-
综合
- All
- Abh. Math. Semin. Univ. Hambg.
- Acta Appl. Math.
- Acta Math.
- Acta Math. Appl. Sin. Engl. Ser.
- Acta Math. Hungar.
- Acta Math. Sci.
- Acta. Math. Sin. Engl. Ser.
- Adv. Appl. Math.
- Adv. Math.
- Aequat. Math.
- AIMS Math.
- Am. J. Math.
- Am. Math. Monthly
- Anal. Math.
- Analele Univ. Ovidius Constanta - Ser. Mat.
- Ann. Henri Poincaré
- Ann. Math.
- Ann. Math. Artif. Intel.
- Appl. Anal.
- Appl. Math.
- Appl. Math. Comput.
- Appl. Math. Lett.
- Appl. Math. Optim.
- Arab. J. Math.
- Arch. Math.
- Arch. Math. Logic
- Ark. Mat.
- Asian J. Math.
- ASTIN Bull.
- Bull. Aust. Math. Soc.
- Bull. Braz. Math. Soc. New Ser.
- Bull. des Sci. Math.
- Bull. Iran. Math. Soc.
- Bull. Lond. Math. Soc.
- Bull. Malays. Math. Sci. Soc.
- C. R. Math.
- Camb. J. Math.
- Can. J. Math.
- Can. Math. Bull.
- Collect. Math.
- Comb. Probab. Comput.
- Comm. Pure Appl. Math.
- Comment. Math. Helv.
- Commun. Contemp. Math.
- Commun. Math. Phys.
- Commun. Math. Stat.
- Complex Anal. Oper. Theory
- Complexity
- Compos. Math.
- Comput. Math. Appl.
- Comput. Methods Funct. Theory
- Constr. Approx.
- Czechoslov. Math. J.
- Discret. Dyn. Nat. Soc.
- Discret. Math.
- Dokl. Math.
- Ergod. Theory Dyn. Syst.
- Eur. J. Comb.
- Expos. Math.
- Forum Math.
- Forum Math. Pi
- Forum Math. Sigma
- Found. Comput. Math.
- Funct. Anal. Its Appl.
- Georgian Math. J.
- Glasg. Math. J.
- IMA J. Appl. Math.
- Indag. Math.
- Indian J. Pure Appl. Math.
- Int. J. Math.
- Int. Math. Res. Notices
- Integr. Equ. Oper. Theory
- Invent. math.
- Iran. J. Sci. Technol. Trans. Sci.
- Isr. J. Math.
- Izv. Math.
- J. Adv. Res.
- J. Am. Math. Soc.
- J. Anal. Math.
- J. Aust. Math. Soc.
- J. Complex.
- J. Comput. Appl. Math.
- J. Differ. Geom.
- J. Dyn. Diff. Equat.
- J. Egypt. Math. Soc.
- J. Eng. Math.
- J. Group Theory
- J. Inequal. Appl.
- J. Inst. Math. Jussieu
- J. Lond. Math. Soc.
- J. Math.
- J. Math. Imaging Vis.
- J. Math. Pures Appl.
- J. reine angew. Math.
- J. Sched.
- Japan J. Indust. Appl. Math.
- Jpn. J. Math.
- Lith. Math. J.
- manuscripta math.
- Math. Ann.
- Math. Nachr.
- Math. Notes
- Math. Proc. Camb. Philos. Soc.
- Math. Res. Lett.
- Math. Sci.
- Math. Slovaca
- Math. Struct. Comput. Sci.
- Math. Z.
- Mathematics
- Mathematika
- Mediterr. J. Math.
- Milan J. Math.
- Monatshefte Math.
- Moscow Univ. Math. Bull.
- Nagoya Math. J.
- Nature
- Nonlinear Differ. Equ. Appl.
- Open Math.
- Period. Math. Hung.
- Potential Anal.
- Proc. Am. Math. Soc.
- Proc. Edinburgh. Math. Soc.
- Proc. London Math. Soc.
- Proc. Natl. Acad. Sci. U.S.A.
- Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
- Proc. R. Soc. Edinburgh Sect. A
- Proc. Royal Soc. A: Math. Phys. Eng. Sci.
- Proc. Steklov Inst. Math.
- Publ. math. IHES
- Pure Appl. Math. Q.
- Q. J. Math.
- Quaest. Math.
- Qual. Theory Dyn. Syst.
- RACSAM
- Ramanujan J.
- Res. Math. Sci.
- Results Math.
- Rev. Mat. Complut.
- Rev. Mat. Iberoam.
- Ricerche mat.
- Russ. J. Math. Phys.
- Russ. Math.
- Sb. Math.
- Science
- SIAM J. Sci. Comput.
- SIAM Rev.
- Sib. Adv. Math.
- Sib. Math. J.
- Soft Comput.
- St. Petersburg Math. J.
- Stud. Appl. Math.
- Trans. Am. Math. Soc.
- Transform. Groups
- Ukr. Math. J.
- Vestnik St. Petersb. Univ. Math.
- 数论
-
代数
- All
- Adv. Appl. Clifford Algebras
- Algebr. Represent. Theor.
- Algebra Logic
- Algebra Number Theory
- Algebra Univers.
- Ann. Comb.
- Appl. Algebra Eng. Commun. Comput.
- Appl. Categor. Struct.
- Commun. Algebra
- Des. Codes Cryptogr.
- Dyn. Syst.
- Eng. Anal. Bound. Elem.
- Groups Geom. Dyn.
- Int. J. Algebra Comput.
- J. Algebra
- J. Algebra Appl.
- J. Algebraic Comb.
- J. Knot Theory Ramif.
- J. Pure Appl. Algebra
- Linear Multilinear Algebra
- Rep. Math. Phys.
- Represent. Theory
- Theory Comput. Syst.
- 组合
-
几何
- All
- Adv. Geom.
- Anal. Geom. Metr. Spaces
- Anal. Math. Phys.
- Ann. Glob. Anal. Geom.
- Combinatorica
- Commun. Anal. Geom.
- Complex Var. Elliptic Equ.
- Comput. Geom.
- Des. Codes Cryptogr.
- Differ. Geom. Appl.
- Discret. Comput. Geom.
- Dyn. Syst.
- Finite Fields Their Appl.
- Fractals
- Geom. Dedicata.
- Geom. Funct. Anal.
- Groups Geom. Dyn.
- Int. J. Geom. Methods Mod. Phys.
- J. Geom. Anal.
- J. Geometr. Mech.
- J. Geometr. Phys.
- J. Homotopy Relat. Struct.
- J. Noncommut. Geom.
- J. Symplectic Geom.
- J. Topol. Anal.
- Lobachevskii J. Math.
- 拓扑
-
分析
- All
- Adv. Nonlinear Anal.
- Anal. Geom. Metr. Spaces
- Anal. PDE
- Ann. Funct. Anal.
- Appl. Comput. Harmon. Anal.
- Banach J. Math. Anal.
- Calcolo
- Commun. Anal. Geom.
- Evol. Equat. Control Theory
- Finite Elem. Anal. Des.
- Fract. Calc. Appl. Anal.
- IMA J. Numer. Anal.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Numer. Anal. Methods Geomech.
- J. Contemp. Mathemat. Anal.
- J. Differ. Equ.
- J. Forecast.
- J. Funct. Anal.
- J. Math. Anal. Appl.
- J. Topol. Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Numer. Analys. Appl.
- Positivity
- Random Matrices Theory Appl.
- SIAM J. Math. Anal.
- SIAM J. Matrix Anal. Appl.
- SIAM J. Numer. Anal.
-
概率统计
- All
- Am. Stat.
- Ann. Appl. Stat.
- Ann. Inst. Stat. Math.
- Ann. Stat.
- Annu. Rev. Stat. Appl.
- Aust. N. Z. J. Stat.
- Biometrika
- Br. J. Math. Stat. Psychol.
- Can. J. Stat.
- Commun. Stat. Simul. Comput.
- Commun. Stat. Theory Methods
- Comput. Stat.
- Comput. Stat. Data Anal.
- Digit. Signal Process.
- Econom. J.
- Econom. Theory
- Environ. Ecol. Stat.
- Environmetrics
- Eur. J. Oper. Res.
- Extremes
- Finance Stoch.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Biostat.
- Int. Stat. Rev.
- J. Agric. Biol. Environ. Stat.
- J. Am. Stat. Assoc.
- J. Appl. Probab.
- J. Appl. Stat.
- J. Biopharm. Stat.
- J. Comput. Graph. Stat.
- J. Comput. Phys.
- J. Korean Stat. Soc.
- J. Multivar. Anal.
- J. Nonparametr. Stat.
- J. R. Stat. Soc. A
- J. R. Stat. Soc. B
- J. R. Stat. Soc. Ser. C Appl. Stat.
- J. Stat. Comput. Simul.
- J. Stat. Distrib. App.
- J. Stat. Plann. Inference
- J. Theor. Probab.
- J. Time Ser. Anal.
- Law Probab. Risk
- Lifetime Data Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Math. Meth. Stat.
- Math. Phys. Anal. Geom.
- Methodol. Comput. Appl. Probab.
- Metrika
- Neural Comput.
- Oxford Bull. Econ. Statistics
- Probab Theory Relat Fields
- Probab. Eng. Inf. Sci.
- Probab. Eng. Mech.
- Probab. Uncertain. Quant. Risk
- Qual. Technol. Quant. Manag.
- Random Matrices Theory Appl.
- Random Struct. Algorithms
- Scand. Actuar. J.
- Scand. J. Stat.
- Scientometrics
- Sequ. Anal.
- Spat. Stat.
- Stat
- Stat. Anal. Data Min.
- Stat. Appl. Genet. Molecul. Biol.
- Stat. Comput.
- Stat. Interface
- Stat. Med.
- Stat. Methods Appl.
- Stat. Neerl.
- Stat. Pap.
- Stat. Probab. Lett.
- Stat. Sin.
- Stata J. Promot. Commun. Stat. Stata
- Statistics
- Stoch. Anal. Appl.
- Stoch. Models
- Stoch. Process. their Appl.
- Stochastics
- Struct. Equ. Model.
- Technometrics
- Test
- Theory Probab. Appl.
-
计算
- All
- Adv. Calc. Var.
- Adv. Comput. Math.
- Ann. Oper. Res.
- Appl. Numer. Math.
- BIT Numer. Math.
- Bull. Math. Biol.
- Combinatorica
- Comput. Aided Geom. Des.
- Comput. Appl. Math.
- Comput. Geom.
- Comput. Math. Math. Phys.
- Comput. Math. Method Med.
- Comput. Math. Organ. Theory
- Comput. Methods Appl. Math.
- Comput. Optim. Appl.
- Comput. Stat. Data Anal.
- Fortschritte der Physik Prog. Phys.
- Front. Comput. Neurosci.
- Front. Neuroinform.
- IET Syst. Biol.
- Inf. Comput.
- Int. J. Algebra Comput.
- Int. J. Comput. Methods
- Int. J. Numer. Methods Fluids
- Interfaces Free Bound.
- J. Math. Biol.
- J. Sci. Comput.
- J. Symb. Comput.
- Log. J. IGPL
- Math. Biosci.
- Math. Comp.
- Math. Med. Biol.
- Moscow Univ. Comput. Math. Cybern.
- Neural Comput.
- Optim. Lett.
- Optim. Methods Softw.
-
其他
- All
- ACM Trans. Algorithms
- ACM Trans. Comput. Log.
- ACM Trans. Model. Comput. Simul.
- Acta Biotheor.
- Adv. Complex Syst.
- Adv. Data Anal. Classif.
- Adv. Differ. Equ.
- Adv. Math. Commun.
- Adv. Nonlinear Stud.
- Adv. Theor. Math. Phys.
- Adv. Theory Simul.
- Ann. I. H. Poincaré – AN
- Ann. Mat. Pura Appl.
- Ann. Pure Appl. Logic
- ANZIAM J.
- Appl. Mathmat. Model.
- Appl. Sci.
- Appl. Stoch. Models Bus.Ind.
- Arch. Rational Mech. Anal.
- AStA. Adv. Stat. Anal.
- Asymptot. Anal.
- Bound. Value Probl.
- Calc. Var.
- Cell Prolif.
- Centaurus
- Chaos Solitons Fractals
- Classical Quant. Grav.
- Commun. Appl. Math. Comput. Sci.
- Commun. Math. Sci.
- Commun. Nonlinear Sci. Numer. Simul.
- Commun. Partial Differ. Equ.
- Comput. Soc. Netw.
- Diff. Equat.
- Differ. Integral Equ.
- Discret. Optim.
- Discrete Appl. Math.
- Discrete Contin. Dyn. Syst. A
- Discrete Contin. Dyn. Syst. B
- Discrete Contin. Dyn. Syst. S
- Dyn. Partial Differ. Equ.
- Eur. J. Appl. Math.
- Evol. Comput.
- Exp. Math.
- Fixed Point Theory Appl.
- Fluct. Noise Lett.
- Fundam. Inform.
- Fuzzy Set. Syst.
- Genet. Epidemiol.
- Grey Syst. Theory Appl.
- Homol. Homotopy Appl.
- IMA J. Manag. Math.
- IMA J. Math. Control Inf.
- Informatica
- Int. J Comput. Math.
- Int. J. Biomath.
- Int. J. Found. Comput. Sci.
- Int. J. Game Theory
- Int. J. Multiscale Comput. Eng.
- Int. J. Nonlinear Sci. Numer. Simul.
- Int. J. Numer. Method. Biomed. Eng.
- Int. J. Solids Struct.
- Int. J. Uncertain. Quantif.
- Integral Transform. Spec. Funct.
- Interdiscip. Sci. Rev.
- Inverse Probl.
- Inverse Probl. Imaging
- J. Appl. Math. Comput.
- J. Approx. Theory
- J. Biol. Syst.
- J. Causal Inference
- J. Choice Model.
- J. Classif.
- J. Comput. Theor. Transp.
- J. Differ. Equ. Appl.
- J. Eur. Math. Soc.
- J. Evol. Equ.
- J. Fixed Point Theory Appl.
- J. Fourier Anal. Appl.
- J. Funct. Spaces
- J. Glob. Optim.
- J. Graph Theory
- J. Inverse Ill posed Probl.
- J. Log. Comput.
- J. Math. Econ.
- J. Math. Fluid Mech.
- J. Math. Industry
- J. Math. Log.
- J. Math. Music
- J. Math. Neurosc.
- J. Math. Phys.
- J. Math. Psychol.
- J. Math. Sociol.
- J. Nonlinear Math. Phys.
- J. Nonlinear Sci.
- J. Numer. Math.
- J. Optim. Theory Appl.
- J. Phys. A: Math. Theor.
- J. Pseudo-Differ. Oper. Appl.
- J. Spectr. Theory
- J. Symb. Log.
- J. Syst. Sci. Complex.
- J. Taibah Univ. Sci.
- Kinet. Relat. Models
- Math. Biosci. Eng.
- Math. Comput. Simul.
- Math. Control Signals Syst.
- Math. Finan. Econ.
- Math. Financ.
- Math. Geosci.
- Math. Logic Q.
- Math. Meth. Oper. Res.
- Math. Methods Appl. Sci.
- Math. Models Comput. Simul.
- Math. Models Methods Appl. Sci.
- Math. Popul. Stud.
- Math. Probl. Eng.
- Math. Program.
- Multiscale Modeling Simul.
- Netw. Heterog. Media
- Nexus Netw. J.
- Nonlinear Anal.
- Nonlinear Anal. Model. Control
- Nonlinear Anal. Real World Appl.
- Nonlinearity
- Numer. Algor.
- Numer. Funct. Anal. Optim.
- Numer. Linear Algebra Appl.
- Numer. Math.
- Numer. Methods Partial Differ. Equ.
- Optim. Eng.
- Optimization
- Order
- P-Adic Num. Ultrametr. Anal. Appl.
- Port. Math.
- Q. J. Mech. Appl. Math.
- Regul. Chaot. Dyn.
- Rend. Lincei Mat. Appl.
- Rev. Math. Phys.
- Rev. Symb. Log.
- Russ. J. Numer. Anal. Math. Model.
- Sel. Math.
- Semigroup Forum
- Set-Valued Var. Anal.
- SIAM J. Appl. Dyn. Syst.
- SIAM J. Appl. Math.
- SIAM J. Control Optim.
- SIAM J. Discret. Math.
- SIAM J. Financ, Math.
- SIAM J. Optim.
- SIAM/ASA J. Uncertain. Quantif.
- Stat. Model.
- Stoch. Dyn.
- Stoch. PDE Anal. Comp.
- Stud. Log.
- Symmetry
- Theor. Math. Phys.
- Z. Angew. Math. Phys.
- Z. für Anal. ihre Anwend.
- ZAMM

显示样式: 排序: IF: - GO 导出
-
Singular Value Decomposition in Sobolev Spaces: Part II Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-10-22 Mazen Ali; Anthony Nouy
Under certain conditions, an element of a tensor product space can be identified with a compact operator and the singular value decomposition (SVD) applies to the latter. These conditions are not fulfilled in Sobolev spaces. In the previous part of this work (part I) [Z. Anal. Anwend. 39 (2020), 349–369], we introduced some preliminary notions in the theory of tensor product spaces. We analyzed low-rank
-
Global Wellposedness and Large Time Behavior of Solutions to the Hall-Magnetohydrodynamics Equations Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-10-22 Xiaoping Zhai
We prove the global solutions to the incompressible Hall-magnetohydrodynamics (Hall-MHD) equations with small or some large initial data in $\mathbb R^n (n \geq 3)$. Especially, Fujita–Kato type initial data as the incompressible Navier–Stokes equations are allowed. We also study the large time behavior of the solutions and obtain an optimal decay rate in the general Besov spaces. Different from all
-
Category Theorems for Schrödinger Semigroups Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-10-22 Moacir Aloisio; Silas L. Carvalho; César R. de Oliveira
Stimulated by the category theorems of Eisner and Serény in the setting of unitary and isometric $C_0$-semigroups on separable Hilbert spaces, we prove category theorems for Schrödinger semigroups. Speci cally, we show that, to a given class of Schrödinger semigroups, Baire generically the semigroups are strongly stable but not exponentially stable. We also present a typical spectral property of the
-
Vector Valued Maximal Carleson Type Operators on the Weighted Lorentz Spaces Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-10-22 Dao Van Duong; Kieu Huu Dung; Nguyen Minh Chuong
In this paper, by using the idea of linearizing maximal operators originated by Charles Fefferman and the $TT*$ method of Stein–Wainger, we establish a weighted inequality for vector valued maximal Carleson type operators with singular kernels proposed by Andersen and John on the weighted Lorentz spaces with vector-valued functions.
-
Differentiating Orlicz Spaces with Rectangles Having Fixed Shapes in a Set of Directions Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-10-22 Emma D'Aniello; Laurent Moonens
In the present note, we examine the behavior of some homothecy-invariant differentiation basis of rectangles in the plane satisfying the following requirement: for a given rectangle to belong to the basis, the ratio of the largest of its side-lengths by the smallest one (which one calls its shape) has to be a fixed real number depending on the angle between its longest side and the horizontal line
-
Global Persistence of the Unit Eigenvectors of Perturbed Eigenvalue Problems in Hilbert Spaces Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-10-22 Pierluigi Benevieri; Alessandro Calamai; Massimo Furi; Maria Patrizia Pera
We consider the nonlinear eigenvalue problem $$Lx + \varepsilon N(x) = \lambda Cx, \quad \|x\|=1,$$ where $\varepsilon,\lambda$ are real parameters, $L, C\colon G \to H$ are bounded linear operators between separable real Hilbert spaces, and $N\colon S \to H$ is a continuous map defined on the unit sphere of $G$. We prove a global persistence result regarding the set $\Sigma$ of the solutions $(x,\varepsilon
-
Fractional Orlicz–Sobolev Extension/Imbedding on Ahlfors $n$-Regular Domains Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-07-06 Tian Liang
In this paper we build up a criteria for fractional Orlicz–Sobolev extension and imbedding domains on Ahlfors $n$-regular domains.
-
On Some Generic Small Cantor Spaces Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-07-06 Emma D'Aniello; Martina Maiuriello
Let $X = [0, 1]^n, n \geq 1$. We show that the typical (in the sense of Baire category) compact subset of $X$ is not only a zero dimensional Cantor space but it satisfies the property of being strongly microscopic, which is stronger than dimension zero.
-
Fractional $p\&q$ Laplacian Problems in $\mathbb{R}^{N}$ with Critical Growth Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-07-06 Vincenzo Ambrosio
We deal with the following nonlinear problem involving fractional $p\&q$ Laplacians: \begin{equation*} (-\Delta)^{s}_{p}u+(-\Delta)^{s}_{q}u+|u|^{p-2}u+|u|^{q-2}u=\lambda h(x) f(u)+|u|^{q^{*}_{s}-2}u \quad \mbox{in } \mathbb{R}^{N}, \end{equation*} where $s\in (0,1)$, $1 < p < q < \frac{N}{s}$, $\q=\frac{Nq}{N-sq}$, $\lambda > 0$ is a parameter, $h$ is a nontrivial bounded perturbation and $f$ is a
-
Partial Regularity Results for Quasimonotone Elliptic Systems with General Growth Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-07-06 Bianca Stroffolini
We present a partial Hölder regularity result for the gradient of solutions to quasimonotone systems: $$\mathrm div \:\mathbf A(\cdot,D\mathbf u) = \mathbf B(\cdot, D\mathbf u) \quad \text{in } \Omega,$$ on bounded domains in the weak sense. Here certain continuity, uniformly strictly quasimonotonicity, growth conditions are imposed on the coefficients, including an asymptotic Uhlenbeck behaviour close
-
Singular Value Decomposition in Sobolev Spaces: Part I Z. für Anal. ihre Anwend. (IF 0.673) Pub Date : 2020-07-06 Mazen Ali; Anthony Nouy
A well known result from functional analysis states that any compact operator between Hilbert spaces admits a singular value decomposition (SVD). This decomposition is a powerful tool that is the workhorse of many methods both in mathematics and applied fields. A prominent application in recent years is the approximation of high-dimensional functions in a low-rank format. This is based on the fact