当前期刊: Studies in Mycology Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Genera of phytopathogenic fungi: GOPHY 3
    Stud. Mycol. (IF 9.206) Pub Date : 2019-06-13
    Y. Marin-Felix, M. Hernández-Restrepo, I. Iturrieta-González, D. García, J. Gené, J.Z. Groenewald, L. Cai, Q. Chen, W. Quaedvlieg, R.K. Schumacher, P.W.J. Taylor, C. Ambers, G. Bonthond, J. Edwards, S.A. Krueger-Hadfield, J.J. Luangsa-ard, L. Morton, A. Moslemi, P.W. Crous

    This paper represents the third contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions, information about the pathology, distribution, hosts and disease symptoms for the treated genera, as well as primary and secondary DNA barcodes for the currently accepted species included in these. This third paper in the GOPHY series treats 21 genera of phytopathogenic fungi and their relatives including: Allophoma, Alternaria, Brunneosphaerella, Elsinoe, Exserohilum, Neosetophoma, Neostagonospora, Nothophoma, Parastagonospora, Phaeosphaeriopsis, Pleiocarpon, Pyrenophora, Ramichloridium, Seifertia, Seiridium, Septoriella, Setophoma, Stagonosporopsis, Stemphylium, Tubakia and Zasmidium. This study includes three new genera, 42 new species, 23 new combinations, four new names, and three typifications of older names.

    更新日期:2019-11-18
  • Editorial and reflection.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Robert A Samson

    更新日期:2019-11-01
  • Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Z Wilhelm de Beer,Dominik Begerow,Robert Bauer,Geoff S Pegg,Pedro W Crous,Michael J Wingfield

    The genus Quambalaria consists of plant-pathogenic fungi causing disease on leaves and shoots of species of Eucalyptus and its close relative, Corymbia. The phylogenetic relationship of Quambalaria spp., previously classified in genera such as Sporothrix and Ramularia, has never been addressed. It has, however, been suggested that they belong to the basidiomycete orders Exobasidiales or Ustilaginales. The aim of this study was thus to consider the ordinal relationships of Q. eucalypti and Q. pitereka using ribosomal LSU sequences. Sequence data from the ITS nrDNA were used to determine the phylogenetic relationship of the two Quambalaria species together with Fugomyces (= Cerinosterus) cyanescens. In addition to sequence data, the ultrastructure of the septal pores of the species in question was compared. From the LSU sequence data it was concluded that Quambalaria spp. and F. cyanescens form a monophyletic clade in the Microstromatales, an order of the Ustilaginomycetes. Sequences from the ITS region confirmed that Q. pitereka and Q. eucalypti are distinct species. The ex-type isolate of F. cyanescens, together with another isolate from Eucalyptus in Australia, constitute a third species of Quambalaria, Q. cyanescens (de Hoog & G.A. de Vries) Z.W. de Beer, Begerow & R. Bauer comb. nov. Transmission electron-microscopic studies of the septal pores confirm that all three Quambalaria spp. have dolipores with swollen lips, which differ from other members of the Microstromatales (i.e. the Microstromataceae and Volvocisporiaceae) that have simple pores with more or less rounded pore lips. Based on their unique ultrastructural features and the monophyly of the three Quambalaria spp. in the Microstromatales, a new family, Quambalariaceae Z.W. de Beer, Begerow & R. Bauer fam. nov., is described.

    更新日期:2019-11-01
  • A disease epidemic on Zizyphus mucronata in the Kruger National Park caused by Coniodictyum chevalieri.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Wolfgang Maier,Thembi Khoza,Neil Harmse,Brenda D Wingfield,Michael J Wingfield

    This study records a severe outbreak of a disease on Zizyphus mucronata (Rhamnaceae) in Greater Kruger National Park, South Africa. The causal agent of the disease was found to be Coniodictyum chevalieri, a fungus previously believed to be very rare. Detailed illustrations of the symptoms and fungus are presented in order to facilitate future studies. The known geographical distribution of Coniodictyum is presented in relation to the distribution of its host, and a short review of its systematic history is also given. This also treats an invalidly published species name in South Africa, which has confused the literature. A DNA-based phylogeny is presented for the pathogen and this reflects the unique nature of its geographical distribution and biology.

    更新日期:2019-11-01
  • DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Xudong Zhou,Z Wilhelm de Beer,Michael J Wingfield

    BARK BEETLES (COLEOPTERA: Scolytinae) are well-recognized vectors of Ophiostoma species. Three non-native bark beetle species infest various Pinus species in South Africa, and they are known to carry at least 12 different species of ophiostomatoid fungi. Some of these fungi have not been identified to species level. The aim of this study was to determine or confirm the identities of Ophiostoma species associated with bark beetles in South Africa using comparisons of DNA sequence data. Identities of Ophiostoma ips, O. floccosum, O. pluriannulatum, O. quercus and O. stenoceras were confirmed. Ophiostoma abietinum, O. piliferum and Pesotum fragrans are recognised for the first time and the new species, O. aurorae sp. nov., is described from pine-infesting bark beetles in South Africa.

    更新日期:2019-11-01
  • Celoporthe dispersa gen. et sp. nov. from native Myrtales in South Africa.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Grace Nakabonge,Marieka Gryzenhout,Jolanda Roux,Brenda D Wingfield,Michael J Wingfield

    In a survey for Cryphonectria and Chrysoporthe species on Myrtales in South Africa, a fungus resembling the stem canker pathogen Chrysoporthe austroafricana was collected from native Syzygium cordatum near Tzaneen (Limpopo Province), Heteropyxis canescens near Lydenburg (Mpumalanga Province) and exotic Tibouchina granulosa in Durban (KwaZulu-Natal Province). The fungus was associated with dying branches and stems on S. cordatum, H.canescens and T.granulosa. However, morphological differences were detected between the unknown fungus from these three hosts and known species of Chrysoporthe. The aim of this study was to characterise the fungus using DNA sequence comparisons and morphological features. Pathogenicity tests were also conducted to assess its virulence on Eucalyptus (ZG 14 clones), H.natalensis and T. granulosa. Plants of H. canescens were not available for inoculation. Results showed distinct morphological differences between the unknown fungus and Chrysoporthe spp. Phylogenetic analysis showed that isolates reside in a clade separate from Chrysoporthe and other related genera. Celoporthe dispersa gen. et sp. nov. is, therefore, described to accommodate this fungus. Pathogenicity tests showed that C.dispersa is not pathogenic to H. natalensis, but that it is a potential pathogen of Eucalyptus and Tibouchina spp.

    更新日期:2019-11-01
  • Phylogenetic lineages in the Botryosphaeriaceae.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Bernard Slippers,Michael J Wingfield,John Rheeder,Walter F O Marasas,Alan J L Philips,Artur Alves,Treena Burgess,Paul Barber,Johannes Z Groenewald

    Botryosphaeria is a species-rich genus with a cosmopolitan distribution, commonly associated with dieback and cankers of woody plants. As many as 18 anamorph genera have been associated with Botryosphaeria, most of which have been reduced to synonymy under Diplodia (conidia mostly ovoid, pigmented, thick-walled), or Fusicoccum (conidia mostly fusoid, hyaline, thin-walled). However, there are numerous conidial anamorphs having morphological characteristics intermediate between Diplodia and Fusicoccum, and there are several records of species outside the Botryosphaeriaceae that have anamorphs apparently typical of Botryosphaeria s.str. Recent studies have also linked Botryosphaeria to species with pigmented, septate ascospores, and Dothiorella anamorphs, or Fusicoccum anamorphs with Dichomera synanamorphs. The aim of this study was to employ DNA sequence data of the 28S rDNA to resolve apparent lineages within the Botryosphaeriaceae. From these data, 12 clades are recognised. Two of these lineages clustered outside the Botryosphaeriaceae, namely Diplodia-like anamorphs occurring on maize, which are best accommodated in Stenocarpella (Diaporthales), as well as an unresolved clade including species of Camarosporium/Microdiplodia. We recognise 10 lineages within the Botryosphaeriaceae, including an unresolved clade (Diplodia/Lasiodiplodia/Tiarosporella), Botryosphaeria s.str. (Fusicoccum anamorphs), Macrophomina, Neoscytalidium gen. nov., Dothidotthia (Dothiorella anamorphs), Neofusicoccum gen. nov. (Botryosphaeria-like teleomorphs, Dichomera-like synanamorphs), Pseudofusicoccum gen. nov., Saccharata (Fusicoccum- and Diplodia-like synanamorphs), "Botryosphaeria" quercuum (Diplodia-like anamorph), and Guignardia (Phyllosticta anamorphs). Separate teleomorph and anamorph names are not provided for newly introduced genera, even where both morphs are known. The taxonomy of some clades and isolates (e.g. B. mamane) remains unresolved due to the absence of ex-type cultures.

    更新日期:2019-11-01
  • Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Francois Halleen,Hans-Josef Schroers,Johannes Z Groenewald,Cecília Rego,Helena Oliveira,Pedro W Crous

    Black foot disease is a serious disease of grapevine crops in most areas where vines are grown. Mainly two species of Cylindrocarpon, C. destructans and C. macrodidymum, are associated with this disease. Recent studies have revealed a tremendous molecular variation within the former but only slight molecular variation within the latter, indicating that C. destructans presents a complex of several species The present study elucidates the taxonomic status of C. destructans-like isolates associated with black foot disease of grapevines. Grapevine isolates were studied morphologically, subjected to DNA analyses of their ITS and partial beta-tubulin genes, and were mated in all combinations in vitro. Cylindrocarpon destructans strains isolated from grapevines in Europe and South Africa appeared morphologically and genetically identical, and had identical ITS and partial beta-tubulin gene sequences. Phylogenetic analyses placed these strains in a clade closely related but clearly distinct from other clades with C. destructans-like anamorphs obtained from various herbaceous or woody hosts. Only the ex-type strain of Cylindrocarpon liriodendri had identical sequences to strains isolated from grapevines, and could also not be distinguished by morphological characters. The grapevine isolates are therefore reidentified here as Cylindrocarpon liriodendri. Cylindrocarpn liriodendri formed perithecia in heterothallic conditions and the holomorph of this species is described as Neonectria liriodendri sp. nov. Neonectria liriodendri is genetically distinct from the ex-type strain of Neonectria radicicola, which originated from Cyclamen in Sweden. Both ex-type strains also differ from at least two other clades comprising additional C. destructans-like strains. Many of these strains originated from Panax sp., which is the host of the type of C. destructans. Our phylogenetic analyses indicate that C. destructans is not the anamorph of N. radicicola and that N. liriodendri, N. radicicola and several C. destructans-like taxa may have evolved independently within the same phylogenetic species complex.

    更新日期:2019-11-01
  • Calonectria species and their Cylindrocladium anamorphs: species with clavate vesicles.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Johannes Z Groenewald,Jean-Michel Risède,Philippe Simoneau,Kevin D Hyde

    The present study compares all known species of Cylindrocladium that have clavate vesicles. Several isolates were obtained from baited soils collected in various parts of the world, while others were associated with leaf litter or symptomatic plant hosts. Isolates were compared based on morphology, as well as DNA sequence data from their beta-tubulin and histone gene H3 regions. Cylindrocladium australiense and Cy. ecuadoriae, are described as new species, a decision based on morphology and molecular data. A group of isolates associated with toppling disease of banana in the West Indies is identified as Cy. flexuosum. An epitype is designated for Cy. ilicicola, and a new name, Curvicladiella, proposed to replace the anamorphic genus Curvicladium, which is a homonym.

    更新日期:2019-11-01
  • Multi-gene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Francois Roets,Z Wilhelm de Beer,Léanne L Dreyer,Renate Zipfel,Pedro W Crous,Michael J Wingfield

    Ophiostoma represents a genus of fungi that are mostly arthropod-dispersed and have a wide global distribution. The best known of these fungi are carried by scolytine bark beetles that infest trees, but an interesting guild of Ophiostoma spp. occurs in the infructescences of Protea spp. native to South Africa. Phylogenetic relationships between Ophiostoma spp. from Protea infructescences were studied using DNA sequence data from the beta-tubulin, 5.8S ITS (including the flanking internal transcribed spacers 1 and 2) and the large subunit DNA regions. Two new species, O. phasma sp. nov. and O. palmiculminatum sp. nov. are described and compared with other Ophiostoma spp. occurring in the same niche. Results of this study have raised the number of Ophiostoma species from the infructescences of serotinous Protea spp. in South Africa to five. Molecular data also suggest that adaptation to the Protea infructescence niche by Ophiostoma spp. has occurred independently more than once.

    更新日期:2019-11-01
  • Species of Cercospora associated with grey leaf spot of maize.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Johannes Z Groenewald,Marizeth Groenewald,Pat Caldwell,Uwe Braun,Thomas C Harrington

    Grey leaf spot is a serious yield-reducing disease of maize (Zea mays) in many parts of the world where this crop is cultivated. The causal organism associated with the disease is Cercospora zeae-maydis. Two potential sibling species have been recognized as Groups I and II. The DNA sequences for the internal transcribed spacers (ITS1 & ITS2), the 5.8S rRNA gene, elongation factor 1-alpha, histone H3, actin and calmodulin gene regions suggest that Groups I and II are two distinct species. Furthermore, Cercospora zeae-maydis (Group I) can be distinguished from C. zeina sp. nov. (Group II) by its faster growth rate on artificial media, the ability to produce cercosporin, longer conidiophores, and broadly fusiform conidia. A PCR-based test that distinguishes the two species was developed using species-specific primers designed from the histone H3 gene.

    更新日期:2019-11-01
  • Pestalotioid fungi from Restionaceae in the Cape Floral Kingdom.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Seonju Lee,Pedro W Crous,Michael J Wingfield

    Eight pestalotioid fungi were isolated from the Restionaceae growing in the Cape Floral Kingdom of South Africa. Sarcostroma restionis, Truncatella megaspora, T. restionacearum and T. spadicea are newly described. New records include Pestalotiopsis matildae, Sarcostroma lomatiae, Truncatella betulae and T. hartigii. To resolve generic affiliations, phylogenetic analyses were performed on ITS (ITS1, 5.8S, ITS2) and part of 28S rDNA. DNA data support the original generic concept of Truncatella, which encompasses Pestalotiopsis species having 3-septate conidia. The genus Sarcostroma is retained as separate from Seimatosporium.

    更新日期:2019-11-01
  • Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Merion M Liebenberg,Uwe Braun,Johannes Z Groenewald

    Angular leaf spot of Phaseolus vulgaris is a serious disease caused by Phaeoisariopsis griseola, in which two major gene pools occur, namely Andean and Middle-American. Sequence analysis of the SSU region of nrDNA revealed the genus Phaeoisariopsis to be indistinguishable from other hyphomycete anamorph genera associated with Mycosphaerella, namely Pseudocercospora and Stigmina. A new combination is therefore proposed in the genus Pseudocercospora, a name to be conserved over Phaeoisariopsis and Stigmina. Further comparisons by means of morphology, cultural characteristics, and DNA sequence analysis of the ITS, calmodulin, and actin gene regions delineated two groups within P. griseola, which are recognised as two formae, namely f. griseola and f. mesoamericana.

    更新日期:2019-11-01
  • A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Gavin C Hunter,Brenda D Wingfield,Pedro W Crous,Michael J Wingfield

    Species of the ascomycete genus Mycosphaerella are regarded as some of the most destructive leaf pathogens of a large number of economically important crop plants. Amongst these, approximately 60 Mycosphaerella spp. have been identified from various Eucalyptus spp. where they cause leaf diseases collectively known as Mycosphaerella Leaf Disease (MLD). Species concepts for this group of fungi remain confused, and hence their species identification is notoriously difficult. Thus, the introduction of DNA sequence comparisons has become the definitive characteristic used to distinguish species of Mycosphaerella. Sequences of the Internal Transcribed Spacer (ITS) region of the ribosomal RNA operon have most commonly been used to consider species boundaries in Mycosphaerella. However, sequences for this gene region do not always provide sufficient resolution for cryptic taxa. The aim of this study was, therefore, to use DNA sequences for three loci, ITS, Elongation factor 1-alpha (EF-1alpha) and Actin (ACT) to reconsider species boundaries for Mycosphaerella spp. from Eucalyptus. A further aim was to study the anamorph concepts and resolve the deeper nodes of Mycosphaerella, for which part of the Large Subunit (LSU) of the nuclear rRNA operon was sequenced. The ITS and EF-1alpha gene regions were found to be useful, but the ACT gene region did not provide species-level resolution in Mycosphaerella. A phylogeny of the combined DNA datasets showed that species of Mycosphaerella from Eucalyptus cluster in two distinct groups, which might ultimately represent discrete genera.

    更新日期:2019-11-01
  • Multi-gene phylogenies and phenotypic characters distinguish two species within the Colletogloeopsis zuluensis complex associated with Eucalyptus stem cankers.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Maria-Noel Cortinas,Pedro W Crous,Brenda D Wingfield,Michael J Wingfield

    Colletogloeopsis zuluensis, previously known as Coniothyrium zuluense, causes a serious stem canker disease on Eucalyptus spp. grown as non-natives in many tropical and sub-tropical countries. This stem canker disease was first reported from South Africa and it has subsequently been found on various species and hybrids of Eucalyptus in other African countries as well as in countries of South America and South-East Asia. In previous studies, phylogenetic analyses based on DNA sequence data of the ITS region suggested that all material of C. zuluensis was monophyletic. However, the occurrence of the fungus in a greater number of countries, and analyses of DNA sequences with additional isolates has challenged the notion that a single species is involved with Coniothyrium canker. The aim of this study was to consider the phylogenetic relationships amongst C. zuluensis isolates from all available locations and to support these analyses with phenotypic and morphological comparisons. Individual and combined phylogenies were constructed using DNA sequences from the ITS region, exons 3 through 6 of the beta-tubulin gene, the intron of the translation elongation factor 1-alpha gene, and a partial sequence of the mitochondrial ATPase 6 gene. Both phylogenetic data and morphological characteristics showed clearly that isolates of C. zuluensis represent at least two taxa. One of these is C. zuluensis as it was originally described from South Africa, and we provide an epitype for it. The second species occurs in Argentina and Uruguay, and is newly described as C. gauchensis. Both fungi are serious pathogens resulting in identical symptoms. Recognising them as different species has important quarantine consequences.

    更新日期:2019-11-01
  • Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Michael J Wingfield,J Pedro Mansilla,Acelino C Alfenas,Johannes Z Groenewald

    Species of Eucalyptus are widely planted as exotics in the tropics and Southern Hemisphere and to some extent in southern Europe, for timber and fibre production. Species of Mycosphaerella are commonly associated with leaves and twigs of Eucalyptus and can result in defoliation, dieback, and even tree death. In the present study, numerous isolates of Mycosphaerella species were collected from leaf litter, living leaves exhibiting leaf spot symptoms or severe Mycosphaerella leaf blotch symptoms. Isolates were compared based on DNA sequence data for the internal transcribed spacer region (ITS1 & ITS2) and the 5.8S gene. These data, together with characteristics of the fungal growth on three different media, morphology of the anamorph and teleomorph structures as well as ascospore germination patterns were used to describe 21 new species.

    更新日期:2019-11-01
  • Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Renate D Zipfel,Z Wilhelm de Beer,Karin Jacobs,Brenda D Wingfield,Michael J Wingfield

    Ophiostoma species have diverse morphological features and are found in a large variety of ecological niches. Many different classification schemes have been applied to these fungi in the past based on teleomorph and anamorph features. More recently, studies based on DNA sequence comparisions have shown that Ophiostoma consists of different phylogenetic groups, but the data have not been sufficient to define clear monophyletic lineages represented by practical taxonomic units. We used DNA sequence data from combined partial nuclear LSU and beta-tubulin genes to consider the phylogenetic relationships of 50 Ophiostoma species, representing all the major morphological groups in the genus. Our data showed three well-supported, monophyletic lineages in Ophiostoma. Species with Leptographium anamorphs grouped together and to accommodate these species the teleomorph-genus Grosmannia (type species G. penicillata), including 27 species and 24 new combinations, is re-instated. Another well-defined lineage includes species that are cycloheximide-sensitive with short perithecial necks, falcate ascospores and Hyalorhinocladiella anamorphs. For these species, the teleomorph-genus Ceratocystiopsis (type species O. minuta), including 11 species and three new combinations, is re-instated. A third group of species with either Sporothrix or Pesotum anamorphs includes species from various ecological niches such as Protea infructescences in South Africa. This group also includes O. piliferum, the type species of Ophiostoma, and these species are retained in that genus. Ophiostoma is redefined to reflect the changes resulting from new combinations in Grosmannia and Ceratocystiopsis. Our data have revealed additional lineages in Ophiostoma linked to morphological characters. However, these species are retained in Ophiostoma until further data for a larger number of species can be obtained to confirm monophyly of the apparent lineages.

    更新日期:2019-11-01
  • Characterisation of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Johan C Janse van Rensburg,Sandra C Lamprecht,Johannes Z Groenewald,Lisa A Castlebury,Pedro W Crous

    Die-back of rooibos (Aspalathus linearis) causes substantial losses in commercial Aspalathus plantations in South Africa. In the past, the disease has been attributed to Phomopsis phaseoli (teleomorph: Diaporthe phaseolorum). Isolates obtained from diseased plants, however, were highly variable with regard to morphology and pathogenicity. The aim of the present study was thus to identify the Phomopsis species associated with die-back of rooibos. Isolates were subjected to DNA sequence comparisons of the internal transcribed spacer region (ITS1, 5.8S, ITS2) and partial sequences of the translation elongation factor-1 alpha gene. Furthermore, isolates were also compared in glasshouse inoculation trials on 8-mo-old potted plants to evaluate their pathogenicity. Five species were identified, of which D. aspalathi (formerly identified as D. phaseolorum or D. phaseolorum var. meridionalis) proved to be the most virulent, followed by D. ambigua, Phomopsis theicola, one species of Libertella and Phomopsis, respectively, and a newly described species, P. cuppatea. A description is also provided for D. ambigua based on a newly designated epitype specimen.

    更新日期:2019-11-01
  • Eucalyptus microfungi known from culture. 1. Cladoriella and Fulvoflamma genera nova, with notes on some other poorly known taxa.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Gerard J M Verkley,Johannes Z Groenewald

    A study of microfungi associated with living Eucalyptus leaves and leaf litter revealed several novel and interesting taxa. Cladoriella eucalypti gen. et sp. nov. is described as a Cladosporium-like genus associated with litter collected in South Africa, while Fulvoflamma eucalypti gen. et. sp. nov. is newly described from leaf litter collected in Spain. Beta-conidia are newly reported for species of Pestalotiopsis, namely Pestalotiopsis disseminata in New Zealand, and a Pestalotiopsis sp. from Colombia. Satchmopsis brasiliensis is reported from litter in Colombia and Indonesia, while Torrendiella eucalypti is reported from leaf litter in Indonesia, and shown to have a Sporothrix-like anamorph. Leptospora rubella is reported from living Eucalyptus leaves in Colombia, where it is associated with leaf spots of Mycosphaerella longibasalis, while Macrohilumeucalypti is reported from leaf spots of Eucalyptus in New Zealand.

    更新日期:2019-11-01
  • Microthia, Holocryphia and Ursicollum, three new genera on Eucalyptus and Coccoloba for fungi previously known as Cryphonectria.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Marieka Gryzenhout,Henrietta Myburg,Charles S Hodges,Brenda D Wingfield,Michael J Wingfield

    Cryphonectria havanensis is a fungus associated with Eucalyptus species in Cuba and Florida (U.S.A.). Until recently, there have been no living cultures of C. havanensis and it has thus not been possible to assess its taxonomic status. Isolates thought to represent this fungus have, however, emerged from surveys of Eucalyptus in Mexico and Hawaii (U.S.A.). Results of this study showed that these isolates represent C. havanensis but reside in a genus distinct from Cryphonectria sensu stricto, which is described here as Microthia. Isolates of an unidentified fungus occurring on Myrica faya in the Azores and Madeira also grouped in Microthia and were identical to other M. havanensis isolates. Cryphonectria coccolobae, a fungus occurring on sea grape (Coccoloba uvifera) in Bermuda and Florida, was found to be morphologically identical to Microthia and is transferred to this genus, but as a distinct species. Surveys for M. coccolobae on sea grape in Florida, yielded a second diaporthalean fungus from this host. This fungus is morphologically and phylogenetically distinct from M. coccolobae and other closely related taxa and is described as Ursicollum fallax gen. et sp. nov. Phylogenetic analyses in this study have also shown that isolates of C. eucalypti, a pathogen of Eucalyptus in South Africa and Australia, group in a clade separate from all other groups including that representing Cryphonectria sensu stricto. This difference is supported by the fact that Cryphonectria eucalypti has ascospore septation different to that of all other Cryphonectria species. A new genus, Holocryphia, is thus erected for C. eucalypti.

    更新日期:2019-11-01
  • How many species of fungi are there at the tip of Africa?
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Pedro W Crous,Isabella H Rong,Alan Wood,Seonju Lee,Hugh Glen,Wilhelm Botha,Bernard Slippers,Wilhelm Z de Beer,Michael J Wingfield,David L Hawksworth

    Several recent studies have reviewed the extent of fungal biodiversity, and have used these data as basis for revised estimates of species numbers based on known numbers of plants and insects. None of these studies, however, have focused on fungal biodiversity in South Africa. Coinciding with the 100th anniversary of the National Collection of Fungi (PREM) in South Africa in 2005, it is thus timely to reflect on the taxonomic research that has been conducted in South Africa over the past Century. Information is presented on the extent of fungal collections preserved at PREM, and the associated research publications that have largely resulted from this resource. These data are placed in context of the known plant and insect biodiversity, and used as basis to estimate the potential number of fungi that could be expected in South Africa. The conservative estimate is of approximately 200 000 species without taking into account those associated with a substantial insect biodiversity.

    更新日期:2019-11-01
  • The South African National Collection of Fungi: celebrating a centenary 1905-2005.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Isabella H Rong,Alice P Baxter

    The international acronym PREM denotes the South African National Collection of Fungi, which houses approximately 60 000 specimens. The collection includes material from outside South Africa and contains representatives of all the major groups of fungi excluding the yeasts and pathogens of larger animals and man. The name PREM was derived from the city in which the collection is situated, Pretoria (PRE), and the M defines the collection as being mycological. The background information and historical facts presented in this paper are based on an unpublished manuscript, prepared by the co-author and then head of the collection A.P. Baxter, for the 90(th) celebration of PREM.The collection was established in 1905, when South Africa was still a British colony. The vision and hard work of the earlier scientists associated with it paved the way for the establishment of a number of present-day national research bodies. One of these, the Plant Protection Research Institute, is currently the custodian of the collection. Over time activities at PREM were influenced by socio-economic and political events, and most recently, the South African government's commitment to international biodiversity initiatives. Although the basic goals and needs to maintain PREM remained intact throughout, various phases in terms of research focus can be recognised over the past century. In the early days the emphasis was on collecting and recording of fungi, then pioneering research was done on mycotoxins and later there was an increased demand for public-good services and innovation. Since the 1980's sophisticated molecular techniques have aided in the discovery of true phylogenetic relationships of fungi, a fundamental field of systematics, that was previously impossible to explore by any other means. Against these advances, the value of reference collections is often questioned.New technologies should, however, not be pursued in isolation from other relevant factors. Improvement of agricultural practices, knowledge sharing and the protection and conservation of biota will always be important. Even so, the success and future of natural history collections depends on continued support from governing bodies, appreciation for our biological heritage and on inputs from the scientific community.

    更新日期:2019-11-01
  • Redefining Ceratocystis and allied genera.
    Stud. Mycol. (IF 9.206) Pub Date : 2014-12-11
    Z W de Beer,T A Duong,I Barnes,B D Wingfield,M J Wingfield

    The genus Ceratocystis was established in 1890 and accommodates many important fungi. These include serious plant pathogens, significant insect symbionts and agents of timber degradation that result in substantial economic losses. Virtually since its type was described from sweet potatoes, the taxonomy of Ceratocystis has been confused and vigorously debated. In recent years, particulary during the last two decades, it has become very obvious that this genus includes a wide diversity of very different fungi. These have been roughly lumped together due to their similar morphological structures that have clearly evolved through convergent evolution linked to an insect-associated ecology. As has been true for many other groups of fungi, the emergence of DNA-based sequence data and associated phylogenetic inferences, have made it possible to robustly support very distinct boundaries defined by morphological characters and ecological differences. In this study, DNA-sequence data for three carefully selected gene regions (60S, LSU, MCM7) were generated for 79 species residing in the aggregate genus Ceratocystis sensu lato and these data were subjected to rigorous phylogenetic analyses. The results made it possible to distinguish seven major groups for which generic names have been chosen and descriptions either provided or emended. The emended genera included Ceratocystis sensu stricto, Chalaropsis, Endoconidiophora, Thielaviopsis, and Ambrosiella, while two new genera, Davidsoniella and Huntiella, were described. In total, 30 new combinations have been made. This major revision of the generic boundaries in the Ceratocystidaceae will simplify future treatments and work with an important group of fungi including distantly related species illogically aggregated under a single name.

    更新日期:2019-11-01
  • Pestalotiopsis revisited.
    Stud. Mycol. (IF 9.206) Pub Date : 2014-12-11
    S S N Maharachchikumbura,K D Hyde,J Z Groenewald,J Xu,P W Crous

    Species of Pestalotiopsis occur commonly as plant pathogens, and represent a fungal group known to produce a wide range of chemically novel, diverse metabolites. In the present study, we investigated 91 Pestalotiopsis isolates from the CBS-KNAW Fungal Biodiversity Centre (CBS) culture collection. The phylogeny of the Amphisphaeriaceae was constructed based on analysis of 28S nrRNA gene (LSU) sequence data, and taxonomic changes are proposed to reflect more natural groupings. We combined morphological and DNA data, and segregated two novel genera from Pestalotiopsis, namely Neopestalotiopsis and Pseudopestalotiopsis. The three genera are easily distinguishable on the basis of their conidiogenous cells and colour of their median conidial cells. We coupled morphological and combined sequence data of internal transcribed spacer (ITS), partial β-tubulin (TUB) and partial translation elongation factor 1-alpha (TEF) gene regions, which revealed 30 clades in Neopestalotiopsis and 43 clades in Pestalotiopsis. Based on these data, 11 new species are introduced in Neopestalotiopsis, 24 in Pestalotiopsis, and two in Pseudopestalotiopsis. Several new combinations are proposed to emend monophyly of Neopestalotiopsis, Pestalotiopsis and Pseudopestalotiopsis.

    更新日期:2019-11-01
  • Sizing up Septoria.
    Stud. Mycol. (IF 9.206) Pub Date : 2013-09-10
    W Quaedvlieg,G J M Verkley,H-D Shin,R W Barreto,A C Alfenas,W J Swart,J Z Groenewald,P W Crous

    UNLABELLED Septoria represents a genus of plant pathogenic fungi with a wide geographic distribution, commonly associated with leaf spots and stem cankers of a broad range of plant hosts. A major aim of this study was to resolve the phylogenetic generic limits of Septoria, Stagonospora, and other related genera such as Sphaerulina, Phaeosphaeria and Phaeoseptoria using sequences of the the partial 28S nuclear ribosomal RNA and RPB2 genes of a large set of isolates. Based on these results Septoria is shown to be a distinct genus in the Mycosphaerellaceae, which has mycosphaerella-like sexual morphs. Several septoria-like species are now accommodated in Sphaerulina, a genus previously linked to this complex. Phaeosphaeria (based on P. oryzae) is shown to be congeneric with Phaeoseptoria (based on P. papayae), which is reduced to synonymy under the former. Depazea nodorum (causal agent of nodorum blotch of cereals) and Septoria avenae (causal agent of avenae blotch of barley and rye) are placed in a new genus, Parastagonospora, which is shown to be distinct from Stagonospora (based on S. paludosa) and Phaeosphaeria. Partial nucleotide sequence data for five gene loci, ITS, LSU, EF-1α, RPB2 and Btub were generated for all of these isolates. A total of 47 clades or genera were resolved, leading to the introduction of 14 new genera, 36 new species, and 19 new combinations. TAXONOMIC NOVELTIES New genera - Acicuseptoria Quaedvlieg, Verkley & Crous, Cylindroseptoria Quaedvlieg, Verkley & Crous, Kirstenboschia Quaedvlieg, Verkley & Crous, Neoseptoria Quaedvlieg, Verkley & Crous, Neostagonospora Quaedvlieg, Verkley & Crous, Parastagonospora Quaedvlieg, Verkley & Crous, Polyphialoseptoria Quaedvlieg, R.W. Barreto, Verkley & Crous, Ruptoseptoria Quaedvlieg, Verkley & Crous, Septorioides Quaedvlieg, Verkley & Crous, Setoseptoria Quaedvlieg, Verkley & Crous, Stromatoseptoria Quaedvlieg, Verkley & Crous, Vrystaatia Quaedvlieg, W.J. Swart, Verkley & Crous, Xenobotryosphaeria Quaedvlieg, Verkley & Crous, Xenoseptoria Quaedvlieg, H.D. Shin, Verkley & Crous. New species - Acicuseptoria rumicis Quaedvlieg, Verkley & Crous, Caryophylloseptoria pseudolychnidis Quaedvlieg, H.D. Shin, Verkley & Crous, Coniothyrium sidae Quaedvlieg, Verkley, R.W. Barreto & Crous, Corynespora leucadendri Quaedvlieg, Verkley & Crous, Cylindroseptoria ceratoniae Quaedvlieg, Verkley & Crous, Cylindroseptoria pistaciae Quaedvlieg, Verkley & Crous, Kirstenboschia diospyri Quaedvlieg, Verkley & Crous, Neoseptoria caricis Quaedvlieg, Verkley & Crous, Neostagonospora caricis Quaedvlieg, Verkley & Crous, Neostagonospora elegiae Quaedvlieg, Verkley & Crous, Paraphoma dioscoreae Quaedvlieg, H.D. Shin, Verkley & Crous, Parastagonospora caricis Quaedvlieg, Verkley & Crous, Parastagonospora poae Quaedvlieg, Verkley & Crous, Phlyctema vincetoxici Quaedvlieg, Verkley & Crous, Polyphialoseptoria tabebuiae-serratifoliae Quaedvlieg, Alfenas & Crous, Polyphialoseptoria terminaliae Quaedvlieg, R.W. Barreto, Verkley & Crous, Pseudoseptoria collariana Quaedvlieg, Verkley & Crous, Pseudoseptoria obscura Quaedvlieg, Verkley & Crous, Sclerostagonospora phragmiticola Quaedvlieg, Verkley & Crous, Septoria cretae Quaedvlieg, Verkley & Crous, Septoria glycinicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria oenanthicola Quaedvlieg, H.D. Shin, Verkley & Crous, Septoria pseudonapelli Quaedvlieg, H.D. Shin, Verkley & Crous, Setophoma chromolaenae Quaedvlieg, Verkley, R.W. Barreto & Crous, Setoseptoria phragmitis Quaedvlieg, Verkley & Crous, Sphaerulina amelanchier Quaedvlieg, Verkley & Crous, Sphaerulina pseudovirgaureae Quaedvlieg, Verkley & Crous, Sphaerulina viciae Quaedvlieg, H.D. Shin, Verkley & Crous, Stagonospora duoseptata Quaedvlieg, Verkley & Crous, Stagonospora perfecta Quaedvlieg, Verkley & Crous, Stagonospora pseudocaricis Quaedvlieg, Verkley, Gardiennet & Crous, Stagonospora pseudovitensis Quaedvlieg, Verkley & Crous, Stagonospora uniseptata Quaedvlieg, Verkley & Crous, Vrystaatia aloeicola Quaedvlieg, Verkley, W.J. Swart & Crous, Xenobotryosphaeria calamagrostidis Quaedvlieg, Verkley & Crous, Xenoseptoria neosaccardoi Quaedvlieg, H.D. Shin, Verkley & Crous. New combinations - Parastagonospora avenae (A.B. Frank) Quaedvlieg, Verkley & Crous, Parastagonospora nodorum (Berk.) Quaedvlieg, Verkley & Crous, Phaeosphaeria papayae (Speg.) Quaedvlieg, Verkley & Crous, Pseudocercospora domingensis (Petr. & Cif.) Quaedvlieg, Verkley & Crous, Ruptoseptoria unedonis (Roberge ex Desm.) Quaedvlieg, Verkley & Crous, Septorioides pini-thunbergii (S. Kaneko) Quaedvlieg, Verkley & Crous, Sphaerulina abeliceae (Hiray.) Quaedvlieg, Verkley & Crous, Sphaerulina azaleae (Voglino) Quaedvlieg, Verkley & Crous, Sphaerulina berberidis (Niessl) Quaedvlieg, Verkley & Crous, Sphaerulina betulae (Pass.) Quaedvlieg, Verkley & Crous, Sphaerulina cercidis (Fr.) Quaedvlieg, Verkley & Crous, Sphaerulina menispermi (Thüm.) Quaedvlieg, Verkley & Crous, Sphaerulina musiva (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina oxyacanthae (Kunze & J.C. Schmidt) Quaedvlieg, Verkley & Crous, Sphaerulina patriniae (Miura) Quaedvlieg, Verkley & Crous, Sphaerulina populicola (Peck) Quaedvlieg, Verkley & Crous, Sphaerulina quercicola (Desm.) Quaedvlieg, Verkley & Crous, Sphaerulina rhabdoclinis (Butin) Quaedvlieg, Verkley & Crous, Stromatoseptoria castaneicola (Desm.) Quaedvlieg, Verkley & Crous. Typifications: Epitypifications - Phaeosphaeria oryzae I. Miyake, Phaeoseptoria papayae Speg.; Neotypification - Hendersonia paludosa Sacc. & Speg.

    更新日期:2019-11-01
  • A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-01-01
    C Gueidan,C R Villaseñor,G S de Hoog,A A Gorbushina,W A Untereiner,F Lutzoni

    Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock-inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. Cladophialophora bantiana and Exophiala dermatitidis, both agents of fatal brain infections) and saprophytes. The rock-dwelling habit is shown here to be key to the evolution of these two ecologically disparate orders. The most recent common ancestor of Verrucariales and Chaetothyriales is reconstructed as a non-lichenised rock-inhabitant. Ancestral state reconstructions suggest Verrucariales as one of the independent ascomycetes group where lichenisation has evolved on a hostile rock surface that might have favored this shift to a symbiotic lifestyle. Rock-inhabiting fungi are also ancestral to opportunistic pathogens, as they are found in the early diverging lineages of Chaetothyriales. In Chaetothyriales and Verrucariales, specific morphological and physiological traits (here referred to as extremotolerance) evolved in response to stresses in extreme conditions prevailing on rock surfaces. These factors facilitated colonisation of various substrates including the brains of vertebrates by opportunistic fungal pathogens, as well as helped establishment of a stable lichen symbiosis.

    更新日期:2019-11-01
  • Aspergillus strain typing in the genomics era.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    C H W Klaassen,N Osherov

    Multiple reasons may justify a need for strain typing purposes, but the most common reason is to delineate the epidemiological relationships between isolates. The availability of whole genome sequences has greatly influenced our ability to develop highly targeted and efficient strain typing methods fur these purposes. Some strain typing methods may serve dual goals: not only can they be used to discriminate between multiple isolates of a certain species, they can also aid in the recognition, identification, description and validation process of a fungal species.

    更新日期:2019-11-01
  • Two new pathogenic ascomycetes in Guignardia and Rosenscheldiella on New Zealand's pygmy mistletoes (Korthalsella: Viscaceae).
    Stud. Mycol. (IF 9.206) Pub Date : 2011-04-28
    A Sultan,P R Johnston,D Park,A W Robertson

    Two new pathogens, Guignardia korthalsellae and Rosenscheldiella korthalsellae, are described from New Zealand's pygmy mistletoes (Korthalsella, Viscaceae). Both form ascomata on living phylloclades with minimal disruption of the tissue. Fungal hyphae within the phylloclade are primarily intercellular. Guignardia korthalsellae disrupts a limited number of epidermal cells immediately around the erumpent ascoma, while the ascomata of Rosenscheldiellakorthalsellae develop externally on small patches of stromatic tissue that form above stomatal cavities. Rosenscheldiella is applied in a purely morphological sense. LSU sequences show that R. korthalsellae as well as another New Zealand species, Rosenscheldiella brachyglottidis, are members of the Mycosphaerellaceaesensu stricto. Genetically, Rosenscheldiella, in the sense we are using it, is polyphyletic; LSU and ITS sequences place the two New Zealand species in different clades within the Mycosphaerellaceae. Rosenscheldiella is retained for these fungi until generic relationships within the family are resolved. Whether or not the type species of Rosenscheldiella, R. styracis, is also a member of the Mycosphaerellaceae is not known, but it has a similar morphology and relationship to its host as the two New Zealand species.

    更新日期:2019-11-01
  • A molecular re-appraisal of taxa in the Sordariomycetidae and a new species of Rimaconus from New Zealand.
    Stud. Mycol. (IF 9.206) Pub Date : 2011-04-28
    S M Huhndorf,A N Miller

    Several taxa that share similar ascomatal and ascospore characters occur in monotypic or small genera throughout the Sordariomycetidae with uncertain relationships based on their morphology. Taxa in the genera Duradens, Leptosporella, Linocarpon, and Rimaconus share similar morphologies of conical ascomata, carbonised peridia and elongate ascospores, while taxa in the genera Caudatispora, Erythromada and Lasiosphaeriella possess clusters of superficial, obovoid ascomata with variable ascospores. Phylogenetic analyses of 28S large-subunit nrDNA sequences were used to test the monophyly of these genera and provide estimates of their relationships within the Sordariomycetidae. Rimaconus coronatus is described as a new species from New Zealand; it clusters with the type species, R. jamaicensis. Leptosporella gregaria is illustrated and a description is provided for this previously published taxon that is the type species and only sequenced representative of the genus. Both of these genera occur in separate, well-supported clades among taxa that form unsupported groups near the Chaetosphaeriales and Helminthosphaeriaceae. Lasiosphaeriella and Linocarpon appear to be polyphyletic with species occurring in several clades throughout the subclass. Caudatispora and Erythromada represented by single specimens and two putative Duradens spp. have unclear affinities in the Sordariomycetidae.

    更新日期:2019-11-01
  • Species concepts in Calonectria (Cylindrocladium).
    Stud. Mycol. (IF 9.206) Pub Date : 2010-09-02
    L Lombard,P W Crous,B D Wingfield,M J Wingfield

    Species of Calonectria and their Cylindrocladium anamorphs are important plant pathogens worldwide. At present 52 Cylindrocladium spp. and 37 Calonectria spp. are recognised based on sexual compatibility, morphology and phylogenetic inference. The polyphasic approach of integrating Biological, Morphological and Phylogenetic Species Concepts has revolutionised the taxonomy of fungi. This review aims to present an overview of published research on the genera Calonectria and Cylindrocladium as they pertain to their taxonomic history. The nomenclature as well as future research necessary for this group of fungi are also briefly discussed.

    更新日期:2019-11-01
  • Molecular systematics of the marine Dothideomycetes.
    Stud. Mycol. (IF 9.206) Pub Date : 2010-02-20
    S Suetrong,C L Schoch,J W Spatafora,J Kohlmeyer,B Volkmann-Kohlmeyer,J Sakayaroj,S Phongpaichit,K Tanaka,K Hirayama,E B G Jones

    Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae,Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae,Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. Few marine species are reported from the Dothideomycetidae (e.g. Mycosphaerellaceae, Capnodiales), a group poorly studied at the molecular level. New marine lineages include the Testudinaceae and Manglicolaguatemalensis in the Jahnulales. Significantly, most marine Dothideomycetes are intertidal tropical species with only a few from temperate regions on salt marsh plants (Spartina species and Juncus roemerianus), and rarely totally submerged (e.g. Halotthia posidoniae and Pontoporeia biturbinata on the seagrasses Posidonia oceanica and Cymodocea nodosum). Specific attention is given to the adaptation of the Dothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity.

    更新日期:2019-11-01
  • Phylogeny of rock-inhabiting fungi related to Dothideomycetes.
    Stud. Mycol. (IF 9.206) Pub Date : 2010-02-20
    C Ruibal,C Gueidan,L Selbmann,A A Gorbushina,P W Crous,J Z Groenewald,L Muggia,M Grube,D Isola,C L Schoch,J T Staley,F Lutzoni,G S de Hoog

    The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation.

    更新日期:2019-11-01
  • Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-01-01
    M V Sogonov,L A Castlebury,A Y Rossman,L C Mejía,J F White

    The Gnomoniaceae are characterised by ascomata that are generally immersed, solitary, without a stroma, or aggregated with a rudimentary stroma, in herbaceous plant material especially in leaves, twigs or stems, but also in bark or wood. The ascomata are black, soft-textured, thin-walled, and pseudoparenchymatous with one or more central or eccentric necks. The asci usually have a distinct apical ring. The Gnomoniaceae includes species having ascospores that are small, mostly less than 25 mum long, although some are longer, and range in septation from non-septate to one-septate, rarely multi-septate. Molecular studies of the Gnomoniaceae suggest that the traditional classification of genera based on characteristics of the ascomata such as position of the neck and ascospores such as septation have resulted in genera that are not monophyletic. In this paper the concepts of the leaf-inhabiting genera in the Gnomoniaceae are reevaluated using multiple genes, specifically nrLSU, translation elongation factor 1-alpha (tef1-alpha), and RNA polymerase II second largest subunit (rpb2) for 64 isolates. ITS sequences were generated for 322 isolates. Six genera of leaf-inhabiting Gnomoniaceae are defined based on placement of their type species within the multigene phylogeny. The new monotypic genus Ambarignomonia is established for an unusual species, A. petiolorum. A key to 59 species of leaf-inhabiting Gnomoniaceae is presented and 22 species of Gnomoniaceae are described and illustrated.

    更新日期:2019-11-01
  • Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-01-01
    L Selbmann,G S de Hoog,L Zucconi,D Isola,S Ruisi,A H G Gerrits van den Ende,C Ruibal,F De Leo,C Urzì,S Onofri

    Fungal strains isolated from rocks and lichens collected in the Antarctic ice-free area of the Victoria Land, one of the coldest and driest habitats on earth, were found in two phylogenetically isolated positions within the subclass Dothideomycetidae. They are here reported as new genera and species, Recurvomyces mirabilisgen. nov., sp. nov. and Elasticomyces elasticusgen. nov., sp. nov. The nearest neighbours within the clades were other rock-inhabiting fungi from dry environments, either cold or hot. Plant-associated Mycosphaerella-like species, known as invaders of leathery leaves in semi-arid climates, are also phylogenetically related with the new taxa. The clusters are also related to the halophilic species Hortaea werneckii, as well as to acidophilic fungi. One of the latter, able to grow at pH 0, is Scytalidium acidophilum, which is ascribed here to the newly validated genus Acidomyces. The ecological implications of this finding are discussed.

    更新日期:2019-11-01
  • Black fungi in lichens from seasonally arid habitats.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-01-01
    S Harutyunyan,L Muggia,M Grube

    We present a phylogenetic study of black fungi in lichens, primarily focusing on saxicolous samples from seasonally arid habitats in Armenia, but also with examples from other sites. Culturable strains of lichen-associated black fungi were obtained by isolation from surface-washed lichen material. Determination is based on ITS rDNA sequence data and comparison with published sequences from other sources. The genera Capnobotryella, Cladophialophora, Coniosporium, Mycosphaerella, and Rhinocladiella were found in different lichen species, which showed no pathogenic symptoms. A clade of predominantly lichen-associated strains is present only in Rhinocladiella, whereas samples of the remaining genera were grouped more clearly in clades with species from other sources. The ecology of most-closely related strains indicates that Capnobotryella and Coniosporium, and perhaps also Rhinocladiella strains opportunistically colonise lichens. In contrast, high sequence divergence in strains assigned to Mycosphaerella could indicate the presence of several lichen-specific species with unknown range of hosts or habitats, which are distantly related to plant-inhabitants. Similar applies to Cladophialophora strains, where the closest relatives of the strains from lichens are serious human pathogens.

    更新日期:2019-11-01
  • Phylogenetic classification of Cordyceps and the clavicipitaceous fungi.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Gi-Ho Sung,Nigel L Hywel-Jones,Jae-Mo Sung,J Jennifer Luangsa-Ard,Bhushan Shrestha,Joseph W Spatafora

    Cordyceps, comprising over 400 species, was historically classified in the Clavicipitaceae, based on cylindrical asci, thickened ascus apices and filiform ascospores, which often disarticulate into part-spores. Cordyceps was characterized by the production of well-developed often stipitate stromata and an ecology as a pathogen of arthropods and Elaphomyces with infrageneric classifications emphasizing arrangement of perithecia, ascospore morphology and host affiliation. To refine the classification of Cordyceps and the Clavicipitaceae, the phylogenetic relationships of 162 taxa were estimated based on analyses consisting of five to seven loci, including the nuclear ribosomal small and large subunits (nrSSU and nrLSU), the elongation factor 1alpha (tef1), the largest and the second largest subunits of RNA polymerase II (rpb1 and rpb2), beta-tubulin (tub), and mitochondrial ATP6 (atp6). Our results strongly support the existence of three clavicipitaceous clades and reject the monophyly of both Cordyceps and Clavicipitaceae. Most diagnostic characters used in current classifications of Cordyceps (e.g., arrangement of perithecia, ascospore fragmentation, etc.) were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata. Therefore, we revise the taxonomy of Cordyceps and the Clavicipitaceae to be consistent with the multi-gene phylogeny. The family Cordycipitaceae is validated based on the type of Cordyceps, C. militaris, and includes most Cordyceps species that possess brightly coloured, fleshy stromata. The new family Ophiocordycipitaceae is proposed based on Ophiocordyceps Petch, which we emend. The majority of species in this family produce darkly pigmented, tough to pliant stromata that often possess aperithecial apices. The new genus Elaphocordyceps is proposed for a subclade of the Ophiocordycipitaceae, which includes all species of Cordyceps that parasitize the fungal genus Elaphomyces and some closely related species that parasitize arthropods. The family Clavicipitaceaes. s. is emended and includes the core clade of grass symbionts (e.g., Balansia, Claviceps, Epichloë, etc.), and the entomopathogenic genus Hypocrella and relatives. In addition, the new genus Metacordyceps is proposed for Cordyceps species that are closely related to the grass symbionts in the Clavicipitaceaes. s.Metacordyceps includes teleomorphs linked to Metarhizium and other closely related anamorphs. Two new species are described, and lists of accepted names for species in Cordyceps, Elaphocordyceps, Metacordyceps and Ophiocordyceps are provided.

    更新日期:2019-11-01
  • Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    J C Frisvad,T O Larsen,R de Vries,M Meijer,J Houbraken,F J Cabañes,K Ehrlich,R A Samson

    Species in the genus Aspergillus have been classified primarily based on morphological features. Sequencing of house-hold genes has also been used in Aspergillus taxonomy and phylogeny, while extrolites and physiological features have been used less frequently. Three independent ways of classifying and identifying aspergilli appear to be applicable: Morphology combined with physiology and nutritional features, secondary metabolite profiling and DNA sequencing. These three ways of identifying Aspergillus species often point to the same species. This consensus approach can be used initially, but if consensus is achieved it is recommended to combine at least two of these independent ways of characterising aspergilli in a polyphasic taxonomy. The chemical combination of secondary metabolites and DNA sequence features has not been explored in taxonomy yet, however. Examples of these different taxonomic approaches will be given for Aspergillus section Nigri.

    更新日期:2019-11-01
  • Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    R A Samson,S Hong,S W Peterson,J C Frisvad,J Varga

    The taxonomy of Aspergillus section Fumigati with its teleomorph genus Neosartorya is revised. The species concept is based on phenotypic (morphology and extrolite profiles) and molecular (beta-tubulin and calmodulin gene sequences) characters in a polyphasic approach. Four new taxa are proposed: N. australensis N. ferenczii, N. papuaensis and N. warcupii. All newly described and accepted species are illustrated. The section consists of 33 taxa: 10 strictly anamorphic Aspergillus species and 23 Neosartorya species. Four other Neosartorya species described previously were not available for this monograph, and consequently are relegated to the category of doubtful species.

    更新日期:2019-11-01
  • The current status of species recognition and identification in Aspergillus.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    D M Geiser,M A Klich,J C Frisvad,S W Peterson,J Varga,R A Samson

    The species recognition and identification of aspergilli and their teleomorphs is discussed. A historical overview of the taxonomic concepts starting with the monograph of Raper & Fennell (1965) is given. A list of taxa described since 2000 is provided. Physiological characters, particularly growth rates and the production of extrolites, often show differences that reflect phylogenetic species boundaries and greater emphasis should be placed on extrolite profiles and growth characteristics in species descriptions. Multilocus sequence-based phylogenetic analyses have emerged as the primary tool for inferring phylogenetic species boundaries and relationships within subgenera and sections. A four locus DNA sequence study covering all major lineages in Aspergillus using genealogical concordance theory resulted in a species recognition system that agrees in part with phenotypic studies and reveals the presence of many undescribed species not resolved by phenotype. The use of as much data from as many sources as possible in making taxonomic decisions is advocated. For species identification, DNA barcoding uses a short genetic marker in an organism"s DNA to quickly and easily identify it to a particular species. Partial cytochrome oxidase subunit 1 sequences, which are used for barcoding animal species, were found to have limited value for species identification among black aspergilli. The various possibilities are discussed and at present partial beta-tubulin or calmodulin are the most promising loci for Aspergillus identification. For characterising Aspergillus species one application would be to produce a multilocus phylogeny, with the goal of having a firm understanding of the evolutionary relationships among species across the entire genus. DNA chip technologies are discussed as possibilities for an accurate multilocus barcoding tool for the genus Aspergillus.

    更新日期:2019-11-01
  • Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    J Varga,M Due,J C Frisvad,R A Samson

    Aspergillus section Clavati has been revised using morphology, secondary metabolites, physiological characters and DNA sequences. Phylogenetic analysis of beta-tubulin, ITS and calmodulin sequence data indicated that Aspergillus section Clavati includes 6 species, A. clavatus (synonyms: A. apicalis, A. pallidus), A. giganteus, A. rhizopodus, A. longivesica, Neocarpenteles acanthosporus and A. clavatonanicus. Neocarpenteles acanthosporus is the only known teleomorph of this section. The sister genera to Neocarpenteles are Neosartorya and Dichotomomyces based on sequence data. Species in Neosartorya and Neocarpenteles have anamorphs with green conidia and share the production of tryptoquivalins, while Dichotomomyces was found to be able to produce gliotoxin, which is also produced by some Neosartorya species, and tryptoquivalines and tryptoquivalones produced by members of both section Clavati and Fumigati. All species in section Clavati are alkalitolerant and acidotolerant and they all have clavate conidial heads. Many species are coprophilic and produce the effective antibiotic patulin. Members of section Clavati also produce antafumicin, tryptoquivalines, cytochalasins, sarcins, dehydrocarolic acid and kotanins (orlandin, desmethylkotanin and kotanin) in species specific combinations. Another species previously assigned to section Clavati, A. ingratus is considered a synonym of Hemicarpenteles paradoxus, which is phylogenetically very distantly related to Neocarpenteles and section Clavati.

    更新日期:2019-11-01
  • What can comparative genomics tell us about species concepts in the genus Aspergillus?
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    A Rokas,G Payne,N D Fedorova,S E Baker,M Machida,J Yu,D Ryan Georgianna,Ralph A Dean,Deepak Bhatnagar,T E Cleveland,J R Wortman,R Maiti,V Joardar,P Amedeo,D W Denning,W C Nierman

    Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.

    更新日期:2019-11-01
  • A monograph of Allantonectria, Nectria, and Pleonectria (Nectriaceae, Hypocreales, Ascomycota) and their pycnidial, sporodochial, and synnematous anamorphs.
    Stud. Mycol. (IF 9.206) Pub Date : 2012-06-12
    Y Hirooka,A Y Rossman,G J Samuels,C Lechat,P Chaverri

    UNLABELLED Although Nectria is the type genus of Nectriaceae (Hypocreales, Sordariomycetes, Pezizomycotina, Ascomycota), the systematics of the teleomorphic and anamorphic state of Nectriasensu Rossman has not been studied in detail. The objectives of this study are to 1) provide a phylogenetic overview to determine if species of Nectria with Gyrostroma, Tubercularia, and Zythiostroma anamorphs form a monophyletic group; 2) define Nectria, segregate genera, and their species using morphologically informative characters of teleomorphic and anamorphic states; and 3) provide descriptions and illustrations of these genera and species. To accomplish these objectives, results of phylogenetic analyses of DNA sequence data from six loci (act, ITS, LSU, rpb1, tef1 and tub), were integrated with morphological characterisations of anamorphs and teleomorphs. Results from the phylogenetic analyses demonstrate that species previously regarded as the genus Nectria having Gyrostroma,Tubercularia, and Zythiostroma anamorphs belong in two major paraphyletic clades. The first major clade regarded as the genus Pleonectria contains 26 species with ascoconidia produced by ascospores in asci, perithecial walls having bright yellow scurf, and immersed or superficial pycnidial anamorphs (Zythiostroma = Gyrostroma). A lineage basal to the Pleonectria clade includes Nectria miltina having very small, aseptate ascospores, and trichoderma-like conidiophores and occurring on monocotyledonous plants. These characteristics are unusual in Pleonectria, thus we recognise the monotypic genus Allantonectria with Allantonectria miltina. The second major clade comprises the genus Nectriasensu stricto including the type species, N. cinnabarina, and 28 additional species. Within the genus Nectria, four subclades exist. One subclade includes species with sporodochial anamorphs and another with synnematous anamorphs. The other two paraphyletic subclades include species that produce abundant stromata in which the large perithecia are immersed, large ascospores, and peculiar anamorphs that form pycnidia or sporodochia either on their natural substrate or in culture. In this study the evolution of species, morphology, and ecology of the three genera, Allantonectria, Nectria, and Pleonectria, are discussed based on the phylogenetic analyses. In addition, descriptions, illustrations, and keys for identification are presented for the 56 species in Allantonectria, Nectria, and Pleonectria. TAXONOMIC NOVELTIES New species:Nectria argentinensis Hirooka, Rossman & P. Chaverri, Nectria berberidicola Hirooka, Lechat, Rossman, & P. Chaverri, Nectria himalayensis Hirooka, Rossman, & P. Chaverri, Nectria magnispora Hirooka, Rossman, & P. Chaverri, Nectria mariae Hirooka, Fournier, Lechat, Rossman, & P. Chaverri, Nectriapyriformis Hirooka, Rossman & P. Chaverri, Pleonectria boothii Hirooka, Rossman & Chaverri, Pleonectria clavatispora Hirooka, Rossman & P. Chaverri, Pleonectria ilicicola Hirooka, Rossman & P. Chaverri, Pleonectria okinawensis Hirooka, Rossman & P. Chaverri, Pleonectria pseudomissouriensis Hirooka, Rossman & P. Chaverri, Pleonectria quercicola Hirooka, Checa, Areual, Rossman & P. Chaverri, Pleonectria strobi Hirooka, Rossman & P. Chaverri. New combinations:Cosmospora proteae (Marinc., M.J. Wingf. & Crous) Hirooka, Rossman & P. Chaverri, Nectricladiellaviticola (Berk. & M.A. Curtis) Hirooka, Rossman & P. Chaverri, Neocosmospora guarapiensis (Speg.) Hirooka, Samuels, Rossman & P. Chaverri, Neocosmospora rehmiana (Kirschstein) Hirooka, Samuels, Rossman & P. Chaverri, Pleonectria aquifolii (Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria aurigera (Berk. & Rav.) Hirooka, Rossman & P. Chaverri, Pleonectria chlorinella (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria coryli (Fuckel) Hirooka, Rossman & P. Chaverri, Pleonectria cucurbitula (Tode: Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria lonicerae (Seeler) Hirooka, Rossman & P. Chaverri, Pleonectria rosellinii (Carestia) Hirooka, Rossman & P. Chaverri, Pleonectria rubicarpa (Cooke) Hirooka, Rossman & P. Chaverri, Pleonectria sinopica (Fr.: Fr.) Hirooka, Rossman & P. Chaverri, Pleonectria sphaerospora (Ellis & Everh) Hirooka, Rossman & P. Chaverri, Pleonectria virens (Harkn.) Hirooka, Rossman & P. Chaverri, Pleonectria zanthoxyli (Peck) Hirooka, Rossman & P. Chaverri.

    更新日期:2019-11-01
  • Molecular analysis and pathogenicity of the Cladophialophora carrionii complex, with the description of a novel species.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    G S de Hoog,A S Nishikaku,G Fernandez-Zeppenfeldt,C Padín-González,E Burger,H Badali,N Richard-Yegres,A H G Gerrits van den Ende

    Cladophialophora carrionii is one of the four major etiologic agents of human chromoblastomycosis in semi-arid climates. This species was studied using sequence data of the internal transcribed spacer region of rDNA, the partial beta-tubulin gene and an intron in the translation elongation factor 1-alpha gene, in addition to morphology. With all genes a clear bipartition was observed, which corresponded with minute differences in conidiophore morphology. A new species, C. yegresii, was introduced, which appeared to be, in contrast to C. carrionii, associated with living cactus plants. All strains from humans, and a few isolates from dead cactus debris, belonged to C. carrionii, for which a lectotype was designated. Artificial inoculation of cactus plants grown from seeds in the greenhouse showed that both fungi are able to persist in cactus tissue. When reaching the spines they produce cells that morphologically resemble the muriform cells known as the "invasive form" in chromoblastomycosis. The tested clinical strain of C. carrionii proved to be more virulent in cactus than the environmental strain of C. yegresii that originated from the same species of cactus, Stenocereus griseus. The muriform cell expressed in cactus spines can be regarded as the extremotolerant survival phase, and is likely to play an essential role in the natural life cycle of these organisms.

    更新日期:2019-11-01
  • Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    K A Seifert,S J Hughes,H Boulay,G Louis-Seize

    Using morphological characters, cultural characters, large subunit and internal transcribed spacer rDNA (ITS) sequences, and provisions of the International Code of Botanical Nomenclature, this paper attempts to resolve the taxonomic and nomenclatural confusion surrounding three species of cladosporium-like hyphomycetes. The type specimen of Hormodendrum resinae, the basis for the use of the epithet resinae for the creosote fungus {either as Hormoconis resinae or Cladosporium resinae) represents the mononematous synanamorph of the synnematous, resinicolous fungus Sorocybe resinae. The phylogenetic relationships of the creosote fungus, which is the anamorph of Amorphotheca resinae, are with the family Myxotrichaceae, whereas S. resinae is related to Capronia (Chaetothyriales, Herpotrichiellaceae). Our data support the segregation of Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in the recently described anamorph genus Seifertia, distinct from Sorocybe; this species is related to the Dothideomycetes but its exact phylogenetic placement is uncertain. To formally stabilize the name of the anamorph of the creosote fungus, conservation of Hormodendrum resinae with a new holotype should be considered. The paraphyly of the family Myxotrichaceae with the Amorphothecaceae suggested by ITS sequences should be confirmed with additional genes.

    更新日期:2019-11-01
  • Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    P W Crous,K Schubert,U Braun,G S de Hoog,A D Hocking,H-D Shin,J Z Groenewald

    Although morphologically similar, species of Cladophialophora (Herpotrichiellaceae) were shown to be phylogenetically distinct from Pseudocladosporium (Venturiaceae), which was revealed to be synonymous with the older genus, Fusicladium. Other than being associated with human disorders, species of Cladophialophora were found to also be phytopathogenic, or to occur as saprobes on organic material, or in water, fruit juices, or sports drinks, along with species of Exophiala. Caproventuria and Metacoleroa were confirmed to be synonyms of Venturia, which has Fusicladium (= Pseudocladosporium) anamorphs. Apiosporina, based on A. collinsii, clustered basal to the Venturia clade, and appears to represent a further synonym. Several species with a pseudocladosporium-like morphology in vitro represent a sister clade to the Venturia clade, and are unrelated to Polyscytalum. These taxa are newly described in Fusicladium, which is morphologically close to Anungitea, a heterogeneous genus with unknown phylogenetic affinity. In contrast to the Herpotrichiellaceae, which were shown to produce numerous synanamorphs in culture, species of the Venturiaceae were morphologically and phylogenetically more uniform. Several new species and new combinations were introduced in Cladophialophora, Cyphellophora (Herpotrichiellaceae), Exophiala, Fusicladium, Venturia (Venturiaceae), and Cylindrosympodium (incertae sedis).

    更新日期:2019-11-01
  • Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    P Zalar,G S de Hoog,H-J Schroers,P W Crous,J Z Groenewald,N Gunde-Cimerman

    Saprobic Cladosporium isolates morphologically similar to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA gene cluster, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S rDNA (ITS) and the small subunit (SSU) rDNA as well as beta-tubulin and actin gene introns and exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. Cladosporium sphaerospermum, which is characterised by almost globose conidia, is redefined on the basis of its ex-neotype culture. Cladosporium dominicanum, C. psychrotolerans, C. velox, C. spinulosum and C. halotolerans, all with globoid conidia, are newly described on the basis of phylogenetic analyses and cryptic morphological and physiological characters. Cladosporium halotolerans was isolated from hypersaline water and bathrooms and detected once on dolphin skin. Cladosporium dominicanum and C. velox were isolated from plant material and hypersaline water. Cladosporium psychrotolerans, which grows well at 4 degrees C but not at 30 degrees C, and C. spinulosum, having conspicuously ornamented conidia with long digitate projections, are currently only known from hypersaline water. We also newly describe C. salinae from hypersaline water and C. fusiforme from hypersaline water and animal feed. Both species have ovoid to ellipsoid conidia and are therefore reminiscent of C. herbarum. Cladosporium langeronii (= Hormodendrum langeronii) previously described as a pathogen on human skin, is halotolerant but has not yet been recorded from hypersaline environments.

    更新日期:2019-11-01
  • Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    K Schubert,J Z Groenewald,U Braun,J Dijksterhuis,M Starink,C F Hill,P Zalar,G S de Hoog,P W Crous

    The Cladosporium herbarum complex comprises five species for which Davidiella teleomorphs are known. Cladosporium herbarum s. str. (D. tassiana), C. macrocarpum (D. macrocarpa) and C. bruhnei (D. allicina) are distinguishable by having conidia of different width, and by teleomorph characters. Davidiella variabile is introduced as teleomorph of C. variabile, a homothallic species occurring on Spinacia, and D. macrospora is known to be the teleomorph of C. iridis on Iris spp. The C. herbarum complex combines low molecular distance with a high degree of clonal or inbreeding diversity. Entities differ from each other by multilocus sequence data and by phenetic differences, and thus can be interpreted to represent individual taxa. Isolates of the C. herbarum complex that were formerly associated with opportunistic human infections, cluster with C. bruhnei. Several species are newly described from hypersaline water, namely C. ramotenellum, C. tenellum, C. subinflatum, and C. herbaroides. Cladosporium pseudiridis collected from Iris sp. in New Zealand, is also a member of this species complex and shown to be distinct from C. iridis that occurs on this host elsewhere in the world. A further new species from New Zealand is C. sinuosum on Fuchsia excorticata. Cladosporium antarcticum is newly described from a lichen, Caloplaca regalis, collected in Antarctica, and C. subtilissimum from grape berries in the U.S.A., while the new combination C. ossifragi, the oldest valid name of the Cladosporium known from Narthecium in Europe, is proposed. Standard protocols and media are herewith proposed to facilitate future morphological examination of Cladosporium spp. in culture, and neotypes or epitypes are proposed for all species treated.

    更新日期:2019-11-01
  • Cladosporium leaf-blotch and stem rot of Paeonia spp. caused by Dichocladosporium chlorocephalum gen. nov.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    K Schubert,U Braun,J Z Groenewald,P W Crous

    Cladosporium chlorocephalum (= C. paeoniae) is a common, widespread leaf-spotting hyphomycete of peony (Paeonia spp.), characterised by having dimorphic conidiophores. During the season, one stage of this fungus causes distinct, necrotic leaf-blotch symptoms on living leaves of Paeonia spp. In late autumn, winter or after overwintering, a second morphologically distinct conidiophore type occurs on dead, blackish, rotting stems. Conspecificity of the two morphs, previously proposed on the basis of observations in culture, was supported by DNA sequence data from the ITS and LSU gene regions, using cultures obtained from leaf-blotch symptoms on living leaves, as well as from dead stems of Paeonia spp. Sequence data were identical, indicating a single species with two morphs. On account of its distinct conidiogenous loci and conidial hila, as well as its sequence-based phylogenetic position separate from the Davidiella/Cladosporium clade, the peony fungus has to be excluded from Cladosporium s. str., but still belongs to the Davidiellaceae (Capnodiales). The leaf-blotching (cladosporioid) morph of this fungus morphologically resembles species of Fusicladium, but differs in having dimorphic fruiting, and is phylogenetically distant from the Venturiaceae. The macronematous (periconioid) morph resembles Metulocladosporiella (Chaetothyriales), but lacks rhizoid conidiophore hyphae, and has 0-5-septate conidia. Hence, C. chlorocephalum is assigned to the new genus Dichocladosporium.

    更新日期:2019-11-01
  • Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    M Arzanlou,J Z Groenewald,W Gams,U Braun,H-D Shin,P W Crous

    The phylogeny of the genera Periconiella, Ramichloridium, Rhinocladiella and Veronaea was explored by means of partial sequences of the 28S (LSU) rRNA gene and the ITS region (ITS1, 5.8S rDNA and ITS2). Based on the LSU sequence data, ramichloridium-like species segregate into eight distinct clusters. These include the Capnodiales (Mycosphaerellaceae and Teratosphaeriaceae), the Chaetothyriales (Herpotrichiellaceae), the Pleosporales, and five ascomycete clades with uncertain affinities. The type species of Ramichloridium, R. apiculatum, together with R. musae, R. biverticillatum, R. cerophilum, R. verrucosum, R. pini, and three new species isolated from Strelitzia, Musa and forest soil, respectively, reside in the Capnodiales clade. The human-pathogenic species R. mackenziei and R. basitonum, together with R. fasciculatum and R. anceps, cluster with Rhinocladiella (type species: Rh. atrovirens, Herpotrichiellaceae, Chaetothyriales), and are allocated to this genus. Veronaea botryosa, the type species of the genus Veronaea, also resides in the Chaetothyriales clade, whereas Veronaea simplex clusters as a sister taxon to the Venturiaceae (Pleosporales), and is placed in a new genus, Veronaeopsis. Ramichloridium obovoideum clusters with Carpoligna pleurothecii (anamorph: Pleurothecium sp., Chaetosphaeriales), and a new combination is proposed in Pleurothecium. Other ramichloridium-like clades include R. subulatum and R. epichloës (incertae sedis, Sordariomycetes), for which a new genus, Radulidium is erected. Ramichloridium schulzeri and its varieties are placed in a new genus, Myrmecridium (incertae sedis, Sordariomycetes). The genus Pseudovirgaria (incertae sedis) is introduced to accommodate ramichloridium-like isolates occurring on various species of rust fungi. A veronaea-like isolate from Bertia moriformis with phylogenetic affinity to the Annulatascaceae (Sordariomycetidae) is placed in a new genus, Rhodoveronaea. Besides Ramichloridium, Periconiella is also polyphyletic. Thysanorea is introduced to accommodate Periconiella papuana (Herpotrichiellaceae), which is unrelated to the type species, P. velutina (Mycosphaerellaceae).

    更新日期:2019-11-01
  • Delimiting Cladosporium from morphologically similar genera.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    P W Crous,U Braun,K Schubert,J Z Groenewald

    The genus Cladosporium is restricted to dematiaceous hyphomycetes with a coronate scar type, and Davidiella teleomorphs. In the present study numerous cladosporium-like taxa are treated, and allocated to different genera based on their morphology and DNA phylogeny derived from the LSU nrRNA gene. Several species are introduced in new genera such as Hyalodendriella, Ochrocladosporium, Rachicladosporium, Rhizocladosporium, Toxicocladosporium and Verrucocladosporium. A further new taxon is described in Devriesia (Teratosphaeriaceae). Furthermore, Cladosporium castellanii, the etiological agent of tinea nigra in humans, is confirmed as synonym of Stenella araguata, while the type species of Stenella is shown to be linked to the Teratosphaeriaceae (Capnodiales), and not the Mycosphaerellaceae as formerly presumed.

    更新日期:2019-11-01
  • Mycosphaerella is polyphyletic.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    P W Crous,U Braun,J Z Groenewald

    Mycosphaerella, one of the largest genera of ascomycetes, encompasses several thousand species and has anamorphs residing in more than 30 form genera. Although previous phylogenetic studies based on the ITS rDNA locus supported the monophyly of the genus, DNA sequence data derived from the LSU gene distinguish several clades and families in what has hitherto been considered to represent the Mycosphaerellaceae. Several important leaf spotting and extremotolerant species need to be disposed to the genus Teratosphaeria, for which a new family, the Teratosphaeriaceae, is introduced. Other distinct clades represent the Schizothyriaceae, Davidiellaceae, Capnodiaceae, and the Mycosphaerellaceae. Within the two major clades, namely Teratosphaeriaceae and Mycosphaerellaceae, most anamorph genera are polyphyletic, and new anamorph concepts need to be derived to cope with dual nomenclature within the Mycosphaerella complex.

    更新日期:2019-11-01
  • Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Walter M Jaklitsch,Gary J Samuels,Sarah L Dodd,Bing-Sheng Lu,Irina S Druzhinina

    The type species of the genus Hypocrea (Hypocreaceae, Hypocreales, Ascomycota, Fungi), H. rufa, is re-defined and epitypified using a combination of phenotype (morphology of teleomorphs and anamorphs, and characteristics in culture) and phylogenetic analyses of the translation-elongation factor 1alpha gene. Its anamorph, T. viride, the type species of Trichoderma, is re-described and epitypified. Eidamia viridescens is combined as Trichoderma viridescens and is recognised as one of the most morphologically and phylogenetically similar relatives of T. viride. Its teleomorph is newly described as Hypocrea viridescens. Contrary to frequent citations of H. rufa and T. viride in the literature, this species is relatively rare. Although both T. viride and T. viridescens have a wide geographic distribution, their greatest genetic diversity appears to be in Europe and North America. Hypocrea vinosa is characterised and its anamorph, T. vinosum sp. nov., is described. Conidia of T. vinosum are subglobose and warted. The new species T. gamsii is proposed. It shares eidamia-like morphology of conidiophores with T. viridescens, but it has smooth, ellipsoidal conidia that have the longest L/W ratio that we have seen in Trichoderma. Trichoderma scalesiae, an endophyte of trunks of Scalesia pedunculata in the Galapagos Islands, is described as new. It only produces conidia on a low-nutrient agar to which filter paper has been added. Additional phylogenetically distinct clades are recognised and provisionally delimited from the species here described. Trichoderma neokoningii, a T. koningii-like species, is described from a collection made in Peru on a fruit of Theobroma cacao infected with Moniliophthora roreri.

    更新日期:2019-11-01
  • The Trichoderma koningii aggregate species.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Gary J Samuels,Sarah L Dodd,Bing-Sheng Lu,Orlando Petrini,Hans-Josef Schroers,Irina S Druzhinina

    The morphological concept of Trichoderma koningii is found to include several species that differ from each other in details of phenotype (including conidium morphology, growth rate) and biogeography. Phylogenetic analysis utilizing partial sequences of the translation-elongation factor 1 alpha (tef1), as well as fragments of actin and calmodulin genes, indicate that phenotypic characters typical of T. koningii evolved independently in three well-separated main lineages. Combined molecular and phenotype data lead to the development of a taxonomy with the recognition of twelve taxonomic species and one variety within the three lineages. These lineages include: (1) T. koningii and T. ovalisporum and the new species T. caribbaeum var. caribbaeum, T. caribbaeum var. aequatoriale, T. dorotheae, T. dingleyae, T. intricatum, T. koningiopsis, T. petersenii and T. taiwanense; (2) the new species T. rogersonii and T. austrokoningii, and (3) the new anamorph T. stilbohypoxyli.Trichoderma koningii s. str. is an uncommon species restricted to Europe and eastern North America; T. caribbaeum var. aequatoriale, T. koningiopsis, and T. ovalisporum were isolated as endophytes of trunks of Theobroma species in tropical America, and T. ovalisporum from the woody liana Banisteropsis caapi in Ecuador; T. koningiopsis is common in tropical America but was isolated also from natural substrata in East Africa, Europe and Canada, and from ascospores in eastern North America, and as an endophyte in Theobroma species; T. stilbohypoxyli, originally described as a parasite of Stilbohypoxylon species in Puerto Rico, is found to be more common in the tropics, besides an endophytic isolate from Fagus in U.K. The additional new species are known almost exclusively from their teleomorphs. Isolates of T. ovalisporum and T. koningiopsis may have biological control potential. A morphophenetic key and a set of tools for molecular species identification were developed.

    更新日期:2019-11-01
  • Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Barrie E Overton,Elwin L Stewart,David M Geiser

    Morphological studies and phylogenetic analyses of DNA sequences from the internal transcribed spacer (ITS) regions of the nuclear ribosomal gene repeat, a partial sequence of RNA polymerase II subunit (rpb2), and a partial sequence of the large exon of tef1 (LEtef1) were used to investigate the taxonomy and systematics of nine Hypocrea species with anamorphs assignable to Trichoderma sect. Hypocreanum. Hypocrea corticioides and H. sulphurea are reevaluated. Their Trichoderma anamorphs are described and the phylogenetic positions of these species are determined. Hypocrea sulphurea and H. subcitrina are distinct species based on studies of the type specimens. Hypocrea egmontensis is a facultative synonym of the older name H. subcitrina. Hypocrea with anamorphs assignable to Trichoderma sect. Hypocreanum formed a well-supported clade. Five species with anamorphs morphologically similar to sect. Hypocreanum, H. avellanea, H. parmastoi, H. megalocitrina, H. alcalifuscescens, and H. pezizoides, are not located in this clade. Protocrea farinosa belongs to Hypocrea s.s.

    更新日期:2019-11-01
  • Systematics of Hypocrea citrina and related taxa.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    Barrie E Overton,Elwin L Stewart,David M Geiser,Walter M Jaklitsch

    Morphological studies and phylogenetic analyses of DNA sequences from three genomic regions - the internal transcribed spacer (ITS) regions of the nuclear ribosomal gene repeat, a partial sequence of RNA polymerase II subunit (rpb2), and a partial sequence of translation elongation factor (tef1) - were used to investigate the systematics of Hypocrea citrina and related species. A neotype specimen is designated for H. citrina that conforms to Persoon's description of a yellow effuse fungus occurring on leaf litter. Historical information and results obtained in this study provide the foundation for selection of a lectotype specimen from Fries's herbarium for H. lactea. The results indicate that (1) Hypocrea citrina and H. pulvinata are distinct species; (2) H. lactea sensu Fries is a synonym of the older name H. citrina; (3) H. pulvinata, H. protopulvinata, and H. americana are phylogenetically distinct species that form a well-supported polyporicolous clade; (4) H. citrina is situated in a clade closely related to H. pulvinata; and (5) H. microcitrina and H. pseudostraminea reside in a highly supported clade phylogenetically distinct from H. citrina. Hypocrea protopulvinata, H. microcitrina, H. megalocitrina, H. pseudostraminea, and a new species, H. aurantiistroma, are reported and described from North America. Variation in rpb2 and tef1 gene sequences suggests geographical subgroupings between European and North American isolates of H. pulvinata. The phylogenies inferred from ITS, rpb2, and tef1 gene sequences are concordant. Hypocrea citrina var. americana is elevated to species status, Hypocrea americana.

    更新日期:2019-11-01
  • A monograph of the entomopathogenic genera Hypocrella, Moelleriella, and Samuelsia gen. nov. (Ascomycota, Hypocreales, Clavicipitaceae), and their aschersonia-like anamorphs in the Neotropics.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    P Chaverri,M Liu,K T Hodge

    The present taxonomic revision deals with Neotropical species of three entomopathogenic genera that were once included in Hypocrella s. l.: Hypocrella s. str. (anamorph Aschersonia), Moelleriella (anamorph aschersonia-like), and Samuelsia gen. nov (anamorph aschersonia-like). Species of Hypocrella, Moelleriella, and Samuelsia are pathogens of scale insects (Coccidae and Lecaniidae, Homoptera) and whiteflies (Aleyrodidae, Homoptera) and are common in tropical regions. Phylogenetic analyses of DNA sequences from nuclear ribosomal large subunit (28S), translation elongation factor 1-alpha (TEF 1-alpha), and RNA polymerase II subunit 1 (RPB1) and analyses of multiple morphological characters demonstrate that the three segregated genera can be distinguished by the disarticulation of the ascospores and shape and size of conidia. Moelleriella has filiform multi-septate ascospores that disarticulate at the septa within the ascus and aschersonia-like anamorphs with fusoid conidia. Hypocrella s. str. has filiform to long-fusiform ascospores that do not disarticulate and Aschersonia s. str. anamorphs with fusoid conidia. The new genus proposed here, Samuelsia, has filiform to long-fusiform ascospores that do not disarticulate and aschersonia-like anamorphs with small allantoid conidia. In addition, the present study presents and discusses the evolution of species, morphology, and ecology in Hypocrella, Moelleriella, and Samuelsia based on multigene phylogenetic analyses.

    更新日期:2019-11-01
  • Aspergillus species identification in the clinical setting.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    S A Balajee,J Houbraken,P E Verweij,S-B Hong,T Yaghuchi,J Varga,R A Samson

    Multiple recent studies have demonstrated the limited utility of morphological methods used singly for species identification of clinically relevant aspergilli. It is being increasingly recognised that comparative sequence based methods used in conjunction with traditional phenotype based methods can offer better resolution of species within this genus. Recognising the growing role of molecular methods in species recognition, the recently convened international working group meeting entitled "Aspergillus Systematics in the Genomic Era" has proposed several recommendations that will be useful in such endeavors. Specific recommendations of this working group include the use of the ITS regions for inter section level identification and the beta-tubulin locus for identification of individual species within the various Aspergillus sections.

    更新日期:2019-11-01
  • Sexual and vegetative compatibility genes in the aspergilli.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    K Pál,A D van Diepeningen,J Varga,R F Hoekstra,P S Dyer,A J M Debets

    Gene flow within populations can occur by sexual and/or parasexual means. Analyses of experimental and in silico work are presented relevant to possible gene flow within the aspergilli. First, the discovery of mating-type (MAT) genes within certain species of Aspergillus is described. The implications for self-fertility, sexuality in supposedly asexual species and possible uses as phylogenetic markers are discussed. Second, the results of data mining for heterokaryon incompatibility (het) and programmed cell death (PCD) related genes in the genomes of two heterokaryon incompatible isolates of the asexual species Aspergillus niger are reported. Het-genes regulate the formation of anastomoses and heterokaryons, may protect resources and prevent the spread of infectious genetic elements. Depending on the het locus involved, hetero-allelism is not tolerated and fusion of genetically different individuals leads to growth inhibition or cell death. The high natural level of heterokaryon incompatibility in A. niger blocks parasexual analysis of the het-genes involved, but in silico experiments in the sequenced genomes allow us to identify putative het-genes. Homologous sequences to known het- and PCD-genes were compared between different sexual and asexual species including different Aspergillus species, Sordariales and the yeast Saccharomyces cerevisiae. Both het- and PCD-genes were well conserved in A. niger. However some point mutations and other small differences between the het-genes in the two A. niger isolates examined may hint to functions in heterokaryon incompatibility reactions.

    更新日期:2019-11-01
  • Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    J Varga,J C Frisvad,R A Samson

    Aspergillus section Candidi historically included a single white-spored species, A. candidus. Later studies clarified that other species may also belong to this section. In this study, we examined isolates of species tentatively assigned to section Candidi using a polyphasic approach. The characters examined include sequence analysis of partial beta-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the revised section Candidi includes 4 species: A. candidus, A. campestris, A. taichungensis and A. tritici. This is strongly supported by all the morphological characteristics that are characteristic of section Candidi: slow growing colonies with globose conidial heads having white to yellowish conidia, conidiophores smooth, small conidiophores common, metulae present and covering the entire vesicle, some large Aspergillus heads with large metulae, presence of diminutive heads in all species, conidia smooth or nearly so with a subglobose to ovoid shape, and the presence of sclerotia in three species (A. candidus, A. taichungensis and A. tritici). Aspergillus tritici has been suggested to be the synonym of A. candidus previously, however, sequence data indicate that this is a valid species and includes isolates came from soil, wheat grain, flour and drums from India, Ghana, Sweden, The Netherlands and Hungary, making it a relatively widespread species. All species produce terphenyllins and candidusins and three species (A. candidus, A. campestris and A. tritici) produce chlorflavonins. Xanthoascins have only been found in A. candidus. Each of the species in section Candidi produce several other species specific extrolites, and none of these have been found in any other Aspergillus species. A. candidus has often been listed as a human pathogenic species, but this is unlikely as this species cannot grow at 37 degrees C. The pathogenic species may be A. tritici or white mutants of Aspergillus flavus.

    更新日期:2019-11-01
  • Biodiversity of Aspergillus species in some important agricultural products.
    Stud. Mycol. (IF 9.206) Pub Date : 2008-05-21
    G Perrone,A Susca,G Cozzi,K Ehrlich,J Varga,J C Frisvad,M Meijer,P Noonim,W Mahakarnchanakul,R A Samson

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non-toxigenic A. oryzae. Studies are needed in order to characterise the aflatoxin biosynthetic genes in the new related taxa A. minisclerotigenes and A. arachidicola.

    更新日期:2019-11-01
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug