当前期刊: Journal of Nanobiotechnology Go to current issue    加入关注   
显示样式:        排序: 导出
  • Core–shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-23
    O. M. Chepurna; A. Yakovliev; R. Ziniuk; O. A. Nikolaeva; S. M. Levchenko; H. Xu; M. Y. Losytskyy; J. L. Bricks; Yu. L. Slominskii; L. O. Vretik; J. Qu; T. Y. Ohulchanskyy

    Biodistribution of photosensitizer (PS) in photodynamic therapy (PDT) can be assessed by fluorescence imaging that visualizes the accumulation of PS in malignant tissue prior to PDT. At the same time, excitation of the PS during an assessment of its biodistribution results in premature photobleaching and can cause toxicity to healthy tissues. Combination of PS with a separate fluorescent moiety, which can be excited apart from PS activation, provides a possibility for fluorescence imaging (FI) guided delivery of PS to cancer site, followed by PDT. In this work, we report nanoformulations (NFs) of core–shell polymeric nanoparticles (NPs) co-loaded with PS [2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a, HPPH] and near infrared fluorescent organic dyes (NIRFDs) that can be excited in the first or second near-infrared windows of tissue optical transparency (NIR-I, ~ 700–950 nm and NIR-II, ~ 1000–1350 nm), where HPPH does not absorb and emit. After addition to nanoparticle suspensions, PS and NIRFDs are entrapped by the nanoparticle shell of co-polymer of N-isopropylacrylamide and acrylamide [poly(NIPAM-co-AA)], while do not bind with the polystyrene (polySt) core alone. Loading of the NIRFD and PS to the NPs shell precludes aggregation of these hydrophobic molecules in water, preventing fluorescence quenching and reduction of singlet oxygen generation. Moreover, shift of the absorption of NIRFD to longer wavelengths was found to strongly reduce an efficiency of the electronic excitation energy transfer between PS and NIRFD, increasing the efficacy of PDT with PS-NIRFD combination. As a result, use of the NFs of PS and NIR-II NIRFD enables fluorescence imaging guided PDT, as it was shown by confocal microscopy and PDT of the cancer cells in vitro. In vivo studies with subcutaneously tumored mice demonstrated a possibility to image biodistribution of tumor targeted NFs both using HPPH fluorescence with conventional imaging camera sensitive in visible and NIR-I ranges (~ 400–750 nm) and imaging camera for short-wave infrared (SWIR) region (~ 1000–1700 nm), which was recently shown to be beneficial for in vivo optical imaging. A combination of PS with fluorescence in visible and NIR-I spectral ranges and, NIR-II fluorescent dye allowed us to obtain PS nanoformulation promising for see-and-treat PDT guided with visible-NIR-SWIR fluorescence imaging.

  • Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-23
    Pablo Lara; Sujey Palma-Florez; Edison Salas-Huenuleo; Iva Polakovicova; Simón Guerrero; Lorena Lobos-Gonzalez; America Campos; Luis Muñoz; Carla Jorquera-Cordero; Manuel Varas-Godoy; Jorge Cancino; Eloísa Arias; Jaime Villegas; Luis J. Cruz; Fernando Albericio; Eyleen Araya; Alejandro H. Corvalan; Andrew F. G. Quest; Marcelo J. Kogan

    Extracellular vesicles (EVs) have shown great potential for targeted therapy, as they have a natural ability to pass through biological barriers and, depending on their origin, can preferentially accumulate at defined sites, including tumors. Analyzing the potential of EVs to target specific cells remains challenging, considering the unspecific binding of lipophilic tracers to other proteins, the limitations of fluorescence for deep tissue imaging and the effect of external labeling strategies on their natural tropism. In this work, we determined the cell-type specific tropism of B16F10-EVs towards cancer cell and metastatic tumors by using fluorescence analysis and quantitative gold labeling measurements. Surface functionalization of plasmonic gold nanoparticles was used to promote indirect labeling of EVs without affecting size distribution, polydispersity, surface charge, protein markers, cell uptake or in vivo biodistribution. Double-labeled EVs with gold and fluorescent dyes were injected into animals developing metastatic lung nodules and analyzed by fluorescence/computer tomography imaging, quantitative neutron activation analysis and gold-enhanced optical microscopy. We determined that B16F10 cells preferentially take up their own EVs, when compared with colon adenocarcinoma, macrophage and kidney cell-derived EVs. In addition, we were able to detect the preferential accumulation of B16F10 EVs in small metastatic tumors located in lungs when compared with the rest of the organs, as well as their precise distribution between tumor vessels, alveolus and tumor nodules by histological analysis. Finally, we observed that tumor EVs can be used as effective vectors to increase gold nanoparticle delivery towards metastatic nodules. Our findings provide a valuable tool to study the distribution and interaction of EVs in mice and a novel strategy to improve the targeting of gold nanoparticles to cancer cells and metastatic nodules by using the natural properties of malignant EVs.

  • Ternary nanocomposite carriers based on organic clay-lipid vesicles as an effective colon-targeted drug delivery system: preparation and in vitro/in vivo characterization
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-21
    Hyeon Young Kim; Jae Hee Cheon; Sang Hoon Lee; Jeong Youn Min; Seung-Yun Back; Jae Geun Song; Da Hye Kim; Soo-Jeong Lim; Hyo-Kyung Han

    This study aimed to develop a new colon-targeted drug delivery system via the preparation of ternary nanocomposite carriers based on organic polymer, aminoclay and lipid vesicles. Budesonide (Bud), an anti-inflammatory drug was chosen as a model drug and encapsulated into three different formulations: liposome (Bud-Lip), aminoclay-coated liposome (AC-Bud-Lip), and Eudragit® S100-aminoclay double coated liposome (EAC-Bud-Lip). The formation of the aminoclay-lipid vesicle nanocomposite was confirmed by energy dispersive X-ray spectrum, transmission electron microscopy, and Fourier-transform infrared spectroscopy. All formulations were produced with a high encapsulation efficiency in a narrow size distribution. Drug release from EAC-Bud-Lip was approximately 10% for 2-h incubation at pH 1.2, implying the minimal drug release in acidic gastric condition. At pH 7.4, EAC-Bud-Lip underwent significant size reduction and exhibited drug release profiles similar to that from AC-Bud-Lip, implying the pH-dependent removal of the outer coating layer. Compared to free Bud solution, EAC-Bud-Lip achieved a higher drug uptake in Caco-2 cells and exhibited a stronger inhibition of TNF-α and IL-6 secretion in LPS-stimulated Raw264.7 cells. Furthermore, a bio-distribution study in mice demonstrated that Eudragit® S100-aminoclay dual coating led to a higher colonic distribution with a longer residence time, which correlated well with the delayed systemic drug exposure in rats. Taken together, the present study suggests that the ternary nanocomposite carrier consisting of Eudragit® S100, aminoclay, and lipid vesicle might be useful as an effective colon-targeted drug delivery system.

  • Core–shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-21
    Dávid Kovács; Nóra Igaz; Annamária Marton; Andrea Rónavári; Péter Bélteky; László Bodai; Gabriella Spengler; László Tiszlavicz; Zsolt Rázga; Péter Hegyi; Csaba Vizler; Imre M. Boros; Zoltán Kónya; Mónika Kiricsi

    Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.

  • Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmid
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-20
    Ami Jo; Veronica M. Ringel-Scaia; Dylan K. McDaniel; Cassidy A. Thomas; Rui Zhang; Judy S. Riffle; Irving C. Allen; Richey M. Davis

    The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR–Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells. Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR–Cas9 plasmid into primary bone marrow derived macrophages. The engineered PLGA-based carriers were approximately 160 nm and fluorescently labeled by encapsulation of the fluorophore 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). An amine-end capped PLGA encapsulated 1.6 wt% DNA, with an encapsulation efficiency of 80%. Release studies revealed that most of the DNA was released within the first 24 h and corresponded to ~ 2–3 plasmid copies released per nanoparticle. In vitro experiments conducted with murine bone marrow derived macrophages demonstrated that after 24 h of treatment with the PLGA-encapsulated CRISPR plasmids, the majority of cells were positive for TIPS pentacene and the protein Cas9 was detectable within the cells. In this work, plasmids for the CRISPR–Cas9 system were encapsulated in nanoparticles comprised of PLGA and were shown to induce expression of bacterial Cas9 in murine bone marrow derived macrophages in vitro. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR–Cas9 system.

  • Development of elastin-like polypeptide for targeted specific gene delivery in vivo
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-17
    Aena Yi; Dahye Sim; Young-Jin Lee; Vijaya Sarangthem; Rang-Woon Park

    The successful deliveries of siRNA depend on their stabilities under physiological conditions because greater in vivo stability enhances cellular uptake and enables endosomal escape. Viral-based systems appears as most efficient approaches for gene delivery but often compromised in terms of biocompatibility, patient safety and high cost scale up process. Here we describe a novel platform of gene delivery by elastin-like polypeptide (ELP) based targeting biopolymers. For better tumor targeting and membrane penetrating characteristics, we designed various chimeric ELP-based carriers containing a cell penetrating peptide (Tat), single or multiple copies of AP1 an IL-4 receptor targeting peptide along with coding sequence of ELP and referred as Tat-A1E28 or Tat-A4V48. These targeted polypeptides were further analyzed for its ability to deliver siRNA (Luciferase gene) in tumor cells in comparison with non-targeted controls (Tat-E28 or E28). The positively charged amino acids of these polypeptides enabled them to readily complex with negatively charged nucleic acids. The complexation of nucleic acid with respective polypeptides facilitated its transfection efficiency as well as stability. The targeted polypeptides (Tat-A1E28 or Tat-A4V48) selectively delivered siRNA into tumor cells in a receptor-specific fashion, achieved endosomal and lysosomal escape, and released gene into cytosol. The target specific delivery of siRNA by Tat-A1E28 or Tat-A4V48 was further validated in murine breast carcinoma 4T1 allograft mice model. The designed delivery systems efficiently delivered siRNA to the target site of action thereby inducing significant gene silencing activity. The study shows Tat and AP1 functionalized ELPs constitute a novel gene delivery system with potential therapeutic applications.

  • Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-15
    Ming Gao; Yifeng Yang; Andreas Bergfel; Lanli Huang; Li Zheng; Tim Melander Bowden

    During the past few decades, drug delivery system (DDS) has attracted many interests because it could enhance the therapeutic effects of drugs and reduce their side effects. The advent of nanotechnology has promoted the development of nanosized DDSs, which could promote drug cellular uptake as well as prolong the half-life in blood circulation. Novel polymer micelles formed by self-assembly of amphiphilic polymers in aqueous solution have emerged as meaningful nanosystems for controlled drug release due to the reversible destabilization of hydrophobic domains under different conditions. The amphiphilic polymers presented here were composed of cholesterol groups end capped and poly (poly (ethylene glycol) methyl ether methacrylate) (poly (OEGMA)) as tailed segments by the synthesis of cholesterol-based initiator, followed by atom transfer radical polymerization (ATRP) with OEGMA monomer. FT-IR and NMR confirmed the successfully synthesis of products including initiator and polymers as well as the Mw of the polymers were from 33,233 to 89,088 g/mol and their corresponding PDI were from 1.25 to 1.55 by GPC. The average diameter of assembled polymer micelles was in hundreds nanometers demonstrated by DLS, AFM and SEM. The behavior of the amphiphilic polymers as micelles was investigated using pyrene probing to explore their critical micelle concentration (CMC) ranging from 2.53 × 10−4 to 4.33 × 10−4 mg/ml, decided by the balance between cholesterol and poly (OEGMA). Besides, the CMC of amphiphilic polymers, the quercetin (QC) feeding ratio and polarity of solvents determined the QC loading ratio maximized reaching 29.2% certified by UV spectrum, together with the corresponding size and stability changes by DLS and Zeta potential, and thermodynamic changes by TGA and DSC. More significantly, cholesterol end-capped polymer micelles were used as nanosized systems for controlled drug release, not only alleviated the cytotoxicity of QC from 8.6 to 49.9% live cells and also achieved the QC release in control under different conditions, such as the presence of cyclodextrin (CD) and change of pH in aqueous solution. The results observed in this study offered a strong foundation for the design of favorable polymer micelles as nanosized systems for controlled drug release, and the molecular weight adjustable amphiphilic polymer micelles held potential for use as controlled drug release system in practical application.

  • Biodistribution, biocompatibility and targeted accumulation of magnetic nanoporous silica nanoparticles as drug carrier in orthopedics
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-15
    Hilke Catherina Janßen; Nina Angrisani; Stefan Kalies; Florian Hansmann; Manfred Kietzmann; Dawid Peter Warwas; Peter Behrens; Janin Reifenrath

    In orthopedics, the treatment of implant-associated infections represents a high challenge. Especially, potent antibacterial effects at implant surfaces can only be achieved by the use of high doses of antibiotics, and still often fail. Drug-loaded magnetic nanoparticles are very promising for local selective therapy, enabling lower systemic antibiotic doses and reducing adverse side effects. The idea of the following study was the local accumulation of such nanoparticles by an externally applied magnetic field combined with a magnetizable implant. The examination of the biodistribution of the nanoparticles, their effective accumulation at the implant and possible adverse side effects were the focus. In a BALB/c mouse model (n = 50) ferritic steel 1.4521 and Ti90Al6V4 (control) implants were inserted subcutaneously at the hindlimbs. Afterwards, magnetic nanoporous silica nanoparticles (MNPSNPs), modified with rhodamine B isothiocyanate and polyethylene glycol-silane (PEG), were administered intravenously. Directly/1/7/21/42 day(s) after subsequent application of a magnetic field gradient produced by an electromagnet, the nanoparticle biodistribution was evaluated by smear samples, histology and multiphoton microscopy of organs. Additionally, a pathohistological examination was performed. Accumulation on and around implants was evaluated by droplet samples and histology. Clinical and histological examinations showed no MNPSNP-associated changes in mice at all investigated time points. Although PEGylated, MNPSNPs were mainly trapped in lung, liver, and spleen. Over time, they showed two distributional patterns: early significant drops in blood, lung, and kidney and slow decreases in liver and spleen. The accumulation of MNPSNPs on the magnetizable implant and in its area was very low with no significant differences towards the control. Despite massive nanoparticle capture by the mononuclear phagocyte system, no significant pathomorphological alterations were found in affected organs. This shows good biocompatibility of MNPSNPs after intravenous administration. The organ uptake led to insufficient availability of MNPSNPs in the implant region. For that reason, among others, the nanoparticles did not achieve targeted accumulation in the desired way, manifesting future research need. However, with different conditions and dimensions in humans and further modifications of the nanoparticles, this principle should enable reaching magnetizable implant surfaces at any time in any body region for a therapeutic reason.

  • Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-13
    Pegah Mahmoodi; Majid Rezayi; Elisa Rasouli; Amir Avan; Mehrdad Gholami; Majid Ghayour Mobarhan; Ehsan Karimi; Yatima Alias

    In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for successful treatment is essential. The present study describes the development of a selective and sensitive electrochemical biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode (SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided by l-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA. The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples. According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.

  • Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-13
    Linlin Ma; Min Zhu; Junwei Gai; Guanghui Li; Qing Chang; Peng Qiao; Longlong Cao; Wanqing Chen; Siyuan Zhang; Yakun Wan

    CD47, the integrin-related protein, plays an important role in immune resistance and escape of tumor cells. Antibodies blocking the CD47/SIRPα signal pathway can effectively stimulate macrophage-mediated phagocytosis of tumor cells, which becomes a promising approach for tumor immunotherapy. Nanobodies (Nbs) derived from camelid animals are emerging as a new force in antibody therapy. HuNb1-IgG4, an innovative anti-CD47 nanobody, was developed with high affinity and specificity. It effectively enhanced macrophage-mediated phagocytosis of tumor cells in vitro and showed potent anti-ovarian and anti-lymphoma activity in vivo. Importantly, HuNb1-IgG4 did not induce the agglutination of human red blood cells (RBCs) in vitro and exhibited high safety for hematopoietic system in cynomolgus monkey. In addition, HuNb1-IgG4 could be produced on a large scale in CHO-S cells with high activity and good stability. Also, we established anti-CD47/CD20 bispecific antibody (BsAb) consisted of HuNb1 and Rituximab, showing more preference binding to tumor cells and more potent anti-lymphoma activity compared to HuNb1-IgG4. Both of HuNb1-IgG4 and anti-CD47/CD20 BsAb are potent antagonists of CD47/SIRPα pathway and promising candidates for clinical trials.

  • Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-09
    He Wang; Fangke Zhang; Huaying Wen; Wenwen Shi; Qiudi Huang; Yugang Huang; Jiacui Xie; Peiyin Li; Jianhai Chen; Linghao Qin; Yi Zhou

    Chemotherapeutic drugs frequently encounter multidrug resistance. ATP from mitochondria helps overexpression of drug efflux pumps to induce multidrug resistance, so mitochondrial delivery as a means of “repurposing’’ chemotherapeutic drugs currently used in the clinic appears to be a worthwhile strategy to pursue for the development of new anti-drug-resistant cancer agents. TPP-Pluronic F127-hyaluronic acid (HA) (TPH), with a mitochondria-targeting triphenylphosphine (TPP) head group, was first synthesized through ester bond formation. Paclitaxel (PTX)-loaded TPH (TPH/PTX) nanomicelles exhibited excellent physical properties and significantly inhibited A549/ADR cells. After TPH/PTX nanomicelles entered acidic lysosomes through macropinocytosis, the positively charged TP/PTX nanomicelles that resulted from degradation of HA by hyaluronidase (HAase) in acidic lysosomes were exposed and completed lysosomal escape at 12 h, finally localizing to mitochondria over a period of 24 h in A549/ADR cells. Subsequently, TPH/PTX caused mitochondrial outer membrane permeabilization (MOMP) by inhibiting antiapoptotic Bcl-2, leading to cytochrome C release and activation of caspase-3 and caspase-9. In an A549/ADR xenograft tumor model and a drug-resistant breast cancer-bearing mouse model with lung metastasis, TPH/PTX nanomicelles exhibited obvious tumor targeting and significant antitumor efficacy. This work presents the potential of a single, nontoxic nanoparticle (NP) platform for mitochondria-targeted delivery of therapeutics for diverse drug-resistant cancers.

  • Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-09
    Wenjing Liu; Guilan Zhang; Junrong Wu; Yanli Zhang; Jia Liu; Haiyun Luo; Longquan Shao

    The vascular system, which transports oxygen and nutrients, plays an important role in wound healing, cardiovascular disease treatment and bone tissue engineering. Angiogenesis is a complex and delicate regulatory process. Vascular cells, the extracellular matrix (ECM) and angiogenic factors are indispensable in the promotion of lumen formation and vascular maturation to support blood flow. However, the addition of growth factors or proteins involved in proangiogenic effects is not effective for regulating angiogenesis in different microenvironments. The construction of biomaterial scaffolds to achieve optimal growth conditions and earlier vascularization is undoubtedly one of the most important considerations and major challenges among engineering strategies. Nanomaterials have attracted much attention in biomedical applications due to their structure and unique photoelectric and catalytic properties. Nanomaterials not only serve as carriers that effectively deliver factors such as angiogenesis-related proteins and mRNA but also simulate the nano-topological structure of the primary ECM of blood vessels and stimulate the gene expression of angiogenic effects facilitating angiogenesis. Therefore, the introduction of nanomaterials to promote angiogenesis is a great helpful to the success of tissue regeneration and some ischaemic diseases. This review focuses on the angiogenic effects of nanoscaffolds in different types of tissue regeneration and discusses the influencing factors as well as possible related mechanisms of nanomaterials in endothelial neovascularization. It contributes novel insights into the design and development of novel nanomaterials for vascularization and therapeutic applications.

  • Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-09
    Gaofeng Liang; Yanliang Zhu; Doulathunnisa Jaffar Ali; Tian Tian; Huantian Xu; Ke Si; Bo Sun; Baoan Chen; Zhongdang Xiao

    5-Fluorouracil (5-FU) has been commonly prescribed for patients with colorectal cancer (CRC), but resistance to 5-FU is one of the main reasons for failure in CRC. Recently, microRNAs (miRNAs) have been established as a means of reversing the dilemma by regulating signaling pathways involved in initiation and progression of CRC. However, how to safely and effectively deliver miRNA to target cells becomes a main challenge. In this study, Engineered exosomes were exploited to simultaneously deliver an anticancer drug 5-FU and miR-21 inhibitor oligonucleotide (miR-21i) to Her2 expressing cancer cells. Purified engineered exosomes from the donor cells loaded with 5-FU and miR-21i via electroporation to introduce into 5-FU-resistant colorectal cancer cell line HCT-1165FR. Furthermore, systematic administration of 5-FU and miR-21i loaded exosomes in tumor bearing mice indicated a significantly anti-tumor effect. The results showed that the engineered exosome-based 5-FU and miR-21i co-delivery system could efficiently facilitate cellular uptake and significantly down-regulate miR-21 expression in 5-FU resistant HCT-1165FR cell lines. Consequently, the down-regulation of miR-21 induced cell cycle arrest, reduced tumor proliferation, increased apoptosis and rescued PTEN and hMSH2 expressions, regulatory targets of miR-21. Of particular importance was the significant reduction in tumor growth in a mouse model of colon cancer with systematic administration of the targeting miR-21i. More excitedly, the combinational delivery of miR-21i and 5-FU with the engineered exosomes effectively reverse drug resistance and significantly enhanced the cytotoxicity in 5-FU-resistant colon cancer cells, compared with the single treatment with either miR-21i or 5-FU. The strategy for co-delivering the functional small RNA and anticancer drug by exosomes foreshadows a potential approach to reverse the drug resistance in CRC and thus to enhance the efficacy of the cancer treatment.

  • Ultrasensitive haptoglobin biomarker detection based on amplified chemiluminescence of magnetite nanoparticles
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-07
    Narsingh R. Nirala; Yifat Harel; Jean-Paul Lellouche; Giorgi Shtenberg

    Haptoglobin is an acute-phase protein used as predicting diagnostic biomarker both in humans (i.e., diabetes, ovarian cancer, some neurological and cardiovascular disorders) and in animals (e.g., bovine mastitis). The latter is a frequent disease of dairy industry with staggering economical losses upon decreased milk production and increased health care costs. Early stage diagnosis of the associated diseases or inflammation onset is almost impossible by conventional analytical manners. The present study demonstrates a simple, rapid, and cost-effective label-free chemiluminescence bioassay based on magnetite nanoparticles (MNPs) for sensitive detection of haptoglobin by employing the specific interaction of hemoglobin-modified MNPs. The resulting haptoglobin-hemoglobin complex inhibits the peroxidase-like activity of luminol/H2O2-hemoglobin-MNPs sensing scheme and reduces the chemiluminescence intensities correspondingly to the innate haptoglobin concentrations. Quantitative detection of bovine haptoglobin was obtained within the range of 1 pg mL−1 to 1 µg mL−1, while presenting 0.89 pg mL−1 limit of detection. Moreover, the influence of causative pathogenic bacteria (i.e., Streptococcus dysgalactiae and Escherichia coli) and somatic cell counts (depicting healthy, sub-clinical and clinical mastitis) on the emitted chemiluminescence radiation were established. The presented bioassay quantitative performances correspond with a standardized assay kit in differentiating dissimilar milk qualities. Overall, the main advantage of the presented sensing concept is the ability to detect haptoglobin, at clinically relevant concentrations within real milk samples for early bio-diagnostic detection of mastitis and hence adjusting the precise treatment, potentially initiating a positive influence on animals’ individual health and hence on dairy farms economy.

  • Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-07
    Qizhong Lu; Xiaoxuan Li; Jiakai Zhao; Jiahong Zhu; Yuhang Luo; Hong Duan; Pinpin Ji; Kun Wang; Baoyuan Liu; Xueting Wang; Wenqi Fan; Yani Sun; En-Min Zhou; Qin Zhao

    Antibodies are an important reagent to determine the specificity and accuracy of diagnostic immunoassays for various diseases. However, traditional antibodies have several shortcomings due to their limited abundance, difficulty in permanent storage, and required use of a secondary antibody. Nanobodies, which are derived from single-chain camelid antibodies, can circumvent many of these limitations and, thus, appear to be a promising substitute. In the presented study, a sandwich ELISA-like immunoassay and direct fluorescent assay with high sensitivity, good specificity, and easy operation were the first time to develop for detecting porcine parvovirus (PPV). After screening PPV viral particles 2 (VP2) specific nanobodies, horseradish peroxidase (HRP) and enhanced green fluorescent protein (EGFP) fusions were derived from the nanobodies by recombinant technology. Finally, using the nanobody-HRP and -EGFP fusions as probes, the developed immunoassays demonstrate specific, sensitive, and rapid detection of PPV. In the study, five PPV-VP2 specific nanobodies screened from an immunised Bactrian camel were successfully expressed with the bacterial system and purified with a Ni–NTA column. Based on the reporter-nanobody platform, HRP and EGFP fusions were separately produced by transfection of HEK293T cells. A sandwich ELISA-like assay for detecting PPV in the samples was firstly developed using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusions as the detection antibody. The assay showed 92.1% agreement with real-time PCR and can be universally used to surveil PPV infection in the pig flock. In addition, a direct fluorescent assay using PPV-VP2-Nb12-EGFP fusion as a probe was developed to detect PPV in ST cells. The assay showed 81.5% agreement with real-time PCR and can be used in laboratory tests. For the first time, five PPV-VP2 specific nanobody-HRP and -EGFP fusions were produced as reagents for developing immunoassays. A sandwich ELISA-like immunoassay using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusion as the detection antibody was the first time to develop for detecting PPV in different samples. Results showed that the immunoassay can be universally used to surveil PPV infection in pig flock. A direct fluorescent assay using PPV-VP2-Nb12-EGFP as a probe was also developed to detect PPV in ST cells. The two developed immunoassays eliminate the use of commercial secondary antibodies and shorten detection time. Meanwhile, both assays display great developmental prospect for further commercial production and application.

  • Soybean lecithin stabilizes disulfiram nanosuspensions with a high drug-loading content: remarkably improved antitumor efficacy
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-06
    Haowen Li; Biao Liu; Hui Ao; Jingxin Fu; Yian Wang; Yue Feng; Yifei Guo; Xiangtao Wang

    Disulfiram (DSF) has been considered as “Repurposing drug” in cancer therapy in recent years based on its good antitumor efficacy. DSF is traditionally used as an oral drug in the treatment of alcoholism. To overcome its rapid degradation and instability, DSF nanosuspensions (DSF/SPC-NSps) were prepared using soybean lecithin (SPC) as a stabilizer of high drug-loaded content (44.36 ± 1.09%). Comprehensive characterization of the nanosuspensions was performed, and cell cytotoxicity, in vivo antitumor efficacy and biodistribution were studied. DSF/SPC-NSps, having a spherical appearance with particle size of 155 nm, could remain very stable in different physiological media, and sustained release. The in vitro MTT assay indicated that the cytotoxicity of DSF/SPC-NSps was enhanced remarkably compared to free DSF against the 4T1 cell line. The IC50 value decreased by 11-fold (1.23 vs. 13.93 μg/mL, p < 0.01). DSF/SPC-NSps groups administered via intravenous injections exhibited better antitumor efficacy compared to the commercial paclitaxel injection (PTX injection) and had a dose-dependent effect in vivo. Notably, DSF/SPC-NSps exhibited similar antitumor activity following oral administration as PTX administration via injection into a vein. These results suggest that the prepared nanosuspensions can be used as a stable delivery vehicle for disulfiram, which has potential application in breast cancer chemotherapy.

  • Biological response and cytotoxicity induced by lipid nanocapsules
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-06
    Marzena Szwed; Maria Lyngaas Torgersen; Remya Valsala Kumari; Sunil Kumar Yadava; Sascha Pust; Tore Geir Iversen; Tore Skotland; Jyotsnendu Giri; Kirsten Sandvig

    Lipid nanocapsules (LNCs) are promising vehicles for drug delivery. However, since not much was known about cellular toxicity of these nanoparticles in themselves, we have here investigated the mechanisms involved in LNC-induced intoxication of the three breast cancer cell lines MCF-7, MDA-MD-231 and MDA-MB-468. The LNCs used were made of Labrafac™ Lipophile WL1349, Lipoid® S75 and Solutol® HS15. High resolution SIM microscopy showed that the DiD-labeled LNCs ended up in lysosomes close to the membrane. Empty LNCs, i.e. without encapsulated drug, induced not only increased lysosomal pH, but also acidification of the cytosol and a rapid inhibition of protein synthesis. The cytotoxicity of the LNCs were measured for up to 72 h of incubation using the MTT assay and ATP measurements in all three cell lines, and revealed that MDA-MB-468 was the most sensitive cell line and MCF-7 the least sensitive cell line to these LNCs. The LNCs induced generation of reactive free oxygen species and lipid peroxidation. Experiments with knock-down of kinases in the near-haploid cell line HAP1 indicated that the kinase HRI is essential for the observed phosphorylation of eIF2α. Nrf2 and ATF4 seem to play a protective role against the LNCs in MDA-MB-231 cells, as knock-down of these factors sensitizes the cells to the LNCs. This is in contrast to MCF-7 cells where the knock-down of these factors had a minor effect on the toxicity of the LNCs. Inhibitors of ferroptosis provided a large protection against LNC toxicity in MDA-MB-231 cells, but not in MCF-7 cells. High doses of LNCs showed a different degree of toxicity on the three cell lines studied, i.e. MCF-7, MDA-MD-231 and MDA-MB-468 and affected signaling factors and the cell fate differently in these cell lines.

  • Breaking the selectivity-uptake trade-off of photoimmunoconjugates with nanoliposomal irinotecan for synergistic multi-tier cancer targeting
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-02
    Barry J. Liang; Michael Pigula; Yan Baglo; Daniel Najafali; Tayyaba Hasan; Huang-Chiao Huang

    Photoimmunotherapy involves targeted delivery of photosensitizers via an antibody conjugate (i.e., photoimmunoconjugate, PIC) followed by light activation for selective tumor killing. The trade-off between PIC selectivity and PIC uptake is a major drawback limiting the efficacy of photoimmunotherapy. Despite ample evidence showing that photoimmunotherapy is most effective when combined with chemotherapy, the design of nanocarriers to co-deliver PICs and chemotherapy drugs remains an unmet need. To overcome these challenges, we developed a novel photoimmunoconjugate-nanoliposome (PIC-Nal) comprising of three clinically used agents: anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody cetuximab (Cet), benzoporphyrin derivative (BPD) photosensitizer, and irinotecan (IRI) chemotherapy. The BPD photosensitizers were first tethered to Cet at a molar ratio of 6:1 using carbodiimide chemistry to form PICs. Conjugation of PICs onto nanoliposome irinotecan (Nal–IRI) was facilitated by copper-free click chemistry, which resulted in monodispersed PIC–Nal–IRI with an average size of 158.8 ± 15.6 nm. PIC–Nal–IRI is highly selective against EGFR-overexpressing epithelial ovarian cancer cells with 2- to 6-fold less accumulation in low EGFR expressing cells. Successful coupling of PIC onto Nal–IRI enhanced PIC uptake and photoimmunotherapy efficacy by up to 30% in OVCAR-5 cells. Furthermore, PIC–Nal–IRI synergistically reduced cancer viability via a unique three-way mechanism (i.e., EGFR downregulation, mitochondrial depolarization, and DNA damage). It is increasingly evident that the most effective therapies for cancer will involve combination treatments that target multiple non-overlapping pathways while minimizing side effects. Nanotechnology combined with photochemistry provides a unique opportunity to simultaneously deliver and activate multiple drugs that target all major regions of a cancer cell—plasma membrane, cytoplasm, and nucleus. PIC–Nal–IRI offers a promising strategy to overcome the selectivity-uptake trade-off, improve photoimmunotherapy efficacy, and enable multi-tier cancer targeting. Controllable drug compartmentalization, easy surface modification, and high clinical relevance collectively make PIC–Nal–IRI extremely valuable and merits further investigations in living animals.

  • Correction to: Current outlook on radionuclide delivery systems: from design consideration to translation into clinics
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-02
    Oleksii O. Peltek; Albert R. Muslimov; Mikhail V. Zyuzin; Alexander S. Timin

    After publication of this article, an error was found in the description of the holmium isotopes. 165Ho is a stable isotope a fraction of which is activated to 166Ho by neutron activation in a nuclear reactor [2]. In one paragraph of the published article, describing holmium containing QuiremSpheres, 165Ho should be replaced with 166Ho. The correct description is given below.

  • Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2020-01-02
    Urszula Wnorowska; Krzysztof Fiedoruk; Ewelina Piktel; Suhanya V. Prasad; Magdalena Sulik; Marianna Janion; Tamara Daniluk; Paul B. Savage; Robert Bucki

    Nanotechnology-based therapeutic approaches have attracted attention of scientists, in particular due to the special features of nanomaterials, such as adequate biocompatibility, ability to improve therapeutic efficiency of incorporated drugs and to limit their adverse effects. Among a variety of reported nanomaterials for biomedical applications, metal and metal oxide-based nanoparticles offer unique physicochemical properties allowing their use in combination with conventional antimicrobials and as magnetic field-controlled drug delivery nanocarriers. An ever-growing number of studies demonstrate that by combining magnetic nanoparticles with membrane-active, natural human cathelicidin-derived LL-37 peptide, and its synthetic mimics such as ceragenins, innovative nanoagents might be developed. Between others, they demonstrate high clinical potential as antimicrobial, anti-cancer, immunomodulatory and regenerative agents. Due to continuous research, knowledge on pleiotropic character of natural antibacterial peptides and their mimics is growing, and it is justifying to stay that the therapeutic potential of nanosystems containing membrane active compounds has not been exhausted yet.

  • Size-dependent tissue-specific biological effects of core–shell structured Fe3O4@SiO2–NH2 nanoparticles
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-23
    Jinquan Li; Zhongxue Yuan; Huili Liu; Jianghua Feng; Zhong Chen

    Understanding the in vivo size-dependent pharmacokinetics and toxicity of nanoparticles is crucial to determine their successful development. Systematic studies on the size-dependent biological effects of nanoparticles not only help to unravel unknown toxicological mechanism but also contribute to the possible biological applications of nanomaterial. In this study, the biodistribution and the size-dependent biological effects of Fe3O4@SiO2–NH2 nanoparticles (Fe@Si-NPs) in three diameters (10, 20 and 40 nm) were investigated by ICP-AES, serum biochemistry analysis and NMR-based metabolomic analysis after intravenous administration in a rat model. Our findings indicated that biodistribution and biological activities of Fe@Si-NPs demonstrated the obvious size-dependent and tissue-specific effects. Spleen and liver are the target tissues of Fe@Si-NPs, and 20 nm of Fe@Si-NPs showed a possible longer blood circulation time. Quantitative biochemical analysis showed that the alterations of lactate dehydrogenase (LDH) and uric acid (UA) were correlated to some extent with the sizes of Fe@Si-NPs. The untargeted metabolomic analyses of tissue metabolomes (kidney, liver, lung, and spleen) indicated that different sizes of Fe@Si-NPs were involved in the different biochemical mechanisms. LDH, formate, uric acid, and GSH related metabolites were suggested as sensitive indicators for the size-dependent toxic effects of Fe@Si-NPs. The findings from serum biochemical analysis and metabolomic analysis corroborate each other. Thus we proposed a toxicity hypothesis that size-dependent NAD depletion may occur in vivo in response to nanoparticle exposure. To our knowledge, this is the first report that links size-dependent biological effects of nanoparticles with in vivo NAD depletion in rats. The integrated metabolomic approach is an effective tool to understand physiological responses to the size-specific properties of nanoparticles. Our results can provide a direction for the future biological applications of Fe@Si-NPs.

  • Incorporation of drug efflux inhibitor and chemotherapeutic agent into an inorganic/organic platform for the effective treatment of multidrug resistant breast cancer
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-23
    Yang Dong; Hongze Liao; Jian Yu; Hao Fu; De Zhao; Ke Gong; Qi Wang; Yourong Duan

    Multidrug resistance (MDR) is a pressing obstacle in clinical chemotherapy for breast cancer. Based on the fact that the drug efflux is an important factor in MDR, we designed a codelivery system to guide the drug efflux inhibitor verapamil (VRP) and the chemotherapeutic agent novantrone (NVT) synergistically into breast cancer cells to reverse MDR. This co-delivery system consists of following components: the active targeting peptide RGD, an inorganic calcium phosphate (CaP) shell and an organic inner core. VRP and NVT were loaded into CaP shell and phosphatidylserine polyethylene glycol (PS-PEG) core of nanoparticles (NPs) separately to obtain NVT- and VRP-loaded NPs (NV@CaP-RGD). These codelivered NPs allowed VRP to prevent the efflux of NVT from breast cancer cells by competitively combining with drug efflux pumps. Additionally, NV@CaP-RGD was effectively internalized into breast cancer cells by precise delivery through the effects of the active targeting peptides RGD and EPR. The pH-triggered profile of CaP was also able to assist the NPs to successfully escape from lysosomes, leading to a greatly increased effective intracellular drug concentration. The concurrent administration of VRP and NVT by organic/inorganic NPs is a promising therapeutic approach to reverse MDR in breast cancer.

  • Biodegraded magnetosomes with reduced size and heating power maintain a persistent activity against intracranial U87-Luc mouse GBM tumors
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-23
    Edouard Alphandéry; Ahmed Idbaih; Clovis Adam; Jean-Yves Delattre; Charlotte Schmitt; Florence Gazeau; François Guyot; Imène Chebbi

    An important but rarely addressed question in nano-therapy is to know whether bio-degraded nanoparticles with reduced sizes and weakened heating power are able to maintain sufficient anti-tumor activity to fully eradicate a tumor, hence preventing tumor re-growth. To answer it, we studied magnetosomes, which are nanoparticles synthesized by magnetotactic bacteria with sufficiently large sizes (~ 30 nm on average) to enable a follow-up of nanoparticle sizes/heating power variations under two different altering conditions that do not prevent anti-tumor activity, i.e. in vitro cellular internalization and in vivo intra-tumor stay for more than 30 days. When magnetosomes are internalized in U87-Luc cells by being incubated with these cells during 24 h in vitro, the dominant magnetosome sizes within the magnetosome size distribution (DMS) and specific absorption rate (SAR) strongly decrease from DMS ~ 40 nm and SAR ~ 1234 W/gFe before internalization to DMS ~ 11 nm and SAR ~ 57 W/gFe after internalization, a behavior that does not prevent internalized magnetosomes to efficiently destroy U87-Luc cell, i.e. the percentage of U87-Luc living cells incubated with magnetosomes decreases by 25% between before and after alternating magnetic field (AMF) application. When 2 µl of a suspension containing 40 µg of magnetosomes are administered to intracranial U87-Luc tumors of 2 mm3 and exposed (or not) to 15 magnetic sessions (MS), each one consisting in 30 min application of an AMF of 27 mT and 198 kHz, DMS and SAR decrease between before and after the 15 MS from ~ 40 nm and ~ 4 W/gFe down to ~ 29 nm and ~ 0 W/gFe. Although the magnetosome heating power is weakened in vivo, i.e. no measurable tumor temperature increase is observed after the sixth MS, anti-tumor activity remains persistent up to the 15th MS, resulting in full tumor disappearance among 50% of treated mice. Here, we report sustained magnetosome anti-tumor activity under conditions of significant magnetosome size reduction and complete loss of magnetosome heating power.

  • Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-17
    Yanlong Jia; Chaochao Wang; Jiehua Zheng; Guisen Lin; Dalong Ni; Zhiwei Shen; Baoxuan Huang; Yan Li; Jitian Guan; Weida Hong; Yuanfeng Chen; Renhua Wu

    Nanomedicine is a promising new approach to cancer treatment that avoids the disadvantages of traditional chemotherapy and improves therapeutic indices. However, the lack of a real-time visualization imaging technology to monitor drug distribution greatly limits its clinical application. Image-tracked drug delivery is of great clinical interest; it is useful for identifying those patients for whom the therapy is more likely to be beneficial. This paper discusses a novel nanomedicine that displays features of nanoparticles and facilitates functional magnetic resonance imaging but is challenging to prepare. To achieve this goal, we synthesized an acylamino-containing amphiphilic block copolymer (polyethylene glycol-polyacrylamide-polyacetonitrile, PEG-b-P(AM-co-AN)) by reversible addition-fragmentation chain transfer (RAFT) polymerization. The PEG-b-P(AM-co-AN) has chemical exchange saturation transfer (CEST) effects, which enable the use of CEST imaging for monitoring nanocarrier accumulation and providing molecular information of pathological tissues. Based on PEG-b-P(AM-co-AN), a new nanomedicine PEG-PAM-PAN@DOX was constructed by nano-precipitation. The self-assembling nature of PEG-PAM-PAN@DOX made the synthesis effective, straightforward, and biocompatible. In vitro studies demonstrate decreased cytotoxicity of PEG-PAM-PAN@DOX compared to free doxorubicin (half-maximal inhibitory concentration (IC50), mean ~ 0.62 μg/mL vs. ~ 5 μg/mL), and the nanomedicine more efficiently entered the cytoplasm and nucleus of cancer cells to kill them. Further, in vivo animal experiments showed that the nanomedicine developed was not only effective against breast cancer, but also displayed an excellent sensitive CEST effect for monitoring drug accumulation (at about 0.5 ppm) in tumor areas. The CEST signal of post-injection 2 h was significantly higher than that of pre-injection (2.17 ± 0.88% vs. 0. 09 ± 0.75%, p < 0.01). The nanomedicine with CEST imaging reflects the characterization of tumors and therapeutic functions has great potential medical applications.

  • Nanotechnology advances towards development of targeted-treatment for obesity
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-16
    Nicole Remaliah Samantha Sibuyi; Koena Leah Moabelo; Mervin Meyer; Martin Opiyo Onani; Admire Dube; Abram Madimabe Madiehe

    Obesity through its association with type 2 diabetes (T2D), cancer and cardiovascular diseases (CVDs), poses a serious health threat, as these diseases contribute to high mortality rates. Pharmacotherapy alone or in combination with either lifestyle modification or surgery, is reliable in maintaining a healthy body weight, and preventing progression to obesity-induced diseases. However, the anti-obesity drugs are limited by non-specificity and unsustainable weight loss effects. As such, novel and improved approaches for treatment of obesity are urgently needed. Nanotechnology-based therapies are investigated as an alternative strategy that can treat obesity and be able to overcome the drawbacks associated with conventional therapies. The review presents three nanotechnology-based anti-obesity strategies that target the white adipose tissues (WATs) and its vasculature for the reversal of obesity. These include inhibition of angiogenesis in the WATs, transformation of WATs to brown adipose tissues (BATs), and photothermal lipolysis of WATs. Compared to conventional therapy, the targeted-nanosystems have high tolerability, reduced side effects, and enhanced efficacy. These effects are reproducible using various nanocarriers (liposomes, polymeric and gold nanoparticles), thus providing a proof of concept that targeted nanotherapy can be a feasible strategy that can combat obesity and prevent its comorbidities.

  • iRGD-guided tamoxifen polymersomes inhibit estrogen receptor transcriptional activity and decrease the number of breast cancer cells with self-renewing capacity
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-07
    María Inés Diaz Bessone; Lorena Simón-Gracia; Pablo Scodeller; María de los Angeles Ramirez; María Amparo Lago Huvelle; Galo J. A. A. Soler-Illia; Marina Simian

    Tamoxifen (Tam) is the most frequent treatment for estrogen receptor (ER) positive breast cancer. We recently showed that fibronectin (FN) leads to Tam resistance and selection of breast cancer stem cells. With the aim of developing a nanoformulation that would simultaneously tackle ER and FN/β1 integrin interactions, we designed polyethylene glycol-polycaprolactone polymersomes polymersomes (PS) that carry Tam and are functionalized with the tumor-penetrating iRGD peptide (iRGD-PS-Tam). Polyethylene glycol-polycaprolactone PS were assembled and loaded with Tam using the hydration film method. The loading of encapsulated Tam, measured by UPLC, was 2.4 ± 0.5 mol Tam/mol polymer. Physicochemical characterization of the PS demonstrated that iRGD functionalization had no effect on morphology, and a minimal effect on the PS size and polydispersity (176 nm and Pdi 0.37 for iRGD-TAM-PS and 171 nm and Pdi 0.36 for TAM-PS). iRGD-PS-Tam were taken up by ER+ breast carcinoma cells in 2D-culture and exhibited increased penetration of 3D-spheroids. Treatment with iRGD-PS-Tam inhibited proliferation and sensitized cells cultured on FN to Tam. Mechanistically, treatment with iRGD-PS-Tam resulted in inhibition ER transcriptional activity as evaluated by a luciferase reporter assay. iRGD-PS-Tam reduced the number of cells with self-renewing capacity, a characteristic of breast cancer stem cells. In vivo, systemic iRGD-PS-Tam showed selective accumulation at the tumor site. Our study suggests iRGD-guided delivery of PS-Tam as a potential novel therapeutic strategy for the management of breast tumors that express high levels of FN. Future studies in pre-clinical in vivo models are warranted.

  • A novel fluorescent biosensor based on dendritic DNA nanostructure in combination with ligase reaction for ultrasensitive detection of DNA methylation
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-07
    Shu Zhang; Jian Huang; Jingrun Lu; Min Liu; Yan Li; Lichao Fang; Hui Huang; Jianjun Huang; Fei Mo; Junsong Zheng

    DNA methylation detection is indispensable for the diagnosis and prognosis of various diseases including malignancies. Hence, it is crucial to develop a simple, sensitive, and specific detection strategy. A novel fluorescent biosensor was developed based on a simple dual signal amplification strategy using functional dendritic DNA nanostructure and signal-enriching polystyrene microbeads in combination with ligase detection reaction (LDR). Dendritic DNA self-assembled from Y-DNA and X-DNA through enzyme-free DNA catalysis of a hairpin structure, which was prevented from unwinding at high temperature by adding psoralen. Then dendritic DNA polymer labeled with fluorescent dye Cy5 was ligated with reporter probe into a conjugate. Avidin-labeled polystyrene microbeads were specifically bound to biotin-labeled capture probe, and hybridized with target sequence and dendritic DNA. LDR was triggered by adding Taq ligase. When methylated cytosine existed, the capture probe and reporter probe labeled with fluorescent dye perfectly matched the target sequence, forming a stable duplex to generate a fluorescence signal. However, after bisulfite treatment, unmethylated cytosine was converted into uracil, resulting in a single base mismatch. No fluorescence signal was detected due to the absence of duplex. The obtained dendritic DNA polymer had a large volume. This method was time-saving and low-cost. Under the optimal experimental conditions using avidin-labeled polystyrene microbeads, the fluorescence signal was amplified more obviously, and DNA methylation was quantified ultrasensitively and selectively. The detection range of this sensor was 10−15 to 10−7 M, and the limit of detection reached as low as 0.4 fM. The constructed biosensor was also successfully used to analyze actual samples. This strategy has ultrasensitivity and high specificity for DNA methylation quantification, without requiring complex processes such as PCR and enzymatic digestion, which is thus of great value in tumor diagnosis and biomedical research.

  • Isolation of microglia-derived extracellular vesicles: towards miRNA signatures and neuroprotection
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-12-04
    Quentin Lemaire; Antonella Raffo-Romero; Tanina Arab; Christelle Van Camp; Francesco Drago; Stefano Forte; Jean-Pascal Gimeno; Séverine Begard; Morvane Colin; Jacopo Vizioli; Pierre-Eric Sautière; Michel Salzet; Christophe Lefebvre

    The functional preservation of the central nervous system (CNS) is based on the neuronal plasticity and survival. In this context, the neuroinflammatory state plays a key role and involves the microglial cells, the CNS-resident macrophages. In order to better understand the microglial contribution to the neuroprotection, microglia-derived extracellular vesicles (EVs) were isolated and molecularly characterized to be then studied in neurite outgrowth assays. The EVs, mainly composed of exosomes and microparticles, are an important cell-to-cell communication process as they exhibit different types of mediators (proteins, lipids, nucleic acids) to recipient cells. The medicinal leech CNS was initially used as an interesting model of microglia/neuron crosstalk due to their easy collection for primary cultures. After the microglia-derived EV isolation following successive methods, we developed their large-scale and non-targeted proteomic analysis to (i) detect as many EV protein markers as possible, (ii) better understand the biologically active proteins in EVs and (iii) evaluate the resulting protein signatures in EV-activated neurons. The EV functional properties were also evaluated in neurite outgrowth assays on rat primary neurons and the RNAseq analysis of the microglia-derived EVs was performed to propose the most representative miRNAs in microglia-derived EVs. This strategy allowed validating the EV isolation, identify major biological pathways in EVs and corroborate the regenerative process in EV-activated neurons. In parallel, six different miRNAs were originally identified in microglia-derived EVs including 3 which were only known in plants until now. The analysis of the neuronal proteins under the microglial EV activation suggested possible miRNA-dependent regulation mechanisms. Taken together, this combination of methodologies showed the leech microglial EVs as neuroprotective cargos across species and contributed to propose original EV-associated miRNAs whose functions will have to be evaluated in the EV-dependent dialog between microglia and neurons.

  • Ultrasmall nanostructured drug based pH-sensitive liposome for effective treatment of drug-resistant tumor
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-11-29
    Yanyan Li; Yongxia Zhai; Wei Liu; Kaixiang Zhang; Junjie Liu; Jinjin Shi; Zhenzhong Zhang

    Cancer cells always develop ways to resist and evade chemotherapy. To overcome this obstacle, herein, we introduce a programmatic release drug delivery system that imparts avoiding drug efflux and nuclear transport in synchrony via a simple nanostructured drug strategy. The programmatic liposome-based nanostructured drugs (LNSD) contained two modules: doxorubicin (DOX) loaded into tetrahedral DNA (TD, ~ 10 nm) to form small nanostructured DOX, and the nanostructured DOX was encapsulated into the pH-sensitive liposomes. In the in vitro and in vivo studies, LNSD shows multiple benefits for drug resistance tumor treatment: (1) not only enhanced the cellular DOX uptake, but also maintained DOX concentration in an optimum level in resistant tumor cells via nanostructure induced anti-efflux effect; (2) small nanostructured DOX efficiently entered into cell nuclear via size depended nuclear-transport for enhanced treatment; (3) improved the pharmacokinetics and biodistribution via reducing DOX leakage during circulation. The system developed in this study has the potential to provide new therapies for drug-resistant tumor.

  • Quantitative assessment of disease markers using the naked eye: point-of-care testing with gas generation-based biosensor immunochromatographic strips
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-17
    Qiangqiang Fu; Ze Wu; Jingxia Li; Zengfeng Wu; Hui Zhong; Quanli Yang; Qihui Liu; Zonghua Liu; Lianghe Sheng; Meng Xu; Tingting Li; Zhinan Yin; Yangzhe Wu

    Immunochromatographic strips (ICSs) are a practical tool commonly used in point-of-care testing (POCT) applications. However, ICSs that are currently available have low sensitivity and require expensive equipment for quantitative analysis. These limitations prohibit their extensive use in areas where medical resources are scarce. We developed a novel POCT platform by integrating a gas generation biosensor with Au@Pt Core/Shell nanoparticle (Au@PtNPs)-based ICSs (G-ICSs). The resulting G-ICSs enabled the convenient and quantitative assessment of a target protein using the naked eye, without the need for auxiliary equipment or complicated computation. To assess this platform, C-reactive protein (CRP), a biomarker commonly used for the diagnosis of acute, infectious diseases was chosen as a proof-of-concept test. The linear detection range (LDR) of the G-ICSs for CRP was 0.05–6.25 μg/L with a limit of detection (LOD) of 0.041 μg/L. The G-ICSs had higher sensitivity and wider LDR when compared with commonly used AuNPs and fluorescent-based ICSs. When compared with results from a chemiluminescent immunoassay, G-ICS concordance rates for CRP detection in serum samples ranged from 93.72 to 110.99%. These results demonstrated that G-ICSs have wide applicability in family diagnosis and community medical institutions, especially in areas with poor medical resources.

  • Bovine serum albumin-templated nanoplatform for magnetic resonance imaging-guided chemodynamic therapy
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-20
    Wei Tang; Hongbo Gao; Dalong Ni; QiFeng Wang; Bingxin Gu; Xinhong He; Weijun Peng

    Nanotechnology in medicine has greatly expanded the therapeutic strategy that may be explored for cancer treatment by exploiting the specific tumor microenvironment such as mild acidity, high glutathione (GSH) concentration and overproduced hydrogen peroxide (H2O2). Among them, tumor microenvironment responsive chemodynamic therapy (CDT) utilized the Fenton or Fenton-like reaction to produce excess hydroxyl radical (·OH) for the destruction of tumor cells. However, the produced ·OH is easily depleted by the excess GSH in tumors, which would undoubtedly impair the CDT’s efficiency. To overcome this obstacle and enhance the treatment efficiency, we design the nanoplatforms for magnetic resonance imaging (MRI)-guided CDT. In this study, we applied the bovine serum albumin (BSA)-templated CuS:Gd nanoparticles (CuS:Gd NPs) for MRI-guided CDT. The Cu2+ in the CuS:Gd NPs could be reduced to Cu+ by GSH in tumors, which further reacted with H2O2 and triggered Fenton-like reaction to simultaneously generate abundant ·OH and deplete GSH for tumor enhanced CDT. Besides, the Gd3+ in CuS:Gd NPs endowed them with excellent MRI capability, which could be used to locate the tumor site and monitor the therapy process preliminarily. The designed nanoplatforms offer a major step forward in CDT for effective treatment of tumors guided by MRI.

  • Polyanionic carbosilane dendrimers as a new adjuvant in combination with latency reversal agents for HIV treatment
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-21
    Ignacio Relaño-Rodríguez; Raquel Juárez-Sánchez; Carolina Pavicic; Eduardo Muñoz; Maria Ángeles Muñoz-Fernández

    The major obstacle impeding human immunodeficiency virus-1 (HIV-1) eradication in antiretroviral treatment (ART) treated HIV-1 subjects is the establishment of long-lived latently infected resting CD4+ T cells. Due to the fact that no drug has been effective, the search for new drugs and combinations are a priority in the HIV cure. Treatments based on nanotechnology have emerged as an innovative and promising alternative to current and conventional therapies. In this respect, nanotechnology opens up a new door for eliminating latent HIV infection. We studied the role of G1-S4, G2-S16 and G3-S16 polyanionic carbosilane dendrimers in the context of latent HIV-1 persistence. Moreover, we study the efficiency of these dendrimers in combination with latency reversal agents (LRAs) against HIV-1 infection. J89GFP lymphocyte and THP89GFP monocyte derived cell lines latently infected with HIV-1 p89GFP were used as an in vitro model of latency for our study. Viability assays by 3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were performed to determine the working concentrations of dendrimers and LRAs. Both cell lines were treated with G1-S4, G2-S16 and G3-S16 either alone or in combination with bryostatin (BRY), romidepsin (RMD) or panobinostat (PNB) for 24 and 48 h. The expression pattern of GFP was measured by flow cytometry and referred as measure of viral reactivation. The combination treatment of the dendrimers with the protein kinase C (PKC) agonist did not modify the antilatency activity in J89GFP lymphocyte cell line. Interestingly enough, G3-S16 dendrimer alone and its combination with BRY, RMD or PNB showed a significant increased expression of GFP in the THP89GFP monocyte cell line. We showed for the first time that nanoparticles, in this case, G3-S16 anionic carbosilan dendrimer may play an important role in new treatments against HIV-1 infection.

  • Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-21
    Victor C. Ude; David M. Brown; Vicki Stone; Helinor J. Johnston

    Copper oxide nanomaterials (CuO NMs) are exploited in many products including inks, cosmetics, textiles, wood preservatives and food contact materials. Their incorporation into these products may enhance oral exposure in consumer, environmental and occupational settings. Undifferentiated and differentiated monocultures of Caco-2 cells are commonly used to assess NM toxicity to the intestine in vitro. However, the integration of other cell types into Caco-2 in vitro models increases their physiological relevance. Therefore, the aim of this study is to evaluate the toxicity of CuO NMs and copper sulphate (CuSO4) to intestinal microfold (M) cell (Caco-2/Raji B) and mucus secreting (Caco-2/HT29-MTX) co-culture in vitro models via assessment of their impact on barrier integrity, viability and interleukin (IL)-8 secretion. The translocation of CuO NMs and CuSO4 across the intestinal barrier was also investigated in vitro. CuO NMs and CuSO4 impaired the function of the intestinal barrier in the co-culture models [as indicated by a reduction in transepithelial electrical resistance (TEER) and Zonular occludens (ZO-1) staining intensity]. Cu translocation was observed in both models but was greatest in the Caco-2/Raji B co-culture. CuO NMs and CuSO4 stimulated an increase in IL-8 secretion, which was greatest in the Caco-2/HT29-MTX co-culture model. CuO NMs and CuSO4 did not stimulate a loss of cell viability, when assessed using light microscopy, nuclei counts and scanning electron microscopy. CuO NMs demonstrated a relatively similar level of toxicity to CuO4 in both Caco-2/Raji B and Caco-2/HT29-MTX co- culture models. The Caco-2/Raji B co-culture model was more sensitive to CuO NM and CuSO4 toxicity than the Caco-2/HT29-MTX co-culture model. However, both co-culture models were less sensitive to CuO NM and CuSO4 toxicity than simple monocultures of undifferentiated and differentiated Caco-2 cells, which are more routinely used to investigate NM toxicity to the intestine. Obtained data can therefore feed into the design of future studies which assess the toxicity of substances (e.g. NMs) and pathogens to the intestine (e.g. by informing model and endpoint selection). However, more testing with a wider panel of NMs would be beneficial in order to help select which in vitro models and endpoints to prioritise when screening the safety of ingested NMs. Comparisons with in vivo findings will also be essential to identify the most suitable in vitro model to screen the safety of ingested NMs.

  • Microfluidics for studying metastatic patterns of lung cancer
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-27
    Monika Ruzycka; Mihaela R. Cimpan; Ivan Rios-Mondragon; Ireneusz P. Grudzinski

    The incidence of lung cancer continues to rise worldwide. Because the aggressive metastasis of lung cancer cells is the major drawback of successful therapies, the crucial challenge of modern nanomedicine is to develop diagnostic tools to map the molecular mechanisms of metastasis in lung cancer patients. In recent years, microfluidic platforms have been given much attention as tools for novel point-of-care diagnostic, an important aspect being the reconstruction of the body organs and tissues mimicking the in vivo conditions in one simple microdevice. Herein, we present the first comprehensive overview of the microfluidic systems used as innovative tools in the studies of lung cancer metastasis including single cancer cell analysis, endothelial transmigration, distant niches migration and finally neoangiogenesis. The application of the microfluidic systems to study the intercellular crosstalk between lung cancer cells and surrounding tumor microenvironment and the connection with multiple molecular signals coming from the external cellular matrix are discussed. We also focus on recent breakthrough technologies regarding lab-on-chip devices that serve as tools for detecting circulating lung cancer cells. The superiority of microfluidic systems over traditional in vitro cell-based assays with regard to modern nanosafety studies and new cancer drug design and discovery is also addressed. Finally, the current progress and future challenges regarding printable and paper-based microfluidic devices for personalized nanomedicine are summarized.

  • Extracellular vesicles from regenerative human cardiac cells act as potent immune modulators by priming monocytes
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-27
    Christien M. Beez; Marion Haag; Oliver Klein; Sophie Van Linthout; Michael Sittinger; Martina Seifert

    Nano-sized vesicles, so called extracellular vesicles (EVs), from regenerative cardiac cells represent a promising new therapeutic approach to treat cardiovascular diseases. However, it is not yet sufficiently understood how cardiac-derived EVs facilitate their protective effects. Therefore, we investigated the immune modulating capabilities of EVs from human cardiac-derived adherent proliferating (CardAP) cells, which are a unique cell type with proven cardioprotective features. Differential centrifugation was used to isolate EVs from conditioned medium of unstimulated or cytokine-stimulated (IFNγ, TNFα, IL-1β) CardAP cells. The derived EVs exhibited typical EV-enriched proteins, such as tetraspanins, and diameters mostly of exosomes (< 100 nm). The cytokine stimulation caused CardAP cells to release smaller EVs with a lower integrin ß1 surface expression, while the concentration between both CardAP-EV variants was unaffected. An exposure of either CardAP-EV variant to unstimulated human peripheral blood mononuclear cells (PBMCs) did not induce any T cell proliferation, which indicates a general low immunogenicity. In order to evaluate immune modulating properties, PBMC cultures were stimulated with either Phytohemagglutin or anti-CD3. The treatment of those PBMC cultures with either CardAP-EV variant led to a significant reduction of T cell proliferation, pro-inflammatory cytokine release (IFNγ, TNFα) and increased levels of active TGFβ. Further investigations identified CD14+ cells as major recipient cell subset of CardAP–EVs. This interaction caused a significant lower surface expression of HLA-DR, CD86, and increased expression levels of CD206 and PD-L1. Additionally, EV-primed CD14+ cells released significantly more IL-1RA. Notably, CardAP-EVs failed to modulate anti-CD3 triggered T cell proliferation and pro-inflammatory cytokine release in monocultures of purified CD3+ T cells. Subsequently, the immunosuppressive feature of CardAP-EVs was restored when anti-CD3 stimulated purified CD3+ T cells were co-cultured with EV-primed CD14+ cells. Beside attenuated T cell proliferation, those cultures also exhibited a significant increased proportion of regulatory T cells. CardAP-EVs have useful characteristics that could contribute to enhanced regeneration in damaged cardiac tissue by limiting unwanted inflammatory processes. It was shown that the priming of CD14+ immune cells by CardAP-EVs towards a regulatory type is an essential step to attenuate significantly T cell proliferation and pro-inflammatory cytokine release in vitro.

  • Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice?
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-05-31
    Simon Doswald; Wendelin Jan Stark; Beatrice Beck-Schimmer

    Magnetic nanosensors have become attractive instruments for the diagnosis and treatment of different diseases. They represent an efficient carrier system in drug delivery or in transporting contrast agents. For such purposes, magnetic nanosensors are used in vivo (intracorporeal application). To remove specific compounds from blood, magnetic nanosensors act as elimination system, which represents an extracorporeal approach. This review discusses principles, advantages and risks on recent advances in the field of magnetic nanosensors. First, synthesis methods for magnetic nanosensors and possibilities for enhancement of biocompatibility with different coating materials are addressed. Then, attention is devoted to clinical applications, in which nanosensors are or may be used as carrier- and elimination systems in the near future. Finally, risk considerations and possible effects of nanomaterials are discussed when working towards clinical applications with magnetic nanosensors.

  • High drug-loading gold nanoclusters for responsive glucose control in type 1 diabetes
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-06-03
    Yujie Zhang; Mingxin Wu; Wubin Dai; Min Chen; Zhaoyang Guo; Xin Wang; Di Tan; Kui Shi; Longjian Xue; Sheng Liu; Yifeng Lei

    Diabetes is one of the biggest medical challenges worldwide. The key to efficiently treat type 1 diabetes is to accurately inject insulin according to the blood glucose levels. In this study, we aimed to develop an intelligent insulin-releasing gold nanocluster system that responds to environmental glucose concentrations. We employed gold nanoclusters (AuNCs) as a novel carrier nanomaterial by taking advantage of their high drug-loading capacity. We prepared AuNCs in the protection of bovine serum albumin, and we decorated AuNCs with 3-aminophenylboronic acid (PBA) as a glucose-responsive factor. Then we grafted insulin onto the surface to obtain the glucose-responsive insulin-releasing system, AuNC-PBA-Ins complex. The AuNC-PBA-Ins complex exhibited high sensitivity to glucose concentration, and rapidly released insulin in high glucose concentration in vitro. In the type 1 diabetic mouse model in vivo, the AuNC-PBA-Ins complex effectively released insulin and regulated blood glucose level in the normoglycemic state for up to 3 days. We successfully developed a phenylboronic acid-functionalized gold nanocluster system (AuNC-PBA-Ins) for responsive insulin release and glucose regulation in type 1 diabetes. This nanocluster system mimics the function of blood glucose regulation of pancreas in the body and may have potential applications in the theranostics of diabetes.

  • Programmed ROS/CO-releasing nanomedicine for synergetic chemodynamic-gas therapy of cancer
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-06-13
    Bin Zhao; Penghe Zhao; Zhaokui Jin; Mingjian Fan; Jin Meng; Qianjun He

    To improve the outcome of cancer treatment, the combination of multiple therapy models has proved to be effective and promising. Gas therapy (GT) and chemodynamic therapy (CDT), mainly targeting the mitochondrion and nucleus, respectively, are two emerging strategy for anti-cancer. The development of novel nanomedicine for integrating these new therapy models is greatly significant and highly desired. A new nanomedicine is programmed by successive encapsulation of MnO2 nanoparticles and iron carbonyl (FeCO) into mesoporous silica nanoparticle. By decoding the nanomedicine, acidity in the lysosome drives MnO2 to generate ROS, ·OH among which further triggers the decomposition of FeCO into CO, realizing the effective combination of chemodynamic therapy with gas therapy for the first time. Acidity in the TEM drives MnO2 to generate ROS, ∙OH among which further triggers the decomposition of FeCO into CO, realizing the effective combination of CDT and CDGT. The co-released ROS and CO do damage to DNA and mitochondria of various cancer cells, respectively. The mitochondrial damage can effectively cut off the ATP source required for DNA repair, causing a synergetic anti-cancer effect in vitro and in vivo. The combination of CDT and CDGT causing a synergetic anti-cancer effect in vitro and in vivo. The proposed therapy concept and nanomedicine designing strategy might open a new window for engineering high-performance anti-cancer nanomedicine.

  • Functionalized MoS2-erlotinib produces hyperthermia under NIR
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-06-19
    Chen Zhang; Doudou Zhang; Jian Liu; Jie Wang; Yusheng Lu; Junxia Zheng; Bifei Li; Lee Jia

    Molybdenum disulfide (MoS2) has been widely explored for biomedical applications due to its brilliant photothermal conversion ability. In this paper, we report a novel multifunctional MoS2-based drug delivery system (MoS2-SS-HA). By decorating MoS2 nanosheets with hyaluronic acid (HA), these functionalized MoS2 nanosheets have been developed as a tumor-targeting chemotherapeutic nanocarrier for near-infrared (NIR) photothermal-triggered drug delivery, facilitating the combination of chemotherapy and photothermal therapy into one system for cancer therapy. The nanocomposites (MoS2-SS-HA) generated a uniform diameter (ca. 125 nm), exhibited great biocompatibility as well as high stability in physiological solutions, and could be loaded with the insoluble anti-cancer drug erlotinib (Er). The release of Er was greatly accelerated under near infrared laser (NIR) irradiation, showing that the composites can be used as responsive systems, with Er release controllable through NIR irradiation. MTT assays and confocal imaging results showed that the MoS2-based nanoplatform could selectively target and kill CD44-positive lung cancer cells, especially drug resistant cells (A549 and H1975). In vivo tumor ablation studies prove a better synergistic therapeutic effect of the joint treatment, compared with either chemotherapy or photothermal therapy alone. The functionalized MoS2 nanoplatform developed in this work could be a potent system for targeted drug delivery and synergistic chemo-photothermal cancer therapy.

  • Lipid–peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-06-21
    Diego de la Fuente-Herreruela; Ajay K. Monnappa; Mónica Muñoz-Úbeda; Aarón Morallón-Piña; Eduardo Enciso; Luis Sánchez; Fabrice Giusti; Paolo Natale; Iván López-Montero

    The design of efficient drug delivery vectors requires versatile formulations able to simultaneously direct a multitude of molecular targets and to bypass the endosomal recycling pathway of cells. Liposomal-based vectors need the decoration of the lipid surface with specific peptides to fulfill the functional requirements. The unspecific binding of peptides to the lipid surface is often accompanied with uncontrolled formulations and thus preventing the molecular mechanisms of a successful therapy. We present a simple synthesis pathway to anchor cysteine-terminal peptides to thiol-reactive lipids for adequate and quantitative liposomal formulations. As a proof of concept, we have synthesized two different lipopeptides based on (a) the truncated Fibroblast Growth Factor (tbFGF) for cell targeting and (b) the pH sensitive and fusogenic GALA peptide for endosomal scape. The incorporation of these two lipopeptides in the liposomal formulation improves the fibroblast cell targeting and promotes the direct delivery of cargo molecules to the cytoplasm of the cell.

  • Redox/NIR dual-responsive MoS2 for synergetic chemo-photothermal therapy of cancer
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-03
    Jian Liu; Feiyang Li; Junxia Zheng; Bifei Li; Doudou Zhang; Lee Jia

    The construction of a multifunctional drug delivery system with a variety of advantageous features, including targeted delivery, controlled release and combined therapy, is highly attractive but remains a challenge. In this study, we developed a MoS2-based hyaluronic acid (HA)-functionalized nanoplatform capable of achieving targeted delivery of camptothecin (CPT) and dual-stimuli-responsive drug release. HA was connected to MoS2 via a disulfide linkage, forming a sheddable HA shell on the surface of MoS2. This unique design not only effectively prevented the encapsulated CPT from randomly leaking during blood circulation but also significantly accelerated the drug release in response to tumor-associated glutathione (GSH). Moreover, the MoS2-based generated heat upon near-infrared (NIR) irradiation could further increase the drug release rate as well as induce photothermal ablation of cancer cells. The results of in vitro and in vivo experiments revealed that MoS2–SS–HA–CPT effectively suppressed cell proliferation and inhibited tumor growth in lung cancer cell-bearing mice under NIR irradiation via synergetic chemo-photothermal therapy. The as-prepared MoS2–SS–HA–CPT with high targeting ability, dual-stimuli-responsive drug release, and synergistic chemo-photothermal therapy may provide a new strategy for cancer therapy.

  • Design and site-directed compartmentalization of gold nanoclusters within the intrasubunit interfaces of ferritin nanocage
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-05
    Jiachen Zang; Bowen Zheng; Xiuqing Zhang; Paolo Arosio; Guanghua Zhao

    Protein nanocages have emerged as popular nanocarriers for either drug delivery or biotemplates for the preparation of nanomaterials. However, only three interfaces, namely exterior surface, intersubunit and inner cavity, have been used as reaction sites for the above purposes with all known protein nanocages. On the other hand, how to control the site of Au NCs formed within a targeted protein template while maintaining the functionality of protein itself remains challenging. In this work, inspired by compartmentalization in living systems, we firstly come up with the conception of “intrasubunit interfaces”, located within subunit of protein nanocage. We built a new, specific compartment for fabrication of gold nanoclusters by genetic modification of the inherent ferroxidase center located within four-α-helix bundle of each ferritin subunit. This newly built compartment not only realizes the site-directed synthesis of gold nanoclusters but also has no effect on the functionality of ferritin itself such as encapsulation by its inner cavity. These redesigned composites can be further applied as fluorescent imaging agent and carriers for preparation of hybrid nanomaterials. The designing strategy of intrasubunit interfaces opens a new way for future applications of cage-like proteins.

  • Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-05
    Jiayu Zhang; Tiancheng Zhao; Fanglei Han; Yu Hu; Yezhou Li

    The gastric cancer is the second most malignant tumor in the world. HER-2 is one of the key targets for the gastric cancer therapy. Anti-HER-2 antibodies like trastuzumab, exhibits the satisfactory therapeutic effect in clinical. However, the drug resistance problem limits its application. In this study, we develop a gold nanoshell (Gold Nanoshell) drug carrier for delivery and selective photo-thermal release of genes which target HER-2 and immunologic adjuvant CPG sequence in gastric tumor cells. The drug delivery system generated a multidimensional treatment strategy which includes gene-, immune- and photothermal-therapy. The whole gold nanoshell drug delivery system exhibits the well gene transduction ability and combined treatment effect. Both in vitro and in vivo results demonstrate the multiple therapeutic effects of the drug delivery system is better than the monotherapy. This study indicates the multiple combined therapy based on the gold nanoshell system would be a promising translational treatment for gastric cancer.

  • Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-08
    Robert Bucki; Katarzyna Niemirowicz-Laskowska; Piotr Deptuła; Agnieszka Z. Wilczewska; Paweł Misiak; Bonita Durnaś; Krzysztof Fiedoruk; Ewelina Piktel; Joanna Mystkowska; Paul A. Janmey

    Magnetic nanoparticles (MNPs) are characterized by unique physicochemical and biological properties that allow their employment as highly biocompatible drug carriers. Gelsolin (GSN) is a multifunctional actin-binding protein involved in cytoskeleton remodeling and free circulating actin sequestering. It was reported that a gelsolin derived phosphoinositide binding domain GSN 160–169, (PBP10 peptide) coupled with rhodamine B, exerts strong bactericidal activity. In this study, we synthesized a new antibacterial and antifungal nanosystem composed of MNPs and a PBP10 peptide attached to the surface. The physicochemical properties of these nanosystems were analyzed by spectroscopy, calorimetry, electron microscopy, and X-ray studies. Using luminescence based techniques and a standard killing assay against representative strains of Gram-positive (Staphylococcus aureus MRSA Xen 30) and Gram-negative (Pseudomonas aeruginosa Xen 5) bacteria and against fungal cells (Candida spp.) we demonstrated that magnetic nanoparticles significantly enhance the effect of PBP10 peptides through a membrane-based mode of action, involving attachment and interaction with cell wall components, disruption of microbial membrane and increased uptake of peptide. Our results also indicate that treatment of both planktonic and biofilm forms of pathogens by PBP10-based nanosystems is more effective than therapy with either of these agents alone. The results show that magnetic nanoparticles enhance the antimicrobial activity of the phosphoinositide-binding domain of gelsolin, modulate its mode of action and strengthen the idea of its employment for developing the new treatment methods of infections.

  • Nano-drug delivery systems in wound treatment and skin regeneration
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-10
    Wei Wang; Kong-jun Lu; Chao-heng Yu; Qiao-ling Huang; Yong-Zhong Du

    Skin damages are defined as one of most common lesions people suffer from, some of wounds are notoriously difficult to eradicate such as chronic wounds and deep burns. Existing wound therapies have been proved to be inadequate and far from satisfactory. The cutting-edge nanotechnology offers an unprecedented opportunity to revolutionize and invent new therapies or boost the effectiveness of current medical treatments. In particular, the nano-drug delivery systems anchor bioactive molecules to applied area, sustain the drug release and explicitly enhance the therapeutic efficacies of drugs, thus making a fine figure in field relevant to skin regeneration. This review summarized and discussed the current nano-drug delivery systems holding pivotal potential for wound healing and skin regeneration, with a special emphasis on liposomes, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, nanofibrous structures and nanohydrogel.

  • A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-10
    Lei Qiang; Zheng Cai; Wenjun Jiang; Jiyong Liu; Zongguang Tai; Guorui Li; Chunai Gong; Shen Gao; Yuan Gao

    Macrophages with tumor-tropic migratory properties can serve as a cellular carrier to enhance the efficacy of anti neoplastic agents. However, limited drug loading (DL) and insufficient drug release at the tumor site remain the main obstacles in developing macrophage-based delivery systems. In this study, we constructed a biomimetic delivery system (BDS) by loading doxorubicin (DOX)-loaded reduced graphene oxide (rGO) into a mouse macrophage-like cell line (RAW264.7), hoping that the newly constructed BDS could perfectly combine the tumor-tropic ability of macrophages and the photothermal property of rGO. At the same DOX concentration, the macrophages could absorb more DOX/PEG-BPEI-rGO than free DOX. The tumor-tropic capacity of RAW264.7 cells towards RM-1 mouse prostate cancer cells did not undergo significant change after drug loading in vitro and in vivo. PEG-BPEI-rGO encapsulated in the macrophages could effectively convert the absorbed near-infrared light into heat energy, causing rapid release of DOX. The BDS showed excellent anti-tumor efficacy in vivo. The BDS that we developed in this study had the following characteristic features: active targeting of tumor cells, stimuli-release triggered by near-infrared laser (NIR), and effective combination of chemotherapy and photothermotherapy. Using the photothermal effect produced by PEG-BPEI-rGO and DOX released from the macrophages upon NIR irradiation, MAs-DOX/PEG-BPEI-rGO exhibited a significant inhibitory effect on tumor growth.

  • Synthesis and biomedical applications of nanoceria, a redox active nanoparticle
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-10
    Neelam Thakur; Prasenjit Manna; Joydeep Das

    Nanoceria has recently received much attention, because of its widespread biomedical applications, including antibacterial, antioxidant and anticancer activity, drug/gene delivery systems, anti-diabetic property, and tissue engineering. Nanoceria exhibits excellent antibacterial activity against both Gram-positive and Gram-negative bacteria via the generation of reactive oxygen species (ROS). In healthy cells, it acts as an antioxidant by scavenging ROS (at physiological pH). Thus, it protects them, while in cancer cells (under low pH environment) it acts as pro-oxidant by generating ROS and kills them. Nanoceria has also been effectively used as a carrier for targeted drug and gene delivery in vitro and in vivo models. Besides, nanoceria can also act as an antidiabetic agent and confer protection towards diabetes-associated organ pathophysiology via decreasing the ROS level in diabetic subjects. Nanoceria also possesses excellent potential in the field of tissue engineering. In this review, firstly, we have discussed the different methods used for the synthesis of nanoceria as these are very important to control the size, shape and Ce3+/Ce4+ ratio of the particles upon which the physical, chemical, and biological properties depend. Secondly, we have extensively reviewed the different biomedical applications of nanoceria with probable mechanisms based on the literature reports. The outcome of this review will improve the understanding about the different synthetic procedures and biomedical applications of nanoceria, which should, in turn, lead to the design of novel clinical interventions associated with various health disorders.

  • Exosome-mimetic nanoplatforms for targeted cancer drug delivery
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-07-18
    Abi J. Vázquez-Ríos; Ángela Molina-Crespo; Belén L. Bouzo; Rafael López-López; Gema Moreno-Bueno; María de la Fuente

    Lack of effective tumor-specific delivery systems remains an unmet clinical challenge for successful translation of innovative therapies, such as, therapeutic oligonucleotides. In the past decade, exosomes have been suggested to be ideal drug delivery systems with application in a broad range of pathologies including cancer, due to their organotropic properties. Tumor-derived exosomes, having tumor-homing properties, can efficiently reach cancer cells and therefore behave as carriers for improved drug delivery to the primary tumor and metastases. However, due to their complex composition, and still undefined biological functions, safety concerns arise hampering their translation to the clinics. We propose here the development of exosome-mimetic nanosystems (EMNs) that simulate natural tumor-derived exosomes with respect to their structure and functionality, but with a controlled composition, for the targeted delivery of therapeutic oligonucleotides to lung adenocarcinoma cells (microRNA-145 mimics). Making use of the well-known liposome technology, EMNs can be engineered, loaded with the therapeutic compounds, and tailored with specific proteins (integrin α6β4) providing them organotropic properties. EMNs show great similarities to natural exosomes with respect to their physicochemical properties, drug loading capacity, and ability to interact with the cancer target cells in vitro and in vivo, but are easier to manufacture, can be produced at high yields, and are safer by definition. We have designed a multifunctional nanoplatform mimicking exosomes, EMNs, and proved their potential to reach cancer cells with a similar efficient that tumor-derived exosomes but providing important advantages in terms of production methodology and regulations. Additionally, EMNs are highly versatile systems that can be tunable for a broader range of applications.

  • Programmable multi-DNA release from multilayered polyelectrolytes using gigahertz nano-electromechanical resonator
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-06
    Xinyi Guo; Hongxiang Zhang; Yanyan Wang; Wei Pang; Xuexin Duan

    Controllable and multiple DNA release is critical in modern gene-based therapies. Current approaches require complex assistant molecules for combined release. To overcome the restrictions on the materials and environment, a novel and versatile DNA release method using a nano-electromechanical (NEMS) hypersonic resonator of gigahertz (GHz) frequency is developed. The micro-vortexes excited by ultra-high frequency acoustic wave can generate tunable shear stress at solid–liquid interface, thereby disrupting molecular interactions in immobilized multilayered polyelectrolyte thin films and releasing embedded DNA strands in a controlled fashion. Both finite element model analysis and experiment results verify the feasibility of this method. The release rate and released amount are confirmed to be well tuned. Owing to the different forces generated at different depth of the films, release of two types of DNA molecules with different velocities is achieved, which further explores its application in combined gene therapy. Our research confirmed that this novel platform based on a nano-electromechanical hypersonic resonator works well for controllable single and multi-DNA release. In addition, the unique features of this resonator such as miniaturization and batch manufacturing open its possibility to be developed into a high-throughput, implantable and site targeting DNA release and delivery system.

  • Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8+ T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-06
    Laura Sanz-Ortega; Yadileiny Portilla; Sonia Pérez-Yagüe; Domingo F. Barber

    Adoptive T cell-transfer (ATC) therapy is a highly promising cancer-treatment approach. However, in vivo-administered T cells tend to disperse, with only a small proportion reaching the tumour. To remedy this, magnetic targeting of T cells has been recently explored. Magnetic nanoparticles (MNPs) functionalised with antibodies were attached to effector T cells and magnetically recruited to tumour sites under MRI guidance. In this study, we investigated whether 3-aminopropyl-triethoxysilane (APS)-coated MNPs directly attached to CD8+ T cell membranes could also magnetically target and accumulate tumour-specific CD8+ T cells in solid tumours using an external magnetic field (EMF). As it has been shown that T cells associated with APS-coated MNPs are retained in lymph nodes (LNs), and tumour-draining LNs are the most common sites of solid-tumour metastases, we further evaluated whether magnetic targeting of APS-MNP-loaded CD8+ T cells could cause them to accumulate in tumour-draining LNs. First, we show that antigen-specific CD8+ T cells preserve their antitumor activity in vitro when associated with APS-MNPs. Next, we demonstrate that the application of a magnetic field enhanced the retention of APS-MNP-loaded OT-I CD8+ T cells under flow conditions in vitro. Using a syngeneic mouse model, we found similar numbers of APS-MNP-loaded OT-I CD8+ T cells and OT-I CD8+ T cells infiltrating the tumour 14 days after cell transfer. However, when a magnet was placed near the tumour during the transfer of tumour-specific APS-MNP-loaded CD8+ T cells to improve tumour infiltration, a reduced percentage of tumour-specific T cells was found infiltrating the tumour 14 days after cell transfer, which was reflected in a smaller reduction in tumour size compared to tumour-specific CD8+ T cells transferred with or without MNPs in the absence of a magnetic field. Nonetheless, magnet placement near the tumour site during cell transfer induced infiltration of activated tumour-specific CD8+ T cells in tumour-draining LNs, which remained 14 days after cell transfer. The use of an EMF to improve targeting of tumour-specific T cells modified with APS-MNPs reduced the percentage of these cells infiltrating the tumour, but promoted the retention and the persistence of these cells in the tumour-draining LNs.

  • The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-19
    Zhanwu Hou; Zhen Wang; Run Liu; Hua Li; Zhengyi Zhang; Tian Su; Jeffy Yang; Huadong Liu

    Gold nanoparticles (AuNPs) have been proposed for many applications in medicine and bioanalysis. For use in all these applications, maintaining the stability of AuNPs in solution by suppressing aggregation is paramount. Herein, the effects of amino acids were investigated in stabilizing AuNPs by rationally designed peptide scaffolds. Compared to other tested amino acids, phosphotyrosine (pY) significantly stabilized AuNPs. Our results indicated that pY modified AuNPs presented a high level of stability in various solutions, and had good biocompatibility. When a pY-peptide was used in stabilizing AuNPs, the phosphate group could be removed by phosphatases, which subsequently caused the aggregation and the cargo release of AuNPs. In vitro study showed that AuNPs formed aggregation in a phosphatase concentration depending manner. The aggregation of AuNPs was well correlated with the enzymatic activity (R2 = 0.994). In many types of cancer, a significant increase in phosphatases has been observed. Herein, we demonstrated that cancer cells treated with pY modified AuNPs in conjunction with doxorubicin killed SGC-7901 cells with high efficiency, indicating that the pY peptide stabilized AuNPs could be used as carriers for targeted drug delivery. In summary, pY peptides can act to stabilize AuNPs in various solutions. In addition, the aggregation of pY-AuNPs could be tuned by phosphatase. These results provide a basis for pY-AuNPs acting as potential drug carriers and anticancer efficacy.

  • Improving the anticancer effect of afatinib and microRNA by using lipid polymeric nanoparticles conjugated with dual pH-responsive and targeting peptides
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-19
    Shu-Ting Hong; Huaching Lin; Chen-Shen Wang; Chih-Hsien Chang; Anya Maan-Yuh Lin; James Chih-Hsin Yang; Yu-Li Lo

    The emergence of resistance to chemotherapy or target therapy, tumor metastasis, and systemic toxicity caused by available anticancer drugs hamper the successful colorectal cancer (CRC) treatment. The rise in epidermal growth factor receptor (EGFR; human epidermal growth factor receptor 1; HER1) expression and enhanced phosphorylation of HER2 and HER3 are associated with tumor resistance, metastasis and invasion, thus resulting in poor outcome of anti-CRC therapy. The use of afatinib, a pan-HER inhibitor, is a potential therapeutic approach for resistant CRC. Additionally, miR-139 has been reported to be negatively correlated with chemoresistance, metastasis, and epithelial–mesenchymal transition (EMT) of CRC. Hence, we develop a nanoparticle formulation consisting of a polymer core to carry afatinib or miR-139, which is surrounded by lipids modified with a targeting ligand and a pH-sensitive penetrating peptide to improve the anticancer effect of cargos against CRC cells. Our findings show that this formulation displays a spherical shape with core/shell structure, homogeneous particle size distribution and negative zeta potential. The prepared formulations demonstrate a pH-sensitive release profile and an enhanced uptake of cargos into human colorectal adenocarcinoma Caco-2 cells in response to the acidic pH. This nanoparticle formulation incorporating afatinib and miR-139 exhibits low toxicity to normal cells but shows a better inhibitory effect on Caco-2 cells than other formulations. Moreover, the encapsulation of afatinib and miR-139 in peptide-modified nanoparticles remarkably induces apoptosis and inhibits migration and resistance of Caco-2 cells via suppression of pan-HER tyrosine kinase/multidrug resistance/metastasis pathways. This study proposes a multifunctional nanoparticle formulation for targeted modulation of apoptosis/EGFR/HER/EMT/resistance/progression pathways to increase the sensitivity of colon cancer cells to afatinib.

  • Current outlook on radionuclide delivery systems: from design consideration to translation into clinics
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-21
    Oleksii O. Peltek; Albert R. Muslimov; Mikhail V. Zyuzin; Alexander S. Timin

    Radiopharmaceuticals have proven to be effective agents, since they can be successfully applied for both diagnostics and therapy. Effective application of relevant radionuclides in pre-clinical and clinical studies depends on the choice of a sufficient delivery platform. Herein, we provide a comprehensive review on the most relevant aspects in radionuclide delivery using the most employed carrier systems, including, (i) monoclonal antibodies and their fragments, (ii) organic and (iii) inorganic nanoparticles, and (iv) microspheres. This review offers an extensive analysis of radionuclide delivery systems, the approaches of their modification and radiolabeling strategies with the further prospects of their implementation in multimodal imaging and disease curing. Finally, the comparative outlook on the carriers and radionuclide choice, as well as on the targeting efficiency of the developed systems is discussed.

  • A ROS-responsive polymeric prodrug nanosystem with self-amplified drug release for PSMA (−) prostate cancer specific therapy
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-26
    Yifan Wang; Yanqiu Zhang; Zhengxing Ru; Wei Song; Lin Chen; Hao Ma; Lizhu Sun

    The selectively accumulate in tumor site and completely release drug within cancer cells great limit the therapeutic effect of nano-drug delivery system. Moreover, absence of appropriate biomarker is one of the major challenges for prostate specific membrane antigen negative (PSMA (−)) prostate cancer therapy. Herein, a PSMA (−) prostate cancer specific targeted and intracellular reactive oxygen species (ROS) amplification for ROS-responsive self-accelerating drug release nanoplatform (ATD-NPs) was developed. ATD-NPs was formed by three parts, including PSMA (−) prostate cancer specifically targeted part (DUP-PEG-DSPE), ROS-sensitive doxorubicin (DOX) polymeric prodrug (P(L-TK-DOX)), and the ROS generation agent (α-tocopheryl succinate, α-TOS); and this delivery system is expected to enhance PSMA (−) prostate cancer therapeutic effect, increase selective accumulation at tumor site and overcome intracellular incomplete drug release. After administration i.v injection, ATD-NPs could specifically accumulate in tumor site and markedly be internalized by cancer cells based on the DUP-1 (a PSMA (−) cancer cells specific target peptide). Subsequently, ATD-NPs could be dissociated under the high concentration reactive oxygen species (ROS) condition, resulting in DOX and α-TOS release. Then, the released α-TOS could be reacted with mitochondria to produce ROS, which in turn accelerating the release of drugs. Finally achieved the purpose of enhancing therapeutic efficacy and reducing side effect. Both in vitro and in vivo experiments demonstrated that the combination of tumor actively-targeted and self-amplifying ROS-responsive drug release showed more significant antitumor activity in the human PSMA (−) prostate cancer. The described technology unifies the tumor actively targets, self-amplified drug release, and excellent biocompatibility into one formulation, are promising for cancer treatment.

  • Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-08-26
    Anirudh Sharma; Joydeep Das

    Carbon dots (CDs) are the new fellow of carbon family having a size less than 10 nm and attracted much attention of researchers since the last decade because of their unique characteristics, such as inexpensive and facile synthesis methods, easy surface modification, excellent photoluminescence, outstanding water solubility, and low toxicity. Due to these unique characteristics, CDs have been extensively applied in different kind of scientific disciplines. For example in the photocatalytic reactions, drug-gene delivery system, in vitro and in vivo bioimaging, chemical and biological sensing as well as photodynamic and photothermal therapies. Mainly two types of methods are available in the literature to synthesize CDs: the top-down approach, which refers to breaking down a more massive carbon structure into nanoscale particles; the bottom-up approach, which refers to the synthesis of CDs from smaller carbon units (small organic molecules). Many review articles are available in the literature regarding the synthesis and applications of CDs. However, there is no such review article describing the synthesis and complete application of CDs derived from small organic molecules together. In this review, we have summarized the progress of research on CDs regarding its synthesis from small organic molecules (bottom-up approach) via hydrothermal/solvothermal treatment, microwave irradiation, ultrasonic treatment, and thermal decomposition techniques as well as applications in the field of bioimaging, drug/gene delivery system, fluorescence-based sensing, photocatalytic reactions, photo-dynamic therapy (PDT) and photo-thermal (PTT) therapy based on the available literature. Finally, the challenges and future direction of CDs are discussed.

  • Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-09-03
    Chunai Gong; Jing Tian; Zhuo Wang; Yuan Gao; Xin Wu; Xueying Ding; Lei Qiang; Guorui Li; Zhimin Han; Yongfang Yuan; Shen Gao

    Exosomes (Exo) hold great promise as endogenous nanocarriers that can deliver biological information between cells. However, Exo are limited in terms of their abilities to target specific recipient cell types. We developed a strategy to isolate Exo exhibiting increased binding to integrin αvβ3. Binding occurred through a modified version of a disintegrin and metalloproteinase 15 (A15) expressed on exosomal membranes (A15-Exo), which facilitated co-delivery of therapeutic quantities of doxorubicin (Dox) and cholesterol-modified miRNA 159 (Cho-miR159) to triple-negative breast cancer (TNBC) cells, both in vitro and in vivo. The targeted A15-Exo were derived from continuous protein kinase C activation in monocyte-derived macrophages. These cell-derived Exo displayed targeting properties and had a 2.97-fold higher production yield. In vitro, A15-Exo co-loaded with Dox and Cho-miR159 induced synergistic therapeutic effects in MDA-MB-231 cells. In vivo, miR159 and Dox delivery in a vesicular system effectively silenced the TCF-7 gene and exhibited improved anticancer effects, without adverse effects. Therefore, our data demonstrate the synergistic efficacy of co-delivering miR159 and Dox by targeted Exo for TNBC therapy.

  • Dynamic profiles, biodistribution and integration evaluation after intramuscular/intravenous delivery of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in vaccinated normal rodent
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-09-06
    Xiao Zhao; Juan Long; Fei Liang; Nan Liu; Yuying Sun; Yongzhi Xi

    The persistence, biodistribution, and risk of integration into the host genome of any new therapeutic DNA vaccine must be established in preclinical studies. We previously developed the DNA vaccine pcDNA-CCOL2A1 encoding chicken type II collagen (CCII) for the treatment of rheumatoid arthritis (RA). In the present study, we characterized its dynamic profile, biodistribution, and potential for genomic DNA integration in normal vaccinated rodent. A real-time quantitative PCR analysis (RT-qPCR) of animals administered a single dose of pcDNA-CCOL2A1 (300 μg/kg by intramuscular injection) showed that CCOL2A1 mRNA level in the blood peaked between 2 and 6 h post-immunization and then rapidly declined, and was undetectable between day 1–42. CCOL2A1 transcript was detected at the muscle injection site on days 3–14 post-immunization. Starting from day 14, the transcript was detected in the heart, liver, lung, and kidney but not in the spleen or thymus, and was expressed only in the lung on day 28. There was no CCOL2A1 mRNA present in the testes or ovaries at any time point. Non-invasive in vivo fluorescence imaging revealed CCII protein expression from 2 h up to day 10 and from 2 h up to day 35 after administration of pcDNA-CCOL2A1 via the intravenous and intramuscular routes, respectively; the protein had disappeared by day 42. Importantly, CCOL2A1 was not integrated into the host genome. These results indicate that pcDNA-CCOL2A1 vaccine is rapidly cleared within a short period of time and is therefore safe, and merits further development as a therapeutic vaccine for RA treatment.

  • A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-09-10
    Shiwei Niu; Gareth R. Williams; Jianrong Wu; Junzi Wu; Xuejing Zhang; Xia Chen; Shude Li; Jianlin Jiao; Li-Min Zhu

    It is extremely difficult to develop targeted treatments for triple-negative breast (TNB) cancer, because these cells do not express any of the key biomarkers usually exploited for this goal. In this work, we develop a solution in the form of a cascade responsive nanoplatform based on thermo-sensitive poly(N-vinylcaprolactam) (PNVCL)-chitosan (CS) nanoparticles (NPs). These are further modified with the cell penetrating peptide (CPP) and loaded with the chemotherapeutic drug doxorubicin (DOX). The base copolymer was optimized to undergo a phase change at the elevated temperatures of the tumor microenvironment. The acid-responsive properties of CS provide a second trigger for drug release, and the inclusion of CPP should ensure the formulations accumulate in cancerous tissue. The resultant CPP-CS-co-PNVCL NPs could self-assemble in aqueous media into spherical NPs of size < 200 nm and with low polydispersity. They are able to accommodate a high DOX loading (14.8% w/w). The NPs are found to be selectively taken up by cancerous cells both in vitro and in vivo, and result in less off-target cytotoxicity than treatment with DOX alone. In vivo experiments employing a TNB xenograft mouse model demonstrated a significant reduction in tumor volume and prolonging of life span, with no obvious systemic toxicity. The system developed in this work has the potential to provide new therapies for hard-to-treat cancers.

  • A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-09-16
    Zhiqian Ma; Tianyu Wang; Zhiwei Li; Xuyang Guo; Yangsheng Tian; Yang Li; Shuqi Xiao

    Porcine epidemic diarrhea virus (PEDV), which is characterized by severe watery diarrhea, vomiting, dehydration and a high mortality rate in piglets, leads to enormous economic losses to the pork industry and remains a large challenge worldwide. Thus, a rapid and reliable method is required for epidemiological investigations and to evaluate the effect of immunization. However, the current diagnostic methods for PEDV are time-consuming and very expensive and rarely meet the requirements for clinical application. Nanobodies have been used in the clinic to overcome these problems because of the advantages of their easy expression and high level of stability. In the present work, a novel biotinylated nanobody-based blocking ELISA (bELISA) was developed to detect anti-PEDV antibodies in clinical pig serum. Using phage display technology and periplasmic extraction ELISA (PE-ELISA), anti-PEDV N protein nanobodies from three strains of PEDV were successfully isolated after three consecutive rounds of bio-panning from a high quality phage display VHH library. Then, purified Nb2-Avi-tag fusion protein was biotinylated in vitro. A novel bELISA was subsequently developed for the first time with biotinylated Nb2. The cutoff value for bELISA was 29.27%. One hundred and fifty clinical serum samples were tested by both newly developed bELISA and commercial kits. The sensitivity and specificity of bELISA were 100% and 93.18%, respectively, and the coincidence rate between the two methods was 94%. In brief, bELISA is a rapid, low-cost, reliable and useful nanobody-based tool for the serological evaluation of current PEDV vaccines efficacy and indirect diagnosis of PEDV infection.

  • A near infrared light-triggerable modular formulation for the delivery of small biomolecules
    J. Nanobiotechnol. (IF 5.345) Pub Date : 2019-09-16
    Vitor Francisco; Miguel Lino; Lino Ferreira

    Externally triggered drug delivery systems hold considerable promise for improving the treatment of many diseases, in particular, diseases where the spatial–temporal release of the drug is critical to maximize their biological effect whilst minimizing undesirable, off-target, side effects. Herein, we developed a light-triggerable formulation that takes advantage of host–guest chemistry to complex drugs functionalized with a guest molecule and release it after exposure to near infrared (NIR) light due to the disruption of the non-covalent host–guest interactions. The system is composed by a gold nanorod (AuNR), which generates plasmonic heat after exposure to NIR, a thin layer of hyaluronic acid immobilized to the AuNR upon functionalization with a macrocycle, cucurbit[6]uril (CB[6]), and a drug functionalized with a guest molecule that interacts with the macrocycle. For proof of concept, we have used this formulation for the intracellular release of a derivative of retinoic acid (RA), a molecule known to play a key role in tissue development and homeostasis as well as during cancer treatment. We showed that the formulation was able to conjugate approximately 65 μg of RA derivative per mg of CB[6] @AuNR and released it within a few minutes after exposure to a NIR laser. Importantly, the bioactivity of RA released from the formulation was demonstrated in a reporter cell line expressing luciferase under the control of the RA receptor. This NIR light-triggered supramolecular-based modular platform holds great promise for theranostic applications.

Contents have been reproduced by permission of the publishers.
上海纽约大学William Glover