当前期刊: Cancer Cell International Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Correction to: The predictive value of dynamic monitoring of peripheral blood lymphocyte to monocyte ratio in patients with extranodal NK/T cell lymphoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-16
    Shengnan Zhang; Mengjuan Li; Fangfang Yuan; Lin Chen; Ruihua Mi; Xudong Wei; Yongping Song; Qingsong Yin

    After publication of our article [1] it was highlighted by the authors that the type of this article was primary research, instead of review.

    更新日期:2020-01-16
  • Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-13
    Khatereh Khorsandi; Zahra Kianmehr; Zohreh hosseinmardi; Reza Hosseinzadeh

    There are different treatments for breast cancer and melanoma that mostly have some side effects. One of the therapeutic strategies is the use of natural components. Phenol components are a class of antioxidants in plants that have many biological functions like anticancer effects. Gallic acid (GA) is a natural polyhydroxy phenolic compound and commonly found in various foods. In the present study, GA effects alone and in combination with low-level laser irradiation on human dermal fibroblast cell line (HDF), human non-tumorigenic breast epithelial cell line (MCF10A), breast cancer cell line (MDA-MB-231) and melanoma cancer cell line (A375) was under the investigation. The normal and cancerous cell lines were exposed to 660 nm low-level laser with 3 J/cm2 for 90 s. Then, the cells were treated with different concentrations of GA for 24 h. In another study, the cell lines firstly were treated with GA and then exposed to low-level laser irradiation. The effects of GA and low-level laser on cell survival and apoptosis were examined using MTT assay, light microscopy, ROS production assay, fluorescence microscopy (AO/EB double staining) and flow cytometry. The results showed that pre-treatment with low-level laser and then GA reduced the survival of breast cancer cells and melanoma more than the first treatment with GA and then low-level laser irradiation. Our findings showed that ROS production in cells treated with both low-level laser and GA was more than the cells treated with GA alone. The apoptosis and ferroptosis assays confirmed the MTT results which combination treatment with low-level laser and then GA increase the cell death probably via apoptosis and ferroptosis cell death mechanisms compared to GA alone. This study suggests that low-level laser irradiation alone is not able to cause death in human normal and cancerous cells. Preirradiation followed by GA treatment did not change the cell viability in human normal significantly but reduces the cell survival of cancer cells more than GA alone.

    更新日期:2020-01-14
  • CircZDHHC20 represses the proliferation, migration and invasion in trophoblast cells by miR-144/GRHL2 axis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-13
    Bing Zhou; Xia Zhang; Ting Li; Rongping Xie; Jianbin Zhou; Yu Luo; Chunfen Yang

    Preeclampsia (PE) is a prevalent pregnancy disorder that has been one of the leading causes of maternal and perinatal mortality worldwide. Circular RNAs (circRNAs) have recently considered as important regulators in PE pathogenesis. In the current study, we aimed to explore the impact and mechanisms of circRNA zinc finger DHHC-type palmitoyltransferase 20 (circZDHHC20) in PE pathogenesis. RNase R assay and reverse transcription with Oligo(dT)18 primers were performed to confirm that circZDHHC20 was indeed circular transcript. The expression of circZDHHC20, grainyhead-like 2 (GRHL2) and miR-144 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Subcellular localization assay was used to determine whether circZDHHC20 was predominantly present in the cytoplasm. The target correlations between miR-144 and circZDHHC20 or GRHL2 were confirmed using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Cell proliferation, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetr-azolium (MTS), wound healing and transwell assays, respectively. Western blot was used for the quantification of GRHL2 protein level. Our data indicated that circZDHHC20 was up-regulated and miR-144 was down-regulated in PE placenta. CircZDHHC20 sequestered miR-144 by acting as a miR-144 sponge. CircZDHHC20 overexpression repressed trophoblast cell proliferation, migration, and invasion, while its knockdown exerted opposite effects. Moreover, miR-144 mediated the regulation of circZDHHC20 on trophoblast cell behaviors. GRHL2 was directly targeted and inhibited by miR-144. MiR-144 exerted regulatory effects on trophoblast cell proliferation, migration and invasion by GRHL2. Furthermore, circZDHHC20 modulated GRHL2 expression through sponging miR-144. Our study suggested that a high level of circZDHHC20 inhibited the proliferation, migration, and invasion in trophoblast cells at least partially through sponging miR-144 and up-regulating GRHL2, providing a novel mechanism of PE pathogenesis.

    更新日期:2020-01-14
  • EphA5 knockdown enhances the invasion and migration ability of esophageal squamous cell carcinoma via epithelial-mesenchymal transition through activating Wnt/β-catenin pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-13
    Rui Zhang; Jing Liu; Wei Zhang; Lei Hua; Li-Ting Qian; Shao-Bing Zhou

    The erythropoietin-producing hepatocellular (Eph) receptor A5 (EphA5) has been found to be overexpressed in some malignant tumors and is associated with disease prognosis. However, the role of EphA5 in esophageal squamous cell carcinoma (ESCC) is not clear. In the present study, we measured the expression of EphA5 in ESCC tissues and cell lines including KYSE150 and KYSE450 cells. siRNA transfection was used to interfere with EphA5 expression in ESCC cell lines. Cell viability, colony formation, scratch and invasion assays were performed to explore the roles of EphA5 in ESCC cell lines. Flow cytometry analysis was performed to investigate whether EphA5 could affect the cell apoptosis and cycle. The biomarkers related to epithelial-mesenchymal transition (EMT) and molecules associated with Wnt/β‑catenin signaling were also measured by western blot and immunofluorescence. The protein and mRNA expression of EphA5 were significantly higher in fresh ESCC tissues and cell lines compared with normal control groups and human normal esophageal epithelial cells (HEEC). The cell viability assay and colony formation assay revealed that EphA5 knockdown enhanced the proliferation of KYSE150 and KYSE450 cells in vitro. The invasion and migration of ESCC cells were accelerated after EphA5 knockdown. The expression of EMT biomarkers was altered in ESCC cells transfected with siRNA targeting EphA5. Moreover, EphA5 downregulation enhanced the protein levels of β‑catenin and p-GSK-3βSer9, which play a key role in the Wnt/β‑catenin pathway. EphA5 knockdown promotes the proliferation of esophageal squamous cell carcinoma,enhances invasion and migration ability via epithelial-mesenchymal transition through activating Wnt/β‑catenin pathway.

    更新日期:2020-01-14
  • Microsatellite instability: a review of what the oncologist should know
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-13
    Kai Li; Haiqing Luo; Lianfang Huang; Hui Luo; Xiao Zhu

    The patients with high microsatellite instability (MSI-H)/mismatch repair deficient (dMMR) tumors recently have been reported that can benefit from immunotherapy, and MSI can be used as a genetic instability of a tumor detection index. However, many studies have shown that there are many heterogeneous phenomena in patients with MSI tumors in terms of immunotherapy, prognosis and chemotherapy sensitivity. Here we mainly review the research results of MSI detection methods, the mechanisms of MSI occurrence and its relationship with related tumors, aiming to make a brief analysis of the current research status of MSI and provide comparable reference and guidance value for further research in this field.

    更新日期:2020-01-13
  • MAP7 promotes migration and invasion and progression of human cervical cancer through modulating the autophagy
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-13
    Li Zhang; Xudong Liu; Lina Song; Hui Zhai; Chaohua Chang

    Microtubule-associated proteins 7(MAP7) was reported to be engaged into the function of neuronal function. The function of MAP7 in human cervical cancer (CC) was unknown. We aimed to uncover the function and mechanism of MAP7 on CC. We applied qRT-PCR, western blot and immunochemistry to detect the expression difference between normal tissue and CC. In vitro, we establish MAP7 stable knocking down and overexpression cell lines and investigated the function and underlying mechanism of MAP7 in CC. Both mRNA and protein of MAP7 were upregulated in CC compared with the normal tissue. MAP7 was correlated with the clinical stage and tumor size and lymph node metastasis. MAP7 promotes the invasion and migration of CC cell lines. We next detected EMT pathway and autophagy associated pathway. MAP7 promotes the EMT through modulating the autophagy. Taken above, our results showed that MAP7 promotes the migration and invasion and EMT through modulating the autophagy.

    更新日期:2020-01-13
  • LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating miR-21/E-cadherin axis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-10
    Liangcai Wu; Lifei Zhu; Yanchang Li; Zhixin Zheng; Xi Lin; Chaoying Yang

    Melanoma is the most aggressive type of skin cancer with high mortality rate and poor prognosis. lncRNA MEG3, a tumor suppressor, is closely related to the development of various cancers. However, the role of lncRNA MEG3 in melanoma has seldom been studied. RT-PCR was used to examine the expressions of lncRNA MEG3 and E-cadherin in melanoma patients and cell lines. Then, the biological functions of lncRNA MEG3 and E-cadherin were demonstrated by transfecting lncRNA MEG3-siRNA, lncRNA MEG3-overexpression, E-cadherin-siRNA and E-cadherin-overexpression plasmids in melanoma cell lines. Moreover, CCK8 assay and colony formation assay were utilized to assess the cell proliferation; Transwell assay was performed to evaluate the cell invasive ability; and tumor xenografts in nude mice were applied to test the tumor generation. Additionally, the target interactions among lncRNA MEG3, miR-21 and E-cadherin were determined by dual luciferase reporter assay. Finally, RT-PCR and WB were further conducted to verify the regulatory roles among lncRNA MEG3, miR-21 and E-cadherin. The clinical data showed that lncRNA MEG3 and E-cadherin expressions were both declined in carcinoma tissues as compared with their para-carcinoma tissues. Moreover, lncRNA MEG3 and E-cadherin expressions in B16 cells were also higher than those in A375 and A2058 cells. Subsequently, based on the differently expressed lncRNA MEG3 and E-cadherin in these human melanoma cell lines, we chose B16, A375 and A2058 cells for the following experiments. The results demonstrated that lncRNA MEG3 could suppress the tumor growth, tumor metastasis and formation; and meanwhile E-cadherin had the same effects on tumor growth, tumor metastasis and formation. Furthermore, the analysis of Kaplan–Meier curves also confirmed that there was a positive correlation between lncRNA MEG3 and E-cadherin. Ultimately, dual luciferase assays were further used to verify that lncRNA MEG3 could directly target miR-21 which could directly target E-cadherin in turn. Additionally, the data of RT-PCR and WB revealed that knockdown of lncRNA MEG3 in B16 cells inhibited miR-21 expression and promoted E-cadherin expression, but overexpression of lncRNA MEG3 in A375 and A2058 cells presented completely opposite results. Our findings indicated that lncRNA MEG3 might inhibit the tumor growth, tumor metastasis and formation of melanoma by modulating miR-21/E-cadherin axis.

    更新日期:2020-01-11
  • Over-expression of CDX2 alleviates breast cancer by up-regulating microRNA let-7b and inhibiting COL11A1 expression
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-10
    Hongbin Wang; Yanlv Ren; Cheng Qian; Jiaxin Liu; Ge Li; Zhigao Li

    microRNA Let-7 serves as a tumor suppressor by targeting various oncogenic pathways in cancer cells. However, the underlying mechanism of its involvement in breast cancer remains largely unknown. With our research, our endeavor is to explore the role of the CDX2/let-7b/COL11A1 axis in breast cancer cell activities. Tumor tissues and adjacent normal tissues were collected from 86 patients with breast cancer. Human breast cancer epithelial cell line MCF-7 was treated with over-expressed CDX2, let-7b mimic, shRNA against COL11A1 and their negative controls. The expression of CDX2, let-7b, and COL11A1 in the tissues and cells was determined by RT-qPCR. Interactions among CDX2, let-7b, and COL11A1 were detected by ChIP and dual-luciferase reporter assay, respectively. After different transfections, cell invasion, migration, and proliferation abilities were determined by Transwell and EdU assays. Lastly, tumor xenografts in nude mice were established and hematoxylin and eosin staining was performed to assess the tumor growth and lymph node metastasis. CDX2 and let-7b were poorly expressed in breast cancer cells and tissues. CDX2 bound to let-7b and promoted the expression of let-7b, which contrarily inhibited the expression of COL11A1. Cancer cell proliferation, invasion, migration, and metastasis were stimulated when CDX2 and let-7b were depleted or COL11A1 was over-expressed. Xenograft tumors growth and metastasis were in accordance with the results of cellular experiments. In agreement with these observations, we could reach a conclusion that CDX2 could promote let-7b expression, which may exert an inhibitory effect on the proliferation, migration, and metastasis of breast cancer cells via repressing the expression of COL11A1, providing a novel therapeutic strategy for the treatment of metastatic breast cancer.

    更新日期:2020-01-11
  • Silencing of miR-17-5p suppresses cell proliferation and promotes cell apoptosis by directly targeting PIK3R1 in laryngeal squamous cell carcinoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-10
    Jian-Xing Wang; Xin-Ju Jia; Yan Liu; Jin-Hui Dong; Xiu-Min Ren; Ou Xu; Sheng-Hui Liu; Chun-Guang Shan

    Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3′-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.

    更新日期:2020-01-11
  • Prognostic role of pretreatment blood lymphocyte count in patients with solid tumors: a systematic review and meta-analysis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-10
    Jiawen Zhao; Weijia Huang; Yongxian Wu; Yihuan Luo; Bo Wu; Jiwen Cheng; Junqiang Chen; Deyun Liu; Chengyang Li

    To evaluate the prognostic value of pretreatment lymphocyte counts with respect to clinical outcomes in patients with solid tumors. Systematic literature search of electronic databases (Pubmed, Embase and Web of Science) up to May 1, 2018 was carried out by two independent reviewers. We included Eligible studies assessed the prognostic impact of pretreatment lymphocytes and had reported hazard ratios (HR) with 95% confidence intervals (CIs) for endpoints including overall survival (OS) and progression-free survival (PFS). Only English publications were included. A total of 42 studies comprising 13,272 patients were included in this systematic review and meta-analysis. Low pretreatment lymphocyte count was associated with poor OS (HR = 1.27, 95% CI 1.16–1.39, P < 0.001, I2 = 58.5%) and PFS (HR = 1.27, 95% CI 1.15–1.40, P < 0.001, I2 = 25.7%). Subgroup analysis disaggregated by cancer type indicated that low pretreatment lymphocytes were most closely associated with poor OS in colorectal cancer followed by breast cancer and renal cancer. Low pretreatment lymphocyte count may represent an unfavorable prognostic factor for clinical outcomes in patients with solid tumors.

    更新日期:2020-01-11
  • LINC00908 negatively regulates microRNA-483-5p to increase TSPYL5 expression and inhibit the development of prostate cancer
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-09
    Li Fan; Hai Li; Yun Zhang

    Accumulating evidence has associated aberrant long non-coding RNAs (lncRNAs) with various human cancers. This study aimed to explore the role of LINC00908 in prostate cancer (PCa) and its possible underlying mechanisms. Microarray data associated with PCa were obtained from the Gene Expression Omnibus (GEO) to screen the differentially expressed genes or lncRNAs. Then, the expression of LINC00908 in PCa tissues and cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The localization of LINC00908 in PCa cells was examined by fluorescence in situ hybridization (FISH). The relationship among LINC00908, microRNA (miR)-483-5p, and TSPYL5 was detected by bioinformatics analysis, dual-luciferase reporter assay, RNA pull-down, RNA binding protein immunoprecipitation (RIP), and FISH assays. Cell biological behaviors were assessed after the expression of LINC00908, miR-483-5p, and TSPYL5 was altered in PCa cells. Lastly, tumor growth in nude mice was evaluated. Poorly expressed LINC00908 was witnessed in PCa tissues and cells. LINC00908 competitively bound to miR-483-5p to up-regulate the TSPYL5 expression. Overexpression of LINC00908 resulted in reduced PCa cell proliferation, migration and invasion, and promoted apoptosis. Additionally, the suppression on PCa cell proliferation, migration and invasion was induced by up-regulation of TSPYL5 or inhibition of miR-483-5p. In addition, in vivo experiments showed that overexpression of LINC00908 inhibited tumor growth of PCa. Overall, LINC00908 could competitively bind to miR-483-5p to increase the expression of TSPYL5, thereby inhibiting the progression of PCa. Therefore, LINC00908 may serve as a novel target for the treatment of PCa.

    更新日期:2020-01-09
  • Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-09
    Zhao-Ming Zhong; Xue Chen; Xiao Qi; Xue-Min Wang; Chun-Yan Li; Ru-Jia Qin; Shi-Qi Wang; Jin Liang; Mu-Sheng Zeng; Chuan-Zheng Sun

    Rapid progression contributes to treatment failure in anaplastic thyroid carcinoma (ATC) patients. In a preliminary study, we demonstrated that some hematopoietic factors may be involved in the progression of ATC. The adaptor protein LNK, which is a negative regulator of hematopoietic cytokine signalling, has been studied extensively in malignant hematopoietic cells. However, there are few studies on LNK in solid tumours. Real-time PCR, immunohistochemistry (IHC) and western blot analysis of LNK were performed on ATC cells, differentiated thyroid cancer (DTC) cells and normal thyroid cells. In vitro assays (including pull-down, liquid chromatography-mass spectrometry (LC–MS), co-IP, MTT and colony formation) were performed to validate the effect of LNK on ATC progression and elucidate the molecular mechanisms. Compared with DTC cells and normal thyroid cells, ATC cells exhibit overexpression of LNK. In addition, LNK overexpression results in increased proliferation of ATC cells. Conversely, LNK knockdown significantly suppresses ATC cell proliferation. LC–MS identified the 14-3-3 ε/γ protein as a LNK binding partner. Finally, the results indicate that LNK overexpression significantly enhances the anti-apoptotic ability of ATC cells via the Akt-NFκB-Bcl-2/Bcl-xL pathway and that the oncogenic effect of LNK largely depends on 14-3-3 ε/γ binding. The present study elucidated the important role of LNK in the growth of ATC opposite to its behaviour in the hematopoietic system and indicates that LNK is a potential target for the treatment of ATC.

    更新日期:2020-01-09
  • CTLA-4 correlates with immune and clinical characteristics of glioma
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-06
    Fangkun Liu; Jing Huang; Xuming Liu; Quan Cheng; Chengke Luo; Zhixiong Liu

    CTLA-4 is a well-studied immune checkpoint protein that negatively regulates T cell-mediated immune responses. However, the expression of CTLA-4 in glioma and the effects of CTLA-4 on prognosis in patients with glioma have not yet been examined. We investigated the protein level of CTLA-4 in human glioma samples, extracted genetic and clinical data from 1024 glioma patients to characterize CTLA-4 expression and its relationship with immune functions in gliomas. R language was used for statistical analysis. Higher CTLA-4 expression was found in patients with higher grade, isocitrate dehydrogenase (IDH)-wild-type, and mesenchymal-molecular subtype gliomas than in patients with lower grade, IDH-mutant, and other molecular subtype gliomas. Further analysis showed that there was a strong positive correlation between CTLA-4 and the specific marker gene expression of immune cells, including CD8+ T cells, regulatory T cells, and macrophages in both databases, suggesting that higher CTLA-4 expression in the glioma microenvironment induced greater immune cell infiltration compared with that in gliomas with lower CTLA-4 expression. We further explored the associations between CTLA-4 and other immune-related molecules. Pearson correlation analysis showed that CTLA-4 was associated with PD-1, CD40, ICOS, CXCR3, CXCR6, CXCL12 and TIGIT. Patients with glioma with lower CTLA-4 expression exhibited significantly longer overall survival. Thus, these findings suggested that increased CTLA-4 expression conferred a worse outcome in glioma. In summary, our findings revealed the expression patterns and clinical characteristics of CTLA-4 in glioma and may be helpful for expanding our understanding of antitumor immunotherapy in gliomas.

    更新日期:2020-01-07
  • Long non-coding RNA TUG1 promotes cell progression in hepatocellular carcinoma via regulating miR-216b-5p/DLX2 axis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-07
    Qun Dai; Jingyi Deng; Jinrong Zhou; Zhuhong Wang; Xiao-feng Yuan; Shunwen Pan; Hong-bin Zhang

    Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.

    更新日期:2020-01-07
  • Silencing of AURKA augments the antitumor efficacy of the AURKA inhibitor MLN8237 on neuroblastoma cells
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-07
    Yan Yang; Lili Ding; Qi Zhou; Li Fen; Yuhua Cao; Junjie Sun; Xuefeng Zhou; Aiguo Liu

    Aurora kinase A (AURKA) has been implicated in the regulation of cell cycle progression, mitosis and a key number of oncogenic signaling pathways in various malignancies including neuroblastoma. Small molecule inhibitors of AURKA have shown potential, but still not as good as expected effects in clinical trials. Little is known about this underlying mechanism. Here, we evaluated the inhibitory effects of AURKA inhibitor MLN8237 on neuroblastoma cells to understand the potential mechanisms responsible for tumor therapy. MLN8237 treatment on neuroblastoma cell line IMR32 was done and in vivo inhibitory effects were investigated using tumor xenograft model. Cellular senescence was evaluated by senescence-associated β-gal Staining assay. Flow cytometry was used to tested cell cycle arrest and cell apoptosis. Senescence-associated signal pathways were detected by western blot. CD133 microbeads and microsphere formation were used to separate and enrich CD133+ cells. AURKA small interfering RNA transfection was carried to downregulate AURKA level. Finally, the combination of MLN8237 treatment with AURKA small interfering RNA transfection were adopted to evaluate the inhibitory effect on neuroblastoma cells. We demonstrate that MLN8237, an inhibitor of AURKA, induces the neuroblastoma cell line IMR32 into cellular senescence and G2/M cell phase arrest. Inactivation of AURKA results in MYCN destabilization and inhibits cell growth in vitro and in a mouse model. Although MLN8237 inhibits AURKA kinase activity, it has almost no inhibitory effect on the AURKA protein level. By contrast, MLN8237 treatment leads to abnormal high expression of AURKA in vitro and in vivo. Knockdown of AURKA reduces cell survival. The combination of MLN8237 with AURKA small interfering RNA results in more profound inhibitory effects on neuroblastoma cell growth. Moreover, MLN8237 treatment followed by AURKA siRNA forces senescent cells into apoptosis via suppression of the Akt/Stat3 pathway. The effect of AURKA-targeted inhibition of tumor growth plays roles in both the inactivation of AURKA activity and the decrease in the AURKA protein expression level.

    更新日期:2020-01-07
  • Up-regulation of circ_LARP4 suppresses cell proliferation and migration in ovarian cancer by regulating miR-513b-5p/LARP4 axis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-06
    Wumei Lin; Haiyan Ye; Keli You; Le Chen

    Ovarian cancer (OC) is a common fatal malignant tumor of female reproductive system worldwide. Growing studies have proofed that circular RNAs (circRNAs) engage in the regulation of various types of cancers. However, the underlying biological functions and effect mechanism of circular RNA_LARP4 (circ_LARP4) in OC have not been explored. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to detect the expression of circ_LARP4 in OC cells. The function of circ_LARP4 was measured by cell counting kit-8 (CCK-8), colony formation assay and transwell assay. RNA immunoprecipitation (RIP) assay and luciferase reporter assays assessed the binding correlation between miR-513b-5p and circ_LARP4 (or LARP4). The expression of circ_LARP4 in OC cells was much lower than that in human normal ovarian epithelial cells. Overexpressing circ_LARP4 impaired cell proliferation, invasion and migration abilities. Circ_LARP4 worked as a competing endogenous RNA (ceRNA) to sponge miR-513b-5p. Furthermore, LARP4 was indirectly modulated by circ_LARP4 as the downstream target of miR-513b-5p, as well as the host gene of circ_LARP4. Circ_LARP4 could hamper cell proliferation and migration by sponging miR-513b-5p to regulate the expression of LARP4. This research may provide some referential value to OC treatment.

    更新日期:2020-01-06
  • LncRNA BCYRN1/miR-490-3p/POU3F2, served as a ceRNA network, is connected with worse survival rate of hepatocellular carcinoma patients and promotes tumor cell growth and metastasis
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-06
    Shichao Ding; Yanfeng Jin; Qingzhi Hao; Yanmeng Kang; Ruiping Ma

    LncRNA Brain Cytoplasmic RNA 1 (BCYRN1) has been certified to modulate cancer cells growth and aggressiveness in several tumors. However, research about function of BCYRN1 in hepatocellular carcinoma (HCC) is limited. Therefore, our research intends to explore the function of BCYRN1 in HCC. HepG2 and BEL-7402 cell lines were employed for later function experiments. Differently expression levels of BCYRN1, miR-490-3p, and POU class 3 homeobox 2 (POU3F2) were determined on the base of TCGA dataset including 375 HCC patients and 50 normal. 370 cases of patients, which have fairly complete clinical data, were utilized for survival analysis of BCYRN1, miR-490-3p, or POU3F2 by Kaplan–Meier method. Relative expression pattern of BCYRN1 was examined by quantitative real time polymerase chain reaction (qRT-PCR), and relative expression level of POU3F2 was assessed by qRT-PCR and western blot. Cell biological behaviors were analyzed by cell counting kit-8, cloning formation, and transwell assays. Bioinformatics software and dual luciferase assay were applied to predict and confirm the targeted relationship between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2. Further associations among BCYRN1, miR-490-3p, and POU3F2 were analyzed by rescue assays. Our results exhibited that BCYRN1 was over expressed in HCC samples, which was connected with unfavorable prognosis in HCC patients. In addition, a series of experiments exhibited that overexpression of BCYRN1 significantly expedited HCC cells growth, clone formation, and movement abilities, and vice versa. Moreover, targeted relationships between BCYRN1 and miR-490-3p, as well as miR-490-3p and POU3F2 were affirmed by dual luciferase assay. Furthermore, POU3F2 expression was negatively connected with the expression of miR-490-3p and positively associated with BCYRN1 expression. Whilst, either overexpression of miR-490-3p or knockdown of POU3F2 could remarkably inhibit the increasing trends of proliferation, clone formation, invasion, and migration abilities induced by BCYRN1 in HCC cells. BCYRN1, served as a competing endogenous RNA, up-regulated the expression of POU3F2 to promote the development of HCC through sponging miR-490-3p, supplying novel molecular targets and underlying prognostic biomarkers for HCC therapy.

    更新日期:2020-01-06
  • Patient-derived xenografts of different grade gliomas retain the heterogeneous histological and genetic features of human gliomas
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-03
    Wenxin Zeng; Zhaohua Tang; Yongguo Li; Guangnian Yin; Zili Liu; Jie Gao; Yan Chen; Feilan Chen

    Gliomas account for the major part of primary brain tumors. Based on their histology and molecular alternations, adult gliomas have been classified into four grades, each with distinct biology and outcome. Previous studies have focused on cell-line-based models and patient-derived xenografts (PDXs) from patient-derived glioma cultures for grade IV glioblastoma. However, the PDX of lower grade diffuse gliomas, particularly those harboring the endogenous IDH mutation, are scarce due to the difficulty growing glioma cells in vitro and in vivo. The purpose of this study was to develop a panel of patient-derived subcutaneous xenografts of different grade gliomas that represented the heterogeneous histopathologic and genetic features of human gliomas. Tumor pieces from surgical specimens were subcutaneously implanted into flanks of NOD-Prkdcscid ll2rgnull mice. Then, we analyzed the association between the success rate of implantation with clinical parameters using the Chi square test and resemblance to the patient’s original tumor using immunohistochemistry, immunofluorescence, short tandem repeat analysis, quantitative real-time polymerase chain reaction, and whole-exome sequencing. A total of 11 subcutaneous xenografts were successfully established from 16 surgical specimens. An increased success rate of implantation in gliomas with wild type isocitrate dehydrogenase (IDH) and high Ki67 expression was observed compared to gliomas with mutant IDH and low Ki67 expression. Recurrent and distant aggressive xenografts were present near the primary implanted tumor fragments from WHO grades II to IV. The xenografts histologically represented the corresponding patient tumor and reconstituted the heterogeneity of different grade gliomas. However, increased Ki67 expression was found in propagated xenografts. Endothelial cells from mice in patient-derived xenografts over several generations replaced the corresponding human tumor blood vessels. Short tandem repeat and whole-exome sequencing analyses indicated that the glioma PDX tumors maintained their genomic features during engraftments over several generations. The panel of patient-derived glioma xenografts in this study reproduced the diverse heterogeneity of different grade gliomas, thereby allowing the study of the growth characteristics of various glioma types and the identification of tumor-specific molecular markers, which has applications in drug discovery and patient-tailored therapy.

    更新日期:2020-01-04
  • Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-03
    Nan Gao; Baoguo Ye

    Lung adenocarcinoma (LUAD), a widespread histopathological subtype of lung cancer, is deemed as a malignant tumor with a peak risk of mortality. Emerged as RNA with a loop structure that depleted protein coding ability, circular RNA (circRNA) has been identified as a regulator in cancer progression. Circ-SOX4, identified as a novel circRNA, has not been studied in any cancer yet. Thus, the regulatory function that circ-SOX4 exerts on LUAD development remains obscure. This study aimed to investigate the biological function and molecular mechanism of circ-SOX4 in LUAD. The expression of circ-SOX4 was detected by qRT-PCR. CCK-8, colony formation, transwell and wound healing assays were performed to explore the biological function of circ-SOX4 in LUAD. The interaction between miR-1270 and circ-SOX41 (or PLAGL2) was confirmed by RNA pull down, luciferase reporter and RIP assays. Circ-SOX4 was found to be obviously upregulated in LUAD tissues and cells, and knockdown of it inhibited cell proliferation, invasion and migration in LUAD. Furthermore, silenced circ-SOX4 also inhibited LUAD tumor growth. Molecular mechanism assays revealed that circ-SOX4 interacted with miR-1270 in LUAD. Besides, PLAGL2 was confirmed as a downstream gene of miR-1270. Rescue assays validated that miR-1270 suppression or PLAGL2 overexpression countervailed circ-SOX4 depletion-mediated inhibition on cell proliferation, invasion and migration in LUAD. Additionally, it was discovered that circ-SOX4/miR-1270/PLAGL2 axis activated WNT signaling pathway in LUAD. Circ-SOX4 boosted the development of LUAD and activate WNT signaling pathway through sponging miR-1270 and modulating PLAGL2, which provided a valuable theoretical basis for exploring underlying therapeutic target in LUAD.

    更新日期:2020-01-04
  • UBQLN4 promotes progression of HCC via activating wnt-β-catenin pathway and is regulated by miR-370
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-03
    Yan Yu; Penglin Xu; Guangying Cui; Xiaodong Xu; Kongfei Li; Xiaolong Chen; Jie Bao

    Ubiquilin-4 (UBQLN4) is a member of the ubiquitin–proteasome system that is usually upregulated in many tumor cells. Its overexpression has been associated with poor disease outcomes in various cancer diseases. However, the underlying mechanism of UBQLN4 in the development of hepatocellular carcinoma (HCC) has not been elucidated. Immunochemistry, real-time PCR, and western blotting were used to evaluate the expression levels of UBQLN4 in cancer tissues. Univariate, Cox-regression, and Kaplan–Meier analyses were performed to determine the association between UBQLN4 expression and HCC prognosis. Cell Counting Kit-8 (CCK-8), transwell, EDU and colony formation assays were conducted to evaluate the role of UBQLN4 in HCC cell progression. The gene set enrichment analysis and luciferase reporter experiments were conducted to find the mechanism of UBQLN4 in HCC. Ubiquilin-4 (UBQLN4) was overexpressed in HCC tissues. Besides, overexpression of UBQLN4 was associated with poor overall survival and disease-free survival rate of HCC patients. The loss-of-function analysis revealed that suppression of UBQLN4 inhibited the proliferation and invasion of HCC cells in vivo and in vitro. The KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that UBQLN4 could regulate activation of the wnt-β-catenin pathway in HCC cells. Furthermore, our results showed that UBQLN4 was downregulated by miR-370, which acted as a tumor suppressor gene in HCC progression. The results of the present study suggest that the miR-370/UBQLN4 axis may play a critical role in the progression of HCC. These findings may inform future strategies for the development of therapeutic agents against HCC.

    更新日期:2020-01-04
  • TSPAN9 suppresses the chemosensitivity of gastric cancer to 5-fluorouracil by promoting autophagy
    Cancer Cell Int. (IF 3.439) Pub Date : 2020-01-03
    Yaoyue Qi; Weiwei Qi; Shihai Liu; Libin Sun; Aiping Ding; Guohong Yu; Hui Li; Yixuan Wang; Wensheng Qiu; Jing Lv

    The issue of drug resistance in gastric cancer has attracted global attention. TSPAN9, a 4-transmembrane protein that plays an important role in tumor progression and signal transduction, has been found to be closely related to tumor invasion, metastasis, and autophagy. Immunoblotting was used to evaluate TSPAN9 expression in parental and drug-resistant gastric cancer cells. Functional assays, such as the CCK-8 assay, were used to detect the proliferation of gastric cancer cells and the response of TSPAN9 to 5-fluorouracil (5-FU). Western blotting was used to analyze the expression of constituents of the PI3K/AKT/mTOR-mediated autophagy pathway induced by TSPAN9. Coimmunoprecipitation was performed to assess the specific mechanism by which TSPAN9 affects the PI3K pathway. We demonstrated that TSPAN9 is overexpressed in 5-FU-resistant cells compared to parental cells. 5-FU-mediated inhibition of cell proliferation can be significantly restored by increasing TSPAN9 expression, and inhibiting this expression in drug-resistant cells can restore the sensitivity of the cells to 5-FU. In addition, TSPAN9 also significantly promoted autophagy in gastric cancer cells in vitro. Further studies indicated that TSPAN9 downregulates the expression of PI3K and proteins associated with PI3K-mediated autophagy. In addition, TSPAN9 interacts with PI3K and inhibits its catalytic activity. The current study reveals the important role of TSPAN9 in drug resistance to 5-FU in gastric cancer. It also provides a new target to clinically address drug-resistant gastric cancer and will contribute to the treatment strategy of this disease.

    更新日期:2020-01-04
  • Identifying a ten-microRNA signature as a superior prognosis biomarker in colon adenocarcinoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-30
    Rong Ma; Yanyun Zhao; Miao He; Hongliang Zhao; Yifan Zhang; Shuqi Zhou; Mengcong Gao; Di Di; Jue Wang; Jian Ding; Minjie Wei

    Increasing studies have suggested that aberrant expression of microRNAs might play essential roles in the progression of cancers. In this study, we sought to construct a high-specific and superior microRNAs signature to improve the survival prediction of colon adenocarcinoma (COAD) patients. The genome-wide miRNAs, mRNA and lncRNA expression profiles and corresponding clinical information of COAD were collected from the TCGA database. Differential expression analysis, Kaplan–Meier curve and time-dependent ROC curve were calculated and performed using R software and GraphPad Prism7. Univariate and multivariate Cox analysis was performed to evaluate the prognostic ability of signature. Functional enrichment analysis was analyzed using STRING database. We identified ten prognosis-related microRNAs, including seven risky factors (hsa-miR-197, hsa-miR-32, hsa-miR-887, hsa-miR-3199-2, hsa-miR-4999, hsa-miR-561, hsa-miR-210) and three protective factors (hsa-miR-3917, hsa-miR-3189, hsa-miR-6854). The Kaplan–Meier survival analysis showed that the patients with high risk score had shorter overall survival (OS) in test series. And the similar results were observed in both validation and entire series. The time-dependent ROC curve suggested this signature have high accuracy of OS for COAD. The Multivariate Cox regression analysis and stratification analysis suggested that the ten-microRNA signature was an independent factor after being adjusted with other clinical characteristics. In addition, we also found microRNA signature have higher AUC than other signature. Furthermore, we identified some miRNA-target genes that affect lymphatic metastasis and invasion of COAD patients. In this study, we established a ten-microRNA signature as a potentially reliable and independent biomarker for survival prediction of COAD patients.

    更新日期:2019-12-31
  • HAND2-AS1 inhibits invasion and metastasis of cervical cancer cells via microRNA-330-5p-mediated LDOC1
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-27
    Shengcai Chen; Jing Wang

    Cervical cancer is a serious disease with complicated pathogenesis and thus there is an urgent need to find novel targets for the treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as critical factors in tumorigenesis. In this study, we aimed to investigate the mechanism of HAND2 antisense RNA 1 (HAND2-AS1) on the invasion and metastasis of cervical cancer cells. The expression patterns of HAND2-AS1, microRNA-330-5p (miR-330-5p) and leucine zipper down-regulated in cancer 1 (LDOC1) in cervical cancer were characterized by RT-qPCR and western blot analysis. Dual luciferase reporter assay and RIP were applied to verify relationship between HAND2-AS1, miR-330-5p and LDOC1. Fluorescence in situ hybridization (FISH) was used to detect the subcellular localization of HAND2-AS1. Besides, viability, invasion and migration ability of HeLa cells were investigated by cell counting kit-8 (CCK-8) and Transwell assays respectively. Hematoxylin–eosin staining was performed for lymph node metastasis detection. In addition, the tumor growth in nude mice was evaluated. Low expression of HAND2-AS1 and LDOC1, and high expression of miR-330-5p were detected in cervical cancer tissues and cells. It was found that binding of HAND2-AS1 to miR-330-5p results in upregulation of LDOC1 expression. Also, overexpressed HAND2-AS1 and LDOC1 or down-regulated miR-330-5p inhibited expression of proliferation-associated proteins Ki-67, PCNA, migration-associated proteins N-cad and invasion-related proteins MMP-2, MMP-9 as well as lymph node metastasis. Moreover, HAND2-AS1 inhibited tumor formation and lymph node metastasis by binding to miR-330-5p in vivo. HAND2-AS1 promotes LDOC1 expression by competitively binding to miR-330-5p and consequently inhibiting cervical cancer cell invasion and metastasis. This could facilitate development of therapeutic strategies against cervical cancer.

    更新日期:2019-12-30
  • miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-27
    Chun-Wei Peng; Ling-Xiao Yue; Yuan-Qin Zhou; Sai Tang; Chen Kan; Lei-Ming Xia; Fan Yang; Si-Ying Wang

    miR-100 has been reported to closely associate with gastric cancer (GC) initiation and progression. However, the underlying mechanism of miR-100-3p in GC is still largely unclear. In this study, we intend to study how miR-100-3p regulates GC malignancy. The expression levels of miR-100-3p in vitro (GES-1 and GC cell lines) and in vivo (cancerous and normal gastric tissues) were examined by quantitative real-time PCR (qRT-PCR). MTT and PE/Annexin V analyses were responsible for measurement of the effects of miR-100-3p on GC cell proliferation and apoptosis. Transwell assay with or without matrigel was used to examine the capacity of migration and invasion in GC cells. The interaction of miR-100-3p with bone morphogenetic protein receptor 2 (BMPR2) was confirmed through transcriptomics analysis and luciferase reporter assay. qRT-PCR and Western blot analyses were applied to determine the expression of ERK/AKT and Bax/Bcl2/Caspase3, which were responsible for the dysfunction of miR-100-3p. miR-100-3p was down-regulated in GC cell lines and cancerous tissues, and was negatively correlated with BMPR2. Loss of miR-100-3p promoted tumor growth and BMPR2 expression. Consistently, the effects of miR-100-3p inhibition on GC cells were partially neutralized by knockdown of BMPR2. Over-expression of miR-100-3p simultaneously inhibited tumor growth and down-regulated BMPR2 expression. Consistently, over-expression of BMPR2 partially neutralized the effects of miR-100-3p over-expression. Further study demonstrated that BMPR2 mediated the effects downstream of miR-100-3p, which might indirectly regulate ERK/AKT and Bax/Bcl2/Caspase3 signaling pathways. miR-100-3p acted as a tumor-suppressor miRNA that down-regulated BMPR2, which consequently inhibited the ERK/AKT signaling and activated Bax/Bcl2/Caspase3 signaling. This finding provided novel insights into GC and could contribute to identify a new diagnostic and therapeutic target.

    更新日期:2019-12-30
  • Prognostic nomograms for predicting cause-specific survival and overall survival of stage I–III colon cancer patients: a large population-based study
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-27
    Zheng Zhou; Shaobo Mo; Weixing Dai; Wenqiang Xiang; Lingyu Han; Qingguo Li; Renjie Wang; Lu Liu; Long Zhang; Sanjun Cai; Guoxiang Cai

    The purpose of this study was to build functional nomograms based on significant clinicopathological features to predict cause-specific survival (CSS) and overall survival (OS) in patients with stage I–III colon cancer. Data on patients diagnosed with stage I–III colon cancer between 2010 and 2015 were downloaded from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox analyses were used to identify independent prognostic factors, which were used to construct nomograms to predict the probabilities of CSS and OS. The performance of the nomogram was assessed by C-indexes, receiver operating characteristic (ROC) curves and calibration curves. Decision curve analysis (DCA) was used to compare clinical usage between the nomogram and the tumor–node–metastasis (TNM) staging system. Based on the univariate and multivariate analyses, features that correlated with survival outcomes were used to establish nomograms for CSS and OS prediction. The nomograms showed favorable sensitivity at predicting 1-, 3-, and 5-year CSS and OS, with a C-index of 0.78 (95% confidence interval (CI) 0.77–0.80) for CSS and 0.74 (95% CI 0.73–0.75) for OS. Calibration curves and ROC curves revealed excellent predictive accuracy. The clinically and statistically significant prognostic performance of the nomogram generated with the entire group of patients and risk scores was validated by a stratified analysis. DCA showed that the nomograms were more clinically useful than TNM stage. Novel nomograms based on significant clinicopathological characteristics were developed and can be used as a tool for clinicians to predict CSS and OS in stage I–III colon cancer patients. These models could help facilitate a personalized postoperative evaluation.

    更新日期:2019-12-30
  • RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-27
    Xiaomeng Zhang; Ningyi Ma; Weiqiang Yao; Shuo Li; Zhigang Ren

    The DNA damage and repair pathway is considered a promising target for developing strategies against cancer. RAD51, also known as RECA, is a recombinase that performs the critical step in homologous recombination. RAD51 has recently received considerable attention due to its function in tumor progression and its decisive role in tumor resistance to chemotherapy. However, its role in pancreatic cancer has seldom been investigated. In this report, we provide evidence that RAD51, regulated by KRAS, promotes pancreatic cancer cell proliferation. Furthermore, RAD51 regulated aerobic glycolysis by targeting hypoxia inducible factor 1α (HIF1α). TCGA (The Cancer Genome Atlas) dataset analysis was used to examine the impact of RAD51 expression on overall survival of pancreatic cancer patients. Lentivirus-mediated transduction was used to silence RAD51 and KRAS expression. Quantitative real-time PCR and western blot analysis validated the efficacy of the knockdown effect. Analysis of the glycolysis process in pancreatic cancer cells was also performed. Cell proliferation was determined using a CCK-8 (Cell Counting Kit-8) proliferation assay. Pancreatic cancer patients with higher levels of RAD51 exhibited worse survival. In pancreatic cancer cells, RAD51 positively regulated cell proliferation, decreased intracellular reactive oxygen species (ROS) production and increased the HIF1α protein level. KRAS/MEK/ERK activation increased RAD51 expression. In addition, RAD51 was a positive regulator of aerobic glycolysis. The present study reveals novel roles for RAD51 in pancreatic cancer that are associated with overall survival prediction, possibly through a mechanism involving regulation of aerobic glycolysis. These findings may provide new predictive and treatment targets for pancreatic cancer.

    更新日期:2019-12-30
  • miR-149 inhibits cell proliferation and enhances chemosensitivity by targeting CDC42 and BCL2 in neuroblastoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-27
    Fengxia Mao; Ju Zhang; Xinru Cheng; Qianya Xu

    Neuroblastoma (NB) is one of most common childhood tumors with high mortality among children worldwide. microRNAs (miRNAs) have been reported to play essential roles in the pathogenesis and therapeutics of NB. However, the role of miR-149 and its mechanism remain poorly understood. The expression levels of miR-149, cell division cycle 42 (CDC42) and B-cell lymphoma 2 (BCL2) were measured in NB tissues or cells by quantitative real-time polymerase chain reaction or western blot. Cell proliferation was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and colony formation assays. Cell apoptosis was detected by flow cytometry. Chemosensitivity of NB cells to doxorubicin (Dox) was analyzed by MTT assay. The interaction between miR-149 and CDC42 or BCL2 was explored by luciferase activity and RNA immunoprecipitation analyses. Our data indicated that low expression of miR-149 was displayed in NB tissues and cells and associated with poor survival rate. Overexpression of miR-149 inhibited cell proliferation and colony formation but promoted cell apoptosis and chemosensitivity to Dox in NB cells. Moreover, CDC42 and BCL2 were targeted by miR-149. Additionally, CDC42 and BCL2 mRNA levels were elevated in NB tissues and cells and restoration of CDC42 or BCL2 reversed the regulatory effect of miR-149 on NB progression. Our data suggested that miR-149 suppressed cell proliferation and improved Dox chemosensitivity by regulating CDC42 and BCL2 in NB, providing a novel avenue for treatment of NB.

    更新日期:2019-12-30
  • Retraction Note to: IL‑2 augments the sorafenib‑induced apoptosis in liver cancer by promoting mitochondrial fission and activating the JNK/TAZ pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-30
    Xiaoyan Ding; Wei Sun; Jinglong Chen

    The editor has retracted this article [1] because Figures 2 and 4 contain duplicated and modified figures from [2–4]. The data reported in this article are therefore unreliable.

    更新日期:2019-12-30
  • Retraction Note to: LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib‑mediated death via inhibiting the AMPK–Mfn2 signaling pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-30
    Jie Song; Wei Zhao; Chang Lu; Xue Shao

    The editor has retracted this article [1] because Fig. 2f has been duplicated from Fig. 6j in a previously published article [2]. In addition, the article contains sections that substantially overlap with a previously published article [3]. The data reported in this article are therefore unreliable.

    更新日期:2019-12-30
  • LncRNA HCG11 promotes proliferation and migration in gastric cancer via targeting miR-1276/CTNNB1 and activating Wnt signaling pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-26
    Hua Zhang; Haitao Huang; Xiaomei Xu; Haiying Wang; Jianxiang Wang; Zuoyi Yao; Xiaoyan Xu; Qian Wu; Fenlan Xu

    Gastric cancer (GC) is one common cancer which occurs in the stomach leading to high mortality around the world. Long non-coding RNAs (lncRNAs) were found overexpressed or silenced in the occurrence and progression of multiple cancers including GC. The gene expression level in GC tissues and cells were analyzed by RT-qPCR. CCK-8, colony formation, flow cytometry and transwell assays were performed for the function analysis of HLA complex group 11 (HCG11). The mechanism study for HCG11 was conducted using RIP, RNA pull down and luciferase reporter assays. HCG11 was discovered highly expressed in GC tissues and cells. Depletion experiments were used to evaluate HCG11 silence on cell proliferation, migration and apoptosis. Moreover, Wnt signaling pathway was found as a tumor promoter in GC. RIP assay, RNA pull down assay and luciferase reporter assay were performed to illustrate the relationship of HCG11, miR-1276 and CTNNB1. Rescue assays revealed that HCG11/miR-1276/CTNNB1 axis regulated the incidence and development of GC. Tumor formation in mice proved that HCG11 was negatively correlated with miR-1276 and had positively correlation with CTNNB1. Overall, HCG11 accelerated proliferation and migration in GC through miR-1276/CTNNB1 and Wnt signaling pathway, revealing that HCG11 could be a brand new target for GC.

    更新日期:2019-12-27
  • LINC00511 accelerated the process of gastric cancer by targeting miR-625-5p/NFIX axis
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-26
    Zhaosheng Chen; Honglei Wu; Zhen Zhang; Guangchun Li; Bin Liu

    Gastric cancer (GC) is a common-sighted cancer which is hard to cure over the world. Substantial researches revealed that long non-coding RNAs (lncRNAs) were fundamental regulators in the process of cancers. Nevertheless, the biological function of LINC00511 and how LINC00511 was involved in the regulatory system in GC remained unclear. RIP assays and luciferase reporter assays were performed to illustrate combination between LINC00511 and miR-625-5p. Loss-of-function assays were applied for identifying LINC00511 function in GC. In our study, LINC00511 was discovered significantly high in expression in GC tissues and cell lines. Moreover, LINC00511 showed a strong expression in I/II and III/IV stage. Knockdown of LINC00511 could inhibit the cell proliferation while enhanced cell apoptosis rate in GC. We used nuclear–cytoplasmic fractionation to judge the subcellular localization of LINC00511. Furthermore, miR-625-5p was found to have binding sites for LINC00511 and negatively regulated by LINC00511. Overexpression of miR-625-5p repressed the course of GC. And knockdown of miR-625-5p could recover the effects of LINC00511 silence. Besides, NFIX was discovered as a downstream target of miR-625-5p and overexpression of NFIX could offset the influence of LINC00511 silence. The results of vivo studies manifested that down-regulation of LINC00511 could reduce the Ki67 expression and NFIX while lifted the expression of miR-625-5p. Overall, the results from our study demonstrated that LINC00511 could function as a tumor promoter by targeting miR-625-5p NFIX axis, suggesting LINC00511 could be considered as a target for GC treatment.

    更新日期:2019-12-27
  • Comprehensive analysis of DNA methylation and gene expression profiles in cholangiocarcinoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-26
    Cheng Zhang; Bingye Zhang; Di Meng; Chunlin Ge

    The incidence of cholangiocarcinoma (CCA) has risen in recent years, and it has become a significant health burden worldwide. However, the mechanisms underlying tumorigenesis and progression of this disease remain largely unknown. An increasing number of studies have demonstrated crucial biological functions of epigenetic modifications, especially DNA methylation, in CCA. The present study aimed to identify and analyze methylation-regulated differentially expressed genes (MeDEGs) involved in CCA tumorigenesis and progression by bioinformatics analysis. The gene expression profiling dataset (GSE119336) and gene methylation profiling dataset (GSE38860) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified using the limma packages of R and GEO2R, respectively. The MeDEGs were obtained by overlapping the DEGs and DMGs. Functional enrichment analyses of these genes were then carried out. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape to determine hub genes. Finally, the results were verified based on The Cancer Genome Atlas (TCGA) database. We identified 98 hypermethylated, downregulated genes and 93 hypomethylated, upregulated genes after overlapping the DEGs and DMGs. These genes were mainly enriched in the biological processes of the cell cycle, nuclear division, xenobiotic metabolism, drug catabolism, and negative regulation of proteolysis. The top nine hub genes of the PPI network were F2, AHSG, RRM2, AURKB, CCNA2, TOP2A, BIRC5, PLK1, and ASPM. Moreover, the expression and methylation status of the hub genes were significantly altered in TCGA. Our study identified novel methylation-regulated differentially expressed genes (MeDEGs) and explored their related pathways and functions in CCA, which may provide novel insights into a further understanding of methylation-mediated regulatory mechanisms in CCA.

    更新日期:2019-12-27
  • Degradation of long non-coding RNA-CIR decelerates proliferation, invasion and migration, but promotes apoptosis of osteosarcoma cells
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-23
    Shiwei Liu; Jingchao Li; Liang Kang; Yueyang Tian; Yuan Xue

    Over the years, long non-coding RNAs (lncRNAs) have been clarified in malignancies, this research was focused on the role of lncRNA cartilage injury-related (lncRNA-CIR) in osteosarcoma cells. LncRNA-CIR expression in osteosarcoma tissues and cells, and adjacent normal tissues and normal osteoblasts was determined, then the relations between lncRNA-CIR expression and the clinicopathological features, and between lncRNA-CIR expression and the prognosis of osteosarcoma patients were analyzed. Moreover, the MG63 and 143B cells were treated with silenced or overexpressed lncRNA-CIR, and then the proliferation, invasion, migration and apoptosis of the cells were evaluated by gain- and loss-of-function approaches. The tumor growth, and proliferation and apoptosis of osteosarcoma cells in vivo were observed by subcutaneous tumorigenesis in nude mice. We have found that lncRNA-CIR was up-regulated in osteosarcoma tissues and cells, which was respectively relative to adjacent normal tissues and normal osteoblasts. The expression of lncRNA-CIR was evidently correlated with disease stages, distant metastasis and differentiation of osteosarcoma patients, and the high expression of lncRNA-CIR indicated a poor prognosis. Furthermore, the reduction of lncRNA-CIR could restrict proliferation, invasion and migration, but promote apoptosis of osteosarcoma cells in vitro. Meanwhile, inhibited lncRNA-CIR also restrained tumor growth and osteosarcoma cell proliferation, whereas accelerated apoptosis of osteosarcoma cells in vivo. We have found in this study that the inhibited lncRNA-CIR could decelerate proliferation, invasion and migration, but accelerate apoptosis of osteosarcoma cells, which may provide a novel target for osteosarcoma treatment.

    更新日期:2019-12-23
  • Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-21
    Hua Guo; Chunfang Ha; Hui Dong; Zhijuan Yang; Yuan Ma; Yonghui Ding

    Ovarian cancer (OC) is a gynecological malignancy with a high mortality. Cisplatin-based treatment is the typical treatment regimen for OC patients; however, it may cause unfavorable resistance. The current study intends to explore the function of cancer-associated fibroblast (CAF)-derived exosomal microRNA-98-5p (miR-98-5p) in cisplatin resistance in OC, and the participation of CDKN1A. Bioinformatics analysis was employed in order to obtain cisplatin resistance-related differential genes in OC as well as possible upstream regulatory miRs. After gain- and loss-of-function assays in OC cells, RT-qPCR and western blot analysis were employed to measure CDKN1A and miR-98-5p expression. Dual luciferase reporter assay was applied to verify the targeting relationship between miR-98-5p and CDKN1A. CAFs were treated with miR-98-5p inhibitor, and then exosomes were isolated and co-cultured with OC cells. CCK-8, colony formation and flow cytometry assays were conducted to assess cell proliferation, cell colony formation, cell cycle distribution and cell apoptosis, respectively. At last, xenograft tumor in nude mice was carried out to test whether exosomal miR-98-5p could affect cisplatin resistance in OC in vivo. CDKN1A was highly expressed in cisplatin-sensitive OC cell lines, and silencing CDKN1A significantly promoted proliferation and cell cycle entry but decreased apoptosis in cisplatin-sensitive OC cells. miR-98-5p targeted CDKN1A to inhibit CDKN1A expression. CAF-derived exosomal miR-98-5p increased OC cell proliferation and cell cycle entry, but suppressed cell apoptosis. Furthermore, exosomal miR-98-5p promoted cisplatin resistance and downregulated CDKN1A in nude mice. Collectively, CAF-derived exosomes carrying overexpressed miR-98-5p promote cisplatin resistance in OC by downregulating CDKN1A.

    更新日期:2019-12-21
  • Casticin inhibits nasopharyngeal carcinoma growth by targeting phosphoinositide 3-kinase
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-21
    Jingxian Liu; Jinghong Yang; Yuhe Hou; Zhenwei Zhu; Jie He; Hao Zhao; Xidong Ye; Dengke Li; Zhaohui Wu; Zhongxi Huang; Bingtao Hao; Kaitai Yao

    Casticin, an isoflavone compound extracted from the herb Fructus Viticis, has demonstrated anti-inflammatory and anticancer activities and properties. The aim of this study was to investigate the effects and mechanisms of casticin in nasopharyngeal carcinoma (NPC) cells and to determine its potential for targeted use as a medicine. NPC cells were used to perform the experiments. The CCK‑8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell cycle and apoptosis analysis (annexin V/PI assay). A three-dimensional (3D) tumour sphere culture system was used to characterize the effect of casticin on NPC stem cells. In silico molecular docking prediction and high-throughput KINOME scan assays were used to evaluate the binding of casticin to phosphoinositide 3-kinase (PI3K), including wild-type and most of mutants variants. We also used the SelectScreen assay to detect the IC50 of ATP activity in the active site of the target kinase. Western blotting was used to evaluate the changes in key proteins involved cell cycle, apoptosis, stemness, and PI3K/protein kinase B (AKT) signalling. The effect of casticin treatment in vivo was determined by using a xenograft mouse model. Our results indicate that casticin is a new and novel selective PI3K inhibitor that can significantly inhibit NPC proliferation and that it induces G2/GM arrest and apoptosis by upregulating Bax/BCL2 expression. Moreover, casticin was observed to affect the self-renewal ability of the nasopharyngeal carcinoma cell lines, and a combination of casticin with BYL719 was observed to induce a decrease in the level of the phosphorylation of mTORC1 downstream targets in BYL719-insensitive NPC cell lines. Casticin is a newly emerging selective PI3K inhibitor with potential for use as a targeted therapeutic treatment for nasopharyngeal carcinoma. Accordingly, casticin might represent a novel and effective agent against NPC and likely has high potential for combined use with pharmacological agents targeting PI3K/AKT.

    更新日期:2019-12-21
  • TGF-β1 stimulates epithelial–mesenchymal transition and cancer-associated myoepithelial cell during the progression from in situ to invasive breast cancer
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-19
    Li Wang; Cong Xu; Xia Liu; Yang Yang; Lu Cao; Guomin Xiang; Fang Liu; Shuling Wang; Jing Liu; Qingxiang Meng; Jiao Jiao; Yun Niu

    The progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC) is prevented by normal breast myoepithelial cells. Studies have suggested that EMT-associated genes were enriched in IDC in contrast to DCIS. This paper explored the relationship and potential mechanism between myoepithelial cells and EMT-associated genes in facilitating the transformation from DCIS to breast cancer. EMT markers and myoepithelial phenotypic markers in IDC, DCIS, and healthy breast tissue were characterized using immunohistochemical assay. Both in vivo and in vitro models were created to mimic the various cell–cell interactions in the development of invasive breast cancer. We found that EMT markers were more abundant in invasive carcinomas than DCIS and adjacent normal breast tissue. Meanwhile, TGF-β1 regulated the morphology of MCF-7 (epithelial cells substitute) migration and EMT markers during the transformation from DCIS to invasive breast cancer. Additionally, TGF-β1 also regulated invasion, migration and cytokines secretion of MDA-MB-231 (myoepithelial cells substitute) and epithelial cells when co-cultured with MCF-7 both in vitro and in vivo. In conclusion, these findings demonstrated that both EMT phenotypes and cancer-associated myoepithelial cells may have an impact on the development of invasive breast cancer.

    更新日期:2019-12-20
  • Hyperglycemia promotes Snail-induced epithelial–mesenchymal transition of gastric cancer via activating ENO1 expression
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-19
    Xin Xu; Bang Chen; Shaopu Zhu; Jiawei Zhang; Xiaobo He; Guodong Cao; Bo Chen

    Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. Emerging evidence indicates that hyperglycemia promotes tumor progression, especially the processes of migration, invasion and epithelial–mesenchymal transition (EMT). However, the underlying mechanisms of GC remain unclear. Data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to detect the expression of glycolysis-related enzymes and EMT-related transcription factors. Small interfering RNA (siRNA) transfection was performed to decrease ENO1 expression. Immunohistochemistry (IHC), Western blot and qRT-PCR analyses were used to measure gene expression at the protein or mRNA level. CCK-8, wound-healing and Transwell assays were used to assess cell proliferation, migration and invasion. Among the glycolysis-related genes, ENO1 was the most significantly upregulated in GC, and its overexpression was correlated with poor prognosis. Hyperglycemia enhanced GC cell proliferation, migration and invasion. ENO1 expression was also upregulated with increasing glucose concentrations. Moreover, decreased ENO1 expression partially reversed the effect of high glucose on the GC malignant phenotype. Snail-induced EMT was promoted by hyperglycemia, and suppressed by ENO1 silencing. Moreover, ENO1 knockdown inhibited the activation of transforming growth factor β (TGF-β) signaling pathway in GC. Our results indicated that hyperglycemia induced ENO1 expression to trigger Snail-induced EMT via the TGF-β/Smad signaling pathway in GC.

    更新日期:2019-12-20
  • SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/β-catenin signaling pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-19
    Lizhang Han; Zhonggang Li; Yuquan Jiang; Zheng Jiang; Ling Tang

    Glioblastoma has been seen as the most common malignancy of brain tumor. Emerging reports has claimed that SNHG29 (LRRC75A-AS1) was involved in several biological processes via modulation of signaling pathway, and served as an malignant facilitatorin osteosarcoma. However, the specific role of SNHG29 in glioblastoma remains unknown. RT-qPCR and microarray were operated to measure genes expression. Western blot was performed to examine protein expression. CCK-8 and colony formation assays were used to evaluate cell proliferation. Cell migration was tested by transwell assay. Nuclear-cytoplasmic fractionation was conducted to locate SNHG29. The binding capacity of miR-223-3p to SNHG29 or CTNND1 3′UTR was verified by RIP and luciferase reporter assay. SNHG29 presented high expression in glioblastoma to boost cell proliferation, migration and EMT process. In addition, miR-223-3p was validated to bind with SNHG29 after prediction and screening. Furthermore, miR-223-3p was proved to be a negative regulator for its target CTNND1. Then, the inhibition on cell proliferation, migration and EMT process resulted from SNHG29 knockdown was recovered by CTNND1 overexpression. At last, the inhibitive impacts on cell proliferation, migration and EMT process of CTNND1 deficiency was abrogated by LiCl. In conclusion, SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/β-catenin signaling pathway, offering a potential therapeutic point for glioblastoma patients.

    更新日期:2019-12-20
  • AGI-134: a fully synthetic α-Gal glycolipid that converts tumors into in situ autologous vaccines, induces anti-tumor immunity and is synergistic with an anti-PD-1 antibody in mouse melanoma models
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-19
    Stephen M. Shaw; Jenny Middleton; Kim Wigglesworth; Amber Charlemagne; Oliver Schulz; Melanie S. Glossop; Giles F. Whalen; Robert Old; Mike Westby; Chris Pickford; Rinat Tabakman; Irit Carmi-Levy; Abi Vainstein; Ella Sorani; Arik A. Zur; Sascha A. Kristian

    Treatments that generate T cell-mediated immunity to a patient’s unique neoantigens are the current holy grail of cancer immunotherapy. In particular, treatments that do not require cumbersome and individualized ex vivo processing or manufacturing processes are especially sought after. Here we report that AGI-134, a glycolipid-like small molecule, can be used for coating tumor cells with the xenoantigen Galα1-3Galβ1-4GlcNAc (α-Gal) in situ leading to opsonization with pre-existing natural anti-α-Gal antibodies (in short anti-Gal), which triggers immune cascades resulting in T cell mediated anti-tumor immunity. Various immunological effects of coating tumor cells with α-Gal via AGI-134 in vitro were measured by flow cytometry: (1) opsonization with anti-Gal and complement, (2) antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells, and (3) phagocytosis and antigen cross-presentation by antigen presenting cells (APCs). A viability kit was used to test AGI-134 mediated complement dependent cytotoxicity (CDC) in cancer cells. The anti-tumoral activity of AGI-134 alone or in combination with an anti-programmed death-1 (anti-PD-1) antibody was tested in melanoma models in anti-Gal expressing galactosyltransferase knockout (α1,3GT−/−) mice. CDC and phagocytosis data were analyzed by one-way ANOVA, ADCC results by paired t-test, distal tumor growth by Mantel–Cox test, C5a data by Mann–Whitney test, and single tumor regression by repeated measures analysis. In vitro, α-Gal labelling of tumor cells via AGI-134 incorporation into the cell membrane leads to anti-Gal binding and complement activation. Through the effects of complement and ADCC, tumor cells are lysed and tumor antigen uptake by APCs increased. Antigen associated with lysed cells is cross-presented by CD8α+ dendritic cells leading to activation of antigen-specific CD8+ T cells. In B16-F10 or JB/RH melanoma models in α1,3GT−/− mice, intratumoral AGI-134 administration leads to primary tumor regression and has a robust abscopal effect, i.e., it protects from the development of distal, uninjected lesions. Combinations of AGI-134 and anti-PD-1 antibody shows a synergistic benefit in protection from secondary tumor growth. We have identified AGI-134 as an immunotherapeutic drug candidate, which could be an excellent combination partner for anti-PD-1 therapy, by facilitating tumor antigen processing and increasing the repertoire of tumor-specific T cells prior to anti-PD-1 treatment.

    更新日期:2019-12-20
  • Sulforaphene induces apoptosis and inhibits the invasion of esophageal cancer cells through MSK2/CREB/Bcl-2 and cadherin pathway in vivo and in vitro
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-19
    Chengjuan Zhang; Junxia Zhang; Qiong Wu; Benling Xu; Guoguo Jin; Yan Qiao; Simin Zhao; Yang Yang; Jinwen Shang; Xiaofang Li; Kangdong Liu

    As a novel type of isothiocyanate derived from radish seeds from cruciferous vegetables, sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) has various important biological effects, such as anti-oxidative and anti-bacterial effects. Recently, sulforaphene has attracted increasing attention for its anti-tumor effects and its ability to suppress the development of multiple tumors through different regulatory mechanisms. However, it has not yet been widely investigated for the treatment of esophageal cancer. We observed an increased apoptosis in esophageal cancer cells on sulforaphene treatment through flow cytometry (FCM) analysis and transmission electron microscopy (TEM). Through mass spectrometry (MS) analysis, we further detected global changes in the proteomes and phosphoproteomes of esophageal cancer cells on sulforaphene treatment. The molecular mechanism of sulforaphene was verified by western blot,the effect and mechanism of SFE on esophageal cancer was further verified by patient-derived xenograft mouse model. We identified multiple cellular processes that were changed after sulforaphene treatment by proteomics. We found that sulforaphene could repress the phosphorylation of CREB through MSK2, leading to suppression of Bcl-2 and further promoted cell apoptosis. Additionally, we confirmed that sulforaphene induces tumor cell apoptosis in mice. Interestingly, we also observed the obvious inhibition of cell migration and invasion caused by sulforaphene treatment by inhibiting the expression of cadherin, indicating the complex effects of sulforaphene on the development of esophageal cancer. Our data demonstrated that sulforaphene induced cell apoptosis and inhibits the invasion of esophageal cancer through a mechanism involving the inhibition of the MSK2–CREB–Bcl2 and cadherin pathway. Sulforaphene could therefore serve as a promising anti-tumor drug for the treatment of esophageal cancer.

    更新日期:2019-12-19
  • Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-18
    Chang Yang; Bai-Rong Xia; Wei-Lin Jin; Ge Lou

    Circulating tumor cells (CTCs) are a rare subset of cells found in the blood of patients with solid tumors, which function as a seed for metastases. Cancer cells metastasize through the bloodstream either as single migratory CTCs or as multicellular groupings—CTC clusters. The CTCs preserve primary tumor heterogeneity and mimic tumor properties, and may be considered as clinical biomarker, preclinical model, and therapeutic target. The potential clinical application of CTCs is being a component of liquid biopsy. CTCs are also good candidates for generating preclinical models, especially 3D organoid cultures, which could be applied in drug screening, disease modeling, genome editing, tumor immunity, and organoid biobanks. In this review, we summarize current knowledge on the value and promise of evolving CTC technologies and highlight cutting-edge research on CTCs in liquid biopsy, tumor metastasis, and organoid preclinical models. The study of CTCs offers broad pathways to develop new biomarkers for tumor patient diagnosis, prognosis, and response to therapy, as well as translational models accelerating oncologic drug development.

    更新日期:2019-12-19
  • Correlations between chromobox homolog 8 and key factors of epithelial–mesenchymal transition in hepatocellular carcinoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-17
    Xiaonian Zhu; Wei Luo; Chunhua Bei; Juan Kong; Shidong Zhang; Yuanyuan Fu; Di Li; Shengkui Tan

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, especially in China, with high metastasis and poor prognosis. Recently, as the core component of the polycomb repressive complexes 1 (PRC1), chromobox protein homolog 8 (CBX8) is considered as an oncogene and prognostic marker in HCC. A tissue microarray of 166 paired HCC and adjacent non-tumor samples were collected to identify the relationship between CBX8 and epithelial mesenchymal transition (EMT) associated proteins by Spearman correlation analysis. Knock-down of CBX8 in HCC cells was conducted to detect the biologic functions of CBX8 in HCC metastasis. We found out that CBX8 was over-expressed in HCC and its expression was closely related to the metastasis of HCC patients. In addition, knock-down of CBX8 was found to inhibit the invasion and migration ability of HCC cells. Moreover, there was a significant relationship between expression of CBX8 and EMT associated proteins both in HCC cells and tumor tissues. Our results indicate that CBX8 promotes metastasis of HCC by inducing EMT process.

    更新日期:2019-12-18
  • Blocking AMPK/ULK1-dependent autophagy promoted apoptosis and suppressed colon cancer growth
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-13
    Jing Liu; Shuaiyu Long; Huanan Wang; Nannan Liu; Chuchu Zhang; Lingling Zhang; Yingjie Zhang

    Autophagy is an evolutionarily conserved process through which cells degrade and recycle cytoplasm. The relation among autophagy, apoptosis and tumor is highly controversial until now and the molecular mechanism is poorly understood. Cell viability and apoptosis were detected by CCK8, crystal violet staining, Hoechst333342 staining and flow cytometry. The expression of AMPK and ULK1 was analyzed by western blotting. Colon cancer growth suppression by NVP-BEZ235 or CQ in vivo was studied in a tumor xenograft mouse model. Our previous study revealed that NVP-BEZ235 suppressed colorectal cancer growth via inducing apoptosis, however later, we found it also initiated autophagy simultaneously. In this present study, our results show that NVP-BEZ235 induced autophagy through AMPK/ULK1 pathway in colon cancer cells. Blocking autophagy by knocking down AMPK or ULK1 inhibited cell proliferation and further promoted NVP-BEZ235 induced apoptosis. Meantime, the autophagy inhibitor chloroquine (CQ) shows obvious effect on inhibiting cell proliferation but not on inducing apoptosis, while it significantly increased NVP-BEZ235 induced apoptosis. Furthermore, the combinational therapy of NVP-BEZ235 and CQ shows synergistic antitumor effects in colon cancer in vivo. NVP-BEZ235 induced AMPK/ULK1-dependent autophagy. Targeting this autophagy suppressed colon cancer growth through further promoting apoptosis, which is a potential therapeutic option for clinical patients.

    更新日期:2019-12-17
  • Systematic analysis of gene expression profiles reveals prognostic stratification and underlying mechanisms for muscle-invasive bladder cancer
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-16
    Ping-Bao Zhang; Zi-Li Huang; Yong-Hua Xu; Jin Huang; Xin-Yu Huang; Xiu-Yan Huang

    Muscle-invasive bladder cancer (MIBC) is originated in the muscle wall of the bladder, and is the ninth most common malignancy worldwide. However, there are no reliable, accurate and robust gene signatures for MIBC prognosis prediction, which is of the importance in assisting oncologists to make a more accurate evaluation in clinical practice. This study used univariable and multivariable Cox regression models to select gene signatures and build risk prediction model, respectively. The t-test and fold change methods were used to perform the differential expression analysis. The hypergeometric test was used to test the enrichment of the differentially expressed genes in GO terms or KEGG pathways. In the present study, we identified three prognostic genes, KLK6, TNS1, and TRIM56, as the best subset of genes for muscle-invasive bladder cancer (MIBC) risk prediction. The validation of this stratification method on two datasets demonstrated that the stratified patients exhibited significant difference in overall survival, and our stratification was superior to three other stratifications. Consistently, the high-risk group exhibited worse prognosis than low-risk group in samples with and without lymph node metastasis, distant metastasis, and radiation treatment. Moreover, the upregulated genes in high-risk MIBC were significantly enriched in several cancer-related pathways. Notably, PDGFRB, a receptor for platelet-derived growth factor of PI3K-Akt signaling pathway, and TUBA1A were identified as two targets of multiple drugs. In addition, the angiogenesis-related genes, as well as two marker genes of M2 macrophage, CD163 and MRC1, were highly upregulated in high-risk MIBC. In summary, this study investigated the underlying molecular mechanism and potential therapeutic targets associated with worse prognosis of high-risk MIBC, which could improve our understanding of progression of MIBC and provide new therapeutic strategies for the MIBC patients.

    更新日期:2019-12-17
  • Circular RNA ABCB10 promotes hepatocellular carcinoma progression by increasing HMG20A expression by sponging miR-670-3p
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-16
    Yu Fu; Limin Cai; Xuexue Lei; Dunwei Wang

    The dysregulation of circABCB10 may play an critical role in tumor progression. However, its function in liver cancer (HCC) is still unclear. Therefore, this experimental design is based on circABCB10 to explore the pathogenesis of HCC. The expression of circABCB10 and miR-670-3p in HCC tissues was detected by RT-qPCR. CCK-8, Brdu incorporation, colony formation and transwell assays were used to determine the effect of circABCB10 on HCC cell proliferation and migration. Target gene prediction and screening, luciferase reporter assays were used to validate downstream target genes of circABCB10 and miR-670-3p. HMG20A expression was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in nude mice. CircABCB10 was significantly increased in HCC tissues and cell lines, and high CircABCB10 expression was directly associated with low survival in HCC patients. Silencing of circABCB10 inhibited proliferation and invasion of hepatocellular carcinoma. In addition, circABCB10 acted as a sponge of miR-670-3p to upregulate HMG20A expression. In addition, overexpression of miR-670-3p or knockdown of HMG20A reversed the carcinogenic effects of circABCB10 in HCC. There was a negative correlation between the expression of circABCB10 and miR-670-3p, and a positive correlation between the expression of circABCB10 and HMG20A in HCC tissues. circABCB10 promoted HCC progression by modulating the miR-670-3p/HMG20A axis, and circABCB10 may be a potential therapeutic target for HCC. Trail registration JL1H384739, registered at Sep 09, 2014.

    更新日期:2019-12-17
  • Sevoflurane inhibits the progression of ovarian cancer through down-regulating stanniocalcin 1 (STC1)
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-16
    Chuanfeng Zhang; Baosheng Wang; Xiuqin Wang; Xiugui Sheng; Yongchun Cui

    Ovarian cancer is one of the leading causes of female death worldwide, with a poor prognosis of advanced patients. Sevoflurane, a volatile anesthetic commonly used in clinical operations, has been reported to have anti-cancer activity against some tumors. In the present study, we aimed to investigate the effects of sevoflurane on the progression of ovarian cancer and its potential mechanism. The effects of sevoflurane on ovarian cancer cell viability, proliferation, migration, invasion, cell cycle, and apoptosis were determined by functional experiments in vitro. Gelatin zymography assay was performed to examine MMP9 activity. In vivo, sevoflurane was injected into mice of transplantation tumor with SKOV3 cells or with pcDNA-STC1 treated SKOV3 cells. We found that sevoflurane inhibited the viability of SKOV3 and OVCAR3 cells in a dose-dependent manner, and colony formation assay revealed that sevoflurane inhibited ovarian cancer cell colony-formation abilities. Additionally, sevoflurane could induce cell cycle arrest and promote cell apoptosis in SKOV3 and OVCAR3 cells. Moreover, sevoflurane reduced the migration and invasion abilities of SKOV3 and OVCAR3 cells, as well as the MMP-9 activity. Furthermore, sevoflurane down-regulated the expression of stanniocalcin 1 (STC1), and up-regulation of STC1 could reverse the inhibitory effects of sevoflurane on cell proliferation and invasion. In vivo, sevoflurane significantly inhibited the tumor growth, which was be reversed by STC1 overexpression. These data reveal an anti-cancer activity of sevoflurane on the growth and invasion of ovarian cancer, which may be through down-regulating STC1. Sevoflurane may serve as a potential anti-cancer agent in ovarian cancer therapy.

    更新日期:2019-12-17
  • hnRNPK promotes gastric tumorigenesis through regulating CD44E alternative splicing
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-12
    Wei-zhao Peng; Ji-xi Liu; Chao-feng Li; Ren Ma; Jian-zheng Jie

    The high prevalence of alternative splicing among genes implies the importance of genomic complexity in regulating normal physiological processes and diseases such as gastric cancer (GC). The standard form of stem cell marker CD44 (CD44S) and its alternatives with additional exons are reported to play important roles in multiple types of tumors, but the regulation mechanism of CD44 alternative splicing is not fully understood. Here the expression of hnRNPK was analyzed among the Cancer Genome Atlas (TCGA) cohort of GC. The function of hnRNPK in GC cells was analyzed and its downstream targeted gene was identified by chromatin immunoprecipitation and dual luciferase report assay. Finally, effect of hnRNPK and its downstream splicing regulator on CD44 alternative splicing was investigated. The expression of hnRNPK was significantly increased in GC and its upregulation was associated with tumor stage and metastasis. Loss-of-function studies found that hnRNPK could promote GC cell proliferation, migration, and invasion. The upregulation of hnRNPK activates the expression of the splicing regulator SRSF1 by binding to the first motif upstream the start codon (− 65 to − 77 site), thereby increasing splicing activity and expression of an oncogenic CD44 isoform, CD44E (has additional variant exons 8 to 10, CD44v8-v10). These findings revealed the importance of the hnRNPK-SRSF1-CD44E axis in promoting gastric tumorigenesis.

    更新日期:2019-12-13
  • MiR-566 mediates cell migration and invasion in colon cancer cells by direct targeting of PSKH1
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-11
    Ying Zhang; Siqi Zhang; Jian Yin; Ruisi Xu

    Colorectal cancer (CRC), a common malignancy worldwide, and microRNAs (miRs) have been suggested to play roles in the disease. MiR-566 expression has been shown to be reduced in CRC, but its functions and mechanisms are still unclear. Cell viability was assessed by using the CellTiter 96 AQueous One Solution Cell Proliferation kit. Cell proliferation was measured with MTT assay. Cell metastasis were measured by transwell assay. Luciferase reporter assays was used to confirm the target of MiR-566. PSKH1 expression was measured by RT-PCR and western blot. In the present study, we first observed that miR-566 was expressed in several CRC cell lines (SW480, SW620, LoVo, HT29 and Caco-2) at low levels compared to control colon epithelial cell lines (FHC). Further study showed that miR-566 overexpression suppressed cell survival and impeded cell proliferation, whereas inhibition of its expression enhanced cell survival and proliferation. Transwell assays showed that cell invasion and migration were reduced in cells overexpressing miR-566 and increased in those with inhibition of miR-566. Further analysis confirmed that PSKH1 is a target of miR-566. MiR-566 overexpression significantly inhibited PSKH1 expression and reintroduction of PSKH1 partially reversed the effects of miR-566 on CRC cell growth and metastasis in SW480 and Caco-2 cells. Taken together, the data show that CRC cell growth and metastasis can be significantly suppressed by miR-566 through targeting PSKH1.

    更新日期:2019-12-11
  • Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-11
    Abdul K. Siraj; Sandeep Kumar Parvathareddy; Rong Bu; Kaleem Iqbal; Sarah Siraj; Tariq Masoodi; Rica Micaela Concepcion; Laila Omar Ghazwani; Ismail AlBadawi; Fouad Al-Dayel; Khawla S. Al-Kuraya

    Endometrial carcinoma (EC) accounts for 5.8% of all cancers in Saudi females. Although most ECs are sporadic, 2–5% tend to be familial, being associated with Lynch syndrome and Cowden syndrome. In this study, we attempted to uncover the frequency, spectrum and phenotype of germline mutations in the proofreading domain of POLE and POLD1 genes in a large cohort of ECs from Middle Eastern region. We performed Capture sequencing and Sanger sequencing to screen for proofreading domains of POLE and POLD1 genes in 432 EC cases, followed by evaluation of protein expression using immunohistochemistry. Variant interpretation was performed using PolyPhen-2, MutationAssessor, SIFT, CADD and Mutation Taster. In our cohort, four mutations (0.93%) were identified in 432 EC cases, two each in POLE and POLD1 proofreading domains. Furthermore, low expression of POLE and POLD1 was noted in 41.1% (170/1414) and 59.9% (251/419) of cases, respectively. Both the cases harboring POLE mutation showed high nuclear expression of POLE protein, whereas, of the two POLD1 mutant cases, one case showed high expression and another case showed low expression of POLD1 protein. Our study shows that germline mutations in POLE and POLD1 proofreading region are a rare cause of EC in Middle Eastern population. However, it is still feasible to screen multiple cancer related genes in EC patients from Middle Eastern region using multigene panels including POLE and POLD1.

    更新日期:2019-12-11
  • Uev1A promotes breast cancer cell survival and chemoresistance through the AKT-FOXO1-BIM pathway
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-09
    Zhaojia Wu; Tong Niu; Wei Xiao

    Ubiquitin-conjugating enzyme variant UEV1A is required for Ubc13-catalyzed K63-linked poly-ubiquitination that regulates several signaling pathways including NF-κB, MAPK and PI3K/AKT. Previous reports implicate UEV1A as a potential proto-oncogene and have shown that UEV1A promotes breast cancer metastasis through constitutive NF-кB activation. Ubc13-Uev1A along with TARF6 can also ubiquitinate AKT but its downstream events are unclear. In this study, we experimentally manipulated UEV1 expression in two typical breast cancer cell lines MDA-MB-231 and MCF7 under serum starvation conditions and monitored AKT activation and its downstream protein levels, as well as cellular sensitivity to chemotherapeutic agents. We found that overexpression of UEV1A is sufficient to activate the AKT signaling pathway that in turn inhibits FOXO1 and BIM expression to promote cell survival under serum starvation conditions and enhances cellular resistance to chemotherapy. Consistently, experimental depletion of Uev1 in breast cancer cells inhibits AKT signaling and promotes FOXO1 and BIM expression to reduce cell survival under serum starvation stress and enhance chemosensitivity. Uev1A promotes cell survival under serum starvation stress through the AKT-FOXO1-BIM axis in breast cancer cells, which unveals a potential therapeutic target in the treatment of breast cancers.

    更新日期:2019-12-11
  • Abiraterone and MDV3100 inhibits the proliferation and promotes the apoptosis of prostate cancer cells through mitophagy
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-10
    Jingli Han; Junhua Zhang; Wei Zhang; Dalei Zhang; Ying Li; Jinsong Zhang; Yaqun Zhang; Tongxiang Diao; Luwei Cui; Wenqing Li; Fei Xiao; Ming Liu; Lihui Zou

    Abiraterone and MDV3100 are two effective anticancer agents for prostate cancer, however, the mechanism of their downstream action remains undefined. A dual fluorescent biosensor plasmid was transfected in LNCaP cells to measure mitophagy. The DNA of LNCaP cells was extracted and performed with quantitative real-time PCR to detect mitochondrial DNA copy number. JC-1 staining was utilized to detect the mitochondrial membrane potential and electron microscope was performed to analyze mitochondrial morphology. Moreover, the protein levels of mitochondrial markers and apoptotic markers were detected by western blot. At last, the proliferation and apoptosis of LNCaP cells were analyzed with CCK-8 assay and flow cytometry after abiraterone or MDV3100 treatment. Mitophagy was induced by abiraterone and MDV3100 in LNCaP cells. The low expression level of mitochondrial DNA copy number and mitochondrial depolarization were further identified in the abiraterone or MDV3100 treatment groups compared with the control group. Besides, severe mitochondria swelling and substantial autophagy-lysosomes were observed in abiraterone- and MDV3100-treated LNCaP cells. The expression of mitochondria-related proteins, frataxin, ACO2 and Tom20 were significantly downregulated in abiraterone and MDV3100 treated LNCaP cells, whereas the expression level of inner membrane protein of mitochondria (Tim23) was significantly upregulated in the same condition. Moreover, the proliferation of LNCaP cells were drastically inhibited, and the apoptosis of LNCaP cells was increased in abiraterone or MDV3100 treatment groups. Meanwhile, the addition of mitophagy inhibitor Mdivi-1 (mitochondrial division inhibitor 1) could conversely elevate proliferation and constrain apoptosis of LNCaP cells. Our results prove that both abiraterone and MDV3100 inhibit the proliferation, promote the apoptosis of prostate cancer cells through regulating mitophagy. The promotion of mitophagy might enhance the efficacy of abiraterone and MDV3100, which could be a potential strategy to improve chemotherapy with these two reagents.

    更新日期:2019-12-11
  • Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-05
    Jafar Ai; Neda Ketabchi; Javad Verdi; Nematollah Gheibi; Hossein Khadem Haghighian; Maria Kavianpour

    Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver disease worldwide. Molecular changes in HCC collectively contribute to Wnt/β-catenin, as a tumor proliferative signaling pathway, toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), as well as the c-Jun NH2-terminal kinase (JNK), predominant signaling pathways linked to the release of tumor-promoting cytokines. It should also be noted that the Hippo signaling pathway plays an important role in organ size control, particularly in promoting tumorigenesis and HCC development. Nowadays, mesenchymal stromal cells (MSCs)-based therapies have been the subject of in vitro, in vivo, and clinical studies for liver such as cirrhosis, liver failure, and HCC. At present, despite the importance of basic molecular pathways of malignancies, limited information has been obtained on this background. Therefore, it can be difficult to determine the true concept of interactions between MSCs and tumor cells. What is known, these cells could migrate toward tumor sites so apply effects via paracrine interaction on HCC cells. For example, one of the inhibitory effects of MSCs is the overexpression of dickkopf-related protein 1 (DKK-1) as an important antagonist of the Wnt signaling pathway. A growing body of research challenging the therapeutic roles of MSCs through the secretion of various trophic factors in HCC. This review illustrates the complex behavior of MSCs and precisely how their inhibitory signals interface with HCC tumor cells.

    更新日期:2019-12-05
  • Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-03
    Xuegang Wang; Rong Wang; Zhun Wu; Peide Bai

    Circular RNA Itchy E3 ubiquitin protein ligase (Circ-ITCH) is significantly down-regulated in various kinds of tumors, however, the mechanisms of action and functions of circITCH gene in prostate cancer (PC) are still under investigation. The mail goal of this research was to study the functional role of Circ-ITCH gene in prostate cancer and to illuminate the function role of circ-ITCH gene in prostate cancer by targeting miR-17-5p/HOXB13. RT-qPCR was applied to measure the expression level of circ-ITCH and miR-17-5p in PC cell lines and tissues. CCK-8, colony formation, Brdu incorporation labeling and flow cytometry assays were applied to detect the effects of circ-ITCH and miR-17-5p on proliferation and cell apoptosis. Target gene prediction and screening, luciferase reporter gene assays were utilized to assess downstream target genes of miR-17-5p and Circ-ITCH. The protein and expression of HOXB13 gene were measured by Western blotting and RT-qPCR. CircITCH was significantly reduced in PC cell lines and tissues. Low circITCH expression level was highly related with preoperative PSA, tumor stage and Gleason score. Overexpression of circITCH can inhibit the malignant phenotype of prostate cancer. There was a high negative relationship between the expression level of microRNA-17-5p and circITCH in PC tissues, however, there existed a positive relationship between the expression of HOXB13 and circITCH. CircITCH acted as a sponge of miR-17-5p to increase HOXB13 gene expression. In addition, miR-17-5p overexpression or HOXB13 silencing can reduce the carcinogenic effects of circICCH in prostate cancer. CircITCH promoted prostate cancer progression by regulating the HOXB13/miR-17-5p axis, and circITCH have a potential usage as therapeutic target for PC tumors.

    更新日期:2019-12-04
  • LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-12-02
    Luyang Zhang; Yunjian Wang; Ling Zhang; Guohua You; Congyu Li; Bo Meng; Minghe Zhou; Min Zhang

    Pancreatic cancer (PC) is one of the deadliest cancers about the digestive system. Recent researches have validated that long non-coding RNAs (lncRNAs) play vital roles in various cancers, while the function of LINC01006 in PC is rarely clarified. Investigation of the specific role of LINC01006 in PC. LINC01006 expression was examined by RT-qPCR. CCK-8, EdU, transwell, wound healing, and western blot assays were carried out to explore the function of LINC01006 in PC. The interaction among LINC01006, miR-2682-5p and HOXB8 was verified by luciferase reporter, RIP and ChIP assays. The expression of LINC01006 was markedly upregulated in PC tissues and cells. Furthermore, LINC01006 knockdown inhibited PC cell proliferation, invasion and migration, and upregulation of LINC01006 led to the opposite results. Besides, miR-2682-5p expression was downregulated and negatively regulated by LINC01006 in PC. Meanwhile, LINC01006 could bind with miR-2682-5p in PC. Moreover, miR-2682-5p negatively regulated HOXB8 expression and there was a binding site between miR-2682-5p and HOXB8 in PC. Additionally, miR-2682-5p overexpression or HOXB8 knockdown rescued the promotive effects of LINC01006 upregulation on PC cell progression. Similarly, miR-2682-5p inhibition or HOXB8 overexpression countervailed the repressive role of LINC01006 downregulation in PC cell progression. In addition, the transcription factor HOXB8 could activate LINC01006 transcription in PC. LINC01006 promotes cell proliferation and metastasis in pancreatic cancer via miR-2682-5p/HOXB8 axis, which may facilitate the treatment for PC.

    更新日期:2019-12-02
  • LncRNA UCA1 facilitated cell growth and invasion through the miR-206/CLOCK axis in glioma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-11-29
    Zhi Huang; Xuya Zhao; Xiaowen Wu; Lei Xiang; Yingnan Yuan; Shi Zhou; Wenfeng Yu

    Glioma is a lethal malignant brain tumor, which affects the brain functions and is life-threatening. LncRNA UCA1 was identified as a pivotal regulator for tumorigenesis of glioma. MiR-206 was discovered to promote tumorigenesis and is critical in the regulation of cell proliferation in glioma. This study will discuss the expression of UCA1 regarding miR-206 and CLOCK, and their integrative effects in the proliferation and cell cycle of glioma cells. qRT-PCR was conducted to measure the mRNA expressions of IgG and Ago2 in cells co-transfected with UCA1, and miR-216 in U251. Bioinformation was analyzed for the prediction of association between UCA1 and miR-206. Transwell migrations assays and invasion assays were utilized to observe the cell invasive ability. Western blot and immunofluorescence imaging were used to examine the protein expressions. In vivo comparisons and observations were also performed to investigate the role of UCA1 in glioma growth. LncRNA UCA1 was up-regulated in glioma cell lines and tissues. It elevated cell invasion via the inducing of epithelial-mesenchymal transition. We found that UCA1 can modulate miR-206 expression and serve as an endogenous sponge of miR-206. The EMT-inducer CLOCK was validated as a messenger RNA target of miR-206. At last, we demonstrated that UCA1 exerted the biology function through regulating miR-206 and CLOCK in vivo. Overall, the results demonstrated that UCA1/miR-206/CLOCK axis participated in the progressing of glioma and could act as a promising therapeutic target.

    更新日期:2019-11-30
  • Cisplatin-resistant A549 non-small cell lung cancer cells can be identified by increased mitochondrial mass and are sensitive to pemetrexed treatment
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-11-29
    Yanyun Gao; Patrick Dorn; Shengchen Liu; Haibin Deng; Sean R. R. Hall; Ren-Wang Peng; Ralph A. Schmid; Thomas M. Marti

    Cisplatin plus pemetrexed combination therapy is considered the standard treatment for patients with advanced, non-squamous, non-small-cell lung cancer (NSCLC). However, advanced NSCLC has a 5-year survival rate of below 10%, which is mainly due to therapy resistance. We previously showed that the NSCLC cell line A549 harbors different subpopulations including a mesenchymal-like subpopulation characterized by increased chemo- and radiotherapy resistance. Recently, therapy resistance in hematological and solid tumors has been associated with increased mitochondrial activity. Thus, the aim of this study was to investigate the role of the mitochondrial activity in NSCLC chemotherapy resistance. Based on MitoTracker staining, subpopulations characterized by the highest 10% (Mito-High) or lowest 10% (Mito-Low) mitochondrial mass content were sorted by FACS (Fluorescence-Activated Cell Sorting) from paraclonal cultures of the NSCLC A549 cell line . Mitochondrial DNA copy numbers were quantified by real-time PCR whereas basal cellular respiration was measured by high-resolution respirometry. Cisplatin and pemetrexed response were quantified by proliferation and colony formation assay. Pemetrexed treatment of parental A549 cells increased mitochondrial mass over time. FACS-sorted paraclonal Mito-High cells featured increased mitochondrial mass and mitochondrial DNA copy number compared to the Mito-Low cells. Paraclonal Mito-High cells featured an increased proliferation rate and were significantly more resistant to cisplatin treatment than Mito-Low cells. Interestingly, cisplatin-resistant, paraclonal Mito-High cells were significantly more sensitive to pemetrexed treatment than Mito-Low cells. We provide a working model explaining the molecular mechanism underlying the increased cisplatin- and decreased pemetrexed resistance of a distinct subpopulation characterized by high mitochondrial mass. This study revealed that cisplatin resistant A549 lung cancer cells can be identified by their increased levels of mitochondrial mass. However, Mito-High cells feature an increased sensitivity to pemetrexed treatment. Thus, pemetrexed and cisplatin target reciprocal lung cancer subpopulations, which could explain the increased efficacy of the combination therapy in the clinical setting.

    更新日期:2019-11-30
  • High CTHRC1 expression may be closely associated with angiogenesis and indicates poor prognosis in lung adenocarcinoma patients
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-11-29
    Yangshan Chen; Yu Sun; Yongmei Cui; Yiyan Lei; Neng Jiang; Wenting Jiang; Han Wang; Lili Chen; Jiping Luo; Yanyang Chen; Kejing Tang; Chengzhi Zhou; Zunfu Ke

    This study aimed to investigate the prognostic value of the potential biomarker collagen triple helix repeat containing 1 (CTHRC1) in lung adenocarcinoma (LUAD) patients. A total of 210 LUAD patients diagnosed between 2003 and 2016 in the Department of Pathology of the First Affiliated Hospital of Sun Yat-sen University were included in this study. The expression of CTHRC1 and vascular endothelial growth factor (VEGF), and microvessel density (MVD, determined by CD34 immunostaining) were evaluated by immunohistochemistry in LUAD tissues. The association between the expression of these proteins and clinicopathological features or clinical outcomes was analyzed. Here, we confirmed that CTHRC1 expression was associated with prognosis and can serve as a significant predictor for overall survival (OS) and progression-free survival (PFS) in LUAD. Additionally, we observed that CTHRC1 expression was positively associated with tumor angiogenesis markers, such as VEGF expression (P < 0.001) and MVD (P < 0.01). Then, we performed gene set enrichment analysis (GESA) and cell experiments to confirm that enhanced CTHRC1 expression can promote VEGF levels. Based on and cox regression analysis, a predictive model that included CTHRC1, VEGF and MVD was constructed and confirmed as a more accurate independent predictor for OS (P = 0.001) and PFS (P < 0.001) in LUAD than other parameters. These results demonstrated that high CTHRC1 expression may be closely related to tumor angiogenesis and poor prognosis in LUAD. The predictive model based on the CTHRC1 level and tumor angiogenesis markers can be used to predict LUAD patient prognosis more accurately.

    更新日期:2019-11-30
  • Melatonin: an anti-tumor agent for osteosarcoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-11-29
    Hadis Fathizadeh; Hamed Mirzaei; Zatollah Asemi

    Osteosarcoma is the most common bone tumors which consisted of malignant mesenchymal cells generating osteoid and immature bone. It has been showed that osteosarcoma is common in children and adolescents and shows high mortality rate. A variety of therapeutic approaches (i.e., resection surgery, combined with chemotherapy and radiotherapy) have been used as conventional treatments in patients with osteosarcoma. Despite several attempts to improve therapeutic response, the rate of survival for osteosarcoma has not changed during the past 3 decades. Therefore, the discovery and developing new effective therapeutic platforms are required. Along to the established anti-cancer agents, some physiological regulators such melatonin, have been emerged as new anti-cancer agents. Melatonin is an indolamine hormone which is secreted from the pineal glands during the night and acts as physiological regulator. Given that melatonin shows a wide spectrum anti-tumor impacts. Besides different biologic activities of melatonin (e.g., immunomodulation and antioxidant properties), melatonin has a crucial role in the formation of bones, and its deficiency could be directly related to bone cancers. Several in vitro and in vivo experiments evaluated the effects of melatonin on osteosarcoma and other types of bone cancer. Taken together, the results of these studies indicated that melatonin could be introduced as new therapeutic candidate or as adjuvant in combination with other anti-tumor agents in the treatment of osteosarcoma. Herein, we summarized the anti-tumor effects of melatonin for osteosarcoma cancer as well as its mechanism of action.

    更新日期:2019-11-30
  • (−)-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small-cell lung cancer cells
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-10-14
    Jing Wang; Peiyuan Sun; Qi Wang; Pan Zhang; Yuna Wang; Chengting Zi; Xuanjun Wang; Jun Sheng

    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. The inhibition of epidermal growth factor receptor (EGFR) signaling by tyrosine kinase inhibitors or monoclonal antibodies plays a key role in NSCLC treatment. Unfortunately, these treatment strategies are limited by eventual resistance and cell lines with differential EGFR status. Therefore, new therapeutic strategies for NSCLC are urgently required. To improve the stability and absorption of (−)-epigallocatechin-3-gallate (EGCG), we synthesized a series of EGCG derivatives. The antitumor activities of EGCG derivatives with or without cisplatin were investigated in vitro and vivo. Cell proliferation, cell cycle distribution and apoptosis were measured in NSCLC cell lines and in vivo in a NCI-H441 xenograft model. We found that the EGCG derivatives inhibited cell viability and colony formation, caused cell cycle redistribution, and induced apoptosis. More importantly, the combination of the EGCG derivative and cisplatin led to increased growth inhibition, caused cell cycle redistribution, and enhanced the apoptosis rate compared to either compound alone. Consistent with the experiments in vitro, EGCG derivatives plus cisplatin significantly reduced tumor growth. The combination treatment was found to inhibit the EGFR signaling pathway and decrease the expression of p-EGFR, p-AKT, and p-ERK in vitro and vivo. Our results suggest that compound 3 is a novel potential compound for NSCLC patients.

    更新日期:2019-11-28
  • Potential Role of circPVT1 as a proliferative factor and treatment target in esophageal carcinoma
    Cancer Cell Int. (IF 3.439) Pub Date : 2019-10-15
    Rongrong Zhong; Zhuozhi Chen; Ting Mo; Zimo Li; Peng Zhang

    Many circRNAs have been reported to play important roles in cancer development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNAs in esophageal carcinoma (EC) remains unclear. In the current study, we investigated the potential role of circPVT1 in esophageal carcinoma. Quantitative real-time PCR was performed to detect circPVT1 levels. CircPVT1-specific siRNA or plasmids were used to knock down or overexpression the target RNA. Hoechst Staining was implemented to evaluate the ratio of cell apoptosis. Transwell migration assays were carried out to study the effects of circPVT1 on esophageal squamous cell carcinoma cell invasion. RegRNA 2.0 was used for bioinformatics analysis. The expression levels of Pax-4, Pax-6, PPARα and PPAR-γ were assessed using Western blot. In the present study, we demonstrated a significant up-regulation of circPVT1 levels in EC tissues and cancer cell lines. The levels of circPVT1 decreased significantly when the cells were maintained to over-confluence. These results suggested a potential role for circPVT1 in cell proliferation. In addition, overexpressing circPVT1 in TE-10 cell promoted invasive ability of cancer cell. In contrast, siRNA knockdown of circPVT1 inhibited this phenomenon, leading to increased apoptosis levels of TE-10 cell. What’s more, miR-4663 had the effect of inhibiting tumor growth by downregulated Paxs and upregulated PPARs. Whereas, after the addition of circPVT1, this effect no longer worked, suggesting that circPVT1 may affect the malignancy of the tumor by affecting miRNA and regulating the levels of Paxs and PPARs. Collectively, our study reveals a critical role for circPVT1 in esophageal carcinoma, which may provide new insights of this circRNA as a biomarker for the diagnosis and treatment target of EC.

    更新日期:2019-11-28
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug