-
综合
- All
- Abh. Math. Semin. Univ. Hambg.
- Acta Appl. Math.
- Acta Math.
- Acta Math. Appl. Sin. Engl. Ser.
- Acta Math. Hungar.
- Acta Math. Sci.
- Acta. Math. Sin. Engl. Ser.
- Adv. Appl. Math.
- Adv. Math.
- Aequat. Math.
- AIMS Math.
- Am. J. Math.
- Am. Math. Monthly
- Anal. Math.
- Analele Univ. Ovidius Constanta - Ser. Mat.
- Ann. Henri Poincaré
- Ann. Math.
- Ann. Math. Artif. Intel.
- Appl. Anal.
- Appl. Math.
- Appl. Math. Comput.
- Appl. Math. Lett.
- Appl. Math. Optim.
- Arab. J. Math.
- Arch. Math.
- Arch. Math. Logic
- Ark. Mat.
- Asian J. Math.
- ASTIN Bull.
- Bull. Aust. Math. Soc.
- Bull. Braz. Math. Soc. New Ser.
- Bull. des Sci. Math.
- Bull. Iran. Math. Soc.
- Bull. Lond. Math. Soc.
- Bull. Malays. Math. Sci. Soc.
- C. R. Math.
- Camb. J. Math.
- Can. J. Math.
- Can. Math. Bull.
- Collect. Math.
- Comb. Probab. Comput.
- Comm. Pure Appl. Math.
- Comment. Math. Helv.
- Commun. Contemp. Math.
- Commun. Math. Phys.
- Commun. Math. Stat.
- Complex Anal. Oper. Theory
- Complexity
- Compos. Math.
- Comput. Math. Appl.
- Comput. Methods Funct. Theory
- Constr. Approx.
- Czechoslov. Math. J.
- Discret. Dyn. Nat. Soc.
- Discret. Math.
- Dokl. Math.
- Ergod. Theory Dyn. Syst.
- Eur. J. Comb.
- Expos. Math.
- Forum Math.
- Forum Math. Pi
- Forum Math. Sigma
- Found. Comput. Math.
- Funct. Anal. Its Appl.
- Georgian Math. J.
- Glasg. Math. J.
- IMA J. Appl. Math.
- Indag. Math.
- Indian J. Pure Appl. Math.
- Int. J. Math.
- Int. Math. Res. Notices
- Integr. Equ. Oper. Theory
- Invent. math.
- Iran. J. Sci. Technol. Trans. Sci.
- Isr. J. Math.
- Izv. Math.
- J. Adv. Res.
- J. Am. Math. Soc.
- J. Anal. Math.
- J. Aust. Math. Soc.
- J. Complex.
- J. Comput. Appl. Math.
- J. Differ. Geom.
- J. Dyn. Diff. Equat.
- J. Egypt. Math. Soc.
- J. Eng. Math.
- J. Group Theory
- J. Inequal. Appl.
- J. Inst. Math. Jussieu
- J. Lond. Math. Soc.
- J. Math.
- J. Math. Imaging Vis.
- J. Math. Pures Appl.
- J. reine angew. Math.
- J. Sched.
- Japan J. Indust. Appl. Math.
- Jpn. J. Math.
- Lith. Math. J.
- manuscripta math.
- Math. Ann.
- Math. Nachr.
- Math. Notes
- Math. Proc. Camb. Philos. Soc.
- Math. Res. Lett.
- Math. Sci.
- Math. Slovaca
- Math. Struct. Comput. Sci.
- Math. Z.
- Mathematics
- Mathematika
- Mediterr. J. Math.
- Milan J. Math.
- Monatshefte Math.
- Moscow Univ. Math. Bull.
- Nagoya Math. J.
- Nature
- Nonlinear Differ. Equ. Appl.
- Open Math.
- Period. Math. Hung.
- Potential Anal.
- Proc. Am. Math. Soc.
- Proc. Edinburgh. Math. Soc.
- Proc. London Math. Soc.
- Proc. Natl. Acad. Sci. U.S.A.
- Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
- Proc. R. Soc. Edinburgh Sect. A
- Proc. Royal Soc. A: Math. Phys. Eng. Sci.
- Proc. Steklov Inst. Math.
- Publ. math. IHES
- Pure Appl. Math. Q.
- Q. J. Math.
- Quaest. Math.
- Qual. Theory Dyn. Syst.
- RACSAM
- Ramanujan J.
- Res. Math. Sci.
- Results Math.
- Rev. Mat. Complut.
- Rev. Mat. Iberoam.
- Ricerche mat.
- Russ. J. Math. Phys.
- Russ. Math.
- Sb. Math.
- Science
- SIAM J. Sci. Comput.
- SIAM Rev.
- Sib. Adv. Math.
- Sib. Math. J.
- Soft Comput.
- St. Petersburg Math. J.
- Stud. Appl. Math.
- Trans. Am. Math. Soc.
- Transform. Groups
- Ukr. Math. J.
- Vestnik St. Petersb. Univ. Math.
- 数论
-
代数
- All
- Adv. Appl. Clifford Algebras
- Algebr. Represent. Theor.
- Algebra Logic
- Algebra Number Theory
- Algebra Univers.
- Ann. Comb.
- Appl. Algebra Eng. Commun. Comput.
- Appl. Categor. Struct.
- Commun. Algebra
- Des. Codes Cryptogr.
- Dyn. Syst.
- Eng. Anal. Bound. Elem.
- Groups Geom. Dyn.
- Int. J. Algebra Comput.
- J. Algebra
- J. Algebra Appl.
- J. Algebraic Comb.
- J. Knot Theory Ramif.
- J. Pure Appl. Algebra
- Linear Multilinear Algebra
- Rep. Math. Phys.
- Represent. Theory
- Theory Comput. Syst.
- 组合
-
几何
- All
- Adv. Geom.
- Anal. Geom. Metr. Spaces
- Anal. Math. Phys.
- Ann. Glob. Anal. Geom.
- Combinatorica
- Commun. Anal. Geom.
- Complex Var. Elliptic Equ.
- Comput. Geom.
- Des. Codes Cryptogr.
- Differ. Geom. Appl.
- Discret. Comput. Geom.
- Dyn. Syst.
- Finite Fields Their Appl.
- Fractals
- Geom. Dedicata.
- Geom. Funct. Anal.
- Groups Geom. Dyn.
- Int. J. Geom. Methods Mod. Phys.
- J. Geom. Anal.
- J. Geometr. Mech.
- J. Geometr. Phys.
- J. Homotopy Relat. Struct.
- J. Noncommut. Geom.
- J. Symplectic Geom.
- J. Topol. Anal.
- Lobachevskii J. Math.
- 拓扑
-
分析
- All
- Adv. Nonlinear Anal.
- Anal. Geom. Metr. Spaces
- Anal. PDE
- Ann. Funct. Anal.
- Appl. Comput. Harmon. Anal.
- Banach J. Math. Anal.
- Calcolo
- Commun. Anal. Geom.
- Evol. Equat. Control Theory
- Finite Elem. Anal. Des.
- Fract. Calc. Appl. Anal.
- IMA J. Numer. Anal.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Numer. Anal. Methods Geomech.
- J. Contemp. Mathemat. Anal.
- J. Differ. Equ.
- J. Forecast.
- J. Funct. Anal.
- J. Math. Anal. Appl.
- J. Topol. Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Numer. Analys. Appl.
- Positivity
- Random Matrices Theory Appl.
- SIAM J. Math. Anal.
- SIAM J. Matrix Anal. Appl.
- SIAM J. Numer. Anal.
-
概率统计
- All
- Am. Stat.
- Ann. Appl. Stat.
- Ann. Inst. Stat. Math.
- Ann. Stat.
- Annu. Rev. Stat. Appl.
- Aust. N. Z. J. Stat.
- Biometrika
- Br. J. Math. Stat. Psychol.
- Can. J. Stat.
- Commun. Stat. Simul. Comput.
- Commun. Stat. Theory Methods
- Comput. Stat.
- Comput. Stat. Data Anal.
- Digit. Signal Process.
- Econom. J.
- Econom. Theory
- Environ. Ecol. Stat.
- Environmetrics
- Eur. J. Oper. Res.
- Extremes
- Finance Stoch.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Biostat.
- Int. Stat. Rev.
- J. Agric. Biol. Environ. Stat.
- J. Am. Stat. Assoc.
- J. Appl. Probab.
- J. Appl. Stat.
- J. Biopharm. Stat.
- J. Comput. Graph. Stat.
- J. Comput. Phys.
- J. Korean Stat. Soc.
- J. Multivar. Anal.
- J. Nonparametr. Stat.
- J. R. Stat. Soc. A
- J. R. Stat. Soc. B
- J. R. Stat. Soc. Ser. C Appl. Stat.
- J. Stat. Comput. Simul.
- J. Stat. Distrib. App.
- J. Stat. Plann. Inference
- J. Theor. Probab.
- J. Time Ser. Anal.
- Law Probab. Risk
- Lifetime Data Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Math. Meth. Stat.
- Math. Phys. Anal. Geom.
- Methodol. Comput. Appl. Probab.
- Metrika
- Neural Comput.
- Oxford Bull. Econ. Statistics
- Probab Theory Relat Fields
- Probab. Eng. Inf. Sci.
- Probab. Eng. Mech.
- Probab. Uncertain. Quant. Risk
- Qual. Technol. Quant. Manag.
- Random Matrices Theory Appl.
- Random Struct. Algorithms
- Scand. Actuar. J.
- Scand. J. Stat.
- Scientometrics
- Sequ. Anal.
- Spat. Stat.
- Stat
- Stat. Anal. Data Min.
- Stat. Appl. Genet. Molecul. Biol.
- Stat. Comput.
- Stat. Interface
- Stat. Med.
- Stat. Methods Appl.
- Stat. Neerl.
- Stat. Pap.
- Stat. Probab. Lett.
- Stat. Sin.
- Stata J. Promot. Commun. Stat. Stata
- Statistics
- Stoch. Anal. Appl.
- Stoch. Models
- Stoch. Process. their Appl.
- Stochastics
- Struct. Equ. Model.
- Technometrics
- Test
- Theory Probab. Appl.
-
计算
- All
- Adv. Calc. Var.
- Adv. Comput. Math.
- Ann. Oper. Res.
- Appl. Numer. Math.
- BIT Numer. Math.
- Bull. Math. Biol.
- Combinatorica
- Comput. Aided Geom. Des.
- Comput. Appl. Math.
- Comput. Geom.
- Comput. Math. Math. Phys.
- Comput. Math. Method Med.
- Comput. Math. Organ. Theory
- Comput. Methods Appl. Math.
- Comput. Optim. Appl.
- Comput. Stat. Data Anal.
- Fortschritte der Physik Prog. Phys.
- Front. Comput. Neurosci.
- Front. Neuroinform.
- IET Syst. Biol.
- Inf. Comput.
- Int. J. Algebra Comput.
- Int. J. Comput. Methods
- Int. J. Numer. Methods Fluids
- Interfaces Free Bound.
- J. Math. Biol.
- J. Sci. Comput.
- J. Symb. Comput.
- Log. J. IGPL
- Math. Biosci.
- Math. Comp.
- Math. Med. Biol.
- Moscow Univ. Comput. Math. Cybern.
- Neural Comput.
- Optim. Lett.
- Optim. Methods Softw.
-
其他
- All
- ACM Trans. Algorithms
- ACM Trans. Comput. Log.
- ACM Trans. Model. Comput. Simul.
- Acta Biotheor.
- Adv. Complex Syst.
- Adv. Data Anal. Classif.
- Adv. Differ. Equ.
- Adv. Math. Commun.
- Adv. Nonlinear Stud.
- Adv. Theor. Math. Phys.
- Adv. Theory Simul.
- Ann. I. H. Poincaré – AN
- Ann. Mat. Pura Appl.
- Ann. Pure Appl. Logic
- ANZIAM J.
- Appl. Mathmat. Model.
- Appl. Sci.
- Appl. Stoch. Models Bus.Ind.
- Arch. Rational Mech. Anal.
- AStA. Adv. Stat. Anal.
- Asymptot. Anal.
- Bound. Value Probl.
- Calc. Var.
- Cell Prolif.
- Centaurus
- Chaos Solitons Fractals
- Classical Quant. Grav.
- Commun. Appl. Math. Comput. Sci.
- Commun. Math. Sci.
- Commun. Nonlinear Sci. Numer. Simul.
- Commun. Partial Differ. Equ.
- Comput. Soc. Netw.
- Diff. Equat.
- Differ. Integral Equ.
- Discret. Optim.
- Discrete Appl. Math.
- Discrete Contin. Dyn. Syst. A
- Discrete Contin. Dyn. Syst. B
- Discrete Contin. Dyn. Syst. S
- Dyn. Partial Differ. Equ.
- Eur. J. Appl. Math.
- Evol. Comput.
- Exp. Math.
- Fixed Point Theory Appl.
- Fluct. Noise Lett.
- Fundam. Inform.
- Fuzzy Set. Syst.
- Genet. Epidemiol.
- Grey Syst. Theory Appl.
- Homol. Homotopy Appl.
- IMA J. Manag. Math.
- IMA J. Math. Control Inf.
- Informatica
- Int. J Comput. Math.
- Int. J. Biomath.
- Int. J. Found. Comput. Sci.
- Int. J. Game Theory
- Int. J. Multiscale Comput. Eng.
- Int. J. Nonlinear Sci. Numer. Simul.
- Int. J. Numer. Method. Biomed. Eng.
- Int. J. Solids Struct.
- Int. J. Uncertain. Quantif.
- Integral Transform. Spec. Funct.
- Interdiscip. Sci. Rev.
- Inverse Probl.
- Inverse Probl. Imaging
- J. Appl. Math. Comput.
- J. Approx. Theory
- J. Biol. Syst.
- J. Causal Inference
- J. Choice Model.
- J. Classif.
- J. Comput. Theor. Transp.
- J. Differ. Equ. Appl.
- J. Eur. Math. Soc.
- J. Evol. Equ.
- J. Fixed Point Theory Appl.
- J. Fourier Anal. Appl.
- J. Funct. Spaces
- J. Glob. Optim.
- J. Graph Theory
- J. Inverse Ill posed Probl.
- J. Log. Comput.
- J. Math. Econ.
- J. Math. Fluid Mech.
- J. Math. Industry
- J. Math. Log.
- J. Math. Music
- J. Math. Neurosc.
- J. Math. Phys.
- J. Math. Psychol.
- J. Math. Sociol.
- J. Nonlinear Math. Phys.
- J. Nonlinear Sci.
- J. Numer. Math.
- J. Optim. Theory Appl.
- J. Phys. A: Math. Theor.
- J. Pseudo-Differ. Oper. Appl.
- J. Spectr. Theory
- J. Symb. Log.
- J. Syst. Sci. Complex.
- J. Taibah Univ. Sci.
- Kinet. Relat. Models
- Math. Biosci. Eng.
- Math. Comput. Simul.
- Math. Control Signals Syst.
- Math. Finan. Econ.
- Math. Financ.
- Math. Geosci.
- Math. Logic Q.
- Math. Meth. Oper. Res.
- Math. Methods Appl. Sci.
- Math. Models Comput. Simul.
- Math. Models Methods Appl. Sci.
- Math. Popul. Stud.
- Math. Probl. Eng.
- Math. Program.
- Multiscale Modeling Simul.
- Netw. Heterog. Media
- Nexus Netw. J.
- Nonlinear Anal.
- Nonlinear Anal. Model. Control
- Nonlinear Anal. Real World Appl.
- Nonlinearity
- Numer. Algor.
- Numer. Funct. Anal. Optim.
- Numer. Linear Algebra Appl.
- Numer. Math.
- Numer. Methods Partial Differ. Equ.
- Optim. Eng.
- Optimization
- Order
- P-Adic Num. Ultrametr. Anal. Appl.
- Port. Math.
- Q. J. Mech. Appl. Math.
- Regul. Chaot. Dyn.
- Rend. Lincei Mat. Appl.
- Rev. Math. Phys.
- Rev. Symb. Log.
- Russ. J. Numer. Anal. Math. Model.
- Sel. Math.
- Semigroup Forum
- Set-Valued Var. Anal.
- SIAM J. Appl. Dyn. Syst.
- SIAM J. Appl. Math.
- SIAM J. Control Optim.
- SIAM J. Discret. Math.
- SIAM J. Financ, Math.
- SIAM J. Optim.
- SIAM/ASA J. Uncertain. Quantif.
- Stat. Model.
- Stoch. Dyn.
- Stoch. PDE Anal. Comp.
- Stud. Log.
- Symmetry
- Theor. Math. Phys.
- Z. Angew. Math. Phys.
- Z. für Anal. ihre Anwend.
- ZAMM
-
Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness J. Causal Inference (IF 1.72) Pub Date : 2020-12-31 Nathan Corder; Shu Yang
The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values
-
A note on a sensitivity analysis for unmeasured confounding, and the related E-value J. Causal Inference (IF 1.72) Pub Date : 2020-12-31 Arvid Sjölander
Unmeasured confounding is one of the most important threats to the validity of observational studies. In this paper we scrutinize a recently proposed sensitivity analysis for unmeasured confounding. The analysis requires specification of two parameters, loosely defined as the maximal strength of association that an unmeasured confounder may have with the exposure and with the outcome, respectively
-
Beyond Manipulation: Administrative Sorting in Regression Discontinuity Designs J. Causal Inference (IF 1.72) Pub Date : 2020-12-23 Cristian Crespo
This paper elaborates on administrative sorting, a threat to internal validity that has been overlooked in the regression discontinuity (RD) literature. Variation in treatment assignment near the threshold may still not be as good as random even when individuals are unable to precisely manipulate the running variable. This can be the case when administrative procedures, beyond individuals’ control
-
When is a Match Sufficient? A Score-based Balance Metric for the Synthetic Control Method J. Causal Inference (IF 1.72) Pub Date : 2020-12-19 Layla Parast; Priscillia Hunt; Beth Ann Griffin; David Powell
In some applications, researchers using the synthetic control method (SCM) to evaluate the effect of a policy may struggle to determine whether they have identified a “good match” between the control group and treated group. In this paper, we demonstrate the utility of the mean and maximum Absolute Standardized Mean Difference (ASMD) as a test of balance between a synthetic control unit and treated
-
Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness J. Causal Inference (IF 1.72) Pub Date : 2020-12-19 Nick Huntington-Klein
In Instrumental Variables (IV) estimation, the effect of an instrument on an endogenous variable may vary across the sample. In this case, IV produces a local average treatment effect (LATE), and if monotonicity does not hold, then no effect of interest is identified. In this paper, I calculate the weighted average of treatment effects that is identified under general first-stage effect heterogeneity
-
On the Monotonicity of a Nondifferentially Mismeasured Binary Confounder J. Causal Inference (IF 1.72) Pub Date : 2020-11-28 Jose M. Peña
Suppose that we are interested in the average causal effect of a binary treatment on an outcome when this relationship is confounded by a binary confounder. Suppose that the confounder is unobserved but a nondifferential proxy of it is observed. We show that, under certain monotonicity assumption that is empirically verifiable, adjusting for the proxy produces a measure of the effect that is between
-
A Two-Stage Joint Modeling Method for Causal Mediation Analysis in the Presence of Treatment Noncompliance J. Causal Inference (IF 1.72) Pub Date : 2020-11-28 Soojin Park; Esra Kürüm
Estimating the effect of a randomized treatment and the effect that is transmitted through a mediator is often complicated by treatment noncompliance. In literature, an instrumental variable (IV)-based method has been developed to study causal mediation effects in the presence of treatment noncompliance. Existing studies based on the IV-based method focus on identifying the mediated portion of the
-
Estimating population average treatment effects from experiments with noncompliance J. Causal Inference (IF 1.72) Pub Date : 2020-10-23 Kellie N. Ottoboni; Jason V. Poulos
Randomized control trials (RCTs) are the gold standard for estimating causal effects, but often use samples that are non-representative of the actual population of interest. We propose a reweighting method for estimating population average treatment effects in settings with noncompliance. Simulations show the proposed compliance-adjusted population estimator outperforms its unadjusted counterpart when
-
Averaging causal estimators in high dimensions J. Causal Inference (IF 1.72) Pub Date : 2020-09-08 Joseph Antonelli; Matthew Cefalu
There has been increasing interest in recent years in the development of approaches to estimate causal effects when the number of potential confounders is prohibitively large. This growth in interest has led to a number of potential estimators one could use in this setting. Each of these estimators has different operating characteristics, and it is unlikely that one estimator will outperform all others
-
The Inflation Technique Completely Solves the Causal Compatibility Problem J. Causal Inference (IF 1.72) Pub Date : 2020-09-03 Miguel Navascués; Elie Wolfe
The causal compatibility question asks whether a given causal structure graph — possibly involving latent variables — constitutes a genuinely plausible causal explanation for a given probability distribution over the graph’s observed categorical variables. Algorithms predicated on merely necessary constraints for causal compatibility typically suffer from false negatives, i.e. they admit incompatible
-
Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial J. Causal Inference (IF 1.72) Pub Date : 2020-07-25 Peter B. Gilbert; Bryan S. Blette; Bryan E. Shepherd; Michael G. Hudgens
While the HVTN 505 trial showed no overall efficacy of the tested vaccine to prevent HIV infection over placebo, markers measuring immune response to vaccination were strongly correlated with infection. This finding generated the hypothesis that some marker-defined vaccinated subgroups were partially protected whereas others had their risk increased. This hypothesis can be assessed using the principal
-
A Combinatorial Solution to Causal Compatibility J. Causal Inference (IF 1.72) Pub Date : 2020-07-25 Thomas C. Fraser
Within the field of causal inference, it is desirable to learn the structure of causal relationships holding between a system of variables from the correlations that these variables exhibit; a sub-problem of which is to certify whether or not a given causal hypothesis is compatible with the observed correlations. A particularly challenging setting for assessing causal compatibility is in the presence
-
Unifying Gaussian LWF and AMP Chain Graphs to Model Interference J. Causal Inference (IF 1.72) Pub Date : 2019-11-05 Jose M. Peña
An intervention may have an effect on units other than those to which it was administered. This phenomenon is called interference and it usually goes unmodeled. In this paper, we propose to combine Lauritzen-Wermuth-Frydenberg and Andersson-Madigan-Perlman chain graphs to create a new class of causal models that can represent both interference and non-interference relationships for Gaussian distributions