-
综合
- All
- Abh. Math. Semin. Univ. Hambg.
- Acta Appl. Math.
- Acta Math.
- Acta Math. Appl. Sin. Engl. Ser.
- Acta Math. Hungar.
- Acta Math. Sci.
- Acta. Math. Sin. Engl. Ser.
- Adv. Appl. Math.
- Adv. Math.
- Aequat. Math.
- AIMS Math.
- Am. J. Math.
- Am. Math. Monthly
- Anal. Math.
- Analele Univ. Ovidius Constanta - Ser. Mat.
- Ann. Henri Poincaré
- Ann. Math.
- Ann. Math. Artif. Intel.
- Appl. Anal.
- Appl. Math.
- Appl. Math. Comput.
- Appl. Math. Lett.
- Appl. Math. Optim.
- Arab. J. Math.
- Arch. Math.
- Arch. Math. Logic
- Ark. Mat.
- Asian J. Math.
- ASTIN Bull.
- Bull. Aust. Math. Soc.
- Bull. Braz. Math. Soc. New Ser.
- Bull. des Sci. Math.
- Bull. Iran. Math. Soc.
- Bull. Lond. Math. Soc.
- Bull. Malays. Math. Sci. Soc.
- C. R. Math.
- Camb. J. Math.
- Can. J. Math.
- Can. Math. Bull.
- Collect. Math.
- Comb. Probab. Comput.
- Comm. Pure Appl. Math.
- Comment. Math. Helv.
- Commun. Contemp. Math.
- Commun. Math. Phys.
- Commun. Math. Stat.
- Complex Anal. Oper. Theory
- Complexity
- Compos. Math.
- Comput. Math. Appl.
- Comput. Methods Funct. Theory
- Constr. Approx.
- Czechoslov. Math. J.
- Discret. Dyn. Nat. Soc.
- Discret. Math.
- Dokl. Math.
- Ergod. Theory Dyn. Syst.
- Eur. J. Comb.
- Expos. Math.
- Forum Math.
- Forum Math. Pi
- Forum Math. Sigma
- Found. Comput. Math.
- Funct. Anal. Its Appl.
- Georgian Math. J.
- Glasg. Math. J.
- IMA J. Appl. Math.
- Indag. Math.
- Indian J. Pure Appl. Math.
- Int. J. Math.
- Int. Math. Res. Notices
- Integr. Equ. Oper. Theory
- Invent. math.
- Iran. J. Sci. Technol. Trans. Sci.
- Isr. J. Math.
- Izv. Math.
- J. Adv. Res.
- J. Am. Math. Soc.
- J. Anal. Math.
- J. Aust. Math. Soc.
- J. Complex.
- J. Comput. Appl. Math.
- J. Differ. Geom.
- J. Dyn. Diff. Equat.
- J. Egypt. Math. Soc.
- J. Eng. Math.
- J. Group Theory
- J. Inequal. Appl.
- J. Inst. Math. Jussieu
- J. Lond. Math. Soc.
- J. Math.
- J. Math. Imaging Vis.
- J. Math. Pures Appl.
- J. reine angew. Math.
- J. Sched.
- Japan J. Indust. Appl. Math.
- Jpn. J. Math.
- Lith. Math. J.
- manuscripta math.
- Math. Ann.
- Math. Nachr.
- Math. Notes
- Math. Proc. Camb. Philos. Soc.
- Math. Res. Lett.
- Math. Sci.
- Math. Slovaca
- Math. Struct. Comput. Sci.
- Math. Z.
- Mathematics
- Mathematika
- Mediterr. J. Math.
- Milan J. Math.
- Monatshefte Math.
- Moscow Univ. Math. Bull.
- Nagoya Math. J.
- Nature
- Nonlinear Differ. Equ. Appl.
- Open Math.
- Period. Math. Hung.
- Potential Anal.
- Proc. Am. Math. Soc.
- Proc. Edinburgh. Math. Soc.
- Proc. London Math. Soc.
- Proc. Natl. Acad. Sci. U.S.A.
- Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
- Proc. R. Soc. Edinburgh Sect. A
- Proc. Royal Soc. A: Math. Phys. Eng. Sci.
- Proc. Steklov Inst. Math.
- Publ. math. IHES
- Pure Appl. Math. Q.
- Q. J. Math.
- Quaest. Math.
- Qual. Theory Dyn. Syst.
- RACSAM
- Ramanujan J.
- Res. Math. Sci.
- Results Math.
- Rev. Mat. Complut.
- Rev. Mat. Iberoam.
- Ricerche mat.
- Russ. J. Math. Phys.
- Russ. Math.
- Sb. Math.
- Science
- SIAM J. Sci. Comput.
- SIAM Rev.
- Sib. Adv. Math.
- Sib. Math. J.
- Soft Comput.
- St. Petersburg Math. J.
- Stud. Appl. Math.
- Trans. Am. Math. Soc.
- Transform. Groups
- Ukr. Math. J.
- Vestnik St. Petersb. Univ. Math.
- 数论
-
代数
- All
- Adv. Appl. Clifford Algebras
- Algebr. Represent. Theor.
- Algebra Logic
- Algebra Number Theory
- Algebra Univers.
- Ann. Comb.
- Appl. Algebra Eng. Commun. Comput.
- Appl. Categor. Struct.
- Commun. Algebra
- Des. Codes Cryptogr.
- Dyn. Syst.
- Eng. Anal. Bound. Elem.
- Groups Geom. Dyn.
- Int. J. Algebra Comput.
- J. Algebra
- J. Algebra Appl.
- J. Algebraic Comb.
- J. Knot Theory Ramif.
- J. Pure Appl. Algebra
- Linear Multilinear Algebra
- Rep. Math. Phys.
- Represent. Theory
- Theory Comput. Syst.
- 组合
-
几何
- All
- Adv. Geom.
- Anal. Geom. Metr. Spaces
- Anal. Math. Phys.
- Ann. Glob. Anal. Geom.
- Combinatorica
- Commun. Anal. Geom.
- Complex Var. Elliptic Equ.
- Comput. Geom.
- Des. Codes Cryptogr.
- Differ. Geom. Appl.
- Discret. Comput. Geom.
- Dyn. Syst.
- Finite Fields Their Appl.
- Fractals
- Geom. Dedicata.
- Geom. Funct. Anal.
- Groups Geom. Dyn.
- Int. J. Geom. Methods Mod. Phys.
- J. Geom. Anal.
- J. Geometr. Mech.
- J. Geometr. Phys.
- J. Homotopy Relat. Struct.
- J. Noncommut. Geom.
- J. Symplectic Geom.
- J. Topol. Anal.
- Lobachevskii J. Math.
- 拓扑
-
分析
- All
- Adv. Nonlinear Anal.
- Anal. Geom. Metr. Spaces
- Anal. PDE
- Ann. Funct. Anal.
- Appl. Comput. Harmon. Anal.
- Banach J. Math. Anal.
- Calcolo
- Commun. Anal. Geom.
- Evol. Equat. Control Theory
- Finite Elem. Anal. Des.
- Fract. Calc. Appl. Anal.
- IMA J. Numer. Anal.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Numer. Anal. Methods Geomech.
- J. Contemp. Mathemat. Anal.
- J. Differ. Equ.
- J. Forecast.
- J. Funct. Anal.
- J. Math. Anal. Appl.
- J. Topol. Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Numer. Analys. Appl.
- Positivity
- Random Matrices Theory Appl.
- SIAM J. Math. Anal.
- SIAM J. Matrix Anal. Appl.
- SIAM J. Numer. Anal.
-
概率统计
- All
- Am. Stat.
- Ann. Appl. Stat.
- Ann. Inst. Stat. Math.
- Ann. Stat.
- Annu. Rev. Stat. Appl.
- Aust. N. Z. J. Stat.
- Biometrika
- Br. J. Math. Stat. Psychol.
- Can. J. Stat.
- Commun. Stat. Simul. Comput.
- Commun. Stat. Theory Methods
- Comput. Stat.
- Comput. Stat. Data Anal.
- Digit. Signal Process.
- Econom. J.
- Econom. Theory
- Environ. Ecol. Stat.
- Environmetrics
- Eur. J. Oper. Res.
- Extremes
- Finance Stoch.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Biostat.
- Int. Stat. Rev.
- J. Agric. Biol. Environ. Stat.
- J. Am. Stat. Assoc.
- J. Appl. Probab.
- J. Appl. Stat.
- J. Biopharm. Stat.
- J. Comput. Graph. Stat.
- J. Comput. Phys.
- J. Korean Stat. Soc.
- J. Multivar. Anal.
- J. Nonparametr. Stat.
- J. R. Stat. Soc. A
- J. R. Stat. Soc. B
- J. R. Stat. Soc. Ser. C Appl. Stat.
- J. Stat. Comput. Simul.
- J. Stat. Distrib. App.
- J. Stat. Plann. Inference
- J. Theor. Probab.
- J. Time Ser. Anal.
- Law Probab. Risk
- Lifetime Data Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Math. Meth. Stat.
- Math. Phys. Anal. Geom.
- Methodol. Comput. Appl. Probab.
- Metrika
- Neural Comput.
- Oxford Bull. Econ. Statistics
- Probab Theory Relat Fields
- Probab. Eng. Inf. Sci.
- Probab. Eng. Mech.
- Probab. Uncertain. Quant. Risk
- Qual. Technol. Quant. Manag.
- Random Matrices Theory Appl.
- Random Struct. Algorithms
- Scand. Actuar. J.
- Scand. J. Stat.
- Scientometrics
- Sequ. Anal.
- Spat. Stat.
- Stat
- Stat. Anal. Data Min.
- Stat. Appl. Genet. Molecul. Biol.
- Stat. Comput.
- Stat. Interface
- Stat. Med.
- Stat. Methods Appl.
- Stat. Neerl.
- Stat. Pap.
- Stat. Probab. Lett.
- Stat. Sin.
- Stata J. Promot. Commun. Stat. Stata
- Statistics
- Stoch. Anal. Appl.
- Stoch. Models
- Stoch. Process. their Appl.
- Stochastics
- Struct. Equ. Model.
- Technometrics
- Test
- Theory Probab. Appl.
-
计算
- All
- Adv. Calc. Var.
- Adv. Comput. Math.
- Ann. Oper. Res.
- Appl. Numer. Math.
- BIT Numer. Math.
- Bull. Math. Biol.
- Combinatorica
- Comput. Aided Geom. Des.
- Comput. Appl. Math.
- Comput. Geom.
- Comput. Math. Math. Phys.
- Comput. Math. Method Med.
- Comput. Math. Organ. Theory
- Comput. Methods Appl. Math.
- Comput. Optim. Appl.
- Comput. Stat. Data Anal.
- Fortschritte der Physik Prog. Phys.
- Front. Comput. Neurosci.
- Front. Neuroinform.
- IET Syst. Biol.
- Inf. Comput.
- Int. J. Algebra Comput.
- Int. J. Comput. Methods
- Int. J. Numer. Methods Fluids
- Interfaces Free Bound.
- J. Math. Biol.
- J. Sci. Comput.
- J. Symb. Comput.
- Log. J. IGPL
- Math. Biosci.
- Math. Comp.
- Math. Med. Biol.
- Moscow Univ. Comput. Math. Cybern.
- Neural Comput.
- Optim. Lett.
- Optim. Methods Softw.
-
其他
- All
- ACM Trans. Algorithms
- ACM Trans. Comput. Log.
- ACM Trans. Model. Comput. Simul.
- Acta Biotheor.
- Adv. Complex Syst.
- Adv. Data Anal. Classif.
- Adv. Differ. Equ.
- Adv. Math. Commun.
- Adv. Nonlinear Stud.
- Adv. Theor. Math. Phys.
- Adv. Theory Simul.
- Ann. I. H. Poincaré – AN
- Ann. Mat. Pura Appl.
- Ann. Pure Appl. Logic
- ANZIAM J.
- Appl. Mathmat. Model.
- Appl. Sci.
- Appl. Stoch. Models Bus.Ind.
- Arch. Rational Mech. Anal.
- AStA. Adv. Stat. Anal.
- Asymptot. Anal.
- Bound. Value Probl.
- Calc. Var.
- Cell Prolif.
- Centaurus
- Chaos Solitons Fractals
- Classical Quant. Grav.
- Commun. Appl. Math. Comput. Sci.
- Commun. Math. Sci.
- Commun. Nonlinear Sci. Numer. Simul.
- Commun. Partial Differ. Equ.
- Comput. Soc. Netw.
- Diff. Equat.
- Differ. Integral Equ.
- Discret. Optim.
- Discrete Appl. Math.
- Discrete Contin. Dyn. Syst. A
- Discrete Contin. Dyn. Syst. B
- Discrete Contin. Dyn. Syst. S
- Dyn. Partial Differ. Equ.
- Eur. J. Appl. Math.
- Evol. Comput.
- Exp. Math.
- Fixed Point Theory Appl.
- Fluct. Noise Lett.
- Fundam. Inform.
- Fuzzy Set. Syst.
- Genet. Epidemiol.
- Grey Syst. Theory Appl.
- Homol. Homotopy Appl.
- IMA J. Manag. Math.
- IMA J. Math. Control Inf.
- Informatica
- Int. J Comput. Math.
- Int. J. Biomath.
- Int. J. Found. Comput. Sci.
- Int. J. Game Theory
- Int. J. Multiscale Comput. Eng.
- Int. J. Nonlinear Sci. Numer. Simul.
- Int. J. Numer. Method. Biomed. Eng.
- Int. J. Solids Struct.
- Int. J. Uncertain. Quantif.
- Integral Transform. Spec. Funct.
- Interdiscip. Sci. Rev.
- Inverse Probl.
- Inverse Probl. Imaging
- J. Appl. Math. Comput.
- J. Approx. Theory
- J. Biol. Syst.
- J. Causal Inference
- J. Choice Model.
- J. Classif.
- J. Comput. Theor. Transp.
- J. Differ. Equ. Appl.
- J. Eur. Math. Soc.
- J. Evol. Equ.
- J. Fixed Point Theory Appl.
- J. Fourier Anal. Appl.
- J. Funct. Spaces
- J. Glob. Optim.
- J. Graph Theory
- J. Inverse Ill posed Probl.
- J. Log. Comput.
- J. Math. Econ.
- J. Math. Fluid Mech.
- J. Math. Industry
- J. Math. Log.
- J. Math. Music
- J. Math. Neurosc.
- J. Math. Phys.
- J. Math. Psychol.
- J. Math. Sociol.
- J. Nonlinear Math. Phys.
- J. Nonlinear Sci.
- J. Numer. Math.
- J. Optim. Theory Appl.
- J. Phys. A: Math. Theor.
- J. Pseudo-Differ. Oper. Appl.
- J. Spectr. Theory
- J. Symb. Log.
- J. Syst. Sci. Complex.
- J. Taibah Univ. Sci.
- Kinet. Relat. Models
- Math. Biosci. Eng.
- Math. Comput. Simul.
- Math. Control Signals Syst.
- Math. Finan. Econ.
- Math. Financ.
- Math. Geosci.
- Math. Logic Q.
- Math. Meth. Oper. Res.
- Math. Methods Appl. Sci.
- Math. Models Comput. Simul.
- Math. Models Methods Appl. Sci.
- Math. Popul. Stud.
- Math. Probl. Eng.
- Math. Program.
- Multiscale Modeling Simul.
- Netw. Heterog. Media
- Nexus Netw. J.
- Nonlinear Anal.
- Nonlinear Anal. Model. Control
- Nonlinear Anal. Real World Appl.
- Nonlinearity
- Numer. Algor.
- Numer. Funct. Anal. Optim.
- Numer. Linear Algebra Appl.
- Numer. Math.
- Numer. Methods Partial Differ. Equ.
- Optim. Eng.
- Optimization
- Order
- P-Adic Num. Ultrametr. Anal. Appl.
- Port. Math.
- Q. J. Mech. Appl. Math.
- Regul. Chaot. Dyn.
- Rend. Lincei Mat. Appl.
- Rev. Math. Phys.
- Rev. Symb. Log.
- Russ. J. Numer. Anal. Math. Model.
- Sel. Math.
- Semigroup Forum
- Set-Valued Var. Anal.
- SIAM J. Appl. Dyn. Syst.
- SIAM J. Appl. Math.
- SIAM J. Control Optim.
- SIAM J. Discret. Math.
- SIAM J. Financ, Math.
- SIAM J. Optim.
- SIAM/ASA J. Uncertain. Quantif.
- Stat. Model.
- Stoch. Dyn.
- Stoch. PDE Anal. Comp.
- Stud. Log.
- Symmetry
- Theor. Math. Phys.
- Z. Angew. Math. Phys.
- Z. für Anal. ihre Anwend.
- ZAMM
-
Cobordism-framed correspondences and the Milnor 𝐾-theory St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 A. Tsybyshev
Abstract:The 0th cohomology group is computed for a complex of groups of cobordism-framed correspondences. In the case of ordinary framed correspondences, an analogous computation was completed by A. Neshitov in his paper ``Framed correspondences and the Milnor-Witt -theory''. Neshitov's result is, at the same time, a computation of the homotopy groups , and the present work might be used subsequently
-
𝐿₂-theory for two viscous fluids of different types: Compressible and incompressible St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 V. Solonnikov
Abstract:Stability is proved for the rest state in the problem of evolution of two viscous fluids, compressible and incompressible, contained in a bounded vessel and separated by a free interface. The fluids are subject to mass and capillary forces. The proof of stability is based on ``maximal regularity'' estimates for the solution in the anisotropic Sobolev-Slobodetskiĭ spaces with an exponential
-
On Cayley representations of finite graphs over Abelian 𝑝-groups St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 G. Ryabov
Abstract:A polynomial-time algorithm is constructed that, given a graph , finds the full set of nonequivalent Cayley representations of over the group , where and . This result implies that the recognition and isomorphism problems for Cayley graphs over can be solved in polynomial time.
-
Embeddings of Orlicz–Lorentz spaces into 𝐿₁ St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 J. Prochno
Abstract:It is shown that the Orlicz-Lorentz spaces , , with Orlicz function and weight sequence are uniformly isomorphic to subspaces of if the norm satisfies certain Hardy-type inequalities. This includes the embedding of some Lorentz spaces . The approach is based on combinatorial averaging techniques, and a new result of independent interest is proved, which relates suitable averages with Orlicz-Lorentz
-
Balayage of measures and subharmonic functions to a system of rays. II. Balayages of finite genus and growth regularity on a single ray St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 B. Khabibullin; A. Shmeleva; Z. Abdullina
Abstract:The classical balayages of measures and subharmonic functions are extended to a system of rays with common origin on the complex plane . For an arbitrary subharmonic function of finite order on , this allows one to build a -subharmonic function on that is harmonic outside of , coincides with on outside of a polar set, and has the same growth order as . Applications are given to the investigation
-
Maxwell operator in a cylinder with coefficients that do not depend on the cross-sectional variables St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 N. Filonov
Abstract:The Maxwell operator is studied in a three-dimensional cylinder whose cross-section is a simply connected bounded domain with Lipschitz boundary. It is assumed that the coefficients of the operator are scalar functions depending on the longitudinal variable only. We show that the square of such an operator is unitarily equivalent to the orthogonal sum of four scalar elliptic operators of second
-
A posteriori estimates of the deviation from exact solutions to variational problems under nonstandard coerciveness and growth conditions St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 S. Pastukhova
Abstract:A posteriori estimates are proved for the accuracy of approximations of solutions to variational problems with nonstandard power functionals. More precisely, these are integral functionals with power type integrands having a variable exponent . It is assumed that is bounded away from one and infinity. Estimates in the energy norm are obtained for the difference of the approximate and exact
-
Classification of taut irreducible real linear representations of compact connected Lie groups St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 M. Mescheryakov
Abstract:The paper is devoted to classification of irreducible real linear representations of noncommutative compact connected Lie groups whose Morse matrix coefficients have the minimal number of critical points permitted by the topology of .
-
Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 E. Korotyaev; V. Sloushch
Abstract:The periodic Schrödinger operator on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator , , where is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator for a large coupling constant.
-
A new valuation on polyhedral cones St. Petersburg Math. J. (IF 0.8) Pub Date : 2021-01-11 H. Zheng; M. Zydor
Abstract:On polyhedral cones, a new family of valuations is introduced; they are valued in the space of bounded polyhedra.
-
Spatial graphs, tangles and plane trees St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-10-27 V. Nezhinskiĭ
Abstract:All (finite connected) spatial graphs are supplied with an additional structure -- the replenished skeleton and its disk framing, -- in such a way that the problem of isotopic classification of spatial graphs endowed with this structure admits reduction to two problems: the (classical) problem of isotopic classification of tangles and the (close to classical) problem of isotopic classification
-
Homogenization of periodic Schrödinger-type equations, with lower order terms St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-10-27 M. Dorodnyĭ
Abstract:In , consider a selfadjoint matrix elliptic second order differential operator , , with periodic coefficients depending on . The principal part of the operator is given in a factorized form, the operator involves first and zero order terms. Approximation is found for the operator exponential , , for small in the ( )-operator norm with a suitable . The results are applied to study the behavior
-
Overgroups of Levi subgroups I. The case of abelian unipotent radical St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-10-27 P. Gvozdevsky
Abstract:In the present paper, sandwich classification is established for the overgroups of the subsystem subgroup of the Chevalley group for the three types of the pair (the root system and its subsystem) listed below such that the group is (up to a torus) a Levi subgroup of the parabolic subgroup with Abelian unipotent radical. Namely, it is shown that for any overgroup of this sort, there exists
-
Groups normalized by the odd unitary group St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-10-27 E. Voronetsky
Abstract:Quadratic forms on bimodules are defined and the sandwich classification theorem is proved for subgroups of the general linear group normalized by the elementary unitary group if is a regular bimodule with sufficiently large hyperbolic part.
-
On holomorphic realizations of 5-dimensional Lie algebras St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-10-27 R. Akopyan; A. Loboda
Abstract:Realizations are studied for a particular block of 5-dimensional Lie algebras (within the well-known Mubarakzyanov classification) in the form of algebras of holomorphic vector fields on homogeneous real hypersurfaces of the 3-dimensional complex space. All (locally) holomorphically homogeneous and Levi nondegenerate real hypersurfaces associated with algebras in the block in question are
-
The 𝐵𝑀𝑂→𝐵𝐿𝑂 action of the maximal operator on 𝛼-trees St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 A. Osȩkowski; L. Slavin; V. Vasyunin
Abstract:The explicit upper Bellman function is found for the natural dyadic maximal operator acting from into . As a consequence, it is shown that the norm of the natural operator equals for all , and so does the norm of the classical dyadic maximal operator. The main result is a partial consequence of a theorem for the so-called -trees, which generalize dyadic lattices. The Bellman function in this
-
Oka principle on the maximal ideal space of 𝐻^{∞} St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 A. Brudnyi
Abstract:The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper, similar results are established on the maximal ideal space of the Banach algebra of bounded holomorphic functions on the open unit disk . The results are illustrated by some examples and applications to the theory of operator-valued functions.
-
Trace formulas for the one-dimensional Stark operator and integrals of motion for the cylindrical Korteweg–de Vries equation St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 V. V. Sukhanov
Abstract:A complete series of trace formulas for the one-dimensional Stark operator on the entire axis with a rapidly decreasing potential is constructed. The Stark equation is related to the cylindrical Korteweg-de Vries equation by the pair (-). For this equation, infinite series of integrals of motion is constructed that corresponds to the trace formulas for the Stark operator.
-
Schur-convex functions of the 2nd order on ℝⁿ St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 M. Revyakov
Abstract:In the author's earlier paper [Revyakov M., J. Multivariate Anal. 116 (2013) 25-34] concerning mathematical statistics, a need arose to employ functions called ``Schur-convex functions of the 2nd order with respect to two variables''. In the present paper, the class of Schur-convex functions of the 2nd order in variables is introduced. Necessary and sufficient conditions (in the form of analogs
-
Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 S. Nazarov
Abstract:Cylindrical acoustic waveguides with constant cross-section are considered, specifically, a straight waveguide and a locally curved waveguide that depends on a parameter . For , in two different settings ( and ), the task is to find an eigenvalue that is embedded in the continuous spectrum of the waveguide and, hence, is inherently unstable. In other words, a solution of the Neumann problem
-
SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 S. Buyalo
Abstract:The SRA-free condition for metric spaces (that is, spaces without Small Rough Angles) was introduced by Zolotov to study rectifiability for self-contracted curves in various metric spaces. A Möbius invariant version of this notion is introduced, which allows one to show that the zz-distance associated with the respective Möbius structure on the circle is nondegenerate. This result is an important
-
Cyclicity of nonvanishing functions in the polydisk and in the ball St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-09-03 E. Amar; P. Thomas
Abstract:A special version of the corona theorem in several variables, valid when all but one of the data functions are smooth, is used to generalize, to the polydisk and to the ball, the results obtained by El Fallah, Kellay, and Seip about the cyclicity of nonvanishing bounded holomorphic functions in sufficiently large Banach spaces of analytic functions determined either by weighted sums of powers
-
Rigidity theorem for presheaves with Witt-transfers St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 A. Druzhinin
Abstract:The rigidity theorem for homotopy invariant presheaves with Witt-transfers on the category of smooth schemes over a field of characteristic different form two is proved. Namely, for any such sheaf , isomorphism is established, where is an essentially smooth local Henselian scheme with a separable residue field over . As a consequence, the rigidity theorem for the presheaves for any smooth
-
On the asymptotics of eigenvalues of a third-order differential operator St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 I. Braeutigam; D. Polyakov
Abstract:We consider a third-order nonselfadjoint differential operator with square summable coefficients whose domain is defined by quasiperiodic boundary conditions. For this operator, using the method of similar operators, we obtain an asymptotic behavior of eigenvalues, estimates of the deviations of spectral projections, and the equiconvergence of spectral decompositions.
-
Orders that are étale-locally isomorphic St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 E. Bayer-Fluckiger; U. First; M. Huruguen
Abstract:Let be a semilocal Dedekind domain with fraction field . It is shown that two hereditary -orders in central simple -algebras that become isomorphic after tensoring with and with some faithfully flat étale -algebra are isomorphic. On the other hand, this fails for hereditary orders with involution. The latter stands in contrast to a result of the first two authors, who proved this statement
-
Generalized power central group identities in almost subnormal subgroups of 𝐺𝐿_{𝑛}(𝐷) St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 B. Hai; H. Khanh; M. Bien
Abstract:This paper is devoted to almost subnormal subgroups of the general linear group of degree over a division ring that satisfy a generalized power central group identity.
-
Subgroups of Chevalley groups of types 𝐵_{𝑙} and 𝐶_{𝑙} containing the group over a subring, and corresponding carpets St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 Ya. Nuzhin; A. Stepanov
Abstract:This is a continuation of the study of subgroups of the Chevalley group over a ring with root system and weight lattice that contain the elementary subgroup over a subring of . A. Bak and A. V. Stepanov considered recently the case of the symplectic group (simply connected group with root system ) in characteristic 2. In the current article, that result is extended to the case of and for the
-
Homogenization of periodic parabolic systems in the 𝐿₂(ℝ^{𝕕})-norm with the corrector taken into account St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 Yu. Meshkova
Abstract:In , consider a selfadjoint matrix second order elliptic differential operator , . The principal part of the operator is given in a factorized form, the operator contains first and zero order terms. The operator is positive definite, its coefficients are periodic and depend on . The behavior in the small period limit is studied for the operator exponential , . The approximation in the -operator
-
Noncommutative holomorphic functional calculus, affine and projective spaces from 𝑁𝐶-complete algebras St. Petersburg Math. J. (IF 0.8) Pub Date : 2020-06-11 A. Dosi
Abstract:The paper is devoted to a noncommutative holomorphic functional calculus and its application to noncommutative algebraic geometry. A description is given for the noncommutative (infinite-dimensional) affine spaces , , , and for the projective spaces within Kapranov's model of noncommutative algebraic geometry based on the sheaf of formally-radical holomorphic functions of elements of a nilpotent