-
综合
- All
- Abh. Math. Semin. Univ. Hambg.
- Acta Appl. Math.
- Acta Math.
- Acta Math. Appl. Sin. Engl. Ser.
- Acta Math. Hungar.
- Acta Math. Sci.
- Acta. Math. Sin. Engl. Ser.
- Adv. Appl. Math.
- Adv. Math.
- Aequat. Math.
- AIMS Math.
- Am. J. Math.
- Am. Math. Monthly
- Anal. Math.
- Analele Univ. Ovidius Constanta - Ser. Mat.
- Ann. Henri Poincaré
- Ann. Math.
- Ann. Math. Artif. Intel.
- Appl. Anal.
- Appl. Math.
- Appl. Math. Comput.
- Appl. Math. Lett.
- Appl. Math. Optim.
- Arab. J. Math.
- Arch. Math.
- Arch. Math. Logic
- Ark. Mat.
- Asian J. Math.
- ASTIN Bull.
- Bull. Aust. Math. Soc.
- Bull. Braz. Math. Soc. New Ser.
- Bull. des Sci. Math.
- Bull. Iran. Math. Soc.
- Bull. Lond. Math. Soc.
- Bull. Malays. Math. Sci. Soc.
- C. R. Math.
- Camb. J. Math.
- Can. J. Math.
- Can. Math. Bull.
- Collect. Math.
- Comb. Probab. Comput.
- Comm. Pure Appl. Math.
- Comment. Math. Helv.
- Commun. Contemp. Math.
- Commun. Math. Phys.
- Commun. Math. Stat.
- Complex Anal. Oper. Theory
- Complexity
- Compos. Math.
- Comput. Math. Appl.
- Comput. Methods Funct. Theory
- Constr. Approx.
- Czechoslov. Math. J.
- Discret. Dyn. Nat. Soc.
- Discret. Math.
- Dokl. Math.
- Ergod. Theory Dyn. Syst.
- Eur. J. Comb.
- Expos. Math.
- Forum Math.
- Forum Math. Pi
- Forum Math. Sigma
- Found. Comput. Math.
- Funct. Anal. Its Appl.
- Georgian Math. J.
- Glasg. Math. J.
- IMA J. Appl. Math.
- Indag. Math.
- Indian J. Pure Appl. Math.
- Int. J. Math.
- Int. Math. Res. Notices
- Integr. Equ. Oper. Theory
- Invent. math.
- Iran. J. Sci. Technol. Trans. Sci.
- Isr. J. Math.
- Izv. Math.
- J. Adv. Res.
- J. Am. Math. Soc.
- J. Anal. Math.
- J. Aust. Math. Soc.
- J. Complex.
- J. Comput. Appl. Math.
- J. Differ. Geom.
- J. Dyn. Diff. Equat.
- J. Egypt. Math. Soc.
- J. Eng. Math.
- J. Group Theory
- J. Inequal. Appl.
- J. Inst. Math. Jussieu
- J. Lond. Math. Soc.
- J. Math.
- J. Math. Imaging Vis.
- J. Math. Pures Appl.
- J. reine angew. Math.
- J. Sched.
- Japan J. Indust. Appl. Math.
- Jpn. J. Math.
- Lith. Math. J.
- manuscripta math.
- Math. Ann.
- Math. Nachr.
- Math. Notes
- Math. Proc. Camb. Philos. Soc.
- Math. Res. Lett.
- Math. Sci.
- Math. Slovaca
- Math. Struct. Comput. Sci.
- Math. Z.
- Mathematics
- Mathematika
- Mediterr. J. Math.
- Milan J. Math.
- Monatshefte Math.
- Moscow Univ. Math. Bull.
- Nagoya Math. J.
- Nature
- Nonlinear Differ. Equ. Appl.
- Open Math.
- Period. Math. Hung.
- Potential Anal.
- Proc. Am. Math. Soc.
- Proc. Edinburgh. Math. Soc.
- Proc. London Math. Soc.
- Proc. Natl. Acad. Sci. U.S.A.
- Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
- Proc. R. Soc. Edinburgh Sect. A
- Proc. Royal Soc. A: Math. Phys. Eng. Sci.
- Proc. Steklov Inst. Math.
- Publ. math. IHES
- Pure Appl. Math. Q.
- Q. J. Math.
- Quaest. Math.
- Qual. Theory Dyn. Syst.
- RACSAM
- Ramanujan J.
- Res. Math. Sci.
- Results Math.
- Rev. Mat. Complut.
- Rev. Mat. Iberoam.
- Ricerche mat.
- Russ. J. Math. Phys.
- Russ. Math.
- Russ. Math. Surv.
- Sb. Math.
- Science
- SIAM J. Sci. Comput.
- SIAM Rev.
- Sib. Adv. Math.
- Sib. Math. J.
- Soft Comput.
- St. Petersburg Math. J.
- Stud. Appl. Math.
- Trans. Am. Math. Soc.
- Transform. Groups
- Ukr. Math. J.
- Vestnik St. Petersb. Univ. Math.
- 数论
-
代数
- All
- Adv. Appl. Clifford Algebras
- Algebr. Represent. Theor.
- Algebra Logic
- Algebra Number Theory
- Algebra Univers.
- Ann. Comb.
- Appl. Algebra Eng. Commun. Comput.
- Appl. Categor. Struct.
- Commun. Algebra
- Des. Codes Cryptogr.
- Dyn. Syst.
- Eng. Anal. Bound. Elem.
- Groups Geom. Dyn.
- Int. J. Algebra Comput.
- J. Algebra
- J. Algebra Appl.
- J. Algebraic Comb.
- J. Knot Theory Ramif.
- J. Pure Appl. Algebra
- Linear Multilinear Algebra
- Rep. Math. Phys.
- Represent. Theory
- Theory Comput. Syst.
- 组合
-
几何
- All
- Adv. Geom.
- Anal. Geom. Metr. Spaces
- Anal. Math. Phys.
- Ann. Glob. Anal. Geom.
- Combinatorica
- Commun. Anal. Geom.
- Complex Var. Elliptic Equ.
- Comput. Geom.
- Des. Codes Cryptogr.
- Differ. Geom. Appl.
- Discret. Comput. Geom.
- Dyn. Syst.
- Finite Fields Their Appl.
- Fractals
- Geom. Dedicata.
- Geom. Funct. Anal.
- Groups Geom. Dyn.
- Int. J. Geom. Methods Mod. Phys.
- J. Geom. Anal.
- J. Geometr. Mech.
- J. Geometr. Phys.
- J. Homotopy Relat. Struct.
- J. Noncommut. Geom.
- J. Symplectic Geom.
- J. Topol. Anal.
- Lobachevskii J. Math.
- 拓扑
-
分析
- All
- Adv. Nonlinear Anal.
- Anal. Geom. Metr. Spaces
- Anal. PDE
- Ann. Funct. Anal.
- Appl. Comput. Harmon. Anal.
- Banach J. Math. Anal.
- Calcolo
- Commun. Anal. Geom.
- Evol. Equat. Control Theory
- Finite Elem. Anal. Des.
- Fract. Calc. Appl. Anal.
- IMA J. Numer. Anal.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Numer. Anal. Methods Geomech.
- J. Contemp. Mathemat. Anal.
- J. Differ. Equ.
- J. Forecast.
- J. Funct. Anal.
- J. Math. Anal. Appl.
- J. Topol. Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Numer. Analys. Appl.
- Positivity
- Random Matrices Theory Appl.
- SIAM J. Math. Anal.
- SIAM J. Matrix Anal. Appl.
- SIAM J. Numer. Anal.
-
概率统计
- All
- Am. Stat.
- Ann. Appl. Stat.
- Ann. Inst. Stat. Math.
- Ann. Stat.
- Annu. Rev. Stat. Appl.
- Aust. N. Z. J. Stat.
- Biometrika
- Br. J. Math. Stat. Psychol.
- Can. J. Stat.
- Commun. Stat. Simul. Comput.
- Commun. Stat. Theory Methods
- Comput. Stat.
- Comput. Stat. Data Anal.
- Digit. Signal Process.
- Econom. J.
- Econom. Theory
- Environ. Ecol. Stat.
- Environmetrics
- Eur. J. Oper. Res.
- Extremes
- Finance Stoch.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Biostat.
- Int. Stat. Rev.
- J. Agric. Biol. Environ. Stat.
- J. Am. Stat. Assoc.
- J. Appl. Probab.
- J. Appl. Stat.
- J. Biopharm. Stat.
- J. Comput. Graph. Stat.
- J. Comput. Phys.
- J. Korean Stat. Soc.
- J. Multivar. Anal.
- J. Nonparametr. Stat.
- J. R. Stat. Soc. A
- J. R. Stat. Soc. B
- J. R. Stat. Soc. Ser. C Appl. Stat.
- J. Stat. Comput. Simul.
- J. Stat. Distrib. App.
- J. Stat. Plann. Inference
- J. Theor. Probab.
- J. Time Ser. Anal.
- Law Probab. Risk
- Lifetime Data Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Math. Meth. Stat.
- Math. Phys. Anal. Geom.
- Methodol. Comput. Appl. Probab.
- Metrika
- Neural Comput.
- Oxford Bull. Econ. Statistics
- Probab Theory Relat Fields
- Probab. Eng. Inf. Sci.
- Probab. Eng. Mech.
- Probab. Uncertain. Quant. Risk
- Qual. Technol. Quant. Manag.
- Random Matrices Theory Appl.
- Random Struct. Algorithms
- Scand. Actuar. J.
- Scand. J. Stat.
- Scientometrics
- Sequ. Anal.
- Spat. Stat.
- Stat
- Stat. Anal. Data Min.
- Stat. Appl. Genet. Molecul. Biol.
- Stat. Comput.
- Stat. Interface
- Stat. Med.
- Stat. Methods Appl.
- Stat. Neerl.
- Stat. Pap.
- Stat. Probab. Lett.
- Stat. Sin.
- Stata J. Promot. Commun. Stat. Stata
- Statistics
- Stoch. Anal. Appl.
- Stoch. Models
- Stoch. Process. their Appl.
- Stochastics
- Struct. Equ. Model.
- Technometrics
- Test
- Theory Probab. Appl.
-
计算
- All
- Adv. Calc. Var.
- Adv. Comput. Math.
- Ann. Oper. Res.
- Appl. Numer. Math.
- BIT Numer. Math.
- Bull. Math. Biol.
- Combinatorica
- Comput. Aided Geom. Des.
- Comput. Appl. Math.
- Comput. Geom.
- Comput. Math. Math. Phys.
- Comput. Math. Method Med.
- Comput. Math. Organ. Theory
- Comput. Methods Appl. Math.
- Comput. Optim. Appl.
- Comput. Stat. Data Anal.
- Fortschritte der Physik Prog. Phys.
- Front. Comput. Neurosci.
- Front. Neuroinform.
- IET Syst. Biol.
- Inf. Comput.
- Int. J. Algebra Comput.
- Int. J. Comput. Methods
- Int. J. Numer. Methods Fluids
- Interfaces Free Bound.
- J. Math. Biol.
- J. Sci. Comput.
- J. Symb. Comput.
- Log. J. IGPL
- Math. Biosci.
- Math. Comp.
- Math. Med. Biol.
- Moscow Univ. Comput. Math. Cybern.
- Neural Comput.
- Optim. Lett.
- Optim. Methods Softw.
-
其他
- All
- ACM Trans. Algorithms
- ACM Trans. Comput. Log.
- ACM Trans. Model. Comput. Simul.
- Acta Biotheor.
- Adv. Complex Syst.
- Adv. Data Anal. Classif.
- Adv. Differ. Equ.
- Adv. Math. Commun.
- Adv. Nonlinear Stud.
- Adv. Theor. Math. Phys.
- Adv. Theory Simul.
- Ann. I. H. Poincaré – AN
- Ann. Mat. Pura Appl.
- Ann. Pure Appl. Logic
- ANZIAM J.
- Appl. Mathmat. Model.
- Appl. Sci.
- Appl. Stoch. Models Bus.Ind.
- Arch. Rational Mech. Anal.
- AStA. Adv. Stat. Anal.
- Asymptot. Anal.
- Bound. Value Probl.
- Calc. Var.
- Cell Prolif.
- Centaurus
- Chaos Solitons Fractals
- Classical Quant. Grav.
- Commun. Appl. Math. Comput. Sci.
- Commun. Math. Sci.
- Commun. Nonlinear Sci. Numer. Simul.
- Commun. Partial Differ. Equ.
- Comput. Soc. Netw.
- Diff. Equat.
- Differ. Integral Equ.
- Discret. Optim.
- Discrete Appl. Math.
- Discrete Contin. Dyn. Syst. A
- Discrete Contin. Dyn. Syst. B
- Discrete Contin. Dyn. Syst. S
- Dyn. Partial Differ. Equ.
- Eur. J. Appl. Math.
- Evol. Comput.
- Exp. Math.
- Fixed Point Theory Appl.
- Fluct. Noise Lett.
- Fundam. Inform.
- Fuzzy Set. Syst.
- Genet. Epidemiol.
- Grey Syst. Theory Appl.
- Homol. Homotopy Appl.
- IMA J. Manag. Math.
- IMA J. Math. Control Inf.
- Informatica
- Int. J Comput. Math.
- Int. J. Biomath.
- Int. J. Found. Comput. Sci.
- Int. J. Game Theory
- Int. J. Multiscale Comput. Eng.
- Int. J. Nonlinear Sci. Numer. Simul.
- Int. J. Numer. Method. Biomed. Eng.
- Int. J. Solids Struct.
- Int. J. Uncertain. Quantif.
- Integral Transform. Spec. Funct.
- Interdiscip. Sci. Rev.
- Inverse Probl.
- Inverse Probl. Imaging
- J. Appl. Math. Comput.
- J. Approx. Theory
- J. Biol. Syst.
- J. Causal Inference
- J. Choice Model.
- J. Classif.
- J. Comput. Theor. Transp.
- J. Differ. Equ. Appl.
- J. Eur. Math. Soc.
- J. Evol. Equ.
- J. Fixed Point Theory Appl.
- J. Fourier Anal. Appl.
- J. Funct. Spaces
- J. Glob. Optim.
- J. Graph Theory
- J. Inverse Ill posed Probl.
- J. Log. Comput.
- J. Math. Econ.
- J. Math. Fluid Mech.
- J. Math. Industry
- J. Math. Log.
- J. Math. Music
- J. Math. Neurosc.
- J. Math. Phys.
- J. Math. Psychol.
- J. Math. Sociol.
- J. Nonlinear Math. Phys.
- J. Nonlinear Sci.
- J. Numer. Math.
- J. Optim. Theory Appl.
- J. Phys. A: Math. Theor.
- J. Pseudo-Differ. Oper. Appl.
- J. Spectr. Theory
- J. Symb. Log.
- J. Syst. Sci. Complex.
- J. Taibah Univ. Sci.
- Kinet. Relat. Models
- Math. Biosci. Eng.
- Math. Comput. Simul.
- Math. Control Signals Syst.
- Math. Finan. Econ.
- Math. Financ.
- Math. Geosci.
- Math. Logic Q.
- Math. Meth. Oper. Res.
- Math. Methods Appl. Sci.
- Math. Models Comput. Simul.
- Math. Models Methods Appl. Sci.
- Math. Popul. Stud.
- Math. Probl. Eng.
- Math. Program.
- Multiscale Modeling Simul.
- Netw. Heterog. Media
- Nexus Netw. J.
- Nonlinear Anal.
- Nonlinear Anal. Model. Control
- Nonlinear Anal. Real World Appl.
- Nonlinearity
- Numer. Algor.
- Numer. Funct. Anal. Optim.
- Numer. Linear Algebra Appl.
- Numer. Math.
- Numer. Methods Partial Differ. Equ.
- Optim. Eng.
- Optimization
- Order
- P-Adic Num. Ultrametr. Anal. Appl.
- Port. Math.
- Q. J. Mech. Appl. Math.
- Regul. Chaot. Dyn.
- Rend. Lincei Mat. Appl.
- Rev. Math. Phys.
- Rev. Symb. Log.
- Russ. J. Numer. Anal. Math. Model.
- Sel. Math.
- Semigroup Forum
- Set-Valued Var. Anal.
- SIAM J. Appl. Dyn. Syst.
- SIAM J. Appl. Math.
- SIAM J. Control Optim.
- SIAM J. Discret. Math.
- SIAM J. Financ, Math.
- SIAM J. Optim.
- SIAM/ASA J. Uncertain. Quantif.
- Stat. Model.
- Stoch. Dyn.
- Stoch. PDE Anal. Comp.
- Stud. Log.
- Symmetry
- Theor. Math. Phys.
- Z. Angew. Math. Phys.
- Z. für Anal. ihre Anwend.
- ZAMM

显示样式: 排序: IF: - GO 导出
-
On the counting of $O(N)$ tensor invariants Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-08-01 Remi C. Avohou, Joseph Ben Geloun, Nicolas Dub
$O(N)$ invariants are the observables of real tensor models. We use regular colored graphs to represent these invariants, the valence of the vertices of the graphs relates to the tensor rank. We enumerate $O(N)$ invariants as $d$-regular graphs, using permutation group techniques. We also list their generating functions and give (software) algorithms computing their number at an arbitrary rank and
-
Small sphere limit of the quasi-local energy with anti de-Sitter space reference Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-08-01 Po-Ning Chen
In [13], a new quasi-local energy is introduced for spacetimes with a non-zero cosmological constant. In this article, we study the small sphere limit of this newly defined quasi-local energy for spacetimes with a negative cosmological constant. For such spacetimes, the anti de‑Sitter space is used as the reference for the quasi-local energy. Given a point $p$ in a spacetime $N$, we consider a canonical
-
Symplectic coarse-grained dynamics: Chalkboard motion in classical and quantum mechanics Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-08-01 Maurice A. de Gosson
In the usual approaches to mechanics (classical or quantum) the primary object of interest is the Hamiltonian, from which one tries to deduce the solutions of the equations of motion (Hamilton or Schrödinger). In the present work we reverse this paradigm and view the motions themselves as being the primary objects. This is made possible by studying arbitrary phase space motions, not of points, but
-
Coupled gravitational and electromagnetic perturbations of Reissner–Nordström spacetime in a polarized setting Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-08-01 Elena Giorgi
We derive a system of equations governing the coupled gravitational and electromagnetic perturbations of Reissner–Nordström spacetime. The equations are derived in the context of global nonlinear stability of Reissner–Nordström under axially symmetric polarized perturbations, as a generalization of the recent work on non-linear stability of Schwarzschild spacetime of Klainerman–Szeftel ([9]). The main
-
Nilmanifolds and their associated non-local fields Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-08-01 Juan J. Villarreal
For a three dimensional nilmanifold together with a three form on it, we build a module $\mathcal{H}$ of an affine Kac–Moody vertex algebras. Then, we associate logarithmic fields to the module $\mathcal{H}$ and we study their singularities. We also present a physics motivation behind this construction. We study a particular case, we show that when the nilmanifold $N$ is a $k$ degree $S^1$-fibration
-
Projections, modules and connections for the noncommutative cylinder Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-06-01 Joakim Arnlind, Giovanni Landi
We initiate a study of projections and modules over a noncommutative cylinder, a simple example of a noncompact noncommutative manifold. Since its algebraic structure turns out to have many similarities with the noncommutative torus, one can develop several concepts in a close analogy with the latter. In particular, we exhibit a countable number of nontrivial projections in the algebra of the noncommutative
-
Perturbation theory for critical points of causal variational principles Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-06-01 Felix Finster
The perturbation theory for critical points of causal variational principles is developed. We first analyze the class of perturbations obtained by multiplying the universal measure by a weight function and taking the push-forward under a diffeomorphism. Then the constructions are extended to convex combinations of such measures, leading to perturbation expansions for the mean and the fluctuation of
-
Higher T-duality of super M-branes Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-06-01 Domenico Fiorenza, Hisham Sati, Urs Schreiber
We establish a higher generalization of super $L_\infty$‑algebraic T‑duality of super WZW‑terms for super p-branes. In particular, we demonstrate spherical T‑duality of super M5‑branes propagating on exceptional-geometric 11d super spacetime.
-
6D SCFTs and the classification of homomorphisms $\Gamma_{ADE} \to E_8$ Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-06-01 Darrin D. Frey, Tom Rudelius
We elucidate the correspondence between a particular class of superconformal field theories in six dimensions and homomorphisms from discrete subgroups of $SU(2)$ into $E_8$, as predicted from string dualities. We show how this match works for homomorphisms from the binary icosahedral group $SL(2, 5)$ into $E_8$, correcting previous errors in both the mathematics and physics literature. We use this
-
Homotopy algebras in higher spin theory Adv. Theor. Math. Phys. (IF 2.405) Pub Date : 2020-06-01 Si Li, Keyou Zeng
Motivated by string field theory, we explore various algebraic aspects of higher spin theory and Vasiliev equation in terms of homotopy algebras. We present a systematic study of unfolded formulation developed for the higher spin equation in terms of the Maurer–Cartan equation associated to differential forms valued in $L_\infty$-algebras. The elimination of auxiliary variables of Vasiliev equation