• Combinatorica (IF 1.143) Pub Date : 2020-08-10
Chaim Even-Zohar

Every k entries in a permutation can have one of k! different relative orders, called patterns. How many times does each pattern occur in a large random permutation of size n? The distribution of this k!-dimensional vector of pattern densities was studied by Janson, Nakamura, and Zeilberger (2015). Their analysis showed that some component of this vector is asymptotically multi-normal of order $$1/\sqrt 更新日期：2020-08-11 • Combinatorica (IF 1.143) Pub Date : 2020-08-10 Zdenĕk Dvořák, Patrice Ossona de Mendez, Hehui Wu The Hall ratio of a graph G is the maximum of |V(H)|/α(H) over all subgraphs H of G. It is easy to see that the Hall ratio of a graph is a lower bound for the fractional chromatic number. It has been asked whether conversely, the fractional chromatic number is upper bounded by a function of the Hall ratio. We answer this question in negative, by showing two results of independent interest regarding 更新日期：2020-08-11 • Combinatorica (IF 1.143) Pub Date : 2020-08-10 Yufei Zhao, Yunkun Zhou We prove a conjecture of Fox, Huang, and Lee that characterizes directed graphs that have constant density in all tournaments: they are disjoint unions of trees that are each constructed in a certain recursive way. 更新日期：2020-08-11 • Combinatorica (IF 1.143) Pub Date : 2020-07-31 Alexander Sidorenko Let ℋ be the class of bounded measurable symmetric functions on [0, 1]2. For a function h ∈ ℋ and a graph G with vertex set [v1,⌦,vn} and edge set E(G), define{t_G}(h) = \int \cdots \int {\prod\limits_{{\rm{\{ }}{v_i}{\rm{,}}{v_j}{\rm{\} }} \in E(G)} {h({x_i},{x_j})\;d{x_1} \cdots d{x_n}} } .Answering a question raised by Conlon and Lee, we prove that in order for tG(∣h∣)1/∣E(G)∣ to be a norm on 更新日期：2020-07-31 • Combinatorica (IF 1.143) Pub Date : 2020-07-06 Ilkyoo Choi, Daniel W. Cranston, Théo Pierron We prove several results on coloring squares of planar graphs without 4-cycles. First, we show that if G is such a graph, then G2 is (Δ(G) + 72)-degenerate. This implies an upper bound of Δ(G) ∣ 73 on the chromatic number of G2 as well as on several variants of the chromatic number such as the list-chromatic number, paint number, Alon-Tarsi number, and correspondence chromatic number. We also show 更新日期：2020-07-06 • Combinatorica (IF 1.143) Pub Date : 2020-07-06 Stefan Felsner, Tamás Mészáros, Piotr Micek Dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if P has dimension d, then to know whether x ≤ y in P it is enough to check whether x ≤ y in each of the d linear extensions of a witnessing realizer. Focusing on the encoding aspect, Nešetřil and Pudlák defined a more expressive version of dimension. A poset P has Boolean dimension 更新日期：2020-07-06 • Combinatorica (IF 1.143) Pub Date : 2020-07-06 Orit E. Raz, Zvi Shem-Tov We prove the following statement. Let f ∈ ℝ[x1,…,xd], for some d ≥ 3, and assume that f depends non-trivially in each of x1,…, xd. Then one of the following holds. (i) For every finite sets A1,…, Ad ⊂ℝ, each of size n, we have \left| {f\left( {{A_1} \times \ldots \times {A_d}} \right)} \right| = \Omega \left( {{n^{3/2}}} \right), with constant of proportionality that depends on deg f. (ii) f is 更新日期：2020-07-06 • Combinatorica (IF 1.143) Pub Date : 2020-07-06 Michael Chapman; Nati Linial; Yuval Peled Let G = (V, E) be a finite graph. For v ∈ V we denote by Gv the subgraph of G that is induced by v’s neighbor set. We say that G is (a,b)-regular for a>b> 0 integers, if G is a-regular and Gv is b-regular for every v ∈ V. Recent advances in PCP theory call for the construction of infinitely many (a,b)-regular expander graphs G that are expanders also locally. Namely, all the graphs {Gv ∣ v ∈ V} should 更新日期：2020-07-06 • Combinatorica (IF 1.143) Pub Date : 2020-05-22 Misha Rudnev It is shown that the number of distinct types of three-point hinges, defined by a real plane set of n points is ≫n2 log−3n, where a hinge is identified by fixing two pairwise distances in a point triple. This is achieved via strengthening (modulo a logn factor) of the Guth- Katz estimate for the number of pairwise intersections of lines in ℝ3, arising in the context of the plane Erdős distinct distance 更新日期：2020-05-22 • Combinatorica (IF 1.143) Pub Date : 2020-05-22 Stefan Clock, Felix Joos, Daniela Kühn, Deryk Osthus We show that a quasirandom k-uniform hypergraph G has a tight Euler tour subject to the necessary condition that k divides all vertex degrees. The case when G is complete confirms a conjecture of Chung, Diaconis and Graham from 1989 on the existence of universal cycles for the k-subsets of an n-set. 更新日期：2020-05-22 • Combinatorica (IF 1.143) Pub Date : 2020-04-28 Alexander Clifton; Hao Huang In this paper, we consider the following problem: what is the minimum number of affine hyperplanes in ℝn, such that all the vertices of \(\overrightarrow 0$$ are covered at least k times, and $${\left\{{0,1} \right\}^n}\backslash \left\{{\overrightarrow 0} \right\}$$ is uncovered? The k = 1 case is the well-known Alon-Füredi theorem which says a minimum of n affine hyperplanes is required, which follows

更新日期：2020-04-28
• Combinatorica (IF 1.143) Pub Date : 2020-04-28
C. S. Karthik; Pasin Manurangsi

Given a set of n points in ℝd, the (monochromatic) Closest Pair problem asks to find a pair of distinct points in the set that are closest in the ℓp-metric. Closest Pair is a fundamental problem in Computational Geometry and understanding its fine-grained complexity in the Euclidean metric when d = ω(log n) was raised as an open question in recent works (Abboud-Rubinstein-Williams , Williams 

更新日期：2020-04-28
• Combinatorica (IF 1.143) Pub Date : 2020-04-28
Paul Seymour; Sophie Spirkl

The Caccetta-Häggkvist conjecture implies that for every integer k ≥ 1, if G is a bipartite digraph, with n vertices in each part, and every vertex has out-degree more than n/(k+1), then G has a directed cycle of length at most 2k. If true this is best possible, and we prove this for k = 1, 2, 3, 4, 6 and all k ≥ 224,539.More generally, we conjecture that for every integer k ≥ 1, and every pair of

更新日期：2020-04-28
• Combinatorica (IF 1.143) Pub Date : 2020-04-28
Stefan Glock; Daniela Kühn; Allan Lo; Deryk Osthus

A famous theorem of Kirkman says that there exists a Steiner triple system of order n if and only if n ≡ 1,3 mod 6. In 1973, Erdős conjectured that one can find so-called ‘sparse’ Steiner triple systems. Roughly speaking, the aim is to have at most j−3 triples on every set of j points, which would be best possible. (Triple systems with this sparseness property are also referred to as having high girth

更新日期：2020-04-28
• Combinatorica (IF 1.143) Pub Date : 2020-04-28
Christian Lindorfer, Wolfgang Woess

Let X = (VX, EX) be an infinite, locally finite, connected graph without loops or multiple edges. We consider the edges to be oriented, and EX is equipped with an involution which inverts the orientation. Each oriented edge is labelled by an element of a finite alphabet Σ. The labelling is assumed to be deterministic: edges with the same initial (resp. terminal) vertex have distinct labels. Furthermore

更新日期：2020-04-28
• Combinatorica (IF 1.143) Pub Date : 2020-04-28
Ahmad Abdi, Gérard Cornuéjols, Dabeen Lee

A clutter is intersecting if the members do not have a common element yet every two members intersect. It has been conjectured that for clutters without an intersecting minor, total primal integrality and total dual integrality of the corresponding set covering linear system must be equivalent. In this paper, we provide a polynomial characterization of clutters without an intersecting minor. One important

更新日期：2020-04-28
• Combinatorica (IF 1.143) Pub Date : 2020-03-22
Robert Connelly; Steven J. Gortler; Louis Theran

We show that any graph that is generically globally rigid in ℝd has a realization in ℝd that is both generic and universally rigid. This also implies that the graph also must have a realization in ℝd that is both infinitesimally rigid and universally rigid; such a realization serves as a certificate of generic global rigidity.Our approach involves an algorithm by Lovász, Saks and Schrijver that, for

更新日期：2020-03-22
• Combinatorica (IF 1.143) Pub Date : 2020-03-05
Anurag Bishnoi; Ferdinand Ihringer; Valentina Pepe

A construction of Alon and Krivelevich gives highly pseudorandom Kk-free graphs on n vertices with edge density equal to Θ(n−1=(k−2)). In this short note we improve their result by constructing an infinite family of highly pseudorandom Kk-free graphs with a higher edge density of Θ(n−1=(k−1)).

更新日期：2020-03-05
• Combinatorica (IF 1.143) Pub Date : 2020-03-05
Gergely Harcos; Daniel Soltész

We say that two graphs on the same vertex set are G-creating if their union (the union of their edges) contains G as a subgraph. Let Hn(G) be the maximum number of pairwise G-creating Hamiltonian paths of Kn. Cohen, Fachini and Körner proved$${n^{\frac{1}{2}n - o\left( n \right)}} \le {H_n}\left( {{C_4}} \right) \le {n^{\frac{3}{4}n + o\left( n \right)}}.$$In this paper we close the superexponential

更新日期：2020-03-05
• Combinatorica (IF 1.143) Pub Date : 2020-03-05
Grigoriy Blekherman; Annie Raymond; Mohit Singh; Rekha R. Thomas

Establishing inequalities among graph densities is a central pursuit in extremal combinatorics. A standard tool to certify the nonnegativity of a graph density expression is to write it as a sum of squares. In this paper, we identify a simple condition under which a graph density expression cannot be a sum of squares. Using this result, we prove that the Blakley-Roy inequality does not have a sum of

更新日期：2020-03-05
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
John Chiarelli; Pooya Hatami; Michael Saks

We prove that there is a constant C ≤ 6.614 such that every Boolean function of degree at most d (as a polynomial over ℝ) is a C·2d-junta, i.e., it depends on at most C·2d variables. This improves the d·2d-1 upper bound of Nisan and Szegedy [Computational Complexity 4 (1994)].The bound of C·2d is tight up to the constant C, since a read-once decision tree of depth d depends on all 2d - 1 variables

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Peter Ayre; Amin Coja-Oghlan; Pu Gao; Noëla Müller

Let A be a random m × n matrix over the finite field $$\mathbb{F}_q$$ with precisely k non-zero entries per row and let $$y\in\mathbb{F}_q^m$$ be a random vector chosen independently of A. We identify the threshold m/n up to which the linear system Ax = y has a solution with high probability and analyse the geometry of the set of solutions. In the special case q = 2, known as the random k-XORSAT problem

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Tali Kaufman; Izhar Oppenheim

We study high order random walks in high dimensional expanders; namely, in complexes which are local spectral expanders. Recent works have studied the spectrum of high order walks and deduced fast mixing. However, the spectral gap of high order walks is inherently small, due to natural obstructions (called coboundaries) that do not happen for walks on expander graphs.In this work we go beyond spectral

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Noga Alon; Mrinal Kumar; Ben Lee Volk

We prove a lower bound of Ω(n2/log2n) on the size of any syntactically multilinear arithmetic circuit computing some explicit multilinear polynomial f(x1,...,xn). Our approach expands and improves upon a result of Raz, Shpilka and Yehudayoff (), who proved a lower bound of Ω(n4/3/log2n) for the same polynomial. Our improvement follows from an asymptotically optimal lower bound for a generalized

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Alexander L. Gavrilyuk; Sho Suda; Janoš Vidali

We complete the classification of tight 4-designs in Hamming association schemes H(n,q), i.e., that of tight orthogonal arrays of strength 4, which had been open since a result by Noda (1979). To do so, we construct an association scheme attached to a tight 4-design in H(n,q) and analyze its triple intersection numbers to conclude the non-existence in all open cases.

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Ervin Győri; Michael D. Plummer; Dong Ye; Xiaoya Zha

Let G be a graph, and $$v \in V(G)$$ and $$S \subseteq V(G)\setminus{v}$$ of size at least k. An important result on graph connectivity due to Perfect states that, if v and S are k-linked, then a (k−1)-link between a vertex v and S can be extended to a k-link between v and S such that the endvertices of the (k−1)-link are also the endvertices of the k-link. We begin by proving a generalization of Perfect's

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Andreas F. Holmsen

A result due to Gyárfás, Hubenko, and Solymosi (answering a question of Erdős) states that if a graph G on n vertices does not contain K2,2 as an induced subgraph yet has at least $$c\left(\begin{array}{c}n\\ 2\end{array}\right)$$ edges, then G has a complete subgraph on at least $$\frac{c^2}{10}n$$ vertices. In this paper we suggest a “higher-dimensional” analogue of the notion of an induced K2,2

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-03-04
Asaf Ferber; Vishesh Jain; Benny Sudakov

A 1-factor in an n-vertex graph G is a collection of $$\frac{n}{2}$$ vertex-disjoint edges and a 1-factorization of G is a partition of its edges into edge-disjoint 1-factors. Clearly, a 1-factorization of G cannot exist unless n is even and G is regular (that is, all vertices are of the same degree). The problem of finding 1-factorizations in graphs goes back to a paper of Kirkman in 1847 and has

更新日期：2020-03-04
• Combinatorica (IF 1.143) Pub Date : 2020-02-04
He Guo; Lutz Warnke

In 1995 Kim famously proved the Ramsey bound R(3, t) ≤ ct2/logt by constructing an n-vertex graph that is triangle-free and has independence number at most $$C\,\sqrt {n\,\log \,n}$$. We extend this celebrated result, which is best possible up to the value of the constants, by approximately decomposing the complete graph Kn into a packing of such nearly optimal Ramsey R(3,t) graphs.More precisely

更新日期：2020-02-04
• Combinatorica (IF 1.143) Pub Date : 2020-02-03
Oliver Ebsen; Mathias Schacht

The interplay of minimum degree conditions and structural properties of large graphs with forbidden subgraphs is a central topic in extremal graph theory. For a given graph F we define the homomorphism threshold as the infimum over all α ∈ [0,1] such that every n-vertex F-free graph G with minimum degree at least αn has a homomorphic image H of bounded order (i.e. independent of n), which is F-free

更新日期：2020-02-03
• Combinatorica (IF 1.143) Pub Date : 2020-01-20
Jie Ma; Bo Ning

In this paper, we extend and refine previous Turán-type results on graphs with a given circumference. Let Wn,k,c be the graph obtained from a clique Kc−k+1 by adding n − (c − k + 1) isolated vertices each joined to the same k vertices of the clique, and let f(n,k,c) = e(Wn,k,c). Improving a celebrated theorem of Erdős and Gallai , Kopylov  proved that for c \max \left\{ {f(n,3,c),f\left( {n

更新日期：2020-01-20
• Combinatorica (IF 1.143) Pub Date : 2020-01-16
Matthew Kwan; Shoham Letzter; Benny Sudakov; Tuan Tran

The problem of finding dense induced bipartite subgraphs in H-free graphs has a long history, and was posed 30 years ago by Erdős, Faudree, Pach and Spencer. In this paper, we obtain several results in this direction. First we prove that any H-free graph with minimum degree at least d contains an induced bipartite subgraph of minimum degree at least cH log d/log log d, thus nearly confirming one and

更新日期：2020-01-16
• Combinatorica (IF 1.143) Pub Date : 2019-12-10
Daniela A. Amato

We investigate infinite highly-arc-transitive digraphs with two additional properties, property Z and descendant-homogeneity. We show that if D is a highly-arc-transitive descendant-homogeneous digraph with property Z and F is the subdigraph spanned by the descendant sets of a line in D, then F is a locally finite 2-ended digraph with property Z. If, moreover, D has prime out-valency, then there is

更新日期：2019-12-10
• Combinatorica (IF 1.143) Pub Date : 2019-12-03
Attila Joó

It follows from a theorem of Lovász that if D is a finite digraph with r ∈ V(D), then there is a spanning subdigraph E of D such that for every vertex v ≠ r the following quantities are equal: the local connectivity from r to v in D, the local connectivity from r to v in E and the indegree of v in E.In infinite combinatorics cardinality is often an overly rough measure to obtain deep results and it

更新日期：2019-12-03
• Combinatorica (IF 1.143) Pub Date : 2019-12-03
Peter Frankl; Andrey Kupavskii

Let F ⊂ 2 [n] be a family in which any three sets have non-empty intersection and any two sets have at least 32 elements in common. The nearly best possible bound F ≤ 2n−2 is proved. We believe that 32 can be replaced by 3 and provide a simple-looking conjecture that would imply this.

更新日期：2019-12-03
• Combinatorica (IF 1.143) Pub Date : 2019-11-09
Yahya O. Hamidoune

The isoperimetric method is often useful for proving results regarding sumsets. Here, we introduce the notion of a hyper-atom into the method, which overcomes a previous weakness when dealing with atoms that are cosets. To show the utility of this new object, we give a new isoperimetric proof of the cornerstone of classical critical pair theory: The Kemperman Structure Theorem, proved in its so-called

更新日期：2019-11-09
• Combinatorica (IF 1.143) Pub Date : 2019-10-29
Ron Aharoni; Ron Holzman; Zilin Jiang

We prove that any family E1,..., E┌rn┐ of (not necessarily distinct) sets of edges in an r-uniform hypergraph, each having a fractional matching of size n, has a rainbow fractional matching of size n (that is, a set of edges from distinct Ei’s which supports such a fractional matching). When the hypergraph is r-partite and n is an integer, the number of sets needed goes down from rn to rn−r+1. The

更新日期：2019-10-29
• Combinatorica (IF 1.143) Pub Date : 2019-10-29
Nathan Bowler; Johannes Carmesin; Péter Komjáth; Christian Reiher

We show that, given an infinite cardinal μ, a graph has colouring number at most μ if and only if it contains neither of two types of subgraph. We also show that every graph with infinite colouring number has a well-ordering of its vertices that simultaneously witnesses its colouring number and its cardinality.

更新日期：2019-10-29
• Combinatorica (IF 1.143) Pub Date : 2019-10-29

We find a graph of genus 5 and its drawing on the orientable surface of genus 4 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani–Tutte theorem cannot be extended to the orientable surface of genus 4. As a base step in the construction we use a counterexample to an extension of the unified Hanani–Tutte theorem on the torus.

更新日期：2019-10-29
• Combinatorica (IF 1.143) Pub Date : 2019-10-29
Martin Nägele; Benny Sudakov; Rico Zenklusen

Submodular function minimization (SFM) is a fundamental and efficiently solvable problem in combinatorial optimization with a multitude of applications in various fields. Surprisingly, there is only very little known about constraint types under which SFM remains efficiently solvable. The arguably most relevant non-trivial constraint class for which polynomial SFM algorithms are known are parity constraints

更新日期：2019-10-29
• Combinatorica (IF 1.143) Pub Date : 2019-10-29
Daniel M. Kane; Carlo Sanna; Jeffrey Shallit

A natural number is a binary k’ th power if its binary representation consists of k consecutive identical blocks. We prove, using tools from combinatorics, linear algebra, and number theory, an analogue of Waring’s theorem for sums of binary k’th powers. More precisely, we show that for each integer k> 2, there exists an effectively computable natural number n such that every sufficiently large multiple

更新日期：2019-10-29
• Combinatorica (IF 1.143) Pub Date : 2019-10-28
Zdeněk Dvořák; Bojan Mohar; Robert Šámal

We prove that, in several settings, a graph has exponentially many nowhere-zero flows. These results may be seen as a counting alternative to the well-known proofs of existence of ℤ3-, ℤ4-, and ℤ6-flows. In the dual setting, proving exponential number of 3-colorings of planar triangle-free graphs is a related open question due to Thomassen.

更新日期：2019-10-28
• Combinatorica (IF 1.143) Pub Date : 2019-10-28
Neil Robertson; P. D. Seymour; Robin Thomas

We prove that every 3-regular graph with no circuit of length less than six has a subgraph isomorphic to a subdivision of the Petersen graph.

更新日期：2019-10-28
• Combinatorica (IF 1.143) Pub Date : 2019-10-28
Sergey Norin; Alex Scott; Paul Seymour; David R. Wood

The clustered chromatic number of a class of graphs is the minimum integer k such that for some integer c every graph in the class is k-colourable with monochromatic components of size at most c. We prove that for every graph H, the clustered chromatic number of the class of H-minor-free graphs is tied to the tree-depth of H. In particular, if H is connected with tree-depth t, then every H-minor-free

更新日期：2019-10-28
• Combinatorica (IF 1.143) Pub Date : 2019-10-02
Agelos Georgakopoulos; Matthias Hamann

We obtain an effective enumeration of the family of finitely generated groups admitting a faithful, properly discontinuous action on some 2-manifold contained in the sphere. This is achieved by introducing a type of group presentation capturing exactly these groups.Extending this in a companion paper, we find group presentations capturing the planar finitely generated Cayley graphs. Thus we obtain

更新日期：2019-10-02
• Combinatorica (IF 1.143) Pub Date : 2019-10-02
Alex Scott; Paul Seymour

A large body of research in graph theory concerns the induced subgraphs of graphs with large chromatic number, and especially which induced cycles must occur. In this paper, we unify and substantially extend results from a number of previous papers, showing that, for every positive integer k, every graph with large chromatic number contains either a large complete subgraph or induced cycles of all

更新日期：2019-10-02
• Combinatorica (IF 1.143) Pub Date : 2019-10-02
Louis Bellmann; Christian Reiher

Confirming a conjecture of Vera T. Sós in a very strong sense, we give a complete solution to Turán's hypergraph problem for the Fano plane. That is we prove for n≥8 that among all 3-uniform hypergraphs on n vertices not containing the Fano plane there is indeed exactly one whose number of edges is maximal, namely the balanced, complete, bipartite hypergraph. Moreover, for n = 7 there is exactly one

更新日期：2019-10-02
• Combinatorica (IF 1.143) Pub Date : 2019-10-02
Adam Bene Watts; Sergey Norin; Liana Yepremyan

The extension of an r-uniform hypergraph G is obtained from it by adding for every pair of vertices of G, which is not covered by an edge in G, an extra edge containing this pair and (r−2) new vertices. In this paper we determine the Turán number of the extension of an r-graph consisting of two vertex-disjoint edges, settling a conjecture of Hefetz and Keevash, who previously determined this Turán

更新日期：2019-10-02
• Combinatorica (IF 1.143) Pub Date : 2019-10-02
Gwenaël Joret; Piotr Micek; Patrice Ossona de Mendez; Veit Wiechert

Nowhere dense graph classes provide one of the least restrictive notions of sparsity for graphs. Several equivalent characterizations of nowhere dense classes have been obtained over the years, using a wide range of combinatorial objects. In this paper we establish a new characterization of nowhere dense classes, in terms of poset dimension: A monotone graph class is nowhere dense if and only if for

更新日期：2019-10-02
• Combinatorica (IF 1.143) Pub Date : 2019-10-02
Ararat Harutyunyan; Tien-Nam Le; Alantha Newman; Stéphan Thomassé

The chromatic number of a digraph D is the minimum number of acyclic subgraphs covering the vertex set of D. A tournament H is a hero if every H-free tournament T has chromatic number bounded by a function of H. Inspired by the celebrated Erdős-Hajnal conjecture, Berger et al. fully characterized the class of heroes in 2013. We extend this framework to dense digraphs: A digraph H is a superhero if

更新日期：2019-10-02
• Combinatorica (IF 1.143) Pub Date : 2019-07-12
Hyungryul Baik; Bram Petri; Jean Raimbault

We determine the asymptotic number of index n subgroups in virtually cyclic Coxeter groups and their free products as n → ∞.

更新日期：2019-07-12
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Reinhard Diestel; Sang-il Oum

We apply a recent tangle-tree duality theorem in abstract separation systems to derive tangle-tree-type duality theorems for width-parameters in graphs and matroids.We further derive a duality theorem for the existence of clusters in large data sets.Our applications to graphs include new, tangle-type, duality theorems for tree-width, path-width, and tree-decompositions of small adhesion. Conversely

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Shahram Mohsenipour; Saharon Shelah

Spencer asked whether the Paris-Harrington version of the Folkman-Sanders theorem has primitive recursive upper bounds. We give a positive answer to this question.

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Carolyn Chun; James Oxley

Let M be an internally 4-connected binary matroid with every element in exactly three triangles. Then M has at least four elements e such that si(M/e) is internally 4-connected. This technical result is a crucial ingredient in Abdi and Guenin’s theorem determining the minimally non-ideal binary clutters that have a triangle.

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Rose McCarty; Robin Thomas

An embedding of a graph in 3-space is linkless if for every two disjoint cycles there exists an embedded ball that contains one of the cycles and is disjoint from the other. We prove that every bipartite linklessly embeddable (simple) graph on n ≥ 5 vertices has at most 3n - 10 edges, unless it is isomorphic to the complete bipartite graph K3,n-3.

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Louis DeBiasio; Paul McKenney

For any countably infinite graph G, Ramsey’s theorem guarantees an infinite monochromatic copy of G in any r-coloring of the edges of the countably infinite complete graph Kℕ. Taking this a step further, it is natural to wonder how “large” of a monochromatic copy of G we can find with respect to some measure - for instance, the density (or upper density) of the vertex set of G in the positive integers

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Jeroen Zuiddam

We introduce the asymptotic spectrum of graphs and apply the theory of asymptotic spectra of Strassen (J. Reine Angew. Math. 1988) to obtain a new dual characterisation of the Shannon capacity of graphs. Elements in the asymptotic spectrum of graphs include the Lovász theta number, the fractional clique cover number, the complement of the fractional orthogonal rank and the fractional Haemers bound

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-07-09
Mustazee Rahman; Bálint Virág; Máté Vizer

This paper initiates a limit theory of permutation valued processes, building on the recent theory of permutons. We apply this to study the asymptotic behaviour of random sorting networks. We prove that the Archimedean path, the conjectured limit of random sorting networks, is the unique path from the identity to the reverse permuton having minimal energy in an appropriate metric. Together with a recent

更新日期：2019-07-09
• Combinatorica (IF 1.143) Pub Date : 2019-03-13
Yong-Gao Chen; Jin-Hui Fang

Two sequences A and B of non-negative integers are called additive complements, if their sum contains all suffciently large integers. Let A(x) and B(x) be the counting functions of A and B, respectively. In 1994, Sárközy and Szemerédi proved that, for additive complements A and B, if limsup A(x)B(x)=x ≤ 1, then A(x)B(x)-x→+∞ as x→+∞. In this paper, motivated by a recent result of Ruzsa, we prove the

更新日期：2019-03-13
• Combinatorica (IF 1.143) Pub Date : 2019-03-13