当前期刊: Journal of Atmospheric Chemistry Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Spatio-temporal distribution and chemical composition of PM 2.5 in Changsha, China
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-12-11
    Nan-Nan Zhang, Yang Guan, Lei Yu, Fang Ma, Yi-Fan Li

    The rapid economic development and significant expansion of urban agglomerations in China have resulted in issues associated with haze and photochemical smog. Central China, a transitional zone connecting the eastern coast and western interior, suffers from increasing atmospheric pollution. This study performed a spatio-temporal analysis of fine particulate matter (PM2.5) pollution in Changsha, a provincial capital located in central China. Samples of PM2.5 were collected at five different functional areas from September 2013 to August 2014. The PM2.5 concentration at the five sampling sites was the highest in winter and the lowest in summer, with an average annual PM2.5 concentration of 105.2 ± 11.0 μg/m3. On average, residential sites had the highest concentrations of PM2.5 while suburban sites had the lowest. We found that inorganic ionic species were dominant (~48%), organic species occupied approximately 25%, whereas EC (~3.7%) contributed insignificantly to the total PM2.5 mass. Ion balance calculations show that the PM2.5 samples at all sites were acidic, with increased acidity in spring and summer compared with autumn and winter. Air quality in Changsha is controlled by four major air masses: (1) Wuhan and the surrounding urban clusters, (2) the Changsha-Zhuzhou-Xiangtan urban agglomeration and the surrounding cities, and (3) southern and (4) eastern directions. The north–south transport channel is the most significant air mass trajectory in Changsha and has a significant impact on PM2.5 pollution.

    更新日期:2019-12-13
  • Chemical characteristics and source apportionment of PM 2.5 in Wuhan, China
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-07-30
    Fan Huang, Jiabin Zhou, Nan Chen, Yuhua Li, Kuan Li, Shuiping Wu

    Continuous online measurements of fine particulate matter mass (PM2.5) and its chemical composition were carried out at an urban monitoring site in Wuhan from March 2017 to February 2018. The PM2.5 mass concentration ranged from 6.3 to 223 μg/m3, with the highest in winter and the lowest in summer. Water soluble ions (WSIs) were the most abundant component in PM2.5 (28.8 ± 22.9 μg/m3), followed by carbonaceous aerosol (11.9 ± 10.4 μg/m3) and elements (5.5 ± 6.7 μg/m3). It is noteworthy that six episodes of sustained high PM were observed during the study period. Five major contributors of PM2.5 were identified by positive matrix factorization (PMF) to be the iron and steel industry, fugitive dust, secondary photochemistry, traffic-related emission and biomass burning, contributing 26.3%, 5.5%, 29.5%, 29.2% and 9.6% to PM2.5, respectively. Furthermore, conditional probability function (CPF), trajectory analysis and potential source contribution function (PSCF) were used to identify the influences of local activities and regional source. Local sources mainly include Wuhan iron and steel group, construction sites and urban trunk roads, etc. Three pollution transport pathways of PM2.5 in Wuhan were identified to be northwest, east and south pathway, with the relative contribution of 40%, 17% and 43%, respectively. Western Henan, northern Shaanxi and southwestern Shanxi were identified to be the major potential source regions of PM2.5 in Wuhan.

    更新日期:2019-11-04
  • Water-soluble ions and oxygen isotope in precipitation over a site in northeastern Tibetan Plateau, China
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-06-17
    Linqing Wang, Zhenxing Shen, Di Lu, Hongmei Xu, Ningning Zhang, Yali Lei, Qian Zhang, Xin Wang, Qiyuan Wang, Junji Cao

    A total of 30 precipitation samples were collected at a remote site of Qinghai Lake in the northeastern Tibetan Plateau, China, from June to August 2010. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+, and Mg2+) and anions (F−, Cl−, NO3−, and SO42−), electric conductivity (EC), pH, dissolved organic carbon (DOC), and oxygen isotopic composition (δ18O). The volume-weighted mean (VWM) values of pH and EC in the precipitation samples were 7.2 and 19.0 μs cm−1. Ca2+ was the dominant cation in precipitation with a VWM of 116.9 μeq L−1 (1.6–662.9 μeq L−1), accounting for 45.7% of total ions in precipitation. SO42− was the predominant anion with a VWM of 32.7 μeq L−1, accounting for 47.1% of the total anions. The average precipitation DOC was 1.4 mg L−1, and it shows a roughly negative power function with the precipitation amount. The values of δ18O in the rainwater in Qinghai Lake varied from −13.5‰ to −3.9‰ with an average of −8.1‰. The enrichment factor analysis indicates that crustal materials from continental dust were the major sources for Ca2+ in the precipitation samples. The high concentration of Ca2+ in the atmosphere played an important role in neutralizing the acidity of rainwater in Qinghai Lake area. Cluster analysis of air-mass trajectories indicates that the air masses associated with northeast and east had high values of NH4+, SO42−, and NO3−, whereas large Ca2+ loading was related to the air mass from west.

    更新日期:2019-11-04
  • PM 10 carbonaceous aerosols and their real-time wet scavenging during monsoon and non-monsoon seasons at Delhi, India
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-08-21
    Saurabh Sonwani, Umesh C. Kulshrestha

    Real-time simultaneous measurements of rainwater and PM10 chemistry were carried out at Delhi during the year 2016–17 in order to assess the levels of carbonaceous species and their wet scavenging during monsoon and non-monsoon seasons at Delhi. The PM10 samples were collected Before Rain (BR), During Rain (DR) and After Rain (AR) events, while rainwater samples collected on an event basis. The ambient OC levels were always higher than the levels of EC during both monsoon and non-monsoon seasons in ambient aerosol as well as in rainwater. On an average, during rain (DR) 30% of OC aerosols and 28.2% of EC aerosols removed via wet scavenging process. In after rain (AR), 26.2% OC and 1.8% EC aerosols further decreased in comparison to DR samples due to the presence of OC and EC free air parcel. Overall it observed that the OC concentration significantly lowered from BR to DR and AR. However, EC concentrations in AR were found to be higher than DR samples indicating their build-up after the rains. The Scavenging Ratios (SRs) of OC and rain intensity had a significant positive correlation, whereas the SRs of EC showed a weak correlation with rain intensity. The SRs of EC were significantly higher during non-monsoon as compared to monsoon season. Such characteristics can be explained based on the particles size, source and the hygroscopicity of both types of carbonaceous aerosol.

    更新日期:2019-11-04
  • Optical properties of atmospheric particles over an urban site in Mexico City and a peri-urban site in Queretaro
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-08-02
    Rafael N. Liñán-Abanto, O. Peralta, D. Salcedo, L. G. Ruiz-Suárez, P. Arnott, G. Paredes-Miranda, H. Alvarez-Ospina, T. Castro

    Optical properties of atmospheric particles at Mexico City (UNAM) and Queretaro (JQRO) were measured with a Photoacoustic Extinctiometer (PAX) at 870 nm. The Mexico City Metropolitan Area has around 21 million inhabitants and Queretaro Metropolitan Area has little more than a million. Observations of meteorological parameters (relative humidity, solar radiation, and wind speed) were used to identify the rainy and dry seasons and explain the daily and seasonal behaviors of particles optical properties. The measurements were made from November 1, 2014 to July 31, 2016. At UNAM, the mean values of the scattering coefficient (Bscat) in cold dry, warm dry, and rainy seasons were 35.8, 27.1, and 31.3 Mm−1, respectively; while at JQRO were 10.9, 11.9, and 15.0 Mm−1. The average values of the absorption coefficient (Babs) at UNAM during the cold dry, warm dry, and rainy seasons were 14.5, 12.7, and 12.7 Mm−1, respectively; whereas at JQRO were 4.9, 4.7, and 3.9 Mm−1. Both absorption and scattering coefficients showed similar diurnal behaviors, but at UNAM they are three times higher than JQRO. Concentrations of criteria gases (O3, NO, NO2 and NOx) were also measured. At UNAM no difference was observed between the seasonal values for the single scattering albedo (SSA); while in JQRO, the rainy season had the highest seasonal value, being 13% higher than in the dry seasons. The Mass Scattering Cross-Section (MSC) values at UNAM were close to 2 m2/g; on the other hand, at JQRO the MSC values were lower than 1 m2/g. The results suggest a seasonal variability in the aerosol optical properties in both sites, which should be verified with more long-term studies.

    更新日期:2019-11-04
  • PM 2.5 and PM 10 in the urban area of Naples: chemical composition, chemical properties and influence of air masses origin
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-05-09
    Elena Chianese, Giuseppina Tirimberio, Angelo Riccio

    In order to investigate particulate matter characteristics in the urban area of Naples, South of Italy, PM10 and PM2.5 chemical composition and properties were determined; in particular, ionic composition (Na+, K+, NH4+, Mg2+, Ca2+, HCOO-, CH3COO−, Cl−, NO2−, NO3−, SO42−, C2O42−) and concentration of specific metals (Pb, Cd, Cu and Zn) were evaluated in association with an air masses trajectories study. Information on major ions was used to conduct the ionic balance and to evaluate sea salt and non-sea salt contributions; furthermore, the study on metals concentration allowed to distinguish the contribution of anthropic sources while their chemical behaviour (solubility and leachability) was considered in order to highlight the presence of different chemical forms. In the period of interest (June 2015), daily averages PM concentrations were below the limit of 25 μg/m3 for PM2.5 and 50 μg/m3for PM10; moreover, for both fractions, the most abundant ionic species was SO42−followed by NO3−. Ionic balance indicated that non-sea salt contribution accounted for the great part of Ca2+, SO42− and K+ while secondary inorganic aerosol accounted for about 5% of total ionic fraction. As expected, the most abundant metal was zinc (about 41 ng/m3 and 44 ng/m3in PM2.5 and PM10, respectively), while cadmium, copper and lead were at very low concentrations, in the range of 0.01–0.47 ng/m3; leachability reached values of 40% for copper in both PM fractions, in contrast with zinc that showed the lowest leachability, corresponding to 6% for PM2.5 fraction. The study on air masses trajectories indicated a change on ionic composition and chemical properties, varying from a condition with air masses coming from Eastern Europe, characterised also by higher concentrations of both PM2.5 and PM10, a prevalence of secondary aerosol and metals showing minor solubility and leachability, to a condition with air masses coming from North-west region, with characteristics opposed to the previous ones.

    更新日期:2019-11-04
  • A one year study of functionalised medium-chain carboxylic acids in atmospheric particles at a rural site in Germany revealing seasonal trends and possible sources
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-04-09
    M. Teich, D. van Pinxteren, H. Herrmann

    This study presents a yearlong data set of 28 medium-chain functionalised carboxylic acids (C5 to C10) in atmospheric aerosol particles (PM10) from a German rural measurement station, which is analysed to obtain seasonal trends and evidences for possible sources of these rarely studied compounds. The analysed carboxylic acids were divided into four main groups: (I) functionalised aliphatic monocarboxylic acids, (II) functionalised aromatic monocarboxylic acids, (III) non-functionalised and functionalised aliphatic dicarboxylic acids, and (IV) aromatic dicarboxylic acids. A concentration maximum in summer was observed for aliphatic carboxylic acids, indicating mainly photochemical formation processes. For example, the highest mean summer concentrations were observed for 4-oxopentanoic acid (4.1 ng m−3) in group I and for adipic acid (10.3 ng m−3) in group III. In contrast, a concentration maximum in winter occurred for aromatic carboxylic acids, hinting at anthropogenic sources like residential heating. The highest mean winter concentrations were observed for 4-hydroxybenzoic acid (2.4 ng m−3) in group II and for phthalic acid (5.8 ng m−3) in group IV. For the annual mean concentrations, highest values were found for adipic acid and 4-oxopimelic acids with 7.8 ng m−3 and 6.1 ng m−3, respectively. The concentrations of oxodicarboxylic acids exceeded those of their corresponding unsubstituted form. Accordingly, straight-chain dicarboxylic acids might act as precursor compounds for their respective oxygenated forms. Similarly, unsubstituted monocarboxylic acids are possible precursors for functionalised aliphatic monocarboxylic acids. The present study contributes to the speciation of organic content on a molecular level of atmospheric particles, as well as giving hints for possible sources for these carboxylic acids.

    更新日期:2019-11-04
  • Assessment of polar organic aerosols at a regional background site in southern Africa
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-04-29
    Wanda Booyens, Johan P. Beukes, Pieter G. Van Zyl, Jose Ruiz-Jimenez, Matias Kopperi, Marja-Liisa Riekkola, Miroslav Josipovic, Ville Vakkari, Lauri Laakso

    A recent paper reported GCxGC-TOFMS analysis used for the first time in southern Africa to tentatively characterise and semi-quantify ~1000 organic compounds in aerosols at Welgegund – a regional background atmospheric monitoring station. Ambient polar organic aerosols characterised are further explored in terms of temporal variations, as well as the influence of meteorology and sources. No distinct seasonal pattern was observed for the total number of polar organic compounds tentatively characterised and their corresponding semi-quantified concentrations (sum of the normalised response factors, ∑NRFs). However, the total number of polar organic compounds and ∑NRFs between late spring and early autumn seemed relatively lower compared to the period from mid-autumn to mid-winter, while there was a period during late winter and early spring with significantly lower total number of polar organic compounds and ∑NRFs. Relatively lower total number of polar organic compounds and corresponding ∑NRFs were associated with fresher plumes from a source region relatively close to Welgegund. Meteorological parameters indicated that wet removal during late spring to early autumn also contributed to lower total numbers of polar organics and associated ∑NRFs. Increased anticyclonic recirculation and more pronounced inversion layers contributed to higher total numbers of polar organic species and ∑NRFs from mid-autumn to mid-winter, while the influence of regional biomass burning during this period was also evident. The period with significantly lower total number of polar organic compounds and ∑NRFs was attributed to fresh open biomass burning plumes occurring within proximity of Welgegund, consisting mainly of volatile organic compounds and non-polar hydrocarbons. Multiple linear regression substantiated that the temporal variations in polar organic compounds were related to a combination of the factors investigated in this study.

    更新日期:2019-11-04
  • Ground-based observation of lightning-induced nitrogen oxides at a mountaintop in free troposphere
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-05-14
    Ryuichi Wada, Y. Sadanaga, S. Kato, N. Katsumi, H. Okochi, Y. Iwamoto, K. Miura, H. Kobayashi, M. Kamogawa, J. Matsumoto, S. Yonemura, Y. Matsumi, M. Kajino, S. Hatakeyama

    Lightning is an important source of nitrogen oxides (LNOx). The actual global production of LNOx is still largely uncertain. One of the reasons for this uncertainty is the limited available observation data. We measured the concentrations of total reactive nitrogen (NOy), nitric oxide (NO) and nitrogen dioxides (NO2) and then obtained NOx oxidation products (NOz: NOz = NOy - NOx) at a station at the top of Mount Fuji (3776 m a.s.l.) during the summer of 2017. Increases in NOy and NO2 were observed on 22 August 2017. These peaks were unaccompanied by increases in CO, which suggested that the observed air mass did not contain emissions from combustion. The backward trajectories of the above air mass indicated that it moved across areas where lightning occurred. The NOy concentration was also calculated by using a chemical transport model, which did not take NOx produced by lightning into account. Therefore, the NOy concentration due to lightning can be inferred by subtracting the calculated NOy from the observed NOy concentrations. The concentration of NOy at 13:00 on 22 August 2017 originating from lightning was estimated to be 1.11 ± 0.02 ppbv, which comprised 97 ± 2% of the total NOy concentration. The fractions of NO2 and NOz in the total NOy were 0.54 ± 0.01 and 0.46 ± 0.03, respectively. The NO concentration was below the detection limit. We firstly observed increase of concentrations of NOy originating from lightning by ground-based observation and demonstrated the quantitative estimates of LNOx using model-based calculation.

    更新日期:2019-11-04
  • Dissolved organic carbon in summer precipitation and its wet deposition flux in the Mt. Yulong region, southeastern Tibetan Plateau
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-02-20
    Hewen Niu, Shichang Kang, Xiaofei Shi, Guotao Zhang, Shijin Wang, Tao Pu

    Dissolved organic carbon (DOC) is an important organic pollutant in the air-water carbon cycle system, potentially influencing the global climate. In this study, 204 rainwater samples from five sampling stations in the Mt. Yulong region were synchronously collected from June to September in 2014. We comprehensively investigated the sources and wet deposition of DOC in summer precipitation. The average concentrations of DOC at five stations ranged from 0.74 to 1.31 mg L−1. The mass absorption efficiency (MAE) of rainwater DOC evaluated at 365 nm was 0.43 ± 0.32 m2 g−1. Backward trajectory analyses indicated that the southwest advection air parcel accounting for 46% of precipitation events, while the corresponding average concentration of rainwater DOC was 1.25 ± 0.56 mg C L−1. In addition to the local or regional contribution, large amount of atmospheric pollutants were transported from South Asia and Southeast Asia to the Mt. Yulong region, both of which had exerted great influence on the regional atmospheric environment. For the first time, the annual wet deposition of DOC in the Mt. Yulong region was estimated and determined to be 1.99 g C m−2 year−1. This is significant because the deposition of DOC on glaciers has great influence on surface albedo of snow and glacier melt. This study can bridge the gap of rainwater DOC research between the Mt. Yulong region and the southeast of Tibetan Plateau (TP), which has significant implications for better understanding the relationship of DOC deposition and glacial shrink in the TP.

    更新日期:2019-11-04
  • Seasonal variations and source apportionment of water-soluble inorganic ions in PM 2.5 in Nanjing, a megacity in southeastern China
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-03-23
    Xiaoyu Zhang, Xin Zhao, Guixiang Ji, Rongrong Ying, Yanhong Shan, Yusuo Lin

    Daily PM2.5 samples were collected in Nanjing, a megacity in southeastern China, for a period of one-half of a month during every season from 2014~2015. Mass concentrations of nine water soluble inorganic ions (F−, Cl−, SO42−, NO3−, Na+, NH4+, K+, Mg2+ and Ca2+) were determined using ion chromatography to identify the chemical characteristics and potential sources of PM2.5. The mass concentrations of daily PM2.5 ranged from 31.0 to 242.9 μg m−3, with an annual average and standard deviation of 94.4 ± 31.1 μg m−3. The highest seasonal average of PM2.5 concentrations was observed during winter (108.5 ± 31.8 μg m−3), and the lowest average was observed during summer (85.0 ± 22.6 μg m−3). The annual average concentration of total water soluble inorganic ions was 39.82 μg m−3, accounting for 44.4% of the PM2.5. The seasonal variation in water soluble inorganic ions in PM2.5 reached its maximum during autumn and reached its minimum during spring. Sulfate, nitrate and ammonium were the dominant water soluble inorganic species, with their combined proportion of 82.0% of the total water soluble inorganic ions and 36.8% of the fine particles. Seasonal variations in aerosol acidity and chemical forms of secondary inorganic ions were discussed. The average ratio of NO3−/SO42− was 0.95. According to the results of principal component analysis, secondary sources, burning processes, and airborne dust were the dominant potential sources of PM2.5 in Nanjing.

    更新日期:2019-11-04
  • Emission inventory of anthropogenic air pollutant sources and characteristics of VOCs species in Sichuan Province, China
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-01-31
    Zihang Zhou, Qinwen Tan, Ye Deng, Keying Wu, Xinyue Yang, Xiaoling Zhou

    The purpose of this paper is to develop an emission inventory of anthropogenic air pollutants and VOCs species in Sichuan Province. Based on the anthropogenic source activity data collected in different cities of Sichuan Province and the selected emission factors, the 1 km × 1 km gridded atmospheric air pollutant emission inventory of 2015 was developed in the “bottom-up” and “top-down” approaches with the GIS technology. The results showed that the emissions of SO2, NOX, CO, PM10, PM2.5, BC, OC, VOCs and NH3 from anthropogenic sources in Sichuan Province were 444.9 kt, 820.0 kt, 3773.1 kt, 1371.6 kt, 537.5 kt, 28.7 kt, 53.1 kt, 923.6 kt and 988.0 kt, respectively. Power plants and other industrial combustion boilers contributed more than 95% of SO2 emission. Transportation, fossil fuel burning and industrial process contributed 54%, 23% and 20% of NOx emission respectively. Industrial process dominated by steel production and building material manufacturing contributed 20% of PM10 emission and 34% of PM2.5 emission. Fugitive dust dominated by road fugitive dust contributed 60% of PM10 emission and 35% of PM2.5 emission respectively. Biomass burning contributed 33% of BC emission and 51% of OC emission respectively. Solvent use of mechanical processing, building decoration, electronic equipment manufacturing, printing and furniture industry contributed 46% of VOCs emission. NH3 mainly came from the emission of agricultural sectors, such as livestock breeding and N-fertilizer application, which contributed 70% and 25% of NH3 emission respectively. The percentage of alkanes, alkenes, alkynes, aromatics, OVOCs, halohydrocarbons and other VOCs in the total VOCs emission were 17%, 9%, 2%, 23%, 22%, 4% and 23%, respectively. Ethene, m-xylene, toluene, propene, formaldehyde, o-xylene, 1, 2, 4-trimethyl benzene, 1-butene, p-xylene and ethyl benzene were the most critical chemical species for the formation of ozone pollution in Sichuan Province contributing 50% of the total OFP. Various air pollutants and OFP were mainly distributed in places with the densest population and well-developed agriculture and industry in Sichuan Basin and some areas of Panzhihua. The Chengdu Plain urban agglomerations, represented by Chengdu, Deyang and Mianyang, were the main areas with concentrated pollutant emissions in Sichuan Basin.

    更新日期:2019-11-04
  • Elevated Barium concentrations in rain water from east-coast of India: role of regional lithology
    J. Atmos. Chem. (IF 1.783) Pub Date : 2019-02-08
    Gyana Ranjan Tripathy, Smruti Mishra, Mohd Danish, Kirpa Ram

    Alkaline earth metals act as dominating acid-neutralizing species in atmosphere and hence, regulate the rain water chemistry significantly. In this contribution, concentrations of these metals (Mg, Ca, Sr and Ba) and other major ions in rain water samples, collected during south-west monsoon of year 2017, from a coastal location (Berhampur) in eastern part of India have been analyzed to trace their provenances and controlling factors. The chemical compositions of rain water reveal oceanic and continental supply of Mg and Sr to the site, whereas Ca and Ba are pre-dominantly supplied through continental sources. The dominancy of continental fluxes at this coastal site is mainly due to particulate fluxes from regional lithologies and favorable wind pattern for long-range transport from south-western/western directions. An inverse model involving chemical mass balance between rain water composition and its possible sources have been adopted in this study to quantify the source(s) contributions. These model results show that the continental Mg is mainly derived from long-range transport of mafic minerals from Deccan Traps (40 ± 21%) with sub-ordinate contribution (15 ± 6%) from regional lithologies. On average, about 70% of rain water Ca at Berhampur is derived from carbonates, whereas most of the Ba (~95%) is supplied from regional silicates (charnockites and khondalites). Owing to faster dissolution kinetics of these silicates with higher Ba content, the silicates contribute most of the rain water Ba concentration over this region. The median Ba content (29 nM) at this location is systematically higher than available literature Ba data for rain water worldwide (1-22 nM). The observed higher concentrations of Ba, a micronutrient, in rain water emphasize important role of regional lithology in the biogeochemical cycling of nutrients over the region via wet deposition.

    更新日期:2019-11-04
  • Correction to: Trace ambient levels of particulate mercury and its sources at a rural site near Delhi
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-12-03
    Anita Kumari, Umesh Kulshrestha

    The original version of this article unfortunately contained a mistake. In pages 5 and 6, a unit was misprinted. Please see below necessary corrections.

    更新日期:2019-11-04
  • The impact of long-term regional air mass patterns on nutrient precipitation chemistry and nutrient deposition within a United States grassland ecosystem
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-12-11
    Matt T. Trentman

    Changes in the frequency of precipitation as a result of a changing climate, as well as anthropogenic induced deposition of nitrogen (N), both have the potential to alter grassland productivity and diversity. Central U.S. weather patterns are dominated by three major air mass trajectories including regional sources from the Gulf of Mexico (marine tropical, Mt), the Pacific Northwest (mild pacific, mP), and the Desert Southwest (continental tropical, Ct). In this work, the Hybrid Single Particle Lagrangian Integrated Trajectory model was used to determine trends in the proportion of precipitation events from these air mass sources from 1983 to 2006 relative to Konza Prairie Biological Station (KPBS), KS. The annual volume-weighted mean (VWM) concentrations and wet deposition of a variety of precipitation dissolved solutes were linked to source regions north or south of KPBS. The proportion of precipitation events from Mt significantly increased, while the proportion of events from Ct and mP decreased significantly over the study period. The annual VWM concentrations of most solutes were typically higher from precipitation sourced to the north of KPBS. However, wet deposition of four ecologically relevant solutes (NH4+, NO3−, H+, and SO4−2) was higher from events from the southern region, likely due to higher precipitation amounts. The proportion of reduced N increased significantly over the study period but was not affected by source region despite the higher use of fertilizers for agriculture in the northern source region. Given the location of this site relative to three dominant air mass paths, future shifts in these patterns will likely impact wet nutrient deposition.

    更新日期:2019-11-04
  • Atmospheric abundance of HULIS during wintertime in Indo-Gangetic Plain: impact of biomass burning emissions
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-11-17
    Varun Kumar, Prashant Rajput, Anubha Goel

    This study reports for the first-time the ambient concentrations of HULIS mass (HULIS-OM, Humic-like substances) and HULIS-C (carbon) in PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) from the Indo-Gangetic Plain (IGP at Kanpur, wintertime). HULIS extraction followed by purification and isolation protocol with methanol: acetonitrile (1:1 v/v) on HLB (Hydrophilic-Lipophilic Balanced) cartridge has been established. Quantification of HULIS-C was achieved on a total organic carbon (TOC) analyser whereas HULIS-OM was determined gravimetrically. Consistently high recovery (> 90%) of HULIS-C based on analysis of Humic standard (sodium salt of Humic acid) suggested suitability of our established analytical protocol involving solvent extraction, purification and accurate quantification of HULIS. HULIS-OM varied from 17.3–38 μg m−3 during daytime and from 19.8–40.6 μg m−3 during night in this study. During daytime the HULIS-OM constituted 20–30% mass fraction of OMTotal and 10–15% of PM10 mass. However, a relatively low contribution of HULIS-OM has been observed during the night. This observation has been attributed to higher concentrations of OM and PM10 in night owing to nighttime chemical reactivity and condensation of organics in conjunction with shallower planetary boundary layer height. Strong correlation of HULIS-C with K+BB (R2 > 0.80) and significant day-night variability of HULIS-C/WSOC ratio in conjunction with air-mass back trajectories (showing transport of pollutants from upwind IGP) suggest biomass burning emission and secondary transformations as important sources of HULIS over IGP. High-loading of atmospheric PM10 (as high as 440 μg m−3) with significant contribution of water-soluble organic aerosols (WSOC/OC: ~ 0.40–0.80) during wintertime highlights their plausible potential role in fog and haze formation and their impact on regional-scale atmospheric radiative forcing over the IGP.

    更新日期:2019-11-04
  • Trace ambient levels of particulate mercury and its sources at a rural site near Delhi
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-07-24
    Anita Kumari, Umesh Kulshrestha

    Atmospheric particle-bound mercury levels were measured in PM10 aerosols (HgP) at a rural site (Mahasar, Haryana) during winter 2014–15 and summer 2015. The PM10 HgP was determined by using Differential Pulse Anodic Stripping Voltammetry through standard addition methods while the trace metals were determined by using an Atomic Absorption Spectroscopy. The mass concentrations of HgP varied from 591 to 1533 pg/m3 with an average of 1009 ± 306 pg/m3 during the winter, while the mass concentrations of HgP varied from 43 to 826 pg/m3 with an average of 320 ± 228 pg/m3 during the summer. However, it is difficult to assess whether these levels are harmful or not because there is no standard value available as National Ambient Air Quality Standard. The higher concentrations of HgP during winters were possibly due to favourable local meteorological conditions for the stagnation of particulate matter in the lower atmosphere and the increased emissions from existing natural or anthropogenic sources, regional sources and long-range transportation. Relatively low concentrations of HgP during summer might be due to increased mixing heights as well as scavenging effect because some light to heavy rain events were observed during summer time sampling. However, among other metals determined, the concentration of HgP was the lowest during both the seasons. The study may be useful in assessing the health impacts of PM10 HgP and other metals.

    更新日期:2019-11-04
  • Effect of solubility limitation on hygroscopic growth and cloud drop activation of SOA particles produced from traffic exhausts
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-11-23
    C. Wittbom, A. C. Eriksson, J. Rissler, P. Roldin, E. Z. Nordin, S. Sjogren, P. T. Nilsson, E. Swietlicki, J. Pagels, B. Svenningsson

    Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and m-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (sc) and hygroscopic growth factor (gf) at 90% relative humidity. The hygroscopicity parameter κ was calculated for the two regimes: κsc and κgf, from measurements of sc and gf, respectively. The two κ showed significant discrepancies, with a κgf /κsc ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of sc and gf were compared to theoretical predictions, using modified Köhler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.

    更新日期:2019-11-04
  • Seasonal and annual trends of carbonaceous species of PM 10 over a megacity Delhi, India during 2010–2017
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-11-06
    S. K. Sharma, T. K. Mandal, A. Sharma, Saraswati, Srishti Jain

    PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222 ± 87 (range: 48.2–583.8 μg m−3), 25.6 ± 14.0 (range: 4.2–82.5 μg m−3), 8.7 ± 5.8 (range: 0.8–35.6 μg m−3) and 54.7 ± 30.6 μg m−3 (range: 8.4–175.2 μg m−3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m−3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2 = 0.53), summer (R2 = 0.59) and monsoon (R2 = 0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.

    更新日期:2019-11-04
  • A comprehensive study on the surface chemistry of particulate matter collected from Jeddah, Saudi Arabia
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-07-06
    Asim Jilani, Syed Zajif Hussain, Mohd Hafiz Dzarfan Othman, Usama Zulfiqar, Muhammad Bilal Shakoor, Imran Ullah Khan, Javed Iqbal, Attieh A. Al-Ghamdi, Ahmed Alshahrie

    In this work, the X-ray Photoelectron Spectroscopy (XPS) technique is utilized to analyze the surface chemical composition of particulate matter (PM) which was collected from various locations at Jeddah, Saudi Arabia. The main elements found on the surface of PM are carbon (C), oxygen (O) and silicon (Si) with combined percentage of 89.4–94.9 while traces of nitrogen (N), calcium (Ca), aluminum (Al), sodium (Na), chlorine (Cl), manganese (Mg), and sulfur (S) were also present. The analyzed XPS chemical state of C, O and Si was further used to determine their bonding with other elements occurring over the surface of PM. Carbon was found in the form of carbides (18.86%), fluorides (2.39%) and carbonates (78.75%); oxygen was observed as oxides (21.05%) and hydroxides (73.42%) of other metals; and silicon was detected as silicones (12.16%), nitrides (82.53%) and silicates (5.25%). The particle size of a PM is also of great concern for health issues, and thus has been investigated by the Field Emission Scanning Electron Microscope (FESEM). The Energy Dispersive X-ray Spectroscopy (EDS) was employed for cross verification of detected elements by XPS.

    更新日期:2019-11-04
  • Insignificant impact of freezing and compaction on iron solubility in natural snow
    J. Atmos. Chem. (IF 1.783) Pub Date : 2018-03-19
    Pami Mukherjee, Mihaela Glamoclija, Yuan Gao

    To explore the freezing effect on iron (Fe) solubility in natural environments, especially in Polar regions, event based freshly fallen snow samples were collected at Newark, New Jersey on the US East Coast for two consecutive winter seasons (2014–2015 and 2015–2016). These samples were analyzed for the concentrations of soluble iron (Fesol) using UV-Vis Spectroscopy and filterable iron (Fefil) and total iron (Fetot) using Atomic Absorption Spectroscopy. The average fractional solubility of the Fesol (the portion that passes through a 0.22 μm pore-size filter) with respect to the total Fe in the samples was 23.3 ± 12.2%, with the majority of the soluble Fe being present as Fe(III). Approximately 48.5% of the total Fe existed as Fefil (the portion that passes through 0.45 μm pore size filter media). No significant correlation was found between the soluble ionic species and soluble Fe. Six snow events were kept frozen for 10 days, and analyzed in periodic intervals to study the post-freezing modification in Fe solubility. Events 1 and 2 showed increasing trend in the soluble Fe concentrations; however, the events 5, 6, 7, and 8 showed no noticeable increments. The pattern shown in Events 1 and 2 is associated with high fraction of Fefil and one unit pH drop, suggesting that the freeze-induced modification in Fe solubility could be linked with the amount of Fefil and the acidity change in the samples. To further investigate the freeze-induced compaction of particles, samples from three events 6, 7, and 10 were analyzed by SEM-STEM-EDS microscopy, and the results showed that due to freezing, in general, the particles in the ice-melt counterparts tend to compact and cluster and form larger aggregates compared to the particles in snow-melt. These results show, despite the freeze-induced compaction in snow was observed from STEM images, the snow freezing might not have significant effect in increasing Fe solubility from materials in the snow. These results further suggest that freezing process with fresh snow in high-latitude regions may not impose significant modification on Fe solubility in snow.

    更新日期:2019-11-04
  • Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth.
    J. Atmos. Chem. (IF 1.783) Pub Date : 1984-01-01
    J F Kasting,J B Pollack

    One-dimensional radiative-convective and photochemical models are used to examine the effects of enhanced CO2 concentrations on the surface temperature of the early Earth and the composition of the prebiotic atmosphere. Carbon dioxide concentrations of the order of 100-1000 times the present level are required to compensate for an expected solar luminosity decrease of 25-30%, if CO2 and H2O were the only greenhouse gases present. The primitive stratosphere was cold and dry, with a maximum H2O volume mixing ratio of 10(-6). The atmospheric oxidation state was controlled by the balance between volcanic emission of reduced gases, photo-stimulated oxidation of dissolved Fe+2 in the oceans, escape of hydrogen to space, and rainout of H2O2 and H2CO. At high CO2 levels, production of hydrogen owing to rainout of H2O2 would have kept the H2 mixing ratio above 2x10(-4) and the ground-level O2 mixing ratio below 10(-11), even if no other sources of hydrogen were present. Increased solar UV fluxes could have led to small changes in the ground-level mixing ratios of both O2 and H2.

    更新日期:2019-11-01
  • Identification and quantification of carbonyl-containing α-pinene ozonolysis products using O-tert-butylhydroxylamine hydrochloride.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2016-01-01
    Stephen R Jackson,Jason E Ham,Joel C Harrison,J R Wells

    The yields of carbonyl-containing reaction products from the ozonolysis of α-pinene have been investigated using concentrations of ozone found in the indoor environment ([O3] ≤ 100 ppb). An impinger was used to collect gas-phase oxidation products in water, where the derivatization agent O-tert-butylhydroxylamine hydrochloride (TBOX) and gas chromatography-mass spectrometry were used to identify carbonyl-containing species. Seven carbonyl-containing products were observed. The yield of the primary product, pinonaldehyde was measured to be 76 %. Using cyclohexane as a hydroxyl radical (OH) scavenger, the yield of pinonaldehyde decreased to 46 %, indicating the influence secondary OH radicals have on α-pinene ozonolysis products. Furthermore, the use of TBOX, a small molecular weight derivatization agent, allowed for the acquisition of the first mass spectral data of oxopinonaldehyde, a tricarbonyl reaction product of α-pinene ozonolysis. The techniques described herein allow for an effective method for the collection and identification of terpene oxidation products in the indoor environment.

    更新日期:2019-11-01
  • Evaluation of NAQFC model performance in forecasting surface ozone during the 2011 DISCOVER-AQ campaign.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    Gregory G Garner,Anne M Thompson,Pius Lee,Douglas K Martins

    The National Air Quality Forecast Capability (NAQFC) and an experimental version of the NAQFC (NAQFC-β) provided flight decision support during the July 2011 NASA DISCOVER-AQ field campaign around Baltimore, Maryland. Ozone forecasts from the NAQFC and NAQFC-β were compared to surface observations at six air quality monitoring stations in the DISCOVER-AQ domain. A bootstrap algorithm was used to test for significant bias and error in the forecasts from each model. Both models produce significant positively biased forecasts in the morning while generally becoming insignificantly biased in the afternoon during peak ozone hours. The NAQFC-β produces higher forecast bias, higher forecast error, and lower correlations than the NAQFC. Forecasts from the two models were also compared to each other to determine the spatial and temporal extent of significant differences in forecasted ozone using a bootstrap algorithm. The NAQFC-β tends to produce an average background ozone mixing ratio of at least 3.51 ppbv greater than the NAQFC throughout the domain at 95 % significance. The difference between the two models is significant during the overnight and early morning hours likely due to the way the Carbon Bond 5 mechanism in the NAQFC-β handles reactive nitrogen recycling and organic peroxide species. The value of information each model provides was tested using a static cost-loss ratio model. By standard measures of forecast skill, the NAQFC generally outperforms the NAQFC-β; however, the NAQFC-β provides greater value of information. This is because standard measures of forecast skill often hide the sensitivity of end users' needs to forecast error.

    更新日期:2019-11-01
  • Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    Andra J Reed,Anne M Thompson,Debra E Kollonige,Douglas K Martins,Maria A Tzortziou,Jay R Herman,Timothy A Berkoff,Nader K Abuhassan,Alexander Cede

    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of Deriving Information on Surface COnditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NOx Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.

    更新日期:2019-11-01
  • Ozone profiles in the Baltimore-Washington region (2006-2011): satellite comparisons and DISCOVER-AQ observations.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    Anne M Thompson,Ryan M Stauffer,Sonya K Miller,Douglas K Martins,Everette Joseph,Andrew J Weinheimer,Glenn S Diskin

    Much progress has been made in creating satellite products for tracking the pollutants ozone and NO2 in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.05 N; 76.9 W) and Baltimore (Edgewood, MD, 39.4 N; 76.3 W) during the July 2011 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiment. First, we compare column-ozone amounts from the Beltsville and Edgewood sondes with data from overpassing satellites. Second, processes influencing ozone profile structure are analyzed using Laminar Identification and tracers: sonde water vapor, aircraft CO and NOy. Third, Beltsville ozone profiles and meteorological influences in July 2011 are compared to those from the summers of 2006-2010. Sonde-satellite offsets in total ozone during July 2011 at Edgewood and Beltsville, compared to the Ozone Monitoring Instrument (OMI), were 3 % mean absolute error, not statistically significant. The disagreement between an OMI/Microwave Limb Sounder-based tropospheric ozone column and the sonde averaged 10 % at both sites, with the sonde usually greater than the satellite. Laminar Identification (LID), that distinguishes ozone segments influenced by convective and advective transport, reveals that on days when both stations launched ozonesondes, vertical mixing was stronger at Edgewood. Approximately half the lower free troposphere sonde profiles have very dry laminae, with coincident aircraft spirals displaying low CO (80-110 ppbv), suggesting stratospheric influence. Ozone budgets at Beltsville in July 2011, determined with LID, as well as standard meteorological indicators, resemble those of 4 of the previous 5 summers. The penetration of stratospheric air throughout the troposphere appears to be typical for summer conditions in the Baltimore-Washington region.

    更新日期:2019-11-01
  • Ozone correlations between mid-tropospheric partial columns and the near-surface at two mid-atlantic sites during the DISCOVER-AQ campaign in July 2011.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    Douglas K Martins,Ryan M Stauffer,Anne M Thompson,Hannah S Halliday,Debra Kollonige,Everette Joseph,Andrew J Weinheimer

    The current network of ground-based monitors for ozone (O3) is limited due to the spatial heterogeneity of O3 at the surface. Satellite measurements can provide a solution to this limitation, but the lack of sensitivity of satellites to O3 within the boundary layer causes large uncertainties in satellite retrievals at the near-surface. The vertical variability of O3 was investigated using ozonesondes collected as part of NASA's Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign during July 2011 in the Baltimore, MD/Washington D.C. metropolitan area. A subset of the ozonesonde measurements was corrected for a known bias from the electrochemical solution strength using new procedures based on laboratory and field tests. A significant correlation of O3 over the two sites with ozonesonde measurements (Edgewood and Beltsville, MD) was observed between the mid-troposphere (7-10 km) and the near-surface (1-3 km). A linear regression model based on the partial column amounts of O3 within these subregions was developed to calculate the near-surface O3 using mid-tropospheric satellite measurements from the Tropospheric Emission Spectrometer (TES) onboard the Aura spacecraft. The uncertainties of the calculated near-surface O3 using TES mid-tropospheric satellite retrievals and a linear regression model were less than 20 %, which is less than that of the observed variability of O3 at the surface in this region. These results utilize a region of the troposphere to which existing satellites are more sensitive compared to the boundary layer and can provide information of O3 at the near-surface using existing satellite infrastructure and algorithms.

    更新日期:2019-11-01
  • Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    Ryan M Stauffer,Anne M Thompson

    Hourly surface meteorological measurements were coupled with surface ozone (O3) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O3 during bay breeze events and quantify the impact of the bay breeze on local O3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NOx): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

    更新日期:2019-11-01
  • Bay breeze influence on surface ozone at Edgewood, MD during July 2011.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    Ryan M Stauffer,Anne M Thompson,Douglas K Martins,Richard D Clark,Daniel L Goldberg,Christopher P Loughner,Ruben Delgado,Russell R Dickerson,Jeffrey W Stehr,Maria A Tzortziou

    Surface ozone (O3) was analyzed to investigate the role of the bay breeze on air quality at two locations in Edgewood, Maryland (lat: 39.4°, lon: -76.3°) for the month of July 2011. Measurements were taken as part of the first year of NASA's "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) Earth Venture campaign and as part of NASA's Geostationary for Coastal and Air Pollution Events Chesapeake Bay Oceanographic campaign with DISCOVER-AQ (Geo-CAPE CBODAQ). Geo-CAPE CBODAQ complements DISCOVER-AQ by providing ship-based observations over the Chesapeake Bay. A major goal of DISCOVER-AQ is determining the relative roles of sources, photochemistry and local meteorology during air quality events in the Mid-Atlantic region of the U.S. Surface characteristics, transport and vertical structures of O3 during bay breezes were identified using in-situ surface, balloon and aircraft data, along with remote sensing equipment. Localized late day peaks in O3 were observed during bay breeze days, maximizing an average of 3 h later compared to days without bay breezes. Of the 10 days of July 2011 that violated the U.S. Environmental Protection Agency (EPA) 8 h O3 standard of 75 parts per billion by volume (ppbv) at Edgewood, eight exhibited evidence of a bay breeze circulation. The results indicate that while bay breezes and the processes associated with them are not necessary to cause exceedances in this area, bay breezes exacerbate poor air quality that sustains into the late evening hours at Edgewood. The vertical and horizontal distributions of O3 from the coastal Edgewood area to the bay also show large gradients that are often determined by boundary layer stability. Thus, developing air quality models that can sufficiently resolve these dynamics and associated chemistry, along with more consistent monitoring of O3 and meteorology on and along the complex coastline of Chesapeake Bay must be a high priority.

    更新日期:2019-11-01
  • Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions.
    J. Atmos. Chem. (IF 1.783) Pub Date : 2015-12-23
    T Knepp,M Pippin,J Crawford,G Chen,J Szykman,R Long,L Cowen,A Cede,N Abuhassan,J Herman,R Delgado,J Compton,T Berkoff,J Fishman,D Martins,R Stauffer,A M Thompson,A Weinheimer,D Knapp,D Montzka,D Lenschow,D Neil

    Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO2) is briefly explored. The SO2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO2 concentrations are typically much higher.

    更新日期:2019-11-01
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug