Paul A. Bottomley

    The heart’s energy demand per gram of tissue is the body’s highest and creatine kinase (CK) metabolism, its primary energy reserve, is compromised in common heart diseases. Here, neural-network analysis is used to test whether noninvasive phosphorus (31P) cardiovascular magnetic resonance spectroscopy (CMRS) measurements of cardiac adenosine triphosphate (ATP) energy, phosphocreatine (PCr), the first-order CK reaction rate kf, and the rate of ATP synthesis through CK (CK flux), can predict specific human heart disease and clinical severity. The data comprised the extant 178 complete sets of PCr and ATP concentrations, kf, and CK flux data from human CMRS studies performed on clinical 1.5 and 3 Tesla scanners. Healthy subjects and patients with nonischemic cardiomyopathy, dilated (DCM) or hypertrophic disease, New York Heart Association (NYHA) class I-IV heart failure (HF), or with anterior myocardial infarction are included. Three-layer neural-networks were created to classify disease and to differentiate DCM, hypertrophy and clinical NYHA class in HF patients using leave-one-out training. Network performance was assessed using ‘confusion matrices’ and ‘area-under-the-curve’ (AUC) analyses of ‘receiver operating curves’. Possible methodological bias and network imbalance were tested by segregating 1.5 and 3 Tesla data, and by data augmentation by random interpolation of nearest neighbors, respectively. The network differentiated healthy, HF and non-HF cardiac disease with an overall accuracy of 84% and AUC > 90% for each category using the four CK metabolic parameters, alone. HF patients with DCM, hypertrophy, and different NYHA severity were differentiated with ~ 80% overall accuracy independent of CMRS methodology. While sample-size was limited in some sub-classes, a neural network classifier applied to noninvasive cardiac 31P CMRS data, could serve as a metabolic biomarker for common disease types and HF severity with clinically-relevant accuracy. Moreover, the network’s ability to individually classify disease and HF severity using CK metabolism alone, implies an intimate relationship between CK metabolism and disease, with subtle underlying phenotypic differences that enable their differentiation. ClinicalTrials.gov Identifier: NCT00181259.

    更新日期:2019-11-28
  • The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-15
    Pedro Freitas; António Miguel Ferreira; Edmundo Arteaga-Fernández; Murrilo de Oliveira Antunes; João Mesquita; João Abecasis; Hugo Marques; Carla Saraiva; Daniel Nascimento Matos; Rita Rodrigues; Nuno Cardim; Charles Mady; Carlos Eduardo Rochitte

    Identifying the patients with hypertrophic cardiomyopathy (HCM) in whom the risk of sudden cardiac death (SCD) justifies the implantation of a cardioverter-defibrillator (ICD) in primary prevention remains challenging. Different risk stratification and criteria are used by the European and American guidelines in this setting. We sought to evaluate the role of cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) in improving these risk stratification strategies. We conducted a multicentric retrospective analysis of HCM patients who underwent CMR for diagnostic confirmation and/or risk stratification. Eligibility for ICD was assessed according to the HCM Risk-SCD score and the American College of Cardiology Foundation/American Heart Association (ACCF/AHA) algorithm. The amount of LGE was quantified (LGE%) and categorized as 0%, 0.1–10%, 10.1–19.9% and ≥ 20%. The primary endpoint was a composite of SCD, aborted SCD, sustained ventricular tachycardia (VT), or appropriate ICD discharge. A total of 493 patients were available for analysis (58% male, median age 46 years). LGE was present in 79% of patients, with a median LGE% of 2.9% (IQR 0.4–8.4%). The concordance between risk assessment by the HCM Risk-SCD, ACCF/AHA and LGE was relatively weak. During a median follow-up of 3.4 years (IQR 1.5–6.8 years), 23 patients experienced an event (12 SCDs, 6 appropriate ICD discharges and 5 sustained VTs). The amount of LGE was the only independent predictor of outcome (adjusted HR: 1.08; 95% CI: 1.04–1.12; p < 0.001) after adjustment for the HCM Risk-SCD and ACCF/AHA criteria. The amount of LGE showed greater discriminative power (C-statistic 0.84; 95% CI: 0.76–0.91) than the ACCF/AHA (C-statistic 0.61; 95% CI: 0.49–0.72; p for comparison < 0.001) and the HCM Risk-SCD (C-statistic 0.68; 95% CI: 0.59–0.78; p for comparison = 0.006). LGE was able to increase the discriminative power of the ACCF/AHA and HCM Risk-SCD criteria, with net reclassification improvements of 0.36 (p = 0.021) and 0.43 (p = 0.011), respectively. The amount of LGE seems to outperform the HCM Risk-SCD score and the ACCF/AHA algorithm in the identification of HCM patients at increased risk of SCD and reclassifies a relevant proportion of patients.

    更新日期:2019-11-28
  • Genetic variants of HIF1α are associated with right ventricular fibrotic load in repaired tetralogy of Fallot patients: a cardiovascular magnetic resonance study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-19
    Thanh T. Hoang; Paulo Henrique Manso; Sharon Edman; Laura Mercer-Rosa; Laura E. Mitchell; Anshuman Sewda; Michael D. Swartz; Mark A. Fogel; A. J. Agopian; Elizabeth Goldmuntz

    Studies suggest that right ventricular (RV) fibrosis is associated with RV remodeling and long-term outcomes in patients with tetralogy of Fallot (TOF). Pre-operative hypoxia may increase expression of hypoxia inducible factor-1-alpha (HIF1α) and promote transforming growth factor β1 (TGFβ1)-mediated fibrosis. We hypothesized that there would be associations between: (1) RV fibrosis and RV function, (2) HIF1α variants and RV fibrosis, and (3) HIF1α variants and RV function among post-surgical TOF cases. We retrospectively measured post-surgical fibrotic load (indexed volume and fibrotic score) from 237 TOF cases who had existing cardiovascular magnetic resonance imaging using late gadolinium enhancement (LGE), and indicators of RV remodeling (i.e., ejection fraction [RVEF] and end-diastolic volume indexed [RVEDVI]). Genetic data were available in 125 cases. Analyses were conducted using multivariable linear mixed-effects regression with a random intercept and multivariable generalized Poisson regression with a random intercept. Indexed fibrotic volume and fibrotic score significantly decreased RVEF by 1.6% (p = 0.04) and 0.9% (p = 0.03), respectively. Indexed fibrotic volume and score were not associated with RVEDVI. After adjusting for multiple comparisons, 6 of the 48 HIF1α polymorphisms (representing two unique signals) were associated with fibrotic score. None of the HIF1α polymorphisms were associated with indexed fibrotic volume, RVEDVI, or RVEF. The association of some HIF1α polymorphisms and fibrotic score suggests that HIF1α may modulate the fibrotic response in TOF.

    更新日期:2019-11-28
  • Prognostic value of novel imaging parameters derived from standard cardiovascular magnetic resonance in high risk patients with systemic light chain amyloidosis
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-22
    Nisha Arenja; Florian Andre; Johannes H. Riffel; Fabian aus dem Siepen; Ute Hegenbart; Stefan Schönland; Arnt V. Kristen; Hugo A. Katus; Sebastian J. Buss

    The differentiated assessment of functional parameters besides morphological changes is essential for the evaluation of prognosis in systemic immunoglobulin light chain (AL) amyloidosis. Seventy-four subjects with AL amyloidosis and presence of late gadolinium enhancement (LGE) pattern typical for cardiac amyloidosis were analyzed. Long axis strain (LAS) and myocardial contraction fraction (MCF), as well as morphological and functional markers, were measured. The primary endpoint was death, while death and heart transplantation served as a composite secondary endpoint. After a median follow-up of 41 months, 29 out of 74 patients died and 10 received a heart transplant. Left ventricular (LV) functional parameters were reduced in patients, who met the composite endpoint (LV ejection fraction 51% vs. 61%, LAS − 6.9% vs − 10%, GLS − 12% vs − 15% and MCF 42% vs. 69%; p < 0.001 for all). In unadjusted univariate analysis, LAS (HR = 1.05, p < 0.001) and MCF (HR = 0.96, p < 0.001) were associated with reduced transplant-free survival. Kaplan-Meier analyses showed a significantly lower event-free survival in patients with reduced MCF. MCF and LAS performed best to identify high risk patients for secondary endpoint (Log-rank test p < 0.001) in a combined model. Using sequential Cox regression analysis, the addition of LAS and MCF to LV ejection fraction led to a significant increase in the predictive power of the model (χ2 (df = 1) = 28.2, p < 0.001). LAS and MCF as routinely available and robust CMR-derived parameters predict outcome in LGE positive AL amyloidosis. Patients with impaired LV function in combination with reduced LAS and MCF are at the highest risk for death and heart transplantation.

    更新日期:2019-11-28
  • Multiparametric cardiovascular magnetic resonance imaging in acute myocarditis: a comparison of different measurement approaches
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-08-29
    Darius Dabir; Thomas M. Vollbrecht; Julian A. Luetkens; Daniel L. R. Kuetting; Alexander Isaak; Andreas Feisst; Rolf Fimmers; Alois M. Sprinkart; Hans H. Schild; Daniel Thomas

    Myocardial T1 and T2 mapping are reliable diagnostic markers for the detection and follow up of acute myocarditis. The aim of this study was to compare the diagnostic performance of current mapping measurement approaches to differentiate between myocarditis patients and healthy individuals. Fifty patients with clinically defined acute myocarditis and 30 healthy controls underwent cardiovascular magnetic resonance (CMR). Myocardial T1 relaxation times, T2 relaxation times, left ventricular (LV) function, T2 ratio, early gadolinium enhancement ratio, and presence of late gadolinium enhancement (LGE) were analysed. Native T1 and T2 relaxation times, as well as extracellular volume fraction (ECV) were measured for the entire LV myocardium (global), within the midventricular short axis slice (mSAX), within the midventricular septal wall (ConSept), and within the remote myocardium (remote). Receiver operating characteristics analysis was performed to compare diagnostic performance. All measurement approaches revealed significantly higher native T1 and T2 relaxation times as well as ECV values in patients compared to healthy controls (p < 0.05 for all parameters). The global measurement approach showed highest diagnostic performance regarding all mapping parameters (AUCs, native T1: 0.903, T2: 0.847, ECV: 0.731). Direct comparison of the different measurement approaches revealed significant differences in diagnostic performance between the global and the remote approach regarding T1 relaxation times and ECV (p = 0.001 and p = 0.002 respectively). Further, the global measurement approach revealed significantly higher T1 relaxation times compared to the ConSept approach (AUCs: 0.903 vs. 0.783; p = 0.003) and nearly significant differences compared to the mSAX approach (AUC: 0.850; p = 0.051). T2 relaxation times showed no significant differences between all measurement approaches (p > 0.050 for all parameters). Native T1 and T2 mapping allow for accurate detection of acute myocarditis irrespective of the measurement approach used. Even measurements performed exclusively within remote myocardium allow for reliable detection of acute myocarditis, demonstrating diffuse involvement of disease despite a mostly regional or patchy distribution pattern of visible pathologies. The global measurement approach provides the overall best diagnostic performance in acute myocarditis for both T1 and T2 mapping.

    更新日期:2019-11-28
  • Dynamic quantitative nonenhanced magnetic resonance angiography of the abdominal aorta and lower extremities using cine fast interrupted steady-state in combination with arterial spin labeling: a feasibility study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-09-02
    Emily A. Aherne; Ioannis Koktzoglou; Benjamin B. Lind; Robert R. Edelman

    Cine fast interrupted steady-state in combination with arterial spin labeling is a recently described nonenhanced magnetic resonance angiography (MRA) technique that relies on bolus tracking for time-resolved digital subtraction angiography-like displays of blood flow patterns. We evaluated the feasibility of applying this technique to display in-plane flow patterns in two regions: the abdominal aorta and lower extremity peripheral arteries. We performed an institutional review board-approved study in healthy subjects and patients. In 7 healthy subjects, in-plane flow was imaged at 4 stations ranging from the lower legs to the aorto-iliac bifurcation (junction of the distal thigh and upper calf, mid-thigh, junction of the upper thigh and pelvis, upper pelvis). In 5 healthy subjects and 6 patients without abdominal aortopathy, images were acquired through the suprarenal abdominal aorta. Ten patients with known peripheral arterial disease and two patients with stable disease of the abdominal aorta were also evaluated. Peak velocity was compared at each of the 4 stations for cine fast interrupted steady-state in combination with arterial spin labeling and two-dimensional cine phase contrast in patients with normal vessels. In-plane flow patterns were well visualized in all peripheral arterial stations and in the abdominal aorta, providing a high quality display of hemodynamic patterns along extensive lengths of the vessels. There was very strong positive correlation (r = 0.952, P < 0.05) and excellent agreement (intraclass correlation coefficient, 0.935; 95% confidence interval, 0.812–0.972) between peak flow velocities measured by cine fast interrupted steady-state in combination with arterial spin labeling and two-dimensional cine phase contrast. In 10 patients with peripheral artery disease and 2 patients with aortic pathology, cine fast interrupted steady-state in combination with arterial spin labeling provided a visual demonstration of abnormal hemodynamics. This feasibility study suggests that cine fast interrupted steady-state in combination with arterial spin labeling provides an efficient, high quality and physiologically accurate display of in-plane flow patterns over extensive lengths of the lower extremity peripheral arteries, which can be difficult to achieve using other MRA techniques.

    更新日期:2019-11-28
  • Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-09-05
    Alexander Gotschy; Constantin von Deuster; Robbert J. H. van Gorkum; Mareike Gastl; Ella Vintschger; Rahel Schwotzer; Andreas J. Flammer; Robert Manka; Christian T. Stoeck; Sebastian Kozerke

    In-vivo cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) allows imaging of alterations of cardiac fiber architecture in diseased hearts. Cardiac amyloidosis (CA) causes myocardial infiltration of misfolded proteins with unknown consequences for myocardial microstructure. This study applied CMR DTI in CA to assess microstructural alterations and their consequences for myocardial function compared to healthy controls. Ten patients with CA (8 AL, 2 ATTR) and ten healthy controls were studied using a diffusion-weighed second-order motion-compensated spin-echo sequence at 1.5 T. Additionally, left ventricular morphology, ejection fraction, strain and native T1 values were obtained in all subjects. In CA patients, T1 mapping was repeated after the administration of gadolinium for extracellular volume fraction (ECV) calculation. CMR DTI analysis was performed to yield the scalar diffusion metrics mean diffusivity (MD) and fractional anisotropy (FA) as well as the characteristics of myofiber orientation including helix, transverse and E2A sheet angle (HA, TA, E2A). MD and FA were found to be significantly different between CA patients and healthy controls (MD 1.77 ± 0.17 10− 3 vs 1.41 ± 0.07 10− 3 mm2/s, p < 0.001; FA 0.25 ± 0.04 vs 0.35 ± 0.03, p < 0.001). MD demonstrated an excellent correlation with native T1 (r = 0.908, p < 0.001) while FA showed a significant correlation with ECV in the CA population (r = − 0.851, p < 0.002). HA exhibited a more circumferential orientation of myofibers in CA patients, in conjunction with a higher TA standard deviation and a higher absolute E2A sheet angle. The transmural HA slope was found to be strongly correlated with the global longitudinal strain (r = 0.921, p < 0.001). CMR DTI reveals significant alterations of scalar diffusion metrics in CA patients versus healthy controls. Elevated MD and lower FA values indicate myocardial disarray with higher diffusion in CA that correlates well with native T1 and ECV measures. In CA patients, CMR DTI showed pronounced circumferential orientation of the myofibers, which may provide the rationale for the reduction of global longitudinal strain that occurs in amyloidosis patients. Accordingly, CMR DTI captures specific features of amyloid infiltration, which provides a deeper understanding of the microstructural consequences of CA.

    更新日期:2019-11-28
  • Cardiovascular magnetic resonance-guided right heart catheterization in a conventional CMR environment – predictors of procedure success and duration in pulmonary artery hypertension
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-09-09
    Daniel S. Knight; Tushar Kotecha; Ana Martinez-Naharro; James T. Brown; Michele Bertelli; Marianna Fontana; Vivek Muthurangu; J. Gerry Coghlan

    Cardiovascular magnetic resonance imaging (CMR) is valuable for the investigation and management of pulmonary artery hypertension (PAH), but the direct measurement of pulmonary hemodynamics by right heart catheterization is still necessary. CMR-guided right heart catheterization (CMR-RHC) combines the benefits of CMR and invasive cardiac catheterization, but its feasibility in patients with acquired PAH has not been established. The aims of this study are to: (1) demonstrate the feasibility of CMR-RHC in patients being assessed for PAH in a conventional diagnostic CMR scanner room; (2) determine the predictors of (i) procedure duration, and (ii) procedural failure or technical difficulty as determined by the adjunctive need for a guidewire. Fifty patients investigated for suspected or known PH underwent CMR-RHC. Durations of separate procedural components were recorded, including time taken to pass the catheter from the femoral vein to a stable wedge position (procedure time) and total time the patient spent in the CMR department (department time). Associations between procedural failure/guidewire usage and hemodynamic/CMR measures were assessed using logistic regression. Relationships between procedure times and hemodynamic/CMR measures were evaluated using Spearman’s correlation coefficient. A full CMR-RHC study was successfully completed in 47 (94%) patients. CMR-conditional guidewires were used in 6 (12%) patients. Metrics associated with guidewire use/procedural failure were higher mean pulmonary artery (PA) pressures (mPAP: OR = 1.125, p = 0.018), right heart dilatation (right ventricular (RV) end-systolic volume (RVESV): OR = 1.028, p = 0.018), RV hypertrophy (OR = 1.050, p = 0.0067) and RV ejection fraction (EF) (OR = 0.914, p = 0.014). Median catheter and department times were 3.6 (2.0–7.7) minutes and 60.0 (54.0–68.5) minutes, respectively. All procedure times became significantly shorter with increasing procedural experience (p < 0.05). Catheterization time was also associated with PH severity (RV systolic pressure: rho = 0.46, p = 0.0013) and increasing RV end-systolic volume (RVESV: rho = 0.41, p = 0.0043), hypertrophy (rho = 0.43, p = 0.0025) and dysfunction (RVEF: rho = − 0.32, p = 0.031). This study demonstrates that CMR-RHC using standard technology can be incorporated into routine clinical practice for the investigation of PAH. Procedural failure was rare but more likely in patients with severe PAH. Procedure time is clinically acceptable and increases with worsening PAH severity.

    更新日期:2019-11-28
  • Quantification of lung water in heart failure using cardiovascular magnetic resonance imaging
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-09-12
    Richard B. Thompson; Kelvin Chow; Joseph J. Pagano; Viktor Sekowski; Evangelos D. Michelakis; Wayne Tymchak; Mark J. Haykowsky; Justin A. Ezekowitz; Gavin Y. Oudit; Jason R. B. Dyck; Padma Kaul; Anamaria Savu; D. Ian Paterson

    Pulmonary edema is a cardinal feature of heart failure but no quantitative tests are available in clinical practice. The goals of this study were to develop a simple cardiovascular magnetic resonance (CMR) approach for lung water quantification, to correlate CMR derived lung water with intra-cardiac pressures and to determine its prognostic significance. Lung water density (LWD, %) was measured using a widely available single-shot fast spin-echo acquisition in two study cohorts. Validation Cohort: LWD was compared to left ventricular end-diastolic pressure or pulmonary capillary wedge pressure in 19 patients with heart failure undergoing cardiac catheterization. Prospective Cohort: LWD was measured in 256 subjects, including 121 with heart failure, 82 at-risk for heart failure and 53 healthy controls. Clinical outcomes were evaluated up to 1 year. Within the validation cohort, CMR LWD correlated to invasively measured left-sided filling pressures (R = 0.8, p < 0.05). In the prospective cohort, mean LWD was 16.6 ± 2.1% in controls, 17.9 ± 3.0% in patients at-risk and 19.3 ± 5.4% in patients with heart failure, p < 0.001. In patients with or at-risk for heart failure, LWD > 20.8% (mean + 2 standard deviations of healthy controls) was an independent predictor of death, hospitalization or emergency department visit within 1 year, hazard ratio 2.4 (1.1–5.1, p = 0.03). In patients with heart failure, increased CMR-derived lung water is associated with increased intra-cardiac filling pressures, and predicts 1 year outcomes. LWD could be incorporated in standard CMR scans.

    更新日期:2019-11-28
  • Assessment of the regional distribution of normalized circumferential strain in the thoracic and abdominal aorta using DENSE cardiovascular magnetic resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-09-16
    John S. Wilson; W. Robert Taylor; John Oshinski

    Displacement Encoding with Stimulated Echoes (DENSE) cardiovascular magnetic resonance (CMR) of the aortic wall offers the potential to improve patient-specific diagnostics and prognostics of diverse aortopathies by quantifying regionally heterogeneous aortic wall strain in vivo. However, before regional mapping of strain can be used to clinically assess aortic pathology, an evaluation of the natural variation of normal regional aortic kinematics is required. Aortic spiral cine DENSE CMR was performed at 3 T in 30 healthy adult subjects (range 18 to 65 years) at one or more axial locations that are at high risk for aortic aneurysm or dissection: the infrarenal abdominal aorta (IAA, n = 11), mid-descending thoracic aorta (DTA, n = 17), and/or distal aortic arch (DAA, n = 11). After implementing custom noise-reduction techniques, regional circumferential Green strain of the aortic wall was calculated across 16 sectors around the aortic circumference at each location and normalized by the mean circumferential strain for comparison between individuals. The distribution of normalized circumferential strain (NCS) was heterogeneous for all locations evaluated. Despite large differences in mean strain between subjects, comparisons of NCS revealed consistent patterns of strain distribution for similar groupings of patients by axial location, age, and/or mean displacement angle. NCS at local systole was greatest in the lateral/posterolateral walls in the IAAs (1.47 ± 0.27), medial wall in anteriorly displacing DTAs (1.28 ± 0.20), lateral wall in posteriorly displacing DTAs (1.29 ± 0.29), superior curvature in DAAs < 50 years-old (1.93 ± 0.22), and medial wall in DAAs > 50 years (2.29 ± 0.58). The distribution of strain was strongly influenced by the location of the vertebra and other surrounding structures unique to each location. Regional in vivo circumferential strain in the adult aorta is unique to each axial location and heterogeneous around its circumference, but can be grouped into consistent patterns defined by basic patient-specific metrics following normalization. The heterogeneous strain distributions unique to each group may be due to local peri-aortic constraints (particularly at the aorto-vertebral interface), heterogeneous material properties, and/or heterogeneous flow patterns. These results must be carefully considered in future studies seeking to clinically interpret or computationally model patient-specific aortic kinematics.

    更新日期:2019-11-28
  • Model-based myocardial T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH cardiovascular magnetic resonance
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-09-19
    Xiaoqing Wang; Florian Kohler; Christina Unterberg-Buchwald; Joachim Lotz; Jens Frahm; Martin Uecker

    This study develops a model-based myocardial T1 mapping technique with sparsity constraints which employs a single-shot inversion-recovery (IR) radial fast low angle shot (FLASH) cardiovascular magnetic resonance (CMR) acquisition. The method should offer high resolution, accuracy, precision and reproducibility. The proposed reconstruction estimates myocardial parameter maps directly from undersampled k-space which is continuously measured by IR radial FLASH with a 4 s breathhold and retrospectively sorted based on a cardiac trigger signal. Joint sparsity constraints are imposed on the parameter maps to further improve T1 precision. Validations involved studies of an experimental phantom and 8 healthy adult subjects. In comparison to an IR spin-echo reference method, phantom experiments with T1 values ranging from 300 to 1500 ms revealed good accuracy and precision at simulated heart rates between 40 and 100 bpm. In vivo T1 maps achieved better precision and qualitatively better preservation of image features for the proposed method than a real-time CMR approach followed by pixelwise fitting. Apart from good inter-observer reproducibility (0.6% of the mean), in vivo results confirmed good intra-subject reproducibility (1.05% of the mean for intra-scan and 1.17, 1.51% of the means for the two inter-scans, respectively) of the proposed method. Model-based reconstructions with sparsity constraints allow for single-shot myocardial T1 maps with high spatial resolution, accuracy, precision and reproducibility within a 4 s breathhold. Clinical trials are warranted.

    更新日期:2019-11-28
  • Machine learning in cardiovascular magnetic resonance: basic concepts and applications
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-07
    Tim Leiner; Daniel Rueckert; Avan Suinesiaputra; Bettina Baeßler; Reza Nezafat; Ivana Išgum; Alistair A. Young

    Machine learning (ML) is making a dramatic impact on cardiovascular magnetic resonance (CMR) in many ways. This review seeks to highlight the major areas in CMR where ML, and deep learning in particular, can assist clinicians and engineers in improving imaging efficiency, quality, image analysis and interpretation, as well as patient evaluation. We discuss recent developments in the field of ML relevant to CMR in the areas of image acquisition & reconstruction, image analysis, diagnostic evaluation and derivation of prognostic information. To date, the main impact of ML in CMR has been to significantly reduce the time required for image segmentation and analysis. Accurate and reproducible fully automated quantification of left and right ventricular mass and volume is now available in commercial products. Active research areas include reduction of image acquisition and reconstruction time, improving spatial and temporal resolution, and analysis of perfusion and myocardial mapping. Although large cohort studies are providing valuable data sets for ML training, care must be taken in extending applications to specific patient groups. Since ML algorithms can fail in unpredictable ways, it is important to mitigate this by open source publication of computational processes and datasets. Furthermore, controlled trials are needed to evaluate methods across multiple centers and patient groups.

    更新日期:2019-11-28
  • Improved co-registration of ex-vivo and in-vivo cardiovascular magnetic resonance images using heart-specific flexible 3D printed acrylic scaffold combined with non-rigid registration
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-10
    John Whitaker; Radhouene Neji; Nicholas Byrne; Esther Puyol-Antón; Rahul K. Mukherjee; Steven E. Williams; Henry Chubb; Louisa O’Neill; Orod Razeghi; Adam Connolly; Kawal Rhode; Steven Niederer; Andrew King; Cory Tschabrunn; Elad Anter; Reza Nezafat; Martin J. Bishop; Mark O’Neill; Reza Razavi; Sébastien Roujol

    Ex-vivo cardiovascular magnetic resonance (CMR) imaging has played an important role in the validation of in-vivo CMR characterization of pathological processes. However, comparison between in-vivo and ex-vivo imaging remains challenging due to shape changes occurring between the two states, which may be non-uniform across the diseased heart. A novel two-step process to facilitate registration between ex-vivo and in-vivo CMR was developed and evaluated in a porcine model of chronic myocardial infarction (MI). Seven weeks after ischemia-reperfusion MI, 12 swine underwent in-vivo CMR imaging with late gadolinium enhancement followed by ex-vivo CMR 1 week later. Five animals comprised the control group, in which ex-vivo imaging was undertaken without any support in the LV cavity, 7 animals comprised the experimental group, in which a two-step registration optimization process was undertaken. The first step involved a heart specific flexible 3D printed scaffold generated from in-vivo CMR, which was used to maintain left ventricular (LV) shape during ex-vivo imaging. In the second step, a non-rigid co-registration algorithm was applied to align in-vivo and ex-vivo data. Tissue dimension changes between in-vivo and ex-vivo imaging were compared between the experimental and control group. In the experimental group, tissue compartment volumes and thickness were compared between in-vivo and ex-vivo data before and after non-rigid registration. The effectiveness of the alignment was assessed quantitatively using the DICE similarity coefficient. LV cavity volume changed more in the control group (ratio of cavity volume between ex-vivo and in-vivo imaging in control and experimental group 0.14 vs 0.56, p < 0.0001) and there was a significantly greater change in the short axis dimensions in the control group (ratio of short axis dimensions in control and experimental group 0.38 vs 0.79, p < 0.001). In the experimental group, prior to non-rigid co-registration the LV cavity contracted isotropically in the ex-vivo condition by less than 20% in each dimension. There was a significant proportional change in tissue thickness in the healthy myocardium (change = 29 ± 21%), but not in dense scar (change = − 2 ± 2%, p = 0.034). Following the non-rigid co-registration step of the process, the DICE similarity coefficients for the myocardium, LV cavity and scar were 0.93 (±0.02), 0.89 (±0.01) and 0.77 (±0.07) respectively and the myocardial tissue and LV cavity volumes had a ratio of 1.03 and 1.00 respectively. The pattern of the morphological changes seen between the in-vivo and the ex-vivo LV differs between scar and healthy myocardium. A 3D printed flexible scaffold based on the in-vivo shape of the LV cavity is an effective strategy to minimize morphological changes in the ex-vivo LV. The subsequent non-rigid registration step further improved the co-registration and local comparison between in-vivo and ex-vivo data.

    更新日期:2019-11-28
  • Decreased rotational flow and circumferential wall shear stress as early markers of descending aorta dilation in Marfan syndrome: a 4D flow CMR study
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-14
    A. Guala; G. Teixido-Tura; L. Dux-Santoy; C. Granato; A. Ruiz-Muñoz; F. Valente; L. Galian-Gay; L. Gutiérrez; T. González-Alujas; K. M. Johnson; O. Wieben; A. Sao Avilés; A. Evangelista; J. Rodriguez-Palomares

    Diseases of the descending aorta have emerged as a clinical issue in Marfan syndrome following improvements in proximal aorta surgical treatment and the consequent increase in life expectancy. Although a role for hemodynamic alterations in the etiology of descending aorta disease in Marfan patients has been suggested, whether flow characteristics may be useful as early markers remains to be determined. Seventy-five Marfan patients and 48 healthy subjects were prospectively enrolled. In- and through-plane vortexes were computed by 4D flow cardiovascular magnetic resonance (CMR) in the thoracic aorta through the quantification of in-plane rotational flow and systolic flow reversal ratio, respectively. Regional pulse wave velocity and axial and circumferential wall shear stress maps were also computed. In-plane rotational flow and circumferential wall shear stress were reduced in Marfan patients in the distal ascending aorta and in proximal descending aorta, even in the 20 patients free of aortic dilation. Multivariate analysis showed reduced in-plane rotational flow to be independently related to descending aorta pulse wave velocity. Conversely, systolic flow reversal ratio and axial wall shear stress were altered in unselected Marfan patients but not in the subgroup without dilation. In multivariate regression analysis proximal descending aorta axial (p = 0.014) and circumferential (p = 0.034) wall shear stress were independently related to local diameter. Reduced rotational flow is present in the aorta of Marfan patients even in the absence of dilation, is related to aortic stiffness and drives abnormal circumferential wall shear stress. Axial and circumferential wall shear stress are independently related to proximal descending aorta dilation beyond clinical factors. In-plane rotational flow and circumferential wall shear stress may be considered as an early marker of descending aorta dilation in Marfan patients.

    更新日期:2019-11-28
  • Fast self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast cardiovascular magnetic resonance at 17.6 T
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-14
    Patrick Winter; Kristina Andelovic; Thomas Kampf; Fabian Tobias Gutjahr; Julius Heidenreich; Alma Zernecke; Wolfgang Rudolf Bauer; Peter Michael Jakob; Volker Herold

    4D flow cardiovascular magnetic resonance (CMR) and the assessment of wall shear stress (WSS) are non-invasive tools to study cardiovascular risks in vivo. Major limitations of conventional triggered methods are the long measurement times needed for high-resolution data sets and the necessity of stable electrocardiographic (ECG) triggering. In this work an ECG-free retrospectively synchronized method is presented that enables accelerated high-resolution measurements of 4D flow and WSS in the aortic arch of mice. 4D flow and WSS were measured in the aortic arch of 12-week-old wildtype C57BL/6 J mice (n = 7) with a radial 4D-phase-contrast (PC)-CMR sequence, which was validated in a flow phantom. Cardiac and respiratory motion signals were extracted from the radial CMR signal and were used for the reconstruction of 4D-flow data. Rigid motion correction and a first order B0 correction was used to improve the robustness of magnitude and velocity data. The aortic lumen was segmented semi-automatically. Temporally averaged and time-resolved WSS and oscillatory shear index (OSI) were calculated from the spatial velocity gradients at the lumen surface at 14 locations along the aortic arch. Reproducibility was tested in 3 animals and the influence of subsampling was investigated. Volume flow, cross-sectional areas, WSS and the OSI were determined in a measurement time of only 32 min. Longitudinal and circumferential WSS and radial stress were assessed at 14 analysis planes along the aortic arch. The average longitudinal, circumferential and radial stress values were 1.52 ± 0.29 N/m2, 0.28 ± 0.24 N/m2 and − 0.21 ± 0.19 N/m2, respectively. Good reproducibility of WSS values was observed. This work presents a robust measurement of 4D flow and WSS in mice without the need of ECG trigger signals. The retrospective approach provides fast flow quantification within 35 min and a flexible reconstruction framework.

    更新日期:2019-11-28
  • Accelerated aortic 4D flow cardiovascular magnetic resonance using compressed sensing: applicability, validation and clinical integration
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-21
    Elisabeth Neuhaus; Kilian Weiss; Rene Bastkowski; Jonas Koopmann; David Maintz; Daniel Giese

    Three-dimensional time-resolved phase-contrast cardiovascular magnetic resonance (4D flow CMR) enables the quantification and visualisation of blood flow, but its clinical applicability remains hampered by its long scan time. The aim of this study was to evaluate the use of compressed sensing (CS) with on-line reconstruction to accelerate the acquisition and reconstruction of 4D flow CMR of the thoracic aorta. 4D flow CMR of the thoracic aorta was acquired in 20 healthy subjects using CS with acceleration factors ranging from 4 to 10. As a reference, conventional parallel imaging (SENSE) with acceleration factor 2 was used. Flow curves, net flows, peak flows and peak velocities were extracted from six contours along the aorta. To measure internal data consistency, a quantitative particle trace analysis was performed. Additionally, scan-rescan, inter- and intraobserver reproducibility were assessed. Subsequently, 4D flow CMR with CS factor 6 was acquired in 3 patients with differing aortopathies. The flow patterns resulting from particle trace visualisation were qualitatively analysed. All collected data were successfully acquired and reconstructed on-line. The average acquisition time including respiratory navigator efficiency with CS factor 6 was 5:02 ± 2:23 min while reconstruction took approximately 9 min. For CS factors of 8 or less, mean differences in net flow, peak flow and peak velocity as compared to SENSE were below 2.2 ± 7.8 ml/cycle, 4.6 ± 25.2 ml/s and − 7.9 ± 13.0 cm/s, respectively. For a CS factor of 10 differences reached 5.4 ± 8.0 ml/cycle, 14.4 ± 28.3 ml/s and − 4.0 ± 12.2 cm/s. Scan-rescan analysis yielded mean differences in net flow of − 0.7 ± 4.9 ml/cycle for SENSE and − 0.2 ± 8.5 ml/cycle for CS factor of 6. A six- to eightfold acceleration of 4D flow CMR using CS is feasible. Up to a CS acceleration rate of 6, no statistically significant differences in measured flow parameters could be observed with respect to the reference technique. Acquisitions in patients with aortopathies confirm the potential to integrate the proposed method in a clinical routine setting, whereby its main benefits are scan-time savings and direct on-line reconstruction.

    更新日期:2019-11-28
  • Surveillance of abdominal aortic aneurysm using accelerated 3D non-contrast black-blood cardiovascular magnetic resonance with compressed sensing (CS-DANTE-SPACE)
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-28
    Chengcheng Zhu; Lizhen Cao; Zhaoying Wen; Sinyeob Ahn; Esther Raithel; Christoph Forman; Michael Hope; David Saloner

    3D non-contrast high-resolution black-blood cardiovascular magnetic resonance (CMR) (DANTE-SPACE) has been used for surveillance of abdominal aortic aneurysm (AAA) and validated against computed tomography (CT) angiography. However, it requires a long scan time of more than 7 min. We sought to develop an accelerated sequence applying compressed sensing (CS-DANTE-SPACE) and validate it in AAA patients undergoing surveillance. Thirty-eight AAA patients (all males, 73 ± 6 years) under clinical surveillance were recruited for this study. All patients were scanned with DANTE-SPACE (scan time 7:10 min) and CS-DANTE-SPACE (scan time 4:12 min, a reduction of 41.4%). Nine 9 patients were scanned more than 2 times. In total, 50 pairs of images were available for comparison. Two radiologists independently evaluated the image quality on a 1–4 scale, and measured the maximal diameter of AAA, the intra-luminal thrombus (ILT) and lumen area, ILT-to-muscle signal intensity ratio, and the ILT-to-lumen contrast ratio. The sharpness of the aneurysm inner/outer boundaries was quantified. CS-DANTE-SPACE achieved comparable image quality compared with DANTE-SPACE (3.15 ± 0.67 vs. 3.03 ± 0.64, p = 0.06). There was excellent agreement between results from the two sequences for diameter/area and ILT ratio measurements (ICCs> 0.85), and for quantifying growth rate (3.3 ± 3.1 vs. 3.3 ± 3.4 mm/year, ICC = 0.95.) CS-DANTE-SPACE showed a higher ILT-to-lumen contrast ratio (p = 0.01) and higher sharpness than DANTE-SPACE (p = 0.002). Both sequences had excellent inter-reader reproducibility for quantitative measurements (ICC > 0.88). CS-DANTE-SPACE can reduce scan time while maintaining image quality for AAA imaging. It is a promising tool for the surveillance of patients with AAA disease in the clinical setting.

    更新日期:2019-11-28
  • Feasibility of real-time cine cardiac magnetic resonance imaging to predict the presence of significant retrosternal adhesions prior to redo-sternotomy
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-10-31
    Riad Abou Zahr; Vasu Gooty; Animesh Tandon; Gerald Greil; Timothy Pirolli; Ryan Davies; Robert Jaquiss; Claudio Ramaciotti; Tarique Hussain

    Injury to vital structures posterior to the sternum is a complication associated with redo sternotomy in congenital cardiac surgery. The goal of our study was a novel evaluation of real-time cine cardiovascular magnetic resonance (CMR) to predict the presence of significant retrosternal adhesions of cardiac and vascular structures prior to redo sternotomy in patients with congenital heart disease. Twenty-three patients who had prior congenital heart surgery via median sternotomy had comprehensive CMR studies prior to redo sternotomy. The real time cine (RTC) sequence that was used is an ungated balanced steady-state free precession (bSSFP) sequence using SENSitivity Encoding for acceleration with real-time reconstruction. Spontaneously breathing patients were instructed to take deep breaths during the acquisition whilst increased tidal volumes were delivered to mechanically ventilated patients. All patients underwent redo cardiac surgery subsequently and the presence and severity of retrosternal adhesions were noted at the time of the redo sternotomies. Median age at the time of CMR and operation were 5.5 years (range, 0.2–18.4y) and 6.1 years (range, 0.3–18.8y) respectively. There were 15 males and 8 females in the study group. Preoperative retrosternal adhesions were identified on RTC in 13 patients and confirmed in 11 (85%) at the time of surgery. In only 2 patients, no adhesions were identified on CMR but were found to have significant retrosternal adhesions at surgery; false positive rate 15% (CI 0.4–29.6%), false negative rate 20% (CI 3.7–36.4%). The total classification error of the real time cine sequence was 17% (CI 1.7–32.4%) with an overall accuracy of 83% (CI 67.7–98.4%). Standard breath-hold cine images correlated poorly with surgical findings and did not increase the diagnostic yield. RTC imaging can predict the presence of significant retrosternal adhesions and thus help in risk assessment prior to redo sternotomy. These findings complement the surgical planning and potentially reduce surgical complications .

    更新日期:2019-11-28
  • Repaired coarctation of the aorta, persistent arterial hypertension and the selfish brain
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-11-07
    Jonathan C. L. Rodrigues; Matthew F. R. Jaring; Melissa C. Werndle; Konstantina Mitrousi; Stephen M. Lyen; Angus K. Nightingale; Mark C. K. Hamilton; Stephanie L. Curtis; Nathan E. Manghat; Julian F. R. Paton; Emma C. Hart

    It has been estimated that 20–30% of repaired aortic coarctation (CoA) patients develop hypertension, with significant cardiovascular morbidity and mortality. Vertebral artery hypoplasia (VAH) with an incomplete posterior circle of Willis (ipCoW; VAH + ipCoW) is associated with increased cerebrovascular resistance before the onset of increased sympathetic nerve activity in borderline hypertensive humans, suggesting brainstem hypoperfusion may evoke hypertension to maintain cerebral blood flow: the “selfish brain” hypothesis. We now assess the “selfish brain” in hypertension post-CoA repair. Time-of-flight cardiovascular magnetic resonance angiography from 127 repaired CoA patients (34 ± 14 years, 61% male, systolic blood pressure (SBP) 138 ± 19 mmHg, diastolic blood pressure (DBP) 76 ± 11 mmHg) was compared with 33 normotensive controls (42 ± 14 years, 48% male, SBP 124 ± 10 mmHg, DBP 76 ± 8 mmHg). VAH was defined as < 2 mm and ipCoW as hypoplasia of one or both posterior communicating arteries. VAH + ipCoW was more prevalent in repaired CoA than controls (odds ratio: 5.8 [1.6–20.8], p = 0.007), after controlling for age, sex and body mass index (BMI). VAH + ipCoW was an independent predictor of hypertension (odds ratio: 2.5 [1.2–5.2], p = 0.017), after controlling for age, gender and BMI. Repaired CoA subjects with VAH + ipCoW were more likely to have difficult to treat hypertension (odds ratio: 3.3 [1.01–10.7], p = 0.049). Neither age at time of CoA repair nor any specific repair type were significant predictors of VAH + ipCoW in univariate regression analysis. VAH + ipCoW predicts arterial hypertension and difficult to treat hypertension in repaired CoA. It is unrelated to age at time of repair or repair type. CoA appears to be a marker of wider congenital cerebrovascular problems. Understanding the “selfish brain” in post-CoA repair may help guide management. High Blood Pressure; Hypertension; Magnetic Resonance Imaging (MRI); Cardiovascular Surgery; Cerebrovascular Malformations.

    更新日期:2019-11-28
  • Supine, prone, right and left gravitational effects on human pulmonary circulation
    J Cardiovasc. Magn. Reson. (IF 5.07) Pub Date : 2019-11-11
    Björn Wieslander; Joao Génio Ramos; Malin Ax; Johan Petersson; Martin Ugander

    Body position can be optimized for pulmonary ventilation/perfusion matching during surgery and intensive care. However, positional effects upon distribution of pulmonary blood flow and vascular distensibility measured as the pulmonary blood volume variation have not been quantitatively characterized. In order to explore the potential clinical utility of body position as a modulator of pulmonary hemodynamics, we aimed to characterize gravitational effects upon distribution of pulmonary blood flow, pulmonary vascular distension, and pulmonary vascular distensibility. Healthy subjects (n = 10) underwent phase contrast cardiovascular magnetic resonance (CMR) pulmonary artery and vein flow measurements in the supine, prone, and right/left lateral decubitus positions. For each lung, blood volume variation was calculated by subtracting venous from arterial flow per time frame. Body position did not change cardiac output (p = 0.84). There was no difference in blood flow between the superior and inferior pulmonary veins in the supine (p = 0.92) or prone body positions (p = 0.43). Compared to supine, pulmonary blood flow increased to the dependent lung in the lateral positions (16–33%, p = 0.002 for both). Venous but not arterial cross-sectional vessel area increased in both lungs when dependent compared to when non-dependent in the lateral positions (22–27%, p ≤ 0.01 for both). In contrast, compared to supine, distensibility increased in the non-dependent lung in the lateral positions (68–113%, p = 0.002 for both). CMR demonstrates that in the lateral position, there is a shift in blood flow distribution, and venous but not arterial blood volume, from the non-dependent to the dependent lung. The non-dependent lung has a sizable pulmonary vascular distensibility reserve, possibly related to left atrial pressure. These results support the physiological basis for positioning patients with unilateral pulmonary pathology with the “good lung down” in the context of intensive care. Future studies are warranted to evaluate the diagnostic potential of these physiological insights into pulmonary hemodynamics, particularly in the context of non-invasively characterizing pulmonary hypertension.

    更新日期:2019-11-28
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug